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Chapter 1

Analysis of Elliptic Problems: Variational Forms, Weak Solutions

This chapter follows in great part the presentation done in the excellent book of G. Allaire entitled " Numerical analysis and optimization", Oxford scientific publications, 2007 [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF].

Prerequisites for this chapter are :

• Basic knowledge on the classical linear PDEs: elliptic (Laplace-Poisson's equation), parabolic (heat equation), hyperbolic (advection equation and wave equation),

• Basics concepts of weak derivatives, the Sobolev space H 1 (Ω).

In this chapter you will learn how to:

• write the weak formulation of a Boundary Value Problem (BVP) (PDE-based model),

• write the energy expression in the symmetric case,

• impose various boundary conditions including the transmission b.c.,

• prove the well-posedness of a linear elliptic problem (Lax-Milgram's theory),

• identify the potential origin of a local singularity.

To the INSA students 4th year, Applied Math. department. The sections 1.1, 1.2 and 1.3 and 1.4.1 have already been studied in great part during the INSA PDE course, 4th year, 1st semester.

The section indicated "To go further" may be skipped as a first reading. These additional information are dedicated to students particularly interested in mathematical analysis.

In Appendix 1.4, basic properties of the Laplace operator are presented. The reader is invited to consult this section by its own before studying the present analysis chapter.

Introduction

The typical elliptic boundary value problem we will consider is the Laplace-Poisson equation accompanied with mixed boundary conditions: An other typical problem is the biharmonic problem:

     -∆u(x) = f (x) in Ω u(x) = 0 on Γ d -∂ n u(x) = ϕ(x) on Γ n (1.1.1)
-∆ 2 u(x) = f (x) in Ω u(x) = 0 on ∂Ω with:∆ 2 u(x) = n i=1 ∂ 4 u ∂x 4 i (x) + 2 n i,j=1;i<j ∂ 4 u ∂x 2 i ∂x 2 j (x).
The latter is a 4th order linear elliptic equation modeling for example a flexion plate (linear elasticity): u represents the plate displacement, cf Fig.

We will recall the adequate mathematical framework to obtain these elliptic boundary value problems wellposed: the variational (or weak) formulation.

Recall that a problem is well-posed if it has a unique solution and it depends continuously on the data (e.g. the R.H.S. also source term f( x ) ).

The variational formulation has a natural physical interpretation of the mathematical system, and it is the key step to derive a finite element scheme.

From classical formulation to weak formulation

Let us consider the Boundary Value Problem (BVP) (1.1.1). Given "regular" data, in the sense f ∈ C( Ω) and ϕ ∈ C 1 (Γ n ), we can expect that the solution u is in C 2 (Ω) ∩ C 0 ( Ω). However, in this case the solution may not exist (at least without additional regularity on the source term f for example).

This classical formulation of the problem, see (1.1.1), also called "strong" formulation, leads to the classical (or "strong") solution.

In a great majority of real-world modeling problems, data are not regular. Mind for example to a simple discontinuity of the source term f . Then the right framework to analyse this Boundary Value Problem (BVP) is the variational approach, leading to the so-called variational or weak formulation and the corresponding weak solution.

The principle of the variational approach is to multiply the equation by an arbitrary function, called a test function, next to integrate it using Green's formula.

In the physical / mechanical communities the weak formulation is called the principle of virtual work.

Domain regularity and basic recalls

Let Ω be a regular open set of R n . Let n be the unit the outward normal vector at the boundary ∂Ω. 

What is a "regular" domain ?

The domains plotted below are regular: corners are not locally C 1 , however they are Lipschitz and that regularity is enough to apply all the properties presented in this course (in particular the Sobolev spaces properties).

What is a non-regular domain ?

The typical example is an internal crack which generates a local singularity of the solution at the crack front... e.g. an infinite electrical field at your umbrella top during a storm... (the model of the electrical potential is the simple Laplace equation).

In all the sequel we assume that the domain Ω is a regular bounded open-set of R d .

Green's formula. Let w be a regular function, w ∈ C 1 ( Ω), then

Ω ∂ i w(x) dx = ∂Ω w(x) • n i (x) ds, i = 1, .., d (1.2 

.1)

Integration by parts. Let u and v be regular functions, i.e. in C 1 ( Ω), then:

Ω u(x)∂ i v(x) dx = - Ω v(x)∂ i u(x) dx + ∂Ω u(x)v(x)n i (x) ds, i = 1, .., d (1.2.2) 
And for u in C 2 ( Ω),

Ω ∆u(x)v(x) dx = - Ω ∇u(x)∇v(x) dx + ∂Ω ∂ n u(x)v(x) ds (1.2.3)
where ∂ n u denotes ∇u • n.

It will be recalled in next section that these Green's formula and integration by parts remain valid for u and v in Sobolev spaces.

In the sequel, we need the following result. We denote by C ∞ c (Ω) the space of functions C ∞ with compact support in Ω. (This space is often denoted D(Ω) too).

Lemma 1. Let g ∈ C 0 (Ω) (resp. L 2 (Ω)). If Ω g(x)ϕ(x)dx = 0 ∀ϕ ∈ C 0 c (Ω)
then g = 0 in Ω (resp. almost everywhere in Ω). Sketch of the proof. In the continuous case, this can be easily proved by contradiction (assume that g strictly positive at one point x 0 and consider ϕ > 0... See details in [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] p72.

Next the result in L 2 follows by density of C 0 c (Ω) in L 2 (Ω), see details in [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] p80.

Weak formulation in the classical spaces C k ( Ω)

Recall that Ω denotes a regular bounded open-set of R d .

Weak formulation

Let us assume that all the data of the BVP are regular enough; typically in the Laplace problem (1.1.1), it means that f is C 0 (Ω) and ϕ ∈ C 0 (Γ n ). Then we have Proposition 2. Let X be the space defined by X = {v ∈ C 1 ( Ω), v = 0 on Γ d }.

Then u is solution of the BVP (1.1.1) in C 2 ( Ω) if and only if u ∈ X and u satisfies:

Ω ∇u(x)∇v(x) dx = Ω f (x)v(x) dx - Γn ϕ(x)v(x) ds ∀v ∈ X (1.2.4)
Proof. We multiply the equation (1.1.1) by v ∈ X. An integration by part gives: Conversely, let u ∈ X be solution of the weak formulation. By making the "reverse" integration by part on Eqn (1.2.4), it follows:

Ω -∆u(x)v(x) dx + Γn ∇u • n v(x) ds = Ω f (x)v(x) dx - Γn ϕ(x)v(x) ds ∀v ∈ X
Hence for v = 0 on ∂Ω (v still belongs to X):

Ω (∆u(x) + f (x)) v(x) dx = 0
This equation holds for any v in C 0 (Ω). Moreover (∆u + f ) is a continuous function; therefore:

-∆u(x) = f (x) ∀x ∈ Ω
The Dirichlet b.c. on Γ d is a direct consequence of u ∈ X.

Next for all v ∈ X, Γn ∇u • n v(x) ds = -Γn ϕ(x)v(x) ds . Therefore:

-∇u • n = ϕ(x) on Γ n
Therefore u is solution of the classical formulation (1.1.1).

Equation (1.2.4) is the variational formulation (or weak form) of the BVP (1.1.1). The function v is called the test function.

On the opposite, (1.1.1) is called the classical form (or strong form) of the model.

Remarks

• The weak form requires u ∈ C 1 ( Ω) "only" while the classical form requires u ∈ C 2 ( Ω). As a consequence the weak form is more general since considering a greater set of potential solutions.

• In the mechanical community, the variational formulation is called the principle of virtual work.

1.2.2.2 Why a variational (weak) formulation ? Why the Sobolev spaces ?

The variational (weak) formulation is the right framework to consider the BVP for few reasons.

It requires a less regular solution than in the classical form hence less regular data too. In real-world modeling problems, data are not necessarily regular... It is the right formulation to mathematically analyse the problem, in particular to establish the existence and uniqueness of the solution, see the Lax-Milgram theory in next section.

However this theory works only if the space in which we look at the solution is a Hilbert space. This is not the case of X defined as above since X is a Banach space with its norm not defined from a scalar product. (If so, it would not be complete for its induced norm, see e.g. [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] for more details).

Then for linear elliptic equations, the natural spaces are the Sobolev spaces H m (Ω), m ≥ 1 (see their definitions in next paragraph).

The variational (weak) formulation of (1.1.1) reads as follows. Find u ∈ X such that:

a(u, v) = b(v) ∀v ∈ X (1.2.5)
With:

a(u, v) = Ω ∇u(x)∇v(x) dx and b(v) = Ω f (x)v(x) dx - Γn ϕ(x)v(x) ds
It can noticed that the applications v → a(•, v) and v → l(v) are linear by construction.

Furthermore the application u → a(u, •) is linear since the original PDE is linear; therefore a(u, v) is a bilinear form on X × X.

Recalls of functional analysis

Recall that Ω denotes a regular bounded open set of R d .

Weak derivatives Let us recall the definition of the weak derivative for functions in L 2 (Ω), the space of measurable functions which are square integrable in Ω.

(Recall that measurable functions are defined almost everywhere: if we change the value of a measurable function on a subset of measure zero, the measurable function is not changed).

Weak derivatives is a generalization of the classical derivation. (Note that it is a particular case of the derivation in the sense of distributions). Definition 3. Let v ∈ L 2 (Ω). v is differentiable in the weak sense in L 2 (Ω) if it exists w i ∈ L 2 (Ω), i = 1, .., d, such that:

Ω v(x)∂ i ϕ(x)dx = - Ω w i (x)ϕ(x)dx ∀ϕ ∈ C ∞ c (Ω)
Then w i ≡ ∂ i v is the ith partial derivative of v.

Definition 4. Of course, if v is differentiable in the classical sense (and its partial derivatives belong to L 2 (Ω)) then the classical and the weak derivatives of v are the same.

A practical criteria to determine if a function is differentiable in the weak sense is as follows.

Lemma 5. Let v ∈ L 2 (Ω). If it exists C > 0 such that for i = 1, .., d,

Ω v∂ i ϕ(x) dx ≤ C ϕ L 2 ∀ϕ ∈ L 2 (Ω) with ∂ i ϕ ∈ L 2 (Ω)
then v is differentiable in the weak sense.

Note that the definition the standard differential operators like div, ∇, ∆, ∆ 2 , curl etc can be naturally extended to the weak sense.

The Sobolev spaces H 1 (Ω), H 1 0 (Ω), H m (Ω) Let us recall the Sobolev spaces which are the natural spaces to solve the variational formulations of elliptic PDEs and particularly the linear ones (see next paragraph).

The Sobolev space H 1 (Ω) is defined by:

H 1 (Ω) = {v ∈ L 2 (Ω) s.t. ∂ i v ∈ L 2
(Ω), ∀i = 1, .., d} where ∂ i v denotes the weak partial derivative of v. This space is equipped with the scalar product (u, v) H 1 = Ω (u(x)v(x) + ∇u(x)∇v(x)] dx and with the corresponding

norm • H 1 = (•, •) 1/2 H 1 .
Then it is a Hilbert space.

The space H 1 0 (Ω) is the subspace of H 1 (Ω) such that: v = 0 on ∂Ω. Equipped with the scalar product of H 1 (Ω), the Sobolev space H 1 0 (Ω) is a Hilbert space too.

Remarks

• The functions of H 1 (Ω) are a-priori neither continuous nor bounded (excepted in dimension d = 1; which is an exception).

• Regular functions in the sense C k ( Ω), k ≥ 1, are dense in H 1 (Ω). This feature is crucial to establish many properties first for regular functions next to functions in H 1 by the "density argument". This means that for all f ∈ H 1 (Ω) , it exists a sequence f ∈ C ∞ c ( Ω) such that lim n f -f n H 1 = 0. Let us denote α = (α 1 , ..., α d ) , |α| = i α i , and:

∂ α v(x) = ∂ |α| v ∂x α 1 1 ...∂x α d d (x)
. At higher orders, the Sobolev space H m (Ω), m ≥ 1, is naturally defined as follows:

H m (Ω) = {v ∈ L 2 (Ω) s.t. ∀α with |α| ≤ m, ∂ α v ∈ L 2 (Ω)}
Obviously the more m is large, the more the functions of H m (Ω) are regular, that is differentiable in the classical sense. More precisely, we have:

Lemma 6. Let Ω be a bounded open set of R d . If m > d
2 then H m (Ω) ⊂ C 0 ( Ω). More generally, for k integer, k ≥ 0 such that m-d 2 > k, then:

H m (Ω) ⊂ C k ( Ω) (1.2.6)
In particular, we have:

• In 1d geometry (unusual case), H 1 (Ω) ⊂ C 0 ( Ω), H 2 (Ω) ⊂ C 1 ( Ω) etc

• In 2d and 3d geometries, H 1 (Ω) functions are not continuous on Ω !... However, H 2 (Ω) functions are: H 2 (Ω) ⊂ C 0 ( Ω), H 3 (Ω) ⊂ C 1 ( Ω) etc Lemma 7. Poincaré inequality Let us consider v ∈ H 1 (Ω) , with v = 0 on ∂Ω. It exists a constant C > 0 such that:

Ω v 2 dx ≤ C Ω |∇v| 2 dx
The Poincaré inequality (4.9) is not true for functions of H 1 (Ω) but remains true if v = 0 on a part of the boundary only.

Values at boundary: trace concept To go further... For d ≥ 2, the functions v of H 1 (Ω), which are measurable functions "only", are a-priori not continuous. Then it is not clear whether the boundary value of v has any sense (recall that ∂Ω is a set of measure zero...). However, it is possible to define the boundary value of v from the so-called trace as follows.

Theorem 8. (Trace theorem)

The trace mapping γ : v→v| ∂Ω defined from H 1 (Ω) C(Ω) into L 2 (∂Ω) C(∂Ω) can be extended by continuity to a continuous linear mapping of H 1 (Ω) into L 2 (∂Ω), again called γ.

As a result, it exists a constant C > 0 such that:

v L 2 (∂Ω) ≤C v H 1 (Ω) (1.2.7)
Green formula in Sobolev spaces It can be proved that the Green formula (1.2.1) and the integration by parts (1.2.2)(1.2.3) remain valid for functions in H 1 (Ω) and H 2 (Ω) respectively:

∀(u, v) ∈ H 1 (Ω) 2 , Ω u(x)∂ i v(x) dx = - Ω v(x)∂ i u(x) dx + ∂Ω u(x)v(x)n i (x) ds, i = 1, .., d (1.2.8)
The proof is based on a density argument and the trace theorem, see e.g. [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] for more details.

A nonlinear problem ? Spaces W m,p (Ω) To go further.... As already mentioned, the Sobolev spaces H m (Ω) are the natural spaces to solve the variational formulations of linear elliptic BVP; it is the minimal functional space to get a finite energy too.

However for nonlinear problems these spaces are not the adequate ones: one generally needs to consider the spaces W m,p (Ω) with p real, 1 ≤ p ≤ +∞ and m integer, m ≥ 1.

These Sobolev spaces W m,p (Ω) are constructed on the Banach space L p (Ω) as follows:

W m,p (Ω) = {v ∈ L p (Ω) s.t. ∀α with |α| ≤ m, ∂ α v ∈ L p (Ω)}
where the partial derivatives ∂ α v are taken in the weak sense.

Equipped with the norm

u m,p = |α|<m ∂ α u p 1/p
, these spaces are Banach spaces but not Hilbert spaces anymore ... (excepted if p = 2 of course).

On the distributions To go further.... The concept of weak solutions and weak derivatives above are naturally derived if using the distributions theory. Distributions are object that generalize the notion of functions. The basic idea is to re-interpret the functions as linear functionals acting on the test functions space. This theory gives in particular a meaningful sense to the Dirac "function" δ.

Historically, the distributions theory derived by L. Schwarz has been established after the Sobolev spaces (S. Sobolev, 1908Sobolev, -1989) ) and the variational approach for solving PDE.

The theory of distributions is the complete framework to write such analyses. However, the distribution theory is out of the scope of the present course; we refer to the present reference book [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] and references therein for more details.

Weak formulation in the Sobolev spaces and Lax-Milgram's theory

As already mentioned, the weak form of a BVP is more general since considering a greater set of potential solutions, and the natural spaces for analysing the linear elliptuc BVP are the Sobolev spaces H m (Ω), m ≥ 1. Indeed we prove by using the Lax-Milgram theory that the linear BVP problems are well-posed (that is they have a unique solution and it depends continuously on the data). To do so we follow the variational approach presented previously but in the Sobolev spaces.

The existence -uniqueness theorem

Let us denote by V a (real) Hilbert space with scalar product < •, • > and norm • .

In the present context V will be a Sobolev space H m (Ω).

Then we consider the following weak formulation:

Find u ∈ V such that: a(u, v) = b(v) ∀v ∈ V (1.
2.9) with a(•, •) a bilinear form on V and b(•) a linear on V (i.e. a linear application defined from V into R ).

Recall that (1.2.4) is the weak formulation version in the regular / classical space X.

Recalls: continuity and ellipticity of the forms • The bilinear form a(•,

• The linear form b(•) is continuous from V into R if it exists C > 0 such that: |L(v)| ≤ C v ∀v ∈ V
•) is continuous from V × V into R if it exists c > 0 such that: |a(u, v)| ≤ c u v ∀u, v ∈ V (1.2.10) • The form a(•, •) is elliptic on V if it exists α > 0 such that: a(u, u) ≥ α u 2 ∀u ∈ V (1.2.11)
The continuity properties are usually satisfied and easy to verify. On the contrary the ellipticity is the crucial point and the key property of the existence and uniqueness result stated below.

Theorem 9. (Lax-Milgram) Let V be real Hilbert space. If a(•, •) is continuous coercive (elliptic) bilinear on V , if b(•) is continuous linear on V , then the variational formulation a(u, v) = b(v) ∀v ∈ V (1.2.12)
has a unique solution u in V . Furthermore this solution depends continuously on the right hand side data (the source terms in b).

The proof can be found in [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF]. P. Lax (1926 -), &A. N. Milgram (1912Milgram ( -1961)).

This theorem (extended as the Lions-Lax-Milgram's theorem) is the basis to write the analysis of linear coercitive BVP.

However let us point out that generally the non linear BVP cannot be studied in the Sobolev spaces H m (which are Hilbert spaces) but in the spaces W m,p for example (which are Banach spaces "only"), then the basis analysis theorems are not the present Lax-Milgram one.

In the case of non homogeneous Dirichlet boundary conditions, an extended version will have to be considered, see next section.

Energy expression, minimum of energy in the symmetric case

If we set v = u in the weak form (1.2.9) of the BVP, we obtain the energy expression of the system.

The Left Hand Side (LHS) a(u, u) is the stored energy in Ω while the RHS b(u) represents the external force / source energy.

In the previous example, this would give:

a(u, u) = ∇u 2 L 2 and b(u) = Ω f u dx - Γn ϕu ds (1.2.13) Moreover if the bilinear form a(•, •) is symmetric, that is a(u, v) = a(v, u) ∀(u, v)
, the (unique) solution of (1.2.12) minimizes the energy of the energy modeled by ((1.2.12). Indeed, let us define the functional J : V → R by:

J(v) = 1 2 a(v, v) -b(v) (1.2.14)
Then u is solution of (1.2.12) if and only if u satisfies:

J (u) • v = 0 ∀v ∈ V .
Indeed this equality is the Euler equation of the following minimization problem:

min v∈V J(v) (1.2.15)
Moreover, it is easy to verify that a(•, •) coercive in V implies that J(.) is strictly convex. Therefore this optimization problem (1.2.15) admits an unique solution u, which is the unique solution of (1.2.9).

In others words, at equilibrium the functional J(.) is minimal: J(.) defined by (1.2.13) is the energy functional.

It can be noticed that the Sobolev spaces H m (Ω) are the minimal space to get a finite energy: it is the natural spaces to define and analyse these linear models.

The Laplace-Poisson equation: mathematical analysis

In this section, fundamental ingredients to analysis the Laplace-Poisson equation (that is the typical linear scalar elliptic model) are introduced.

The Dirichlet boundary conditions case

The model

Let us consider the following linear second order elliptic with variable coefficients:

-div(λ(x)∇u(x)) = f (x) in Ω u(x) = 0 on ∂Ω (1.3.1)
with f ∈ L 2 (Ω) and λ(x) given. If λ(.) is differentiable, we have: div(λ∇u) = λ∆u + ∇λ • ∇u.

Obviously if λ(x) ≡ 1, the Laplace operator is recovered.

A great interest of the variational approach is to consider non regular data (in the sense C k ) therefore "non regular" solutions.

In the present model, λ is often not differentiable and can even be not continuous e.g. the diffusion coefficients for two different materials, see the transmission problem in next section.

Therefore it is important to consider the model operator in the "div form", next in the weak form, since it contains more information than in the developed form.

Below the Lax-Milgram theorem enables to show the well-posedness of the BVP (1.3.1). To do so, the minimal required regularity of λ is the following.

Assumption. The conductivity / diffusivity coefficient λ(x) is a measurable function satisfying:

0 < λ -≤λ(x)≤λ + a.e. in Ω (1.3.2)

From the classical to the variational form

Let us assume the existence and regularity of the solution u so that all the calculations below are valid (it is somehow formal calculations).

As already done in the classical space context X, we multiply the equation (1.3.1) by a test function v, then an integration by part gives:

Ω λ(x) ∇u(x)•∇v(x)dx - ∂Ω λ(x) ∇u • nv(x) ds = Ω f (x)v(x)dx
Since we have the homogeneous Dirichlet condition u = 0 on ∂Ω, we choose V such that: v = 0 on ∂Ω ∀v ∈ V . Hence the equation:

Ω λ(x)∇u(x)•∇v(x)dx = Ω f (x)v(x)dx
Next it becomes clear that the minimal regularity of the terms are the following :

(∇u, ∇v, v) belong to L 2 (Ω) with the data λ ∈ L ∞ (Ω), f ∈ L 2 (Ω).
Consequently, a good choice of functional space is the following Hilbert space:

V = {v, v ∈ H 1 (Ω), v = 0 on ∂Ω} (1.3.3)
Therefore the proposed variational formulation of the BVP (1.3.1):

Find u ∈ V such that: 1. it has a unique solution;

Ω λ(x)∇u(x)•∇v(x)dx = Ω f (x)v(x)dx ∀v ∈ V (1.3.4) with λ ∈ L ∞ (Ω), f ∈ L 2 (Ω) given.
2. the solution depends continuously on data.

The term "data" denotes here the source terms either in the volume or at the boundary i.e. f and ϕ.

A few remarks on this definition.

Mathematically, the existence of a solution can be enforced by enlarging the solution space.

If a problem has more than one solution, either it is physical or some information is missing in the model. In this case, additional properties (e.g. a sign condition) may be imposed in the model.

The second condition above is a stability condition. Indeed, data of a problem are always perturbed by "noise", uncertainties, and if the solution is not continuous with respect to the data then it may be "unstable" (therefore generally unphysical).

In the present example, the existence -uniqueness of the solution derives directly from the Lax-Milgram theorem. Let us define:

a(u, v) = Ω λ(x)∇u(x)•∇v(x)dx and l(v) = Ω f (x)v(x)dx.
Let us consider V defined by (1.3.3). Then it is easy to verify that a(u, v) is bilinear continuous from V × V into R, and l(v) is linear continuous from V into R.

Moreover, from the Poincaré inequality it follows that a(v, v) is coercive (elliptic) in V :

a(u, u) ≥ λ -∇v 2 L 2 ≥ α v 2 ∀v ∈ V with α > 0.
Then in vertu of Lax-Milgram theorem, it exists a unique solution u ∈ V of the variational formulation (1.3.4).

Equivalence between the variational (weak) form and the classical one

Finally let us demonstrate that if u is the (unique) solution of the weak formulation (1.3.4) then it is solution of the BVP (1.3.1) but in a weak sense.

If assuming that u ∈ V ∩ H 2 (Ω) (and not only in V ) then the proof is the same as in the previous regular context (with (u, v) in X × X).

To go further.

If we do not assume this extra regularity on the solution u, then the proof becomes harder since we can no longer apply the Green's formula -Ω div(λ∇u) v dx =etc. Indeed this Green's formula requires u in H 2 (Ω) . However, if we denote σ = λ∇u, σ is a function in (L 2 (Ω)) d , and:

| Ω σ • ∇v dx| = | Ω f vdx| ≤ c v L 2 ∀v ∈ V ; V ⊃ C ∞ c (Ω)
This estimation proves that σ has a divergence in the weak sense, see [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] p83 and p112 for more details. This weak divergence satisfies:

Ω σ • ∇v dx = - Ω divσv dx ∀v ∈ C ∞ c (Ω)
Then from the weak formulation it follows:

-

Ω divσ v dx = Ω f v dx ∀v ∈ V ; V ⊃ C ∞ c (Ω)
Hence: (divσ + f ) = 0 almost everywhere in Ω, and divσ = -f in L 2 (Ω). Therefore the equation in Ω of the BVP (1.3.1) is recovered in the weak sense. Next, the boundary conditions are recovered like in the regular case.

Finally we have proved

Theorem 11. Let λ ∈ L ∞ (Ω), f ∈ L 2 (Ω)
be given and let V be defined by (1.3.3). It exists a unique solution u ∈ V of the variational formulation (1.3.4). Furthermore this solution satisfies the BVP (1.3.1) almost everywhere:

-div(λ(x)∇u(x)) = f (x) a.e. Ω and u(x) = 0 a.e. ∂Ω.

Remark 12. It is will pointed out later in next section ("regularity result" discussion) that the weak solution can be a strong/classical solution if the BVP data f, λ, Ω are regular enough.

In such a case, the solution of the variational form satisfies the BVP in a classical sense, that is for all x in Ω and ∂Ω.

On the continuity of the "model operator" M A straighforward consequence of the Lax-Milgram theorem is the continuity of the (unique) solution u with respect to f . Indeed let us define the "model operator" M as follows:

M : f ∈ L 2 (Ω) → u ∈ V (1.3.5)
with u the unique solution of (1.3.4).

Then we have Proposition 13. The mapping M is linear and continuous from L 2 (Ω) into H 1 (Ω). In particular, we have:

u H 1 ≤ C f L 2 (1.3.6)
with the constant C > 0.

Proof. The mapping M is clearly linear. Let us state the continuity inequality by setting v = u in the variational formulation:

Ω λ(x)|∇u(x)| 2 dx = Ω f (x)u(x)dx
Next, using the coercivity inequality and Cauchy-Schwartz inequality we obtain:

α u 2 H 1 ≤ f L 2 u L 2 ≤ f L 2 u H 1 Hence the result.
The inequality (1.3.6) is an energy estimation since it shows that the energy of the solution is "controlled" by the source term norm (the data/source term energy).

This estimation is an a-priori estimation on the solution. It can be interpreted as a stability inequality; this point is more detailed in the Neumann boundary condition case.

This equality can be called an "energy inequality" too since established in the energy norm • V This estimation ends to demonstrate that the variational formulation / BVP / model is well-posed in the sense of Hadamard.

Exercises.

Do the exercises proposed in the separated documents.

Symmetric case: equivalence with the minimun of energy

As already mentioned one has the Proposition 14. Let the bilinear form be symmetric that is: a(u, v) = a(v, u) ∀u, v. Then the (unique) solution of the variational formulation is the (unique) minimum of the energy functional:

J(v) = 1 2 a(v, v)-b(v) = 1 2 Ω λ(x)|∇v(x)| 2 dx - Ω f (x)v(x) dx ∀v ∈ V
In other words, to solve the energy minimisation problem min v∈V J(v) is equivalent to solve the variational formulation (1.3.4).

Exercise 15. Show this assertion. Hint. Write the necessary condition / Euler inequation, actually the Euler equation by setting v = -v. Moreover, since the symmetric bilinear form a(•, •) is coercive (also called elliptic) in V , the functional J is (strongly) convex in V . As a consequence, the necessary condition is sufficient, see e.g. [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] p303.

Recall. The convexity (elliptic functions) inequality reads:

J(θu+(1-θ)v) ≤ θJ(u)+(1-θ)J(v) ∀(u, v) ∈ V, ∀θ ∈ [0, 1].
Another proof of this result can be found in [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] p76.

Non homogeneous Dirichlet condition case

Let us consider the case of non homogeneous Dirichlet boundary conditions:

-div(λ(x)∇u(x)) = f (x) in Ω u(x) = u d (x) on ∂Ω (1.3.7)
with u d given on ∂Ω.

In this case, the weak form of the BVP (1.3.9) reads as follows:

Find u ∈ V t such that: a(u, v) = l(v) ∀v ∈ V 0 (1.3.8)
with the affine subspace (translated space) V t defined by:

V t = {v, v ∈ H 1 (Ω), v = u d on ∂Ω}
Observe that the test functions belong to the vectorial subspace V 0 = H 1 0 (Ω).

Mathematical explanations To go further... This function u d is the trace of a function H 1 (Ω), function still denoted u d .

To mathematically analyse this BVP , we set the shifted function: ũ = (u -u d ).

Formally this new unknown satisfies the following BVP with homogeneous Dirichlet condition:

-div(λ(x)∇ũ(x)) = f (x) + div(λ(x)∇u d (x)) in Ω ũ(x) = 0 on ∂Ω (1.3.9)
The RHS in its weak form reads: l(v) = Ω [f (x) + div(λ(x)∇u d (x))] v(x) dx; the term div(λ(x)∇u d (x)) does not belong to L 2 (Ω).... However it belongs to the dual space of H 1 0 (Ω); it is denoted H -1 (Ω). These "functions" (actually distributions) are not defined almost everywhere but it can be shown that all is fine in this context....

Next, the analysis of the weak formulation is similar to those in the homogeneous case.

Finally, the weak form of the BVP (1.3.9) can be written as previously indicated.

Remark 16. The existence and uniqueness of the weak solution of the BVP (1.3.7) (with non homogeneous Dirichlet boundary conditions) can be proved using the Stampacchia's theorem. The latter is an extension of the Lax-Milgram theorem. It is based on the same hypothesis but the solution space has to be a closed convex set of the Hilbert space V. This is the case with u ∈ V t , V t the affine subspace defined above.

The Neumann boundary conditions case

Let us consider the case of Neumann boundary conditions:

-div(λ(x)∇u(x)) + c(x)u(x) = f (x) in Ω -λ(x)∇u(x) • n(x) = ϕ(x) on ∂Ω (1.3.10)
with n the unit outward norm and the flux ϕ given. The considered BVP is based on the same second order operator as before plus a 0th order term, with the parameter c given, c > 0. This 0-th order term prevents to have "a solution up to a constant" only (see below and Lax-Milgram theory).

The weak formulation

Following the space approach as previously, we multiply the equation (1.3.10) by a test function v and we make an integration by part assuming that the solution u and all other functions are sufficiently regular so that all the calculations are valid. This gives:

Ω λ(x)∇u(x)•∇v(x)dx - ∂Ω λ∇u • nv ds + Ω c u v dx = Ω f v dx ∀v(x) with (λ∇u • n)(x) = ϕ(x).
It is clear that choosing V = H 1 (Ω) is an adequate choice; also the parameter c(x) can be considered in L ∞ (Ω), ϕ(x) can be considered in L 2 (∂Ω).

Hence the weak formulation of the BVP reads as follows.

Find u ∈ V = H 1 (Ω) such that:

Ω λ ∇u•∇v dx + Ω c u v dx = - ∂Ω ϕ v ds + Ω f v dx ∀v ∈ V (1.3.11)
Remark 17. Observe that it is not necessary to include the Neumann boundary condition in the solution space V , V = H 1 (Ω), on contrary to Dirichlet boundary conditions. Indeed, the Neumann condition naturally appears after the integration by parts. Therefore it would be useless to take into account the Neumann boundary condition in the definition of V .

Well posedness (existence -uniqueness)

Let us denote:

a(u, v) = Ω λ(x)∇u(x)•∇v(x)dx + Ω c(x)u(x)v(x)dx l(v) = - ∂Ω ϕ(x)v(x) dx + Ω f (x)v(x)dx
Then all the hypotheses of the Lax-Milgram theorem are satisfied, in particular the coercivity property since

a(v, v) ≥ α v H 1 .
Note that the Poincaré's inequality is not required because of the 0-th order term (with c(x) > 0 a.e. ).

Exercise. Prove these assertions.

Equivalence with the equations of the BVP

To go further...

Let us assume that the data (λ, c, f, ϕ) are regular enough i.e. C k with k large enough, which make the unique solution u in H 2 (Ω), hence in particular u in C 0 ( Ω).

(Such regularity result can be proved see [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] for more details; note that a regularity assumption on the domain Ω is required).

Next, we make the "reverse" integration by part on Eqn (1.3.11). We obtain: ∀v ∈ V ,

Ω -div(λ(x)∇u(x))v(x) dx + ∂Ω ∇u • n v(x) ds + Ω c(x)u(x)v(x)dx = -∂Ω ϕ(x)v(x) dx + Ω f (x)v(x) dx
Hence for v = 0 on ∂Ω (v still belongs to V ):

Ω [-div(λ(x)∇u(x)) + c(x)u(x) -f (x)] v(x) dx = 0 ∀v ∈ V Next since -div(λ(x)∇u(x)) + c(x)u(x) -f (x)
] is a continuous function, we obtain the original equation in Ω:

-div(λ(x)∇u(x))

+ c(x)u(x) = f (x) ∀x ∈ Ω.
Next for all v ∈ V , one obtains:

∂Ω ∇u • n v(x) ds = -∂Ω ϕ(x)v(x) ds. Therefore : -∇u • n = ϕ(x) on ∂Ω.
Therefore u is solution of the classical formulation (1.3.10).

Energy estimation and stability inequality

Energy estimation The unique solution of (1.3.10) satisfies the following a-priori inequality which is called the "energy estimation" too:

u H 1 ≤ C [ f L 2 + ϕ L 2 (∂Ω) ]
(1.3.12) with C a constant strictly positive, C independent of u, f and ϕ; C depends on Ω.

Proof (to be completed in exercise). We set v = u in the weak formulation, we use the coercivity inequality and the continuity inequality. It follows:

λ -∇u 2 L 2 ≤ a(u, u) = (f, u) L 2 (Ω) + (ϕ, u) L 2 (∂Ω)
Next we use the Poincaré's inequality, the Cauchy-Schwartz inequality (and the trace application continuity).

Then it exists a constant C (constant dependent on the geometry but independent of u) such that:

u H 1 ≤ C [ f L 2 + ϕ L 2 (∂Ω) ] (1.3.13)

Stability concept

Let us consider the same BVP but with the perturbed source terms (f + δf ) and (ϕ + δϕ) (instead of f and ϕ). The BVP equations are linear so the weak formulation.

If we denote by (u+δu) the solution corresponding to the perturbed source terms above, it follows the following "stability inequality":

δu H 1 ≤ c( δf L 2 + δϕ L 2 (∂Ω) ) (1.3.14)
Let us interpret this inequality. The "perturbation" on the solution u due to the perturbations (δf, δϕ) on the source terms is bounded; it varies continuously with respect to the data perturbations.

This shows the stability of the solution with respect to data perturbations.

Observe that c is the ratio between the continuity constant and the coercivity constant. If the coercivity constant tends to 0 then c tends to +∞ and the problem becomes unstable.

Remark 18. This inequality can be employed to prove the uniqueness of the solution too. To do so it is sufficient to apply the inequality to the difference of two potentials solutions u k , k = 1, 2; next applying the inequality to the solution u = (u 1 -u 2 )... To go further... Previously, we have demonstrated the equivalence between the weak formulation and the classical form of the equations, under some hypothesis of regularity of the solution. For second order elliptic linear problems, u in H 2 (Ω) is enough to obtain this equivalence.

Exercise
Moreover more the data are regular, more the solution is regular. Let us illustrate this feature in the case of the typical order 2 (linear) BVP (1.3.1).

Proposition 20. Let m be a integer. Let the data be regular in the sense: the geometrical domain

Ω is an open bounded set of R d of class C m+2 ; the source term f is in H m (Ω); the equation coefficient λ is of class C m+1 .
Then, the unique solution u ∈ V = H 1 0 (Ω) of the BVP with Dirichlet conditions (1.3.1) belongs to H m+2 (Ω).

The same result holds for the unique solution u ∈ V = H 1 (Ω) of BVP with Neumann conditions (1.3.10); with the boundary source term ϕ regular enough and the coefficient c in C m . Furthermore the "model operator" M : f → u is linear continuous from H m (Ω) into H m+2 (Ω) and there exits a constant C such that (in the homogenous boundary condition cases):

u H m+2 ≤ C f H m (1.3.15)
As a consequence, under these regularity hypothesis on data, if m > d 2 then the (weak) solution u ∈ V is a "strong/classical/regular" solution since it belongs to C 2 ( Ω) (recall Lemma 6).

The typical interesting case for second order elliptic linear problems in 3d is m = 0. That is if the RHS is L 2 (Ω), if the coefficient λ in the divergence operator is C 1 -regular, then far from any potential geometrical or boundary condition singularity, the solution u of the scalar linear elliptic model ( 1

.3.1) is in H 2 (Ω). Therefore it is is continuous in Ω.
This additional regularity of the solution (H 2 (Ω) vs H 1 (Ω)) is very useful in the sequel in particular for the error estimations between u and u h its Finite Element approximation. But what is a non-regular (i.e. a singular) solution ? What are the potential singularity origins ? Let us consider the previous typical second order linear elliptic BVP. It admits an unique variational solution u in H 1 (Ω).

Three reasons can limit "extra" regularity on its (unique) solution u. These three potential "singularity origins" are the following:

1. Non regular equations parameters or source terms (set either in Ω or on ∂Ω), If the source term f belongs to L 2 (Ω) "only" (it may be less regular...), the unique solution u cannot be more regular than H 2 (Ω). (Actually H 2 may considered as a regular solution compared to the minimal regularity H 1 (Ω)).

The diffusivity coefficient λ belongs to L ∞ (Ω) then the solution u cannot be "regular" in the sense C 1 or more. In particular the main operator of the BVP cannot be developed as follows: div(λ∇u) = -λ∆u-∇λ•∇u if λ is not regular enough (λ has to be differentiable).

This last example highlights the interest of the weak form if the parameter λ is discontinuous. Concerning this point we refer to the transmission problem below.

In Case 2, in a vicinity of the boundary condition change (make a figure), the solution is more than H 1 (Ω) but less than H 2 (Ω) (it is H 3/2 (Ω)...); in practice it presents a local singularity, see Fig. ??. Recall that from the modeling point of view (in physics, mechanics, biology etc), the gradient ∇u provides to the quantity flux ∇u • n (e.g. heat, electric, stress field etc). Hence a singularity means that the physical flux may be not in L ∞ i.e. not bounded..., see e.g. Fig. 2.4.4.

It is important to notice that these local singularities may be the critical modeling feature (e.g. those at the corner summit). Singularities generates some difficulties for numerical methods; indeed if the modeled phenomena requires to "catch" accurately the singularity, some particular treatments have to be developed: adaptive mesh (based on a consistent a-posteriori error estimation, see later) or the introduction of additional FE basis function (xFEM, not studied here).

The transmission boundary condition

Let us consider the domain Ω splitted into two sub-domains Ω k , k = 1, 2, see Fig.

We denote by Γ int the interface between the two sub-domains. We have:

Ω = Ω 1 ∪ Ω 2 ∪ Γ int .
We denote by u k = u| Ω k (resp. λ k and f k ) the restriction of the solution u (resp. λ and f ) to Ω k , k = 1, 2. Such a geometry splitting is natural in the case of a composite material: the two subdomains are occupied by different materials with different conductivity λ k .

Also such a splitting is required to apply Domain Decomposition Methods (DDM) (see the dedicated part of the course) enabling the computation of the solution in parallel on multiple processors (HPC) e.g. by employing the Schwarz method.

We have the following result.

Proposition 21. The BVP:

-div(λ(x)∇u(x)) = f (x) in Ω u(x)
= 0 on ∂Ω is equivalent to the following BVP :

-div(λ k (x)∇u k (x)) = f k (x) in Ω k (1.3.16)
accompanied with the original Dirichlet condition u k (x) = 0 on ∂Ω ∩ ∂Ω k , plus the "transmission condition" on the interface Γ int :

u 1 = u 2 on Γ int λ 1 ∇u 1 • n = λ 2 ∇u 2 • n on Γ int (1.3.17)
This transmission condition imposes the continuity of: a) the solution u, b) the flux, through the interface Γ int .

To prove this result, one needs first the following result.

Lemma 22. Let v be a fonction defined on Ω. It is assumed that: a) the restriction of v on

Ω k v k ≡ v| Ω k belongs to H 1 (Ω k ), b) v is continuous on Γ int . Then we have: v ∈ H 1 (Ω).
Proof. To be typed soon.

Proof of Proposition 21. This is the topic of the corresponding exercise session. Please consult the INSA Moodle page.

1.4 Appendix. The Laplace operator: basic properties

This section has to be studied by your own. (It should be translated in English next season).

The Laplace operator: an omnipresent operator in modeling L'équation elliptique linéaire type (et aussi la plus simple) est l'équation de Poisson -∆u(x) = f , ou encore plus généralement l'équation suivante:

-div(λ∇u(x)) = f (x) dans Ω où λ est donné, potentiellement dépendant de x. Rappelons que: div(∇u) = ∆u.

Cette équation d'équilibre est omniprésente en modélisation, citons les exemples suivants. 

Qualitative properties

Principe du maximum

Considérons le problème dit de Dirichlet suivant:

∆u(x) = 0 dans Ω avec u(x) = g(x) sur ∂Ω
Toute fonction solution u(x) est par définition une fonction harmonique (son laplacien est nul). On peut alors montrer que u atteint ses extrema (minima et maxima) sur le bord de ∂Ω, et non à l'intérieur de Ω.

Cette propriété s'appelle le principe du maximum. Notons bien que le terme source f est nul. Par ailleurs, il est facile de démontrer que cette propriété du maximum implique l'unicité de la solution u. 

Propriété de la moyenne

La propriété de la moyenne s'énonce ainsi: la valeur de u, fonction harmonique, est en tout point égale à la moyenne de ses valeurs alentours.

Autrement formulé, on a:

u(x) = 1 |B 1,n |r n Bn(x,r) u(x)dx où|B 1,n | est la mesure de la boule unité de R n .
Dans les exemples donnés précédemment, cette propriété se traduirait ainsi: la valeur à l'équilibre de la quantité modélisée (température, déplacement, potentiel´electrique) est égale à la moyenne de ses valeurs environnantes.

(Rappelons que cela reste vrai en l'absence de terme source extérieur f).

Chapter 2

Finite Element Methods: Fundamentals

Finite Element Methods (FEM) are the numerical methods of choice to solve elliptic models (e.g. those based on the Laplace equation or on the advection-diffusion equation) and parabolic models (e.g. the heat equation). They can be used for hyperbolic models too (e.g. the transport equation) by introducing stabilizing terms (e.g. artificial diffusion).

The principle of FEM directly derives from the variational approach studied in the previous chapter.

The basic principle consists is to replace the Hilbert space V of the -continuous-weak solutions by a subspace V h of finite dimension, with V h approximating V .

The obtained discrete weak formulation posed in V h is equivalent to an algebraic system. This algebraic system is linear if the original PDE is linear. The corresponding matrix is called the stiffness matrix.

Origins of FEM from [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] : "Historically, the first premises of the finite element method have been proposed by the mathematician R. Courant (without using this name) in the 1940s but it was mechanical engineers who have developed, popularized, and proved the efficiency of this method in the 1950s and 1960s (as well as giving it its actual name). After these first practical successes, mathematicians have then considerably developed the theoretical foundations of the method and proposed significant improvements".

In this chapter you will learn how to:

• derive a FE scheme,

• implement a FE code kernel (algorithm of assembly),

• validate a computational FE code.

On the utility of FE softwares, by Comsol company (Comsol Multiphyics software): "What Does Finite Element Analysis Software Bring ? The purpose of finite element analysis (FEA) software is to reduce the number of prototypes and experiments that have to be run when designing, optimizing, or controlling a device or process. This does not necessarily mean that companies and research institutes save money by adopting FEA. They do, however, get more development for their dollars, which may result in gaining a competitive edge against the competition. For this reason, it may be reasonable to increase Research and Development resources for FEA. Once a FEA model is established and has been found useful in predicting real-life properties, it may generate the understanding and intuition to significantly improve a design and operation of a device or process. At this stage, optimization methods and automatic control may provide the last degree of improvements that can be difficult to obtain with intuition only. Most modern FEA software features methods for describing automatic control and incorporating such descriptions in mathematical and numerical models. Optimization methods are usually included in the solution process.

The introduction of high-fidelity models have also contributed to an accelerated understanding. This has sparked new ideas and completely new designs and operation schemes that would have been hidden or otherwise impossible without modeling. Therefore, FEA is an integral tool for R&D departments in companies and institutions that operate in highly competitive markets. Over time, the use of FEA software has expanded from larger companies and institutions that support educating engineers to smaller companies in many different industries and institutions with a wide variety of disciplines." Text extracted from the Comsol webpage. This chapter follows in great part the presentation in the excellent book [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF], see also e.g. [START_REF] Ern | Theory and practice of finite elements[END_REF]. 

     -div(λ(x)∇u(x)) + c(x) u(x) = f (x) in Ω u(x) = 0 on Γ d -λ ∂ n u(x) = ϕ(x) on Γ n (2.1.1) with ∂Ω = Γ n ∪ Γ d .
We assume that this BVP (2.1.1) satisfies the Lax-Milgram theory assumptions: it is assumed that λ, c ∈ L ∞ (Ω), λ, c > 0 a.e.

Then it admits an unique (weak) solution

u in V 0 = {v, v ∈ H 1 (Ω), v = 0 on Γ d };
this solution u satisfying the following weak formulation:

Ω λ(x) ∇u(x)•∇v(x) dx + Ω c(x)u(x)v(x) dx = Γn ϕ(x) v(x) ds + Ω f (x)v(x) dx ∀v ∈ V 0 (2.1.2)
The basic principle of FEM to compute an approximation of the exact solution u is the following.

The weak formulation (2.1.2) is not solved in the infinite dimension Hilbert space V 0 but in a finite dimension space V 0h ; with V 0h approximating V 0 in a sense to be clarified.

The FEM consists to find u h ∈ V 0h satisfying the following (discrete) weak formulation:

Ω λ(x) ∇u h (x)•∇v h (x) dx + Ω c(x)u h (x)v h (x) dx = Γn ϕ(x) v h (x) ds + Ω f (x)v h (x) dx ∀v h ∈ V 0h (2.1.3)
In terms of writing only, deriving the "discrete" weak formulation (2.1.2) from the "continuous" one (2.1.3) simply consists to add subscripts h on the function space(s), the function test and the unknown.

Of course this basic principle identically applies to the general weak formulation in a Hilbert space V :

Find u ∈ V such that: a(u, v) = b(v) ∀v ∈ V (2.1.4)
where the bilinear form a(., .) and the linear form l(.) satisfy the conditions of the Lax-Milgram theory.

In this case, the corresponding discrete weak formulation reads:

Find u h ∈ V h such that: a(u h , v h ) = b(v h ) ∀v h ∈ V h (2.1.5)
with V h satisfying the properties of an internal approximation (see Definition 23). 1. For all h, h > 0 a characteristic mesh element size (e.g. in 2d it may be the maximum value of the mesh triangles edges), we have:

V h ⊂ V (2.1.6) 2. ∀v ∈ V , ∃v h ∈ V h such that: v -v h V → h→0 0 (2.1.7)
In practice, v h (x) is an interpolation of v(x) on the mesh, defined from an interpolation operator r h : V -→ V h , see figures 2.1.1 and 2.1.4.

Existence-uniqueness of the FEM solution u h

Proposition 24. Let us consider the weak formulation (2.1.4) with the assumptions of the Lax-Milgram theorem satisfied. Let V h be an internal approximation. Then, the corresponding (discrete) weak formulation (2.1.5) in V h is well-posed too.

This proposition is straightforward to prove. Indeed since based on an internal approximation the assumptions of the Lax-Milgram theory are satisfied in V h too. (V h is equipped with the norm of V ).

FEM solution & orthogonal projection If employing an internal approximation

, V h ⊂ V , it follows that: a(u, v h ) = b(v h ) ∀v h ∈ V h , V h ⊂ V (2.1.8)
Indeed the continuous weak formulation remains satisfied with function tests v in V h .

Next by subtracting (2.1.5) to (2.1.8) it follows:

a(u -u h , v h ) = 0 ∀v h ∈ V h ; V h ⊂ V (2.
1.9) This equality (37) is called the fundamental Galerkin orthogonality condition.

If the bilinear form a(., .) is symmetric, a(., .) defines a scalar product. As a consequence (2.1.9) shows that : If the bilinear form a(., .) is symmetric, if the FE solution u h (x) is defined from an internal approximation (V h ⊂ V ) then u h is nothing else than the orthogonal projection of u onto V h .

(Make a figure).

The great of majority of FE spaces V h are internal approximation spaces of the Sobolev spaces H m (Ω) (or H m 0 (Ω) if taking into account Dirichlet boundary conditions); a few of them are not (the latter are not studied here). When based on an internal approximation we call the method a conforming FE method.

On FE meshes

The construction of a finite dimensional space V h is based on a mesh of the domain Ω. A mesh is a discrete representation of the geometry Ω; essentially it partitions Ω into simple elementary "volumes" called "elements", hence the terminology Finite Elements. (Note that these elementary "volumes" are generally called "cells" if employing a Finite Volume method).

These elementary "volumes" may be:

• triangles or rectangles (or even quadrilateral) in 2D;

• tetrahedra, prisms, hexahedra or parallelepipeds in 3D, see Fig. The parameter h of V h represents a characteristic size of the elements e.g. the maximum size of the circumcircles radius of the triangles constituting the mesh.

Mesh generation is the practice of generating a polygonal or polyhedral mesh that approximates the geometric domain Ω. This known-how is not addressed in the present course. This task may be done by an adequate software e.g. by employing Gmsh software (Gnu license).

To be admissible a FE mesh has to satisfy a few properties. In particular, an admissible FE mesh (eg. in triangle or quadrangles) have to satisfy the geometrical properties indicated in Fig. 2

.1.2(Down).

On triangle meshes. If considering a triangulation of the geometrical domain Ω that is in 2D a subdivision of Ω into triangles, and in higher dimension a subdivision into simplexes, tetrahedra in 3D. The triangles of a triangulation are required to meet edge-to-edge and vertex-to-vertex, see Fig. 2

.1.2(Down).

An admissible triangulation T h of the geometrical domain Ω has to satisfy the following criteria:

• Ω = ∪ K∈T h K,
• The intersection between triangles is either void or equal to a single point or a complete edge,

• No element (triangle) K, K ∈ T h , can be flat.

Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation, with respect to a metric. The metric may the Euclidian one (the Delaunay triangulation provides almost equilateral triangles only) or a metric derived from a-posteriori estimation of the FE solution; we refer to the sections "A-posteriori error estimations" and "Mesh refinement" at the end of this course.

On rectangular meshes. If the domain Ω is "rectangular" in the sense its faces are parallel to the axes, Ω can be meshed using rectangles if n = 2 and parallelepipeds if n = 3. 

The (linear) algebraic system

Below we show that the weak FEM formulation (2.1.5) is equivalent to a system of algebraic equations.

This algebraic system is linear if (and only if) the original PDE is linear (in its unknown u(x)). In this case, the matrix A of the linear system is called the matrix of rigidity or stiffness matrix. Note that this terminology is usual even if the considered application is not related to structural mechanics. This terminology is due to the origin of the FEM.

The FE solution is a values vector at "nodes" of the mesh. It is obtained by solving ("inverting") this linear system.

Let us consider the problem (2.1.4) and its discrete version (2.1.5) in V h . The assumptions of the Lax-Milgram theory are supposed to be satisfied.

The definition of the FE space V h sets the FE method. We set {ϕ i (x)} i=1..N N the function basis of V h . Classical FE spaces are studied in next section: the basis functions expressions are detailed.

The unique (discrete) solution u h (x) of (2.1.5) may be written in the basis of V h as follows:

u h (x) = N N i=1 u i ϕ i (x) (2.1.10)
Where:

• u i are the coefficients of u h (x) at the i-th node; they are called the degrees of freedom (dof );

• N N is the total number of "points"; actually they are called nodes (hence the notation N N ).

Proposition 25. Let us consider the weak formulations (2.1.4) and (2.1.5) above. We assume that the assumptions of Lax-Milgram theory are satisfied. We consider the decomposition of u h (x) in V h as in (2.1.10).

Then the discrete weak formulation (2.1.5) is equivalent to the following linear algebraic system:

A U h = F (2.1.11)
where: U h is the vector of degrees of freedom (dof),

U h = (u 1 , ..., u N N ), i = 1..N ; U h ∈ R N N . A = (a ij ) i,j=1.
.N N is the stiffness matrix defined by:

a ij = a(ϕ j , ϕ i ), 1 ≤ i, j ≤ N N (2.1.12) F = (f i ) i=1.
.N N is the RHS (also called source term) defined by:

f i = b(ϕ i (x)), 1 ≤ i ≤ N N .
Moreover since the bilinear form a(., .) is V 0 -elliptic then the stiffness matrix A is positive definite. Moreover if a(., .) is symmetric then A is symmetric too.

The FE solution is the dof vector U h i.e. the vector of values at the mesh nodes.

Proof. By combining (2.1.10) with (2.1.5), the discrete weak formulation is equivalent to:

a N N i=1 u i ϕ i (x), ϕ j (x) = l (ϕ j (x)) ∀j ∈ {1, .., N N }
Since the form a(., .) is bi-linear, in particular linear with respect to the unknown u (the original BVP being linear), it follows:

N N i=1 u i a (ϕ i (x), ϕ j (x)) = l (ϕ j (x)) ∀j ∈ {1, .., N N }
Finally the equivalency with the linear system (2.1.11) follows.

The bilinear form a(., .) is supposed to V 0 -elliptic, see (1.2.11), therefore: ∀i, a(ϕ i , ϕ i ) ≥ α ϕ i 2 V . As a consequence, the stiffness matrix A is positive definite.

A-priori error estimation

The a-priori estimation derived in this paragraph shows that the FE error is bounded by the distance separating the continuous solution u ∈ V to the discrete FE space V h .

The result below is due to J. Céa; it is called Céa's lemma.

Lemma 26. Let u be the solution of (2.1.4), let u h be the solution of (2.1.5) and V h be an internal approximation of V .

We have:

u-u h V ≤ c inf vv∈V h u -v h V (2.1.13)
with the constant c = c ν , c the continuity constant of the bilinear form a(., .), see (1.2.10), and ν the ellipticity constant, see (1.2.11).

Proof. We have:

a(u -u h , u -u h ) = a(u -u h , u -v h ) + a(u -u h , v h -u h ) = a(u -u h , u -v h ) since (2.1.9) holds. Therefore for all v h in V h, α u-u h 2 V ≤ a(u -u h , u -u h ) = a(u -u h , u -v h ) ≤ c u-u h V u-v h V It follows the inequality: u-u h V ≤ c ν u -v h V ∀v h ∈ V h
Hence the result.

Corollary 27. Let us assume that it exists : i) a subspace V, V ⊂ V , V dense in V ; ii) an interpolation operator r h defined from

V into V h such that: ∀v ∈ V, lim h→0 v -r h (v) V = 0.
Then the approximation method in V h as builded above (with V h an internal approximation of V ) converges:

lim h→0 u-u h V = 0
Proof. We refer to [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF].

In short, this proves that we have:

FE error u -u h V ≤ cst Interpolation error u -r h (u) V (2.1.14)

Building up a good FE space V h

Considering Proposition 25, Lemma 26 and Corollary 27, the FE space V h should be built following (at least) the two criteria below:

1. The linear system (2.1.11) is not too CPU-time consuming even for very large systems e.g. dozens of millions of dof for 3D models. As a consequence A must be sparse i.e. containing a very small percentage of non vanishing coefficients a ij (2.1.12).

2. The distance between u ∈ V and V h tends to 0 with the mesh size h. This should be done by building an interpolation operator between V and V h .

Defining a FE method consists to define the approximation space V h . Let us assume that the Hilbert space V is separable (Sobolev spaces are). Then V admits an orthonormal (Hilbertian) basis {e i } i≥1 , (e i , e j ) V = δ ij .

For all v ∈ V , ∃α i such that v(x) = i≥1 α i e i (x). By setting h = 1/n, we may define V h as the finite dimensional subspace generated by {e 1 , ..., e n }.

However with such a choice of V h , the stiffness matrix A is a-priori full, at least not sparse. Moreover A would be ill-conditioned therefore providing a numerical solution very sensitive to any inherent error including rounding errors.

In brief, Galerkin's method presents a huge interest in a theoretical point of view (for analysis of non linear problems), but it is not relevant in a computational point of view. However Galerkin's method has been a fundamental step for FEM.

Required features of any FE space V h

Let su recall the two fundamentals properties the space V h has to satisfy:

• sparsity of A,
• easy-to-build from an interpolation operator r h . As a consequence, any FE space V h should be composed of basis functions whose support is small i.e. supports localized in a few mesh elements only.

Indeed this feature has two crucial consequences:

• the stiffness matrix A of the linear system is sparse;

• when the mesh size h tends to 0, the (finite dimensional) space V h is larger and larger. As a consequence V h should approach better and better the (infinite dimension) space V.

A natural choice of basis functions are piecewise polynomials with small supports.

The simplest space V h would be piecewise constant polynomials. However this choice would not lead to an internal approximation. Indeed in the most classical context V = H 1 0 (Ω), partial derivatives of v h would be Dirac measures and not L 2 functions... The slightly more complex choice would be V h defined as the space of linear functions (polynomials of degree 1), non continuous in Ω; that is discontinuous piecewise linear functions. However this choice would not lead to an internal approximation for the same reason as before.

The simplest conforming FE space The simplest FE space V h with V h ⊂ V (V typically being a Sobolev space) seems to be the space of piecewise linear (affine) functions, globally continuous in Ω.

That is:

V h = {v h , v h ∈ C 0 ( Ω), v h | K linear (affine) for all element K of the mesh} (2.1.15)
In vertu of Lemma 22, V h defined as above is a subspace of H 1 (Ω).

For V h defined by (2.1.15), we have, see Fig. 2.1.4:

a(ϕ j , ϕ i ) = 0 if and only if Supp(ϕ j ) ∩ Supp(ϕ i ) = ∅ (2.
1.16) Therefore the stiffness matrix A remains extremely sparse (a dozen of non vanishing coefficients per rows) even for very large numerical systems e.g. N N ∼ 10 6 -10 9 .

Therefore linear algebra methods, e.g. the preconditioned Conjugate Gradient or GMRES algorithms, may apply to efficiently solve the FE linear system (2.1.11).

The P k -Lagrange FE

The usual functional spaces to solve elliptic BVP are the spaces W m,p (Ω), m, p ≥ 1. This includes the most classical Sobolev spaces H 1 (Ω), H 1 0 (Ω), H 2 (Ω). All of them are Hilbert spaces. The basic principle of the mostly employed Finite Element Methods (FEM) are internal approximations as sketched in the previous section.

In the next sections we study the most classical FEM for scalar linear order 2 BVP problems, namely the P k -Lagrange methods.

The P 1 -Lagrange FE in 1D

In the present section, the linear case i.e. k = 1 is studied in 1d for a typical linear BVP.

First let us point out that meshing a 1D domain is straightforward. Let us consider Ω =]0, L[ . If we mesh this domain with an uniform mesh of size h, we have: h = L (N N -1) with N N the total number of the mesh points ("vertices").

The mesh vertices x i satisfy:

x i = (i -1)h, 1 ≤ i ≤ N N (2.2.1)

Exercise

Let us consider the following model (2.1.1) with Neumann bc:

     -(λ(x)u (x)) + c(x) u(x) = f (x) in ]0, L[ -λ(0) u (0) = 0 -λ(L) u (L) = φ (2.2.2)
with the following assumptions on its data: inf x c(x) = c -> 0 and inf x λ(x) = λ -> 0.

Q1) Show that under these assumptions and in vertu of the Lax-Milgram theorem, this BVP admits an unique weak solution u in V with V = H 1 (0, L) *

The P1 -Lagrange basis function in 1d The P 1 FE scheme is defined from V h builded up as the space of functions which are globally continuous and linear (actually affine) on each element.

In the 1D case this reads:

V h ={v h ,v h ∈ C 0 ([0, L]), v h | K ∈ P 1 ∀K=[x i ,x i+1 ], i=1,..,NN}V h ={v h ,v h ∈ C 0 ([0, L]), v h | K ∈ P 1 ∀K=[x i ,x i+1 ], i=1,..,NN} (2.2.3) Q2) Show that V h is a sub-space of V = H 1 (Ω).
Correction hint: In the present 1d case, this result is trivial. Indeed, let us recall Lemma 6 and Lemma 22. * Let us define the "hat functions" as follows, see Fig. 2.1.4:

ϕ i (x) = ϕ x -x i h (2.2.4)
with ϕ(.) the "normalized hat function" defined by: ϕ

(x) = (1 -|x|) for |x| ≤ 1, ϕ(x) = 0 otherwise. Q3) Let v h ∈ V h . Following (2.1.10), we write: v h (x) = N N i=1 v i ϕ i (x)
with {ϕ i (x)} i the hat functions defined above.

Show that any function v h ∈ V h is uniquely defined by its values v i at the mesh vertices x i . Deduce that the hat functions set {ϕ i (x)} i defines a basis of V h .

Correction. This result is proved in the 2d case in Proposition 29. * Q4) Show that:

u(x j ) = u j ∀j, 1 ≤ j ≤ N N (2.2.5)
That is the i-th degree of freedom (dof ) u j is nothing else than the value of the FE approximation at the i-th point x i .

Correction. For any function v h in V h , we write the decomposition:

v h (x) = N N i=1 v i ϕ i (x)
. One easily notice the following remarkable property of the P 1 basis functions (the hat functions):

ϕ i (x j ) = δ ij ∀i, j, 1 ≤ i, j ≤ N N (2.2.6)
Then the results follows straighforwardly. * Q5) Show that the discrete weak formulation in V h is equivalent to a linear system. Detail the i-th equation of this system for x i inside the domain (i = 2..(N N -1)) and for x i at the boundaries (i = 1 and i = N N ).

Correction. The discrete weak formulation of the BVP (2.2.2) reads as follows:

Find u h ∈ V h satisfying: a(u h , v h ) = l(v h ) ∀v h ∈ V h (2.2.7)
With:

a(u h , v h ) = L 0 λ(x) u h (x)v h (x) dx + L 0 c(x)u h (x)v h (x) dx l(v h ) = φv h (L) + L 0 f (x)v h (x) dx
The discrete weak formulation is equivalent with:

a(u h , ϕ i ) = l(ϕ i ) ∀i, i = 1, ..N N .
Moreover, we decompose u h into the basis: u h (x) = j u j ϕ j (x). It follows the i-th equation (those related to the i-th node of the basis):

n j=1 u j L 0 λ(x) ϕ j (x)•ϕ i (x) dx + n j=1 u j L 0 c(x)ϕ j (x)ϕ i (x) dx = φ ϕ i (L) + L 0 f (x)ϕ i (x) dx ∀i, j = 1..N N (2.2.8)
Note that ϕ i (L) = 0 only for i = N N.

Then the NN equations are equivalent to the linear system:

A U h = F (2.2.9)
with U h = (u 1 , ..., u N N ) the vector of degrees of freedom (dof), A = (a ij ) i,j=1..N N the stiffness matrix with:

a ij = a(ϕ j , ϕ i ) = L 0 λ(x) ϕ j (x)ϕ i (x) dx + L 0 c(x)ϕ j (x)ϕ i (x) dx 1 ≤ i, j ≤ N N (2.2.10)
and

F i = φ ϕ i (L) + 1 0 f (x)ϕ i (x)dx, 1 ≤ i ≤ N N
The basis functions ϕ i have a small support, more precisely the two segments whose x i is an extremity, see Fig. 2.1.4. Therefore the intersection of supports of ϕ i and ϕ j is empty excepted if x i and x j belong to the same segment (segments are the 1D elements).

As a consequence, the coefficients in the stiffness matrix corresponding to the i-th equation for internal nodes of the numerical model (i = 2, .., N N -1) read:

a ij = xi+1 xi-1 λ(x) ϕ j (x)ϕ i (x) dx + xi+1 xi-1 c(x)ϕ j (x)ϕ i (x) dx for j = {(i -1), i, (i + 1)} (2.2.11)
At the boundary x = 0, the first equation of the system (i = 1) simply reads:

x2=h x1=0 λ(x) ϕ j (x)ϕ i (x) dx + x2 0 c(x)ϕ j (x)ϕ i (x) dx = x2 0 f (x)ϕ i (x)dx for j = {1, 2} (2.2.12) 
At the boundary x = L, the last equation (i = N N ) reads:

x N N =L x N N -1 λ(x) ϕ j (x)ϕ i (x) dx + L x N N -1 c(x)ϕ j (x)ϕ i (x) dx = φ + L x N N -1 f (x)ϕ i (x)dx for j = {N N -1, N N } (2.2.13) * Q6
) Deduce from the previous question that the stiffness matrix A is tridiagonal (like it would be the case if using a Finite Difference method). * Q7) Let us consider the particular case λ(x) = (λ 0 + x), λ 0 constant and c = c 0 constant. Propose two methods to calculate the matrix coefficients a ij .

***

To compute the integrals: quadrature formulas The exact values of the integrals in (2.2.11) and in the RHS may be difficult or even impossible to calculate, depending on the given functions λ(x), c(x) and f (x).

Moreover these calculations may be even more complex if the degree of the polynomials ϕ i (x) is higher.

To handle general cases, numerical integration (quadrature formulas) is employed. We set:

Ω F (x) dx ≈ N G k=1 ω k F (x G k ) (2.2.14)
with ω k the weigh coefficients and x G k the (Gauss) points. The choice of (x G k , ω k ) determine the accuracy order of the quadrature formula.

The order of the employed quadrature Gauss formulas have to be in adequation with the degree of the integrand if polynomial.

If the integrand is not polynomial it has to be consistent with the "complexity" of the integrand that is in function of the expression of the equations parameters e.g. (λ, c)(x).

On the CPU time consumption It is worth to point out that the most CPU time consuming part of a FE code is the resolution of the linear system A U h = F and the computation of the integrals...

On the FE terminology

• Points x i are the mesh "vertices". Moreover these points "carry" a value of the unknown u h ; as a consequence they called the nodes of the FEM too. Here the vertices set equals the nodes set. In general cases, the "vertices" (geometry information on the mesh) can be "nodes" or not.

• Since v h is uniquely defined by its values at the nodes, the FE method above is called Lagrange FE. Later we will introduce FE spaces for which functions v h will be uniquely defined by their value(s) at the node and their derivative(s). Such FE are called Hermite FE.

Elements of V h cannot be regular solutions (regular in the sense C k ) Functions of V h do not admit second derivatives; indeed they are Dirac measures therefore not regular functions. Therefore a solution of the classical form of the BVP cannot be a function of V h . On the contrary, functions of V h can be weak solutions (i.e. solutions of the weak formulation).

On the link between the FE method and the FD method It will be shown in the advection term section that in 1D the standard P 1 -Lagrange FEM (for the present equation) is nothing else than the standard FD scheme ! Moreover if considering in addition the linear advective term, the present FE scheme equals the centered FD scheme, see next section on the advection term.

The P k -Lagrange FE in nD

From now the geometric domain Ω is a bounded open set of R n , n ≥ 2 . In practice n = 2 or 3.

Triangulation of Ω

It is assumed that Ω is a polyhedral (polygonal if n = 2); thus it is possible to mesh exactly the domain boundary ∂Ω.

For curves boundaries, we may use adequate Finite Element e.g. curved P 2 elements, see the dedicated exercise session.

As a first step we consider here a mesh of Ω constituted by triangles if n = 2 or by tetrahedra if n = 3, see e.g. Fig. 2.1.2 and 2.1.3. (Following [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF], triangles and tetrahedra may be grouped in the more general family of called N-simplices).

We consider an admissible triangulation T h of Ω, see Section 2.1.2.

Remark 28. As already indicated in Section 2.1.2 if the domain Ω is "rectangular" in the sense its faces are parallel to the axes, Ω can be meshed using rectangles if n = 2 and parallelepipeds if n = 3. In this case the corresponding FE spaces V h differ from the P k -Lagrange ones; they have to be adapted. Rectangular elements lead to the so-called Q k -Lagrange FE. The Q k -Lagrange FE are studied as exercises (with k = 1 and 2).

The FE space V h & basis functions

Lagrange type FE indicates that the degrees of freedom (dof) are point values of functions on the mesh.

On the contrary, the Hermite type FE are such dof are point values and derivative(s) values on the mesh.

Given an admissible triangulation T h of Ω , the P k -Lagrange FE, k ≥ 1, is defined by the following FE space:

V h = {v h , v h ∈ C 0 (Ω), v h | Ki ∈ P k ∀K i ∈ T h } (2.
2.15) In practice k = 1, 2 and at maximum k = 3. We define the subspace V oh which includes the Dirichlet boundary conditions:

V 0h = {v h , v h ∈ V h , v h = 0 on Γ d } (2.2.16)
with Γ d the part of the boundary where (homogeneous or not !) Dirichlet conditions are applied. We may have Γ d = ∂Ω.

Proposition 29. Let V h be defined by (2.2.15) with k ≥ 1. The following properties hold:

• V h is an internal approximation of V = H 1 (Ω) .
• There exists a basis {ϕ i (x)} i=1..N N of V h such that:

ϕ i (x j ) = δ ij 1 ≤ i, j ≤ N N (2.
2.17)

• Any function v h in V h is uniquely defined by its values at the nodes x i , with:

v h (x) = N N i=1 v i ϕ i (x) ∀x ∈ Ω (2.2.18) Indeed for all j ∈ {1 . . . N N }, v h (x j ) = v j .
The set of values {v 1 , ...., v N N } are called the degree of freedom (dof ) vector, that is the values of v h at the nodes x i , i = 1..N N , see Fig. 2.2.1. Proof. (* To go further *) Let us prove these results in the case k = 1 (linear elements) and n = 2 (2D geometry). i) Let us prove that V h is an internal approximation of V = H 1 (Ω). Let T k and T k be two adjacent triangles with the common edge denoted [A, B] (make a figure). Let w ∈ V h ; we set:

v = w| T k , v = w| T k . We have: (v -v )(A) = 0 and (v -v )(B) = 0. Let us show that: (v -v )(s) = 0, ∀s ∈]A, B[. Let M ∈]A, B[, M = λA + (1 -λ)B with λ ∈]0, 1[.
The local functions v and v are linear therefore:

(v -v )(M ) = λ(v -v )(A) + (1 -λ)(v -v )(B) = 0 Therefore: (v -v ) = 0 on [A, B].
In vertu of Lemma 22, we have:

V h ⊂ H 1 (Ω).
If considering the subspaces V 0 = {v; v ∈ H 1 (Ω), v| Γ d = 0} and V 0h , V 0h ⊂ V 0 , the same result holds.

ii) Next let us prove that any function v h in V h is uniquely defined by its values at the nodes N i of coordinates (x i , y i ). Let T k be the triangle (A 1 , A 2 , A 3 ). For P 1 -Lagrange elements, the nodes are the vertices of the element. Then we show that the restriction of v h to T k is entirely determined by its values at the vertices A l , l = 1, 2, 3. We have v h | T k ∈ P 1 therefore ∃(α, β, γ) such that: v h (x) = αx + βy + γ. Moreover:

v(A l ) = v l , l = 1, 2, 3 ⇐⇒   α αx 1 βy 1 α αx 2 βy 2 α αx 3 βy 3   =   v 1 v 2 v 3   (2.2.19)
We have:

det     1 x 1 y 1 1 x 2 y 2 1 x 3 y 3     = (x 2 -y 3 )(x 3 -y 2 ) -etc = ±2 area(T k ) (2.2.20)
Therefore for an admissible triangulation T h (no triangle is flat), the linear system above is invertible: it admits an unique solution (α, β, γ). This ends to show the result.

The classical higher order P

k -Lagrange FE (k = 2, 3)
We illustrate on Fig. 2.5 the classical higher order P k -Lagrange FE (k = 2 and 3) in 1D.

Recall that since for P 1 -Lagrange elements the functions are affine, the nodes are the vertices. Images extracted from [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] and "Lectures on the FEM" A. Logg, K.-A. Mardal Eds.

For more details on P k -Lagrange FE, we refer to the exercises sessions.

It is worth to point out that a second order method (k = 2) is preferable to a first order one (k = 1) since much more accurate, see the convergence section.

FE code kernel: the assembly algorithm

The assembly algorithm constitutes the core of a FE code.

The assembly algorithm & elementary matrices

To obtain the FE solution, one has to solve the linear system AU h = b with for example:

a ij = a(ϕ j , ϕ i ) = Ω λ(x) ϕ j ϕ i (x) dx + Ω c(x)ϕ j ϕ i (x) dx l i = l(ϕ i ) = Ω f (x)ϕ i (x) dx - Γn Φ(s)ϕ i (s) ds
The FE solution is the dof vector U h .

The linear system coefficients to be computed

Each integral of the discrete weak formulation is decomposed onto the elements K of the mesh, or on their edges -faces ∂K:

Ω • dx = K∈T • dx (2.3.1) Γ • ds = ∂K∈- • ds (2.3.2)
Recall that each integral is non vanishing if and only if the considered nodes N i and N j belong to a same element, see Fig. Let us consider as an example the 0-th order term:

Ω c(x)ϕ j ϕ i (x) dx = K∈T K c(x)ϕ j ϕ i (x) dx = 0 if and only if supp(ϕ i ∩ ϕ j ) = 0

Data structures required from the mesh

To make the computations above, one needs the following information from the mesh.

• Points & elements (geometry): N E, N P, x k = coord(IP = 1..N P, k = 1 • • • d) • Nodes (interpolation): N N, ref (IN = 1..N N )
For P 2 -Lagrange FE in 3d: 4 points (vertices) and 10 nodes per element.

The assembly algorithm

The assembly algorithm constitutes the core of a FE code. This algorithm consists to add, assembly the contribution of each element K.

The algorithm is as follows: see Algorithm 2.1.

Remark 30. -A loop on the nodes instead on the elements (with the use of the connectivity table) would be much more CPU time consuming. The complexity of the assembly algorithm above is relatively low compared to the linear solver one (linear algebra, typical complexity ∼ k N N 2 ). However a high-order quadrature formulae would greatly increase the assembming algorithm CPU time.

-If A is symmetrical then the loop on JN 2 may be shorten as:

IN 2 = modulo(IN 1, N N (IE) + 1)
-Coding the assembly algorithm may be complicated. Indeed e.g. for a coupled 3D model on tetrahedra, order 2, with ˜10 dof per node, one get: ˜100 dof per element).

Exercise: make a very simple mesh by hand and write the information required to describe it.

On the elementary matrices.

We may define the elementary matrices E of sizes

N N E × N N E, N N E = N N (IE).
Then the assembly algorithm consists to add, "super-impose" all the elementary matrices. N ON O(IE, JN ) is the connectivity table built up by the meshing software (and provided by file).

Data structures required from the mesh (resumed)

In a FE code on need the following tabs and data; the latter are provided by the mesh generator.

• Points & elements (geometry):

-N E, ref (IE = 1..N E) if presence of few materials or areas within the domain

-N P, x k = coord(IP = 1..N P, k = 1 • • • d)
• Nodes (interpolation):

-N N, N N E(IE = ..N E) (if presence of a mix of elements), -ref (IN = 1.
.N N ) for boundary conditions.

-CON N EC(IE, JN )(called "N ON O(IE, JN )" above): the connectivity table.

How to introduce the Dirichlet boundary conditions ?

Either a) by considering the equation as a weak constraint; or b) by imposing the node value in the stiffness matrix. Next, the corresponding (discrete) equation

u i = g(x i ) i = 1, ..., nnd
is coded into the stiffness matrix as follows: This integral may be viewed as of the coefficient of the "elementary matrix" E of size N N (IE) 2 (e.g.

3 × 3) E JN 1,JN 2 = IE c(x) ϕ JN 1 (x)ϕ JN 2 (x) dx.
• Assembly the rigidity matrix A of size N N 2 (e.g. 10 4 × 10 4 in 2d):

A IN 1,IN 2 = A IN 1,IN 2 + E JN 1,JN 2 * End loop on JN 2 * Assembly the RHS e.g. L JN 1 = IE f (x) ϕ JN 1 (x) dx b IN 1 = b IN 1 + L JN 1 -End loop on JN 1 • End loop on IE i th equation →               a 11 0 . . . . . . . . . 0 0 0 a ii 0 0 0 . . . . . . . . . 0 a (N N +nnd)                               u 1 . . . u i . . . u (N N +nnd)                 =             b 1 . . . b i-1 × b i+1 . . . b (N N +nnd)             → -a 1i g i a ii g i -a (N N +nnd)i g i (2.3.
3) The RHS b is modified as required:

• the i-th value b i is set to a ii g i , • For j = 1, • • • , (N N + nnd), j = i : b j = b j -a ji g i .
As a consequence the i-th equation of the linear system reads as required: a ii u i = a ii g i with i corresponding to a Dirichlet node.

The algorithm to impose the Dirichlet condition u i = g(x i ) with i ∈ {1, .., nnd} is summarised in Algo. 2.2. How to recognize a node on a given boundary ? By introducing a reference number for each node (or vertex). This may be as a tab provided by the mesh generator.

Such a tab necessary to handle the boundary conditions. By convention, the value ref = 0 corresponds to nodes in the interior of Ω.

Algorithm 2.2 Imposing the Dirichlet condition u i = g i in the linear system

• For j = 1, • • • , (N N + nnd), j = i ; j not a Dirichlet node number:

- 

a ji = a ij = 0 -b j = b j -a ji g i • b i = a ii g i

Change of variables onto the reference element K

To compute the integral terms of the linear system coefficients it will be much more simple (and elegant) to make a change of variables to a reference element K, see Fig. 2.3.3.1.

The geometric change of variable onto K

To do so we define the change of variable (geometric transformation) F such that:

K = F ( K) (2.3.4)
with K the "reference element" defined in [0, 1] n . F is a change of variables if and only F is of class C 1 ( K), F bijective, with F -1 of class C 1 .

In the case of a triangle K = (A 1 A 2 A 3 ), vertex A i has coordinates(x i , y i ), the reference triangle K is defined as K = ( Â1 Â2 Â3 ) with, see Fig. 2

.3.3.1: Âi = F -1 (A i ) i = 1, • • • , 3.
The following property holds: n-simplexes (triangles, tetrahedra in 2d and 3d) are preserved by affine transformations i.e. F (x) is affine.

For the triangle K = (A 1 A 2 A 3 ), we have:

F : (x, ŷ) → (x, y) = F (x, ŷ) = (x 2 -x 1 )x +(x 3 -x 1 )ŷ + x 1 (y 2 -y 1 )x +(y 3 -y 1 )ŷ + y 1 (2.3.5)
Since F is affine, |det(DF )| is constant and:

x = DF • x + A 1 (2.3.6)
with:

DF = (x 2 -x 1 ) (x 3 -x 1 ) (y 2 -y 1 ) (y 3 -y 1 ) (2.3.7)
We have: |det(DF )| = 2|K| i.e. twice the element area.

It is worth to notice that the elements areas |K| should be computed from the mesh generator output files (i.e. out of the computational code core).

Moreover these values can be computed by the following simple formula:

|K| = 1 4 ---→ A 1 A 2 ∧ ---→ A 1 A 3 .
Let us remark that the basis functions in K are the image by F -1 of the basis functions defined in K. Indeed we have: Lemma 31. Let {ϕ i } i=1..N N E be the basis functions defined on K with ϕ i (x) ∈ P , ∀i. We assume that:

ϕ i (N j ) = δ ij ∀i, j, 1 ≤ i, j ≤ N N E.
Let F be the geometric transformation (change of variables) defined above. Then { φi = ϕ i • F } i=1..N N E is the basis functions defined on K.

Proof. We set: Ni = F -1 (N i ). We have: φi ( Nj ) = δ ij ∀i, j. This proves the result.

Change of variable for 0-th order terms

As an example, let us consider the following term: K c(x)ϕ j (x)ϕ i (x) dx. We have:

K c(x)ϕ j (x)ϕ i (x) dx = K c • F (x) ϕ j • F (x)ϕ i • F (x) |det((DF )| dx (2.3.8) = K ĉ(x) φj (x) φi (x) |det((DF )| dx (2.3.9)
in vertu of the lemma above.

Change of variable for 1-st order terms

Let us consider the following term:

K λ(x) ϕ j (x) ϕ i (x) dx.
The ∇ operator is implicitly with respect to the current variable x. Thus, to make a change of variable in such integrals we need the change the gradient too.

We have Lemma 32. Let F be the geometric transformation (change of variables) defined above. We have:

x ϕ i • F (x) = T DF -1 • ∇ x φi (x)
∀i, 1 ≤ i ≤ N N (2.3.10) Proof. We have:

ϕ i (x 1 , • • • , x n ) = φi (x 1 , • • • , xn ). Therefore: ∀k ∈ {1, .., n}, ∂ k ϕ i (x 1 , • • • , x n ) = n l=1 ∂ l φi (x 1 , • • • , xn ). ∂ xl ∂x k (2.3.11)
Recall that:

DF (x, ŷ) =    ∂x1 ∂ x1 • • • ∂x1 ∂ xn . . . . . . ∂xn ∂ xn • • • ∂xn ∂ xn    ; T DF -1 (x, y) =    ∂ x1 ∂x1 • • • ∂ xn ∂x1 . . . . . . ∂ x1 ∂xn • • • ∂ xn ∂xn    (2.3.12)
The end of the proof is quite straightforward (calculations to be finished in exercise).

Let us point out that these change of variables are valid even if F is not affine.

In the case F affine, of course the Jacobian |det(DF )| is constant.

In the example above, we obtain:

K λ(x) ϕ j (x) ϕ i (x) dx = K λ(x) T DF -1 • ∇ φj (x) T DF -1 • ∇ φi (x) |det(DF )| dx (2.3.13)

Change of variable for boundary terms

The principle is exactly the same as above. If we consider for example the following 1d term Γ Φ(s)ϕ i (s) ds, we have:

Γ Φ(s)ϕ i (s) ds = +1 0 Φ(ŝ) φi (ŝ) |Γ| dŝ (2.3.14) 2.3.3.2 Isoparametric FE
Isoparametric FE are FE with the geometric transformation (change of variables) F belonging to the interpolation space P .

For example for P 2 -Lagrange FE, F is not simply an affine function, it is P 2 too. The typical classical Iso-FE are:

• (P 2 -iso FE): they enable to generate "triangles" with curved edges. These elements are particularly interesting to properly approximate curved domain boundaries.

• (Q 1 -iso FE): they enable to generate quadrilaterals (also called quadrangles) and not simply parallelograms.

These two classical Iso-FE are studied in exercise(s).

On triangles & tetrahedra (n-simplexes): barycentric coordinates

In a n-simplex (triangles in 2d, tetrahedra in 3d), it is much more convenient to use the barycentric coordinates instead of the Cartesian coordinates.

The barycentric coordinates

Definition 33. Let K be a (non-degenerated) n-simplex with vertices (A i ) 1≤i≤n+1 ; A i = (a i,j ) 1≤j≤n . The barycentric coordinates (λ j ) 1≤j≤n+1 of a point x ∈ R n are defined as follows:

(n+1) j=1 λ j = 1, x i = (n+1) j=1 λ j a j,i for i = 1, • • • , n. (2.3.15) 
Proposition 34. Let K be a (non-degenerated) n-simplex and (λ j ) 1≤j≤n+1 its barycentric coordinates. We have the following properties:

1. The barycentric coordinates (λ j ) 1≤j≤n+1 are affine functions of x.

2. K is characterized as:

K = {x ∈ R n s.t. λ j (x) ≥ 0, j = 1, • • • , n} (2.3.16)
3. The (n + 1) faces of K are the intersections of K and the n hyperplanes λ j (x) = 0, j = 1, • • • , n.

Make a figure.

Lattices

To go further. From these barycentric coordinates, one can define particular points sets of the n-simplex K: the so-called lattices of order k.

A lattice of order k denoted by Σ k is defined by:

Σ k = {x ∈ K s.t. λ j (x) ∈ {0, 1 k , • • • , (k -1) k , 1}, for j = 1, • • • , n} (2. 

3.17)

For k = 1, Σ 1 is the set of vertices of K.

For k = 2, Σ 2 equals Σ 1 plus the midpoints of the edges, see Fig. In an n-simplex K, the lattice Σ k enables to characterize the polynomials of P k as follows.

Lemma 35. Let K be an n-simplex.

For k ≥ 1, any polynomial of P k is uniquely determined by its values at the lattice points

{M 1 , • • • , M nk }.
In other words, it exists a basis {ψ 1 , • • • , ψ nk } of P k such that:

ψ i (M j )=δ ij 1 ≤ i, j ≤ nk.
Proof. Please consult [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF]. 

Convergence and error estimation

Céa's lemma (Lemma [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF]) shows that the (a-priori) FE error u -u h V in the "energy space" V is upper bounded by the distance separating the continuous solution u ∈ V to the discrete FE space V h . Below we define the interpolation operator π h in V h and we present the resulting interpolation error.

Interpolation operator & error

We define the P k -Lagrange interpolation operator π h as follows:

For all v ∈ V, π h (v)(x) = N N i=1 v(x i )ϕ i (x) ∀x ∈ Ω (2.4.1)
with {ϕ i (x)} i=1...N N the P k -Lagrange FE basis.

If considering P 1 -Lagrange FE basis (k = 1) then the interpolation function π h (v)(x) is simply the piecewise linear function which coincides with the values of v at nodes x i , i = 1, .., N N ({x i } i are the mesh vertices too), see Fig. 2

.1.4 (Down).

In 1D, π h (v) is well defined for any function in V since V = H 1 (I) ⊂ C 0 ( Ī), see e.g. Fig. 2.1.4 (Down). On the contrary in higher dimensions (n = 2, 3), the functions v of H 1 (Ω) are generally not continuous at all points... Therefore, the interpolated functions v will need to be more regular than H 1 (Ω) to be in H 1 (Ω) ∩ C 0 ( Ω).

Note that we have in 2D and 3D the following inclusion:

H 2 (Ω) ⊂ C 0 ( Ω).
The following estimation of the interpolation error is technical but crucial to establish the forthcoming FE error estimation.

Proposition 36. Let V h be the FE space defined from the P k -Lagrange FE basis, see (2.2.15).

The following properties hold. i) For all v ∈ H 1 (Ω) ∩ C 0 (Ω), the interpolation function π h (v) defined by (2.4.1) is well defined and the interpolation error is convergent:

lim h→0 v -π h (v) H 1 = 0 ∀v ∈ H 1 (Ω) (2.4.2)
However this holds if the integrals (of the stiffness matrix coefficients and the RHS) are numerically evaluated without errors: the numerical integration have to be consistent with the target accuracy.

On the numerical integration errors

In practice, these integrals are not exactly evaluated since they are computed by numerical integration. Nevertheless, if the employed quadrature formulas are "high-order enough", the order k of the FE scheme should be recovered.

Indeed the discrete weak form a(u h , v h ) = l(v h ) ∀v h ∈ V h is equivalent to the linear system AU h = b with the coefficients:

a ij = a(ϕ j , ϕ i )and l i = l(ϕ i ) For example: a(ϕ j , ϕ i ) = Ω λ(x) ∇ϕ j ∇ϕ i (x) dx and l(ϕ i ) = Ω f (x)ϕ i (x) dx.
However what is actually solved is the formulation:

a h (u h , v h ) = l h (v h ) ∀v h ∈ V h (2.4.8)
That is the coefficients of the linear system are (in the example above):

a ij = a h (ϕ j , ϕ i ) = N GP p=1 ω p λ(x p ) ϕ j ϕ i (x p ) ∼ a(ϕ j , ϕ i ) l i = l h (ϕ i ) = p ω p f (x p )ϕ i (x p ) ∼ l(ϕ i )
Therefore the quadrature formulas have to be accurate enough to preserve the order k of the FE scheme. It is worth to notice that this feature depends on the BVP data regularity λ(x), f (x).

On the quadrature formula Ψ(x)dx ∼ p ω p ψ(x p ). WE onvite the reader to consult the complementary documents available on the Moodle page.

A typical example in 2d for a triangle T = (a 1 a 2 a 3 ) with middle edges denoted by a 4 , a 5 , a 6 :

T ψ(x)dx ∼ 1 3 |T | 6 i=4 ψ(a i ).
This formula is exact for ψ ∈ P 2 .

Measuring the convergence order: code validation

The best way to assess a FE computational code is to perform convergence curves following the technique described below.

The method

The principle is as follows. 1) We set the sough solution u ex (x) e.g.

u ex (x 1 , x 2 ) = cos(ω 1 x 1 ) sin(ω 2 x 2 ).
2) We calculate the corresponding RHS: f (x) = A(u ex (x)) with A(.) the differential operator e.g. A(u ex ) = -div(λ∇u ex )+ cu ex = ... → f (x).

3) We compute the numerical solution u h with the code and we plot the FE error value u ex -u h V vs a characteristic mesh size h. We do so for a few values of h; typically for 4 mesh (therefore 4 values of h). It turns out that the estimation (2.4.5) is optimal in the sense that if the chosen exact solution u ex is regular then:

u ex -u h H 1 ∼ c h k u ex H k+1 . Therefore we have: ln( u ex -u h H 1 ) ∼ cste + k ln h (2.4.9)
Hence in ln -ln scale the convergence curve is linear, with a slope equal to the order of convergence k, see Fig. 2

.4.3(L).

It is possible that a super-convergence phenomena appears (the observed converge rate is higher than the general theoretical one). This super-convergence phenomena is generally due to the uniformity of the mesh. 

On non optimal FE scheme order: presence of singularity

The FE error estimation (2.4.5) is true if the exact solution u is regular enough. This may be not the case... See Paragraph 1.3.3.2. If u is not regular, we say u is singular. Singularities are generally local only. Numerically the global convergence rate is observed to be weaker. Typically the obtained order equals 1 2 (resp. As an example let us consider the following BVP: the classical Laplace equation with constant Dirichlet conditions solved with a RHS f (x) = 1 ∀x. This BVP is regular, data are all C ∞ , but it is solved in a domain Ω presenting a 're-entrant corner'. This 're-entrant corner' generates a local singularity on the solution u : the solution may be C ∞ far enough from the corner vertex but is H 3/2 (Ω) in a vicinity of this re-entrant corner. (This can be mathematically demonstrated for the Laplace operator).

Therefore u is not (globally) H 2 (Ω). This implies that the gradient of u h is not L ∞ (Ω). Then it is observed that more h tends to zero more ∇u L ∞ increases: it diverges, see Fig. Remark 39. One may enrich the approximation space V h with well-chosen local singular functions enabling to better approximate the targeted singularity; this is called extended finite element method (xFEM). The (great) difficulty consists to find the adequate singular function(s)...

Error estimation in norm L 2 (Ω)

Theorem 37 shows that the P k -Lagrange FE error in H 1 (Ω) i.e. in the energy norm, behaves as h k (if the exact solution is regular enough).

Under the same assumptions as Theorem 37, it can be proved (see e.g. 1 ) that the P k -Lagrange FE error in L 2 (Ω) (gradients are not "measured") satisfies:

u -u h 0 ≤ c h k+1 u H k+1 (2.4.10)
That is that the P k -Lagrange FE error in L 2 (Ω) behaves as h k+1 (if the exact solution is regular enough): one order is gained compared to the error in the energy norm H 1 (Ω).

In practice convergence curves in norm L 2 provide a convergence rate equal to (k + 1); again if the exact solution is regular enough. 

Hermite FE: a brief presentation

In this section, we briefly present the Hermite FE principles, mainly in 1D.

For high-order BVP, typically order 4 such as the bi-laplacian ∆ 2 (this operator models linear plate deformations), we may be interested to consider more regular solution: discrete solutions which are globally C 1 and not C 0 only (like those obtained if using P k -Lagrange FE).

To do so, in 1D the considered FE space V h reads:

V h ≡ V H,1D h = {v h , v h ∈ C 1 ([0, 1]), v h | [xi,xi+1] ∈ P 3 ∀i, i = 1, . . . N N } (2.5.1)
In 1D the minimal regularity of polynomials to C 1 -connect at triangle edges / tetrahedra faces is P 3 . A 1D Hermite element is plotted on Fig. 2.5. Every function v v of V h is (uniquely) defined by its values and its derivatives values at the nodes. In 1D, this reads:

v h (x) = N N i=1 v(x i )ϕ i (x) + N N i=1 v (x i )ψ i (x) ∀x ∈ Ω (2.5.2)
In 2D the Hermite FE space reads:

V h ≡ V H,2D h = {v h , v h ∈ C 1 ( Ω), v h | Ki ∈ P 5 ∀K i ∈ T h } (2.5.3)
In 2D the minimal regularity of polynomials to C 1 -connect at triangle edges is P 5 . Any polynomial p ∈ P 5 is uniquely defined on a triangle by the following 21 values:

{p(a i ), ∂ 1 p(a i ), ∂ 2 p(a i ), ∂ 2 11 p(a i ), ∂ 2 22 p(a i ), ∂ 2 12 p(a i ), ∂ n p(a ij )} 1≤i<j≤3 (2.5.4)
with {a i } 1≤i≤3 the triangles vertices and {a ij } 1≤i<j≤3 its edges midpoints. This Hermite FE method is suitable to solve the bi-Laplacian equation (e.g. modeling a plate deformation); it is called the Argyris element. Its analysis is proposed in exercise (see Moodle page).

For all v h ∈ V h , ∂ xi v h (x) is continuous and piecewise C 1 ; therefore ∂ xi v h belongs to H 1 (Ω) and v h ∈ H 2 (Ω).
For more details on Hermite FE we refer to the dedicated exercises session.

Appendix: Formalization of what is a FE

To go further...

A definition of FE & "P -unisolving property"

A Finite Element (FE) may be defined as follows.

Definition 40. We call a Finite Element (FE) a triplet (K, P K , Σ K ) with:

• K an elementary geometry (e.g. triangle, tetrahedra, quadrangle, parallelepiped, prism),

• P K a space function (the basis functions space),

• Σ K = {N 1 • • • N N N E }
a set of points (the nodes) satisfying the "P K -unisolving property" below.

The P K -unisolving property characterizes the consistency between P K and Σ K .

Definition 41. The nodes set Σ K is P K -unisolving if and only if for any values set {α i } i=1..N N corresponds an unique p ∈ P K .

In the Lagrange FE case (vs Hermite FE case), this means that it exists an unique p ∈ P K interpolating the nodes values on K:

p(N i ) = α i i = 1, • • • , N N E (2.6.1)
Given a triplet (K, P K , Σ K ), how to verify that Σ K is P K -unisolving ? A necessary condition of P K -unisolving property is:

dim(P K ) = Card(Σ) = N N E (2.6.2)
Next verifying that Σ K is P K -unisolving may done by checking one of the following criteria:

1. Show that:

p(N i ) = 0 =⇒ p ≡ 0 ∀i, 1 ≤ i ≤ N N E (2.6.3)
2. Write the expression of the basis functions of P k .

Let us prove that Criteria 1. above implies that Σ K is P K -unisolving. Let us define the application L K by:

L K : p ∈ P K → {p(N 1 ), • • • , p(N N N E )} ∈ R N N E (2.6.4)
L K is linear. We have the following property:

"Σ K is P K -unisolving" ⇔ L K is bijective (2.6.5)
Therefore (2.6.3) is equivalent to L K is injective (since L K is linear). Moreover since acting in finite dimensional spaces (dim(P K ) = N N E), this is equivalent to L K bijective; and the result follows from (2.6.5). Criteria 2. above implies that Σ K is P K -unisolving too. Indeed basis functions {ϕ i (x)} i=1,..,N N E of P k enables to prove that L K is surjective therefore bijective.

In the (usual) case where ϕ i (N j ) = δ ij , 1 ≤ i, j ≤ N N E, we have:

p(x) = N N E k=1 α i ϕ i (x) ⇒ p(N j ) = α i , 1 ≤ i ≤ N N E (2.6.6)
i.e. the coefficients of p in the functions basis are the nodes values. • u → a(u; •, •) is non-linear: this partial map represents the non-linear term(s) of the form;

Computational freewares

• u → a(•; u, •) is linear: this partial map represents the linear terms of the form;

• of course, v → a(•, v) and v → l(v) linear continuous in V .

Remark 44. As a consequence, the variational problem reads as follows:

(P): Find u ∈ V satisfying:

a(u; u, v) = l(v) ∀v ∈ V (3.1.2)
On the mathematical analysis. It is assumed that (P) is well-posed in a Banach space V . Observe that since the PDE is non linear, the Lax-Milgram theory does not apply anymore. Moreover, the well-posedness of (P) is a-priori in a Banach space and a-priori not in a Hilbert space.

For second-order problems, one typically has V = W 1,p (Ω) with p = 2 i.e. not the Sobolev space H 1 (Ω).... However, the basic principle of weak formulations (and resulting weak solutions) remain the same.

A quite general theorem to address the existence of solutions for such elliptic non linear PDEs is the Leray-Schauder fixed point theorem.

Linearized discrete system

Let us employ an internal approximation as previously. Since the equation is non linear (in u), the discrete variational formulation is not equivalent to a linear system. Indeed:

a nl ( i u i ϕ i , •) = i u i a nl (ϕ i , •).
The discrete variational formulation may be written as a non-linear system of the form:

A(U )U = b (3.1.3)
with U ∈ R N N the dof vector, A(U ) a stiffness matrix depending on U and b the RHS.

Exercise. Write the variational (weak) formulation of a scalar diffusion equation with the diffusivity parameter µ depending on the solution u.

Let us set

F : U ∈ R N N → F (U ) ∈ R N N with F (U ) = A(U )U -b (3.1.4)
The most classical methods to solve the non-linear (N N × N N )-system (3.1.4) are:

• A fixed point method as A(U n-1 )U n = b.

• The Newton-Raphson method based on the linearized PDE therefore the differential DF (U ).

Recall that the fixed point method is trivial to implement; it converges if

F (•) is L-Lipschitz with L < 1.
It is a 1st order method only (if converging). On the contrary, the Newton-Raphson method may be more complex to implement since it requires the differential DF (•). However it is a 2nd order method hence much faster, if converging. The attractor(s) basins of these two methods are different.

Exercise. Let us consider the (discrete) non-linear system F (U ) = 0 with

F : U ∈ R N N → F (U ) ∈ R N N .
Derive the Newton-Raphson algorithm.

Show that, in the end this consists to compute at each iteration the increment ∆U satisfying the following linear system:

DF (U (k) ).∆U = -F (U (k) ) (3.1.5)

Linearized PDE (continuous form)

Another approach consists to write the non linear variational problem and its corresponding linearized equation in continuous form (in the function space V ).

To do so, we set F (u) as a non linear operator in u, linearly acting on the test function space V . (Recall that V is an infinite dimensional space).

Warning: The reader may need to study first the appendix treating of the Riez-Fréchet representation theorem.

Exercise. Apply the Riez-Fréchet theorem to a few standard forms (see exercices on the Moodle page).

Let us set the operator F , F : V → V , such that:

F (u)(v) ≡< F (u), v > V ×V = a nl (u, v) -l(v) (3.1.6) with < ., . > V ×V the duality product V × V .
Then, the (non linear) variational problem (P) is equivalent to find u ∈ V satisfying:

< F (u), v > V ×V = 0 ∀v ∈ V (3.1.7) Recall that given u ∈ V , the differential DF (u) ∈ L(V, V ).
Then, the Newton-Raphson algorithm reads as indicated in Algo. 3.1.3.

Algorithm 3.1 Newton-Raphson

• Given u (0) (the best "first guess" as possible),

• k → (k + 1):

-Calculate or compute the differential DF (u (k) ).

-Solve the linearized equation which reads:

Find δu∈V such that:

< DF (u (k) ) • δu, v > V ×V = -< F (u (k) ), v > V ×V ∀v ∈ V (3.1.8)
Or equivalently the linearized variational equation:

∂ u a nl (u (k) , v) • δu = -a nl (u (k) , v) + l(v) ∀v ∈ V (3.1.9)
-Update the solution:

u (k+1) = u (k) + δu • Test of convergence.
After FE discretization the convergence criteria may be:

u (k+1) -u (k) u (k)
< ε. With ε ≈ 10 -10 since it is an order 2 method.

Note that if using the notation a(u 1 ; u 2 , v), Eqn (3.1.9) writes:

∂ u1 a(u (k) ; δu, v) • δu = -a(u (k) ; u (k) , v) + l(v) ∀v ∈ V (3.1.10)
Remark 45. Recall that the Newton algorithm is convergent at order 2 (quadratic convergence) if the differential DF (u (k) ) is locally Lipschitz and if the first "point" ("first guess") u (0) is close enough to the solution. As a consequence, the choice of u (0) is crucial to make converge the algorithm.

FEM for unsteady PDEs (parabolic models)

In this section, we present how the FEM is adapted to unsteady BVP. In short, FE are employed for the spatial discretization, while time schemes for ODEs (eg Euler, RKn) are employed for the temporal discretization.

The general model

Let us consider the general time-dependent BVP (first order in time) :

     ∂ t u(x, t) + A(u(x, t)) = f (x, t) in Ω×]0, T [ u(x, 0) = u 0 (x) in Ω + B.C. ∀t ∈]0, T [ (3.2.1) 
where the Initial Condition (IC) u 0 (x) is given. By default we assume in this section the same hypothesis as in the steady-case case in the following sense: at time t given, the differential operator satisfies the Lax-Milgram theory, see Section 2.1.

The typical example of linear parabolic equation is the heat equation. An extended version of the reference model includes a 0-th order term; it is the following unsteady linear diffusion reaction model :

     ∂ t u(x, t) -div(µ∇u)(x, t) + c u(x, t) = f (x, t) in Ω×]0, T [ u(x, 0) = u 0 (x) in Ω u(x, t) = u d (x, t) in ∂Ω×]0, T [ (3.2.2) 
Of course, mixed boundary conditions could be considered to close the equation posed in Ω.

If the operator A(u) is an elliptic operator e.g. like those adressed in the previous sections, this general BVP (3.2.1) is a parabolic model.

Recall that parabolic models have regularizing effects on the I.C.: even if u 0 is not regular e.g. not continuous, then the solution u(x, t) immediately (that is for any t > 0) becomes regular. This feature is not true with hyperbolic models.

The basic principles of time discretization presented below formaly apply to non-linear paraboloc PDEs, or even to hyperbolic PDEs, including those of second order in time (e.g. the wave equation ∂ 2 tt u -∆u (x, t) = 0). Of course, the B.C. have to be adequate with the differential operator A(u).

Weak formulation

Weak formulations of time-dependent equations are built like in the stationary case:

the equation is multiplied by a test function v(x) depending on the spatial variable x only i.e. not depending on the time variable t.

Remark 46. We could build a FEM in space and time. However, the resulting formulation is not interesting excepted if in a very few cases where Ω is time-dependent.

For the typical example (3.2.2), this reads:

Ω ∂ t u(x, t)v(x) dx + Ω µ(x) ∇u(x, t)•∇v(x) dx + Ω c(x)u(x, t)v(x) dx = Ω f (x, t)v(x) dx ∀v(x) ∈ V 0 (3.2.3) with V 0 = {v, v ∈ H 1 (Ω), v = 0 on ∂Ω} = H 1 0 (Ω).
The time term satisfies:

Ω ∂ t u(x, t)v(x) dx = d dt Ω u(x, t)v(x) dx = d dt (u(t), v) L 2 (Ω) (3.2.4) 
where (•, •) L 2 (Ω) denotes the L 2 -scalar product in Ω.

Like in steady-state cases, we set:

V t = {v, v ∈ H 1 (Ω), v = u d on ∂Ω}.
The mass matrix is sparse, symmetric, positive definite. Using the matrix notations, (3.2.10) re-writes as:

Find U h (t) = (u 1 (t), ..., u N N (t)) ∈ R N N such that: M dU h dt (t) + AU h (t) = F (t) for t ∈]0, T [ (3.2.12) with: F = (f i ) i=1..N N , f i (t) = b(t, ϕ i (x)), 1 ≤ i ≤ N N and U h (t) = (u 1 (t), ..., u N N (t)) ∈ R N N .
Eqn (3.2.12) can be viewed as an ODE system.

The existence and the uniqueness of the discrete (finite-dimensional) solution U h of (3.2.10) can be classically shown by diagonalization of the matrices M and A.

Complete space-time discretisation

To numerically solve the ODE system (3.2.12), the classical time schemes of ODEs can be employed: forward/backward Euler schemes, θ-scheme, RKn (n = 2 or 4 in practice), or the more sophisticated IMplicit EXplicit (IMEX) time schemes.

Using the θ-scheme

Let us discretize the time intervall ]0, T [ into constant time step ∆t . We denote by t n the n-the time step:

t n = n∆t, n = 0, . . . , N T . T = N T ∆t.
We denote by U n the approximation of U h (t n ).

Let us discretize the system (3.2.12) by using the θ-scheme. This reads as follows.

Given

U 0 ∈ R N N , compute U n+1 ∈ R N N solution of: M U n+1 -U n ∆t + A (θU n+1 + (1 -θ)U n ) = θF n+1 + (1 -θ)F n , n = 0, . . . , N T . (3.2.13) 
Recall that the case:

• θ = 0 corresponds to the forward Euler scheme (explicit scheme, order 1 in ∆t);

• θ = 1 corresponds to the backward Euler scheme (implicit scheme, order 1 in ∆t);

• θ = 1/2 corresponds to the Crank-Nicholson scheme (implicit scheme, order 2 in ∆t).

The θ-scheme above can be re-written as:

(M + θ∆tA)U n+1 = (M -(1 -θ)∆tA) U n + ∆t (θF n+1 + (1 -θ)F n ) , n = 0, . . . , N T . (3.2.14) 

Mass lumping (condensation of mass)

Observe that the mass matrix M is not diagonal. As a consequence, even in the explicit case θ = 0, a linear system has to be solved ! Fortunatly, a trick to diagonalize M exists. Thus an actual explicit scheme is recovered.

The method to diagonalize simply consists to employ particular quadrature formula to compute the integrals Ω ϕ j (x)ϕ i (x) dx.

In the case of n-simplex (triangle or tetrahedra) T , it consists to use the quadrature formula:

T Ψ(x)dx ≈ 1 3 |T | 3(or 4) j=1 Ψ(S j,T ) (3.2.15)
with S j,T the vertices of T . By applying this quadrature formula, the mass matrix becomes obviously diagonal.

Note that using this quadrature formulae consists to lump all the extra diagonal coefficients to the diagonal term. Then, it is called the mass condensation or mass lumping method.

This quadrature formulae is exact for quadratic integrands Ψ(x), with here Ψ(x) = ϕ i (x)ϕ j (x). Therefore, this approximation is exact for affine functions ϕ i (x) thats is P 1 -Lagrange FE.

As a consequence, if applying this method with higher-order FE (e.g. k = 2), the resulting scheme won't be at the expected maximum order since the temporal term remains order 1...

On the stability condition & choice of the time scheme

Let us recall the stability condition of the θ-scheme.

For 1/2 ≤ θ ≤ 1, the θ-scheme is unconditionnaly stable.

The value θ = 1/2 (Crank-Nicholson scheme) is an interesting case since providing a second order scheme. However, the implicit Euler scheme (θ = 1) may be prefered for 'stiff' problems since it is more robust even though it is less accurate than the Crank-Nicolson scheme.

For 0 ≤ θ < 1/2, the θ-scheme is stable under the condition: max i λ i ∆t ≤ 2 1-2θ , with {λ i } i the eigenvalues of the system: AU h = λ M U h .

Explicit schemes & non linear PDEs

If using an explicit time scheme then one do not have to linearize the PDE. Indeed, in this case the non linearity is in the RHS.

For example, if time-discretizing the equation (∂ t u + A(u) = f ) using the explicit Euler time scheme, on has to solve at each time step:

M u n+1 j = M u n j -∆t a(u n j , ϕ j ) + l n (ϕ j ) (3.2.16) 
Note that in practice in the present PDE context, a compromise has to be found between an accurate, high-order and robust scheme, therefore expansive e.g. RK4, and the very large size of the system (N N ODEs)... For more information on the time scheme properties, the reader is invited to consult his favorite course on time-schemes for ODEs and their mathematical analysis (order and stability conditions in particular).

Exercise Write the numerical scheme to solve (3.2.12) by the RKn time scheme, with n = 2.

(The RK2 scheme is also called Heun's method).

Advection term: scheme stabilization

Let u(x) be the unknown scalar field and w(x) be a given velocity field.

The advection term div(wu) models the transport of the quantity u by the vector field w. If the fluid flow is incompressible that is div(w) = 0 then: div(wu) = (w • ∇u).

Transport terms are of course extremely frequent in fluid flows modeling, but also in wave propagation etc. The advection terms above are first order terms leading to numerical instabilities if no particular treatment is applied. The stabilization of the advection terms in FE schemes is the topic addressed in the present section.

Equations with an advection term

The (pure) advection equation If modeling the transport of quantity u by the fluid of velocity w (u may be for example the temperature or a chemical specie concentration in the fluid), one has the equation:

∂ t u(x, t) + div(w u)(x, t) = f (x, t) in Ω × (0, T ) (3.3.1)
It is a first order PDE, in conservative form: it is a hyperbolic equation. This equation has to be closed with an I.C. (u(x, 0) given) and an adequate B.C. (the quantity must be known at inflow characteristics).

Remark 47. FE methods are naturally suitable for elliptic equations and less naturally for hyperbolic equations. However, they can be employed for hyperbolic equations with stabilization procedures.

Remark 48. Recall that if the flow is incompressible then div(w) = 0 and Eqn (3.3.1) simplifies as:

∂ t u(x, t) + w • ∇u(x, t) = f (x, t) (3.3.2) 
The (linear) unsteady advection-diffusion equation If modeling in addition the diffusion of the same quantity u in the media represented by Ω, the equation reads:

(∂ t u -div(µ∇u) + div(w u)) (x, t) = f (x, t) in Ω × (0, T ) (3.3.3)
where µ denotes the diffusivity of u in the media. The equation above is a linear parabolic equation.

The steady-state advection-diffusion equation In its steady-state version, Eqn (3.3.3) reads:

(-div(µ∇u) + div(w u)) (x) = f (x) in Ω (3.3.4)
The equation above is a linear elliptic equation.

Existence, uniqueness of the solution of Eqn. (3.3.5).

Please refer to the exercise available on the Moodle course page.

Dimensionless form.

If µ is constant, if the velocity field is incompressible, then the dimensionless form of the equation reads:

- 1 P e ∆ū(x) + ( w • ∇ū)(x) = F * f (x) in Ω (3.3.5)
where the¯denotes the dimensionless quantities. P e denotes the Peclet number defined by: P e = L * W * µ , the superscript * denoting orders of magnitude. Exercise. Show this statement i.e. the dimensionless form of the equation.

(You will determine the value of F * too).

The Peclet number P e measures the ratio of the rate of advection by the flow to the diffusion rate:

P e = |advection| |dif f usion| (3.3.6)
In the dimensionless form of the advective-diffusive equation (3.3.5), P e -1 plays the role of the diffusion coefficient.

If P e → 0 than the model tends to be purely diffusive one. On the contrary, if P e → +∞ then the model tends to be purely advective one: tending to the transport equation (w • ∇u) = f . Numerically, one observes that if 1 P e is small (the advection term is dominating) than a standard FE scheme e.g. P k -Lagrange is unstable: the FE solution u h (x) blows up ! Indeed, one shows below that standard P k -Lagrange FE schemes are centered.

Stabilizing FE schemes for the advection-diffusion equation is the topic addressed in the next paragraph.

Standard P k -Lagrange FE scheme = centered scheme

We show below that on a regular grid the P 1 -Lagrange FE scheme of the advection-diffusion equation (3.3.5) is nothing else than the centered Finite Difference (FD) scheme.

As a consequence the FE solution of e.g. (3.3.5) blows up as soon as the Peclet number is large enough.

Let us consider the advection-diffusion equation (3.3.5) in 1D with the velocity field w constant, w > 0.

We set Ω =]0, 1[ and we consider a regular grid (mesh): h = (x i+1 -x i ) ∀i.

The i-th P 1 -Lagrange basis functions satisfies:

ϕ i (x i-1 ) = 0, ϕ i (x i ) = 1, ϕ i (x i+1 ) = 0. It reads: ϕ i (x) =      h -1 (x -x i-1 ) in [x i-1 , x i ] h -1 (x i+1 -x) in [x i , x i+1 ] 0 elsewhere (3.3.7) ϕ i (x) =      h -1 in [x i-1 , x i ] -h -1 in [x i , x i+1 ] 0 elsewhere (3.3.8) 
The weak form of the (first order) advective term of (3.3.5) reads as follows :

Ω w ∂ x u(x)v(x) dx.
With w constant, the corresponding i-th equation term reads as:

Ω w ∂ x u(x)ϕ i (x) dx = w Ω ϕ(x)∂ x ( j u j ϕ j (x)) dx = w j u j Ω ϕ i ∂ x ϕ j dx = wu i-1 Ω ϕ i ∂ x (ϕ i-1 ) dx + wu i Ω ϕ i ∂ x (ϕ i ) dx + wu i+1 Ω ϕ i ∂ x (ϕ i+1 ) dx
In other respect,

Ω ϕ i ∂ x (ϕ i-1 )dx = - 1 2h 
;

Ω ϕ i ∂ x (ϕ i )dx = 0; Ω ϕ i ∂ x (ϕ i+1 )dx = 1 2h (3.3.9) 
Therefore:

Ω w ∂ x u(x)ϕ i (x) dx = w u i+1 -u i-1 2 (3.3.10)
Therefore the advective term discretized by P 1 -Lagrange FE corresponds to the centered FD formula.

This feature remains true in nD and for non constant velocity fields.

Equivalent equation

Let us consider here the (pure) advection equation (3.3.1) in 2D. Below we denote the velocity components as w = (w 1 , w 2 ). The P 1 -Lagrange FE discretization on a regular grid reads as the following (potentially unstable) centered scheme:

(u n+1 ij -u n ij ) ∆t + w n 1,ij (u n i+1j -u n i-1j ) 2∆x + w n 2,ij (u n ij+1 -u n ij-1 ) 2∆y = a ∀(i, j) (3.3.11) 
Next one notices that the centered formula of the advective term equals the (adequate) uncentered one minus a diffusive term in O(∆x). Indeed, we have:

w n 1,ij (u n i+1j -u n i-1j ) 2∆x = w n 1,ij (u n i+1j -u n ij ) ∆x - ∆x 2 w n 1,ij (u n i+1j -2u n ij + u n i-1j ) ∆x 2 (3.3.12)
Here for a sake of simplicity, u and v are assumed to be strictly positive.

Therefore the P 1 -Lagrange FE discretization (on a regular grid) (3.3.11) is equivalent to the following uncentered stable scheme:

(u n+1 ij -u n ij ) ∆t + w n 1,ij (u n i+1j -u n ij ) ∆x + w n 2,ij (u n ij+1 -u n ij ) ∆y -w n 1,ij ∆x 2 (u n i+1j -2u n ij + u n i-1j ) ∆x 2 -w n 2,ij ∆y 2 (u n ij+1 -2u n ij + u n ij-1 ) ∆y 2 = a (3.3.13)
This is the uncentered FD scheme with additional artificial diffusion, the diffusion coefficient being equal to: velocity × (∆x, ∆y)/2.

In other words, the potentially unstable FD centered scheme is equivalent to the unconditionally stable uncentered FD scheme with artificial diffusion whose the diffusivity coefficient µ h satisfies: µ h ∼ 1 2 |w|h.

1D case: explicit solutions & instabilities

Let us consider now the following 1D steady-state advective-diffusive BVP (with w constant):

-u (x) + w u (x) = 0 x ∈]0, 1[ u(0) = 0 u(1) = 1 (3.3.14)
In the equation above, for w ≈ 1, P e -1 = ε, see (3.3.5).

The parameter ε is supposed to be small, equivalently P e is supposed to be large.

The exact solution of this BVP is:

u(x) = c exp( wx ) -1 (3.3.15) with c = exp( w ) -1 -1
.

Close to the outflow boundary at x = 1, the solution u presents a boundary layer i.e. a stiff gradient (since exponential growing).

The solution of the centered FD scheme can be explicitly written. With w = 1, it reads: The natural solution to this instability issue would be to refine the mesh i.e. reduce the grid size h. However this is generally not possible. Let us consider for example an air flow around a vehicle engine at 100 km/h, then P e = L * W * µ ∼ 10 5 . Stabilizing the numerical scheme by refining the mesh would mean to set: h ≈ 10 -5 m!.... The good approach to stabilize the numerical solution is to upwind the advective term. It has been in the previous section that in a FD context the upwind scheme is equivalent to the centered one with:

u i = 1 -P e h 1 + P e h i - 1 
h = ( + 1 2 wh) = + O(wh) (3.3.18)

Stabilization techniques: SD, SUPG, GLS

Let us consider the following (steady-state) linear advective-diffusive equation:

-ε u(x) + w • ∇u(x) = f (x) (3.3.19)
with adequate boundary conditions. The diffusion coefficient ε is supposed to be small, ε > 0.

In the dimensionless equation, we have ε = P e -1 therefore P e large.

(Dissatisfaying) isotropic diffusion

A straightforward extension of the artificial diffusion term derived in the previous paragraph would be to add the term:

-h w ∞ u (3.3.20)
The latter stabilizes as expected the FE scheme. However it does it in all directions ! Therefore it introduces unnecessary (and unphysical) cross-wind diffusion.

The stabilization of FE schemes has to be done consistantly with respect to the physics.

Streamline Diffusion (SD) method

The principle of SD is to introduce artificial diffusion along the streamlines only. This can be done by adding the following anisotropic diffusion matrix h 2 2 ww T . Thus the diffusion matrix to be considered in the equation becomes:

εI ← εI + α h 2 2 ww T (3.3.21)
with α a weight coefficient to be set, α 1.

(Recall that: u = div(εI ∇u) ). Proof. Let us show the result in 2d (n = 2). We set: w = (w 1 , w 2 ). We have w T = (-w 2 , +w 1 ) and:

D = w.w T = w 2 1 w 1 w 2 w 1 w 2 w 2 2
In the coordinate system (w, w ⊥ ), D has to be of the following form:

• 0 0 0 ≡ D ww T .
We denote by P the change of variable matrix. We have: D ww T = P -1 DP . P has to satisfy: We have: P D ww T = ãw 1 0 ãw 2 0 . And:

P e 1 =
DP = w 3 1 + w 1 w 2 2 -w 2 1 w 2 + w 2 1 w 2 2 w 2 1 w 2 + w 3 2 -w 1 w 2 2 + w 2 2 w 1 = w 1 (w 2 1 + w 2 2 ) 0 w 2 (w 2 1 + w 2 2 ) 0
.

Therefore: P D ww T = DP with ã = (w 2 1 + w 2 2 )= w In the local coordinate system (w, w ⊥ ), the diffusion matrix has the following form:

w 2 2 0 0 0 . It is a Streamline Diffusion.
SD method is efficient since it stabilizes the FE scheme by introducing artificial diffusion along the streamlines only. However the correction made to the (discrete) variational form is in O(h), see (3.3.21). Therefore the resulting FE scheme is order 1 at most independently on the original FE order k, e.g. k = 2... This is the drawback of SD method. This drawback may be circumvented by employing the SUPG or GLS methods below.

Streamline Upwind Petrov-Galerkin (SUPG) and Galerkin Least-Square (GLS) methods* * This is a to go further paragraph

The standard FE method (conforming FE i.e. an internal approximation) to solve (3.3.19) consists to find u h ∈ V 0h such that:

a(u h , v h ) = l(v h ) ∀v h ∈ V 0h (3.3.23)
That is the function tests belongs to the same function space than the solution (here V 0h ).

The SD method consists to introduce the additional term, see (3.3.21):

τ v h (T h ) = Ω α h 2 2 ww T ∇u h • ∇v h dx.
This correction provides a consistent scheme in the sense: lim h→0 τ (u h ) = 0 ; but not in the classical ( strong) sense τ (u h ) = 0 ∀h > 0. Typically, the orthogonality property (2.1.9) does not hold anymore.

The Streamline Upwind Petrov-Galerkin (SUPG) method and the Galerkin-Least-Square (GLS) method are different. They consist to consider modified test functions. As a consequence, the test functions belong to a different space than the solution space V 0h : it is so-called Petrov-Galerkin approximation.

Considering the equation (3.3.19), the modified weak form reads as: Recall that a conservative equation is an equation which reads as:

a(u h , v h ) + c(u h , v h ) = l(v h ) + k(v h ) ∀v h ∈ V 0h (3.3.24) with: c(u h , v h ) = K K α K (h) (-ε∆u h + w • ∇u h ) z h (v h ) dx (3.3.25) k(v h ) = K K α K (h) f z h (v h ) dx (3.
div(G(u))(x) = f (x) in Ω (3.3.34)
where G(.) is the (physical) flux (e.g. a mass flux). This flux may be linear (in u) or not.

A naturally conservative numerical method is the FV method.

Let us mention the Discontinuous Galerkin (DG) methods too; they combine features of the FE and the FV methods. DG methods are particularly interesting for dominant first-order terms. They enable to built up P k discontinuous approximations.

The linear elasticity system

The FE method has been presented up to now for scalar PDEs. Its extension to the system of linear elasticity does not introduce big issues. Section to be completed. You may consult the short supplementary notes available on the INSA Moodle platform or your structural mechanics course, or the aforementionned books.

A-posteriori error estimations and mesh refinement*

*This is a to go further section.

Introduction

The BVP context

Let us consider a scalar linear second order BVP. The weak formulation (3.5.1) reads:

Find u ∈ V such that: a(u, v) = b(v) ∀v ∈ V (3.5.1)
where the bilinear form a(., .) and the linear form l(.) satisfy the conditions of the Lax-Milgram theory.

Let us supposed that the unique solution is regular in the sense u ∈ H 1+k (Ω) for a given k, k ≥ 1.

Let us consider a P k -Lagrange FE approximation in V h , k ≥ 1.

V h is a finite dimensional internal approximation of V (see Definition 23).

From Left to Right: The FE solution on a regular mesh, next (from (L) to (R)), on more and more refined meshes.

Image source: Comsol multi-physics webpage. Also, note that a mesh refinement strategy enables to approximate the solution more accurately than on a regular mesh with the similar computational resources.

The few types of estimators

Few types of a-posteriori error estimator exist. They may be classified as follows:

• Residual-based error estimators,

• Goal-oriented error estimators based on a dual formulation,

• Hierarchical techniques.

We briefly present in next sections these three first types of a-posteriori error estimators. The presentation proposed in this chapter follows in good part the excellent book [START_REF] Ern | Theory and practice of finite elements[END_REF]. The reader may consult e.g. the synthetic review4 too.

Before addressing these three types of a-posteriori error estimators, we first present a pseudo-empirical method based on the estimation of the Hessian of the FE solution u h .

A first method based on the interpolation error & anisitropic mesh adaptativity

We derive here a pseudo-empirical error indicator based on an estimation of the Hessian. This method is not based on an actual a-posteriori error estimator. It is based on an error indicator inspired by the following interpolation error estimations.

Interpolation errors in the case of linear elements

Let us consider the case of P 1 -Lagrange FE (linear elements). In this case, the a-priori FE error estimation (3.5.2), deriving from Cea's lemma (26) and the interpolation error estimation, reads:

u -u h H 1 ≤ c 0 u -π h (u) V ≤ c h u H 2 (3.5.9)
with u the exact solution (u necessarily regular in the sense u ∈ H 2 (Ω)), and π h (v) the Lagrange interpolation operator.

It turns out that in 2D triangular meshes (actually in 3D tetrahedra meshes too), estimations of the interpolation error u(x, y) -π h (u)(x, y) can be detailed.

Proposition 53. In 2D triangular meshes, we have the following interpolation error estimations: with ∂K the set of edges of K, e an edge vector linking the two vertices, and the constant c depending on the element geometry type (triangle, tetrahedra).

|u(x, y) -π h (u)(x, y)| ≤ 1 2 h 2 max sup (x,
The proof of (3.5.10) can be found of e.g. in [START_REF] Mohammadi | Pratique de la simulation numérique[END_REF]. Those of (3.5.11) can be found e.g. in [Ainsworth, Oden, book, 2011] Let us mention a few consequences of these estimations.

On the triangle-tetrahedra quality

• The dominating error is related to the gradient quantity, see (3.5.10)(b).

Recall that in physics-mechanics (in the large sense), the gradients represent the fluxes, the strains. It is therefore important to accurately compute them.

• The constant value c in the general a-priori estimation, see (3.5.2), is unknown. This is not the case for linear elements.

And this shows that in the present case the gradient estimation bound is minimal where hmax sin(θmin) is minimal, see (3.5.10)(b). This implis that in an uniform mesh, the optimal triangles shape is the equilateral one. This is not true anymore for non-isotropic equations where the solution varies greatly in a given direction, e.g. in a boundary layer in an advection-diffusion problem. In this case, the optimal triangle shapes will be the ones which maximizes its surface |K| in an ellipse defined by the eigenvalues of the Hessian matrix.

On the triangle -tetrahedra anisotropy The a-priori error estimation relying on (3.5.11) can be summarized as follows:

FE error u -u h V ≤ cst Interpolation error u -π h (u) ≤ cst Square of edge lengths in metric D 2 (u) (3.5.12)

The local interpolation errors are proportional to the square of the longest edge of K, provided that the edge is measured in the metric determined by the Hessian D 2 (u). This result seems natural: where the second derivatives is large one wants to decrease the edge lengths; conversely, where the second derivatives are small, longer edge lengths may be employed.

Based on the estimation (3.5.11), the mesh adaptativity strategy will consist to build triangles-tetrahedra equilateral for the D 2 (u h )-based metric. In practice, this requires to compute the eigenvalues of the Hessian.

Refinement based on the interpolation error and the Hessian eigenvalues

Basic principle For linear triangular elements, the interpolation error estimation (3.5.10) suggests to locally refine the mesh where the Hessian norm D 2 (u) is large. However the Hessian of the exact solution is not known. Then, the basic principle here consists to approximate D 2 (u) by the Hessian of the FE solution D 2 (u h ) .

Estimation of the Hessian D 2 (u h ) for P k -Lagrange elements First, let us observe that for P k -Lagrange FE, the gradient are piecewise P (k-1) , but they are non continuous between two elements. As a consequence, a direct computation of the Hessian D 2 (u h ) may be an issue. Then, a way to estimate D 2 (u h ) is to do it in the weak sense as follows.

Let us denote by

H ij (u h ) = ∂ 2 ij u h , 1 ≤ i, j ≤ n.
To compute H ij (u h ), we solve the equation:

Ω H ij (u h )v h (x) dx = - Ω ∂ i u h ∂ j v h (x) dx + ∂Ω ∂ i u h v h n j (x) ds ∀v h ∈ V h (3.5.13) Therefore: K∈T h K H l ij (u h )ϕ l (x) dx = - Ω ∂ i u h ∂ j ϕ l (x) dx + ∂Ω ∂ i u h ϕ l n j (x) ds ∀l, 1 ≤ l ≤ N N (3.5.14)
By applying the mass lumping technique, we obtain:

H l ij (u h ) ≈ 1 K K ϕ l (x) dx - Ω ∂ i u h ∂ j ϕ l (x) dx + ∂Ω ∂ i u h ϕ l n j (x) ds ∀l, 1 ≤ l ≤ N N (3.5.15)
The term H l ij (u h ) represents an approximation of the Hessian of u h at node l.

Local metric and anistropic adaptativity Inspired by the estimation (3.5.10), we define the following empirical error indicator (abusely denoted by e K (u h , f )):

e K (u h , f ) = max E∈∂K max x node ∈K (< e, H(u h )(x node )e >) (3.5.16) 
Observe that the equation < e, D 2 u(x node )e >= 1 represents an ellipsoid in nD (an ellipse in 2D), whose the n axes are the eigenvectors of H(u h ) and the semi-axes lengths equal

1 √ λi , λ i the eigenvalues, i = 1, • • • , n. Make a draw.
In practice, the eigenvalues of H(u h ) are obtained by computing the zeros of an order 2 (quadratic) or order 3 polynomial.

Given the empirical error indicator e K (u h , f ) above, one next applies the mesh adaptivity process as previously described, see Algo. 3.2.

Recall that the present procedure does not rely on an actual a-posteriori error estimator. Indeed, e K (u h , f ) is here an "uncontrolled" approximation of the Hessian, and it does not satisfy the fundamental estimation (3.5.3).

Moreover this pseudo-empirical error indicator is inspired from the interpolation estimation (3.5.10) valid for linear elements. For higher-order elements, the estimations are more difficult to establish. However, this method provides an easy and relatively efficient tool for many real-life problems.

Finally, in practice it is convenient to define the even more simpler error indicator defined by: e K (u h , f ) = e K,max λ max (H(u h ))

(3.5.17)

Residual-based error estimator

In this section, we present an actual a-posterior error estimator. It is based on the equation residual.

The toy BVP

Let us consider a linear BVP whose the weak formulation reads as usual:

a(u, v) = b(v) ∀v ∈ V = H 1 0 (Ω) (3.5.18)
where the Lax-Milgram theorem conditions are satisfied. The FE approximation is P k -Lagrange, k ≥ 1. The discrete weak formulation reads as usual.

In vertu of the Cauchy-Schwarz inequality, it follows:

|r(u h , f ; v)| ≤ K∈T h f + ∆u h -u h 0,K v -π h v 0,K + F ∈F K 1 2 ∂ n u h 0,F v -π h v 0,F (3.5.28)
where 1 2 ∂ n u h denotes the mean value of the jump of ∂ n u h through the interior face F . Therefore:

|r(u h , f ; v)| ≤ K∈T h η K (v -π h v) h K f + ∆u h -u h 0,K + F ∈F K 1 2 h 1/2 F ∂ n u h 0,F (3.5.29) 
with:

η K (v -π h v) = max h -1 K v -π h v 0,K , h -1/2 F max F ∈F K v -π h v 0,F (3.5.30) h K (resp. h F ) denotes the measure of K(resp. F ).
That is:

|r(u h , f ; v)| ≤ K∈T h η K (v -π h v)e K (u h , f ) (3.5.31)
with the local error indicator e K (u h , f ) defined by (3.5.24).

In other respect, estimations of the interpolation errors in the expression of η K enable to show that, see e.g. [START_REF] Ern | Theory and practice of finite elements[END_REF] Chapter 10 for details:

K∈T h (η K (v -π h v)) 2 ≤ c v 2 1,K (3.5.32) 
We obtain from (3.5.31): In other respect, the inf-sup condition () provides the following stability inequality:

|r(u h , f ; v)| = a(u -u h , v -π h v) ≤ c v 1,K K∈T h (e K (u h , f ))
u -u h 1 ≤ sup v∈V a(u -u h , v) v 1 ≤ sup v∈V |r(u h , f ; v)| v 1 (3.5.34)
Hence the a-posteriori estimation (3.5.23).

Goal-oriented error estimator

Problem setup

The usual BVP context Let us consider a linear BVP whose the weak formulation reads as usual:

a(u, v) = b(v) ∀v ∈ V = H 1 0 (Ω) (3.5.35)
where the Lax-Milgram theorem conditions are satisfied. The FE approximation is P k -Lagrange, k ≥ 1. The discrete weak formulation reads as usual.

As previously, see (3.5.20), we define the residual:

r(u h , f ; v) = (f, v) -a(u h , v) = a(u -u h , v) = a(e h, v) ∀v ∈ V (3.5.36)
with e h = (u -u h ) the error.

The model output In practice, the analyst is often interested by a particular model output / quantity of interest. For example,

J(u) = 1 |ω| ω |∇u| 2 dx or J(u) = 1 |ω| ω ∂ x u dx (3.5.37)
with ω a subset of Ω. The output functional J, J : V → R can be linear or not. If non-linear, it is supposed to be differentiable.

The goal is here to compute this model output J at a given accuracy.

To do so, one focuses on the following error measure E(u) defined by: E h (u) = J(u) -J(u h ). If J is linear then:

E h (u) = J(u -u h ) = J(e h ) (3.5.38)
For a sake of simplicity, we assume in the sequel that J is linear, therefore (3.5.38) holds.

Duality-based estimation

The presentation below follows those proposed in [START_REF] Ern | Theory and practice of finite elements[END_REF]Chapter 10. For details and demonstrations, the reader may consult this reference and references therein.

We have the following result. Proposition 55. The error E h (u) on the model output J(u) satisfies:

E h (u) = r(u h , f ; z -v h ) ∀v h ∈ V h (3.5.39)
where r(u h , f ; v) is the residual defined by (3.5.36) and z is the unique solution of the dual problem:

Given the solutions u and u h , find z ∈ V such that:

a * (z, v) = J(u -u h ) ∀v ∈ V (3.5.40) where a * (•, •) is the adjoint form of a(•, •): a * (•, v) = a(v, •) ∀v ∈ V .
Remark 56. In the case J(u) non-linear, the estimation (3.5.39) still holds. However, in this case the dual problem reads:

a * (z, v) = 1 0 J (u h + s (u -u h )) • v ds ∀v ∈ V (3.5.41)

Local error computation

We decompose the residual as sum of its values on each element:

r(u h , f ; v) = K∈T h r K (u h , f ; v) (3.5.42)
Next, we write the local residual as follows: We denote by F the interior faces (edges in 2d) of the element K, F ∈ F K , such that

r K (u h , f ; v) = (f -Au h , v) 0,K + (∂ n K u h , v) 0,∂K (3 
F = K 1 ∩ K 2 .
We define the following jumps and means values:

∂ n K u h = ∇u (1) h • n 1 + ∇u (2) h • n 2 (3.5.44) {v} = 1 2 v (1) + v (2) (3.5.45)
Then we have the following result.

Proposition 57. The error E h (u) on the model output J(u) can be computed as follows: Chapter 4

∀v h ∈ V h , E h (u) = K∈T h (f -Au h , z -v h ) 0,K + F ∈F K (∂ n K u h , z -v h ) 0,∂K (3.5.46) + F ∈F K ( ∂ n K u h , {z -v h }) 0,∂K + F ∈F K ({∇u h }, z -v h ) 0,∂K (3 
Weak Constraints: Mixed Formulations

It is frequent in mathematical -numerical modeling to have a constraint on the field to be respected, in addition to the PDE model(s). And it may be interesting or necessary to consider this constraint in the weak sense and in the regular-"strong" sense (i.e. point-wise).

In the present chapter, the considered PDE systems contain a constraint to be imposed in the weak sense.

The first illustrative example is the incompressibility condition in the (Navier)-Stokes equations which is in a mathematical point of view nothing else than a constraint on the velocity field u.

An other important example are the continuity conditions at interfaces for unmatching meshes (in a model coupling context or domain decomposition context).

This chapter aims at studying the derivation of the resulting equations: it is mixed formulations; net the numerical resolution of such systems is addressed. We denote by u the velocity field and by p the pressure.

Assuming that the fluid is incompressible, the mass conservation equation reads: div(u) = 0. Given external forces f (x), the momentum equations reads:

\rho ρd t u -div(σ(u)) = f in Ω × (0, T ) (4.1.1)
with ρ the fluid viscosity, σ(u) the constraint tensor: σ(u) = 2µD(u) -pI d ; µ the fluid viscosity (Newtonian fluid). D(u) is the strain rate (deformation) tensor: D(u) = 1 2 ∇u + T ∇u . If using the incompressibility condition div(u) = 0, we obtain: div(σ(u)) = µ ∆u -∇p. In dimensionless form, the Navier-Stokes system may read as:

Re (∂ t u + (u • ∇)u)) -∆u + ∇p = f in Ω × (0, T ) div(u) = 0 in Ω × (0, T ) (4.1.2)
with Re = ρ L * U * µ the Reynolds number. This PDE system is parabolic, non-linear (due to the inertial term (u • ∇)u). It has to be closed with adequate boundary conditions on ∂Ω × (0, T ).

Remark 58. If Neumann type boundary conditions are considered (e.g. normal constraints are imposed as σ n = -p ext n), then the momentum equation has to be kept in the divergence form as:

Re (∂ t u + (u • ∇)u)) -div(σ(u)) = f .
For low Reynolds number (typically Re ≈ 1 and lower values), the Navier-Stokes system reduces to the linear Stokes system:

-∆u + ∇p = f in Ω div(u) = 0 in Ω (4.1.
3)

The Stokes model can be employed to model creeping flows e.g. in biology, micro-fluidics, geophysics. For a sake of simplicity, from now homogeneous Dirichlet conditions are imposed on the boundary : u = 0 on ∂Ω. This boundary condition is natural since representing the adherence of the viscous fluid on solid walls.

Formulation in the divergence free space V div

A natural weak form of the Stokes system reads as follows. Find u ∈ V div such that:

Ω ∇u : ∇v dx = Ω f v dx ∀v ∈ V div (4.1.4) 
with

V div = {v ∈ H 1 0 (Ω) n such that div(v) = 0} (4.1.5)
and the product:

A : B = (a ij b ij ) 1≤i,j≤d .
The divergence free space V div is a Hilbert space. In vertu of Lax-Milgram theorem, (4.1.4) is well-posed in V div . Since imposing the incompressibility condition in the functional space V div , the pressure p has disappeared from the equation (4.1.4). Recovering the pressure field p from the unique solution u ∈ V div , is not trivial; it is based on the de Rham theorem, see e.g. [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] Chapter 5 for a proof.

Let us point out that the Stokes system respects the same regularity results as the Laplacian or the system of linear elasticity. On the contrary since it is a system, no maximum principle holds (like in the elasticity system case).

The bilinear form Ω ∇u : ∇v dx in (4.1.4) is symmetrical. Then the energy corresponding to the Stokes model (4.1.3) reads:

J(v) = 1 2 Ω |∇u| 2 dx - Ω f v dx (4.1.6)
Then the unique (weak) solution u ∈ V div of (4.1.13) minimizes the energy above in V div :

J(u) = min v∈V div J(v) (4.1.7)

Formulation in variables (u, p): a mixed formulation

To approximate the Stokes solution by using a conforming FE method (i.e. an internal approximation), the solution space V div defined by (4.1.5) is not adequate. Indeed it is difficult (possible but difficult) to built up basis functions respecting the divergence free condition... Then an other approach is adopted.

The approach consists to write the weak forms of both equations: the momentum equation (4.1.3)(a) and the mass equation (4.1.3)(b).

To do so, we multiply (4.1.3)(a) by a velocity test function v ∈ H 1 0 (Ω) n and (4.1.3)(b) by a pressure test function q ∈ L 2 (Ω). After the usual integration by part it follows the weak form of the Stokes model:

     Find (u, p) ∈ H 1 0 (Ω) n × L 2 (Ω)/R such that: Ω ∇u : ∇v dx -Ω p div(v) dx = Ω f v dx ∀v ∈ H 1 0 (Ω) n Ω div(u) q dx = 0 ∀q ∈ L 2 (Ω)/R (4.1.8)
The weak formulation (a system) (4.1.8) is well-posed and its (unique) solution (u, p) is the solution of (4.1.3) (in the weak sense). The reader may refer to [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] for more details.

We set:

V = H 1 0 (Ω) n and M = L 2 (Ω)/R (4.1.9)
We define the following bilinear and linear forms.

a : V × V → R (u, v) → Ω ∇u : ∇v dx (4.1.10) b : V × M → R (v, q) → -Ω q div(v) dx (4.1.11) l : V → R v → Ω f v dx (4.1.12)
The bilinear form a(., .) is V -elliptic; moreover it is symmetric.

The weak formulation (4.1.8) re-reads as:

     Find (u, p) ∈ V × M such that: a(u, v) + b(v, p) = l(v) ∀v ∈ V b(u, q) = 0 ∀q ∈ M (4.1.13)
The weak formulation system (4.1.13) is somehow an extension of the previous standard weak formulation a(u, v) = l(v); it is called a mixed formulation. Other mixed formulations will be derived in next section.

The incompressibility constraint: p is the Lagrangian multiplier

In the Stokes model (4.1.3), the pressure can be interpreted as the Lagrangian multiplier of the constraint div(u) = 0. Indeed let us define the Lagrangian L by:

L(v, q) = 1 2 a(v, v) + b(v, q) -l(v) , ∀v ∈ V ∀q ∈ M (4.1.14)
Observe that the Lagrangian L is defined as: Lagrangian=Energy + weak constraint.

The stationary point(s) of L(., .) are denoted (u, p). they satisfy:

∇L(u, p) = 0 (4.1.15) This 1st order necessary optimality condition is equivalent to the mixed formulation (4.1.13) ! Indeed we have:

∂ v L(u, p).v = a(u, v) + b(v, p) -l(v) = 0 ∀v ∈ V ∂ q L(u, p).q = b(u, q) = 0 ∀q ∈ M (4.1.16) Therefore the fluid pressure p is nothing else than the Lagrangian multiplier of the incompressibility constraint div(u) = 0.

Moreover the unique solution (u, p) ∈ V × M of (4.1.13) satisfies: L(u, p) = min v∈V max q∈M L(v, q) (4.1.17)

The Stokes solution (u, p) ∈ V × M of (4.1.13) is the unique saddle-point of the Lagrangian L defined by (4.1.14).

The min-max formulation (4.1.17) suggests to compute the Stokes solution by using the Uzawa algorithm. (Please refer to your previous optimization course). This approach is an excellent one to solve the Stokes model (4.1.3); other approaches are possible, they are mentioned later.

Discrete form & linear system

Considering the mixed formulation (4.1.13) of the Stokes system, it is now much easier to build up internal approximations than if considering the divergence free form (4.1.4). To do so we consider the standard FE spaces:

V h = (V h,d ) n ; V h,d = {v h , v h ∈ C 0 (Ω), v h | Ki ∈ P k ∀K i ∈ T h } (4.1.18) M h = {q h , q h ∈ C 0 (Ω)\R , q h | Ki ∈ P k ∀K i ∈ T h } (4.1.19)
Next we set as usual:

V 0h = {v h , v h ∈ V h , v h = 0 on ∂Ω}.
Then the discrete weak formulation is straightforwardly obtained as: The global matrix of (4.1.23) is of dimension (n × N N V + N N M ) 2 ; it is symmetric but it is a-priori not positive definite... As a consequence the global matrix may be not invertible !...

     Find (u h , p h ) ∈ V 0h × M h such that: a(u h , v h ) + b(v h , p h ) = l(v h ) ∀v h ∈ V h b(u h , q h ) = 0 ∀q h ∈ M h
In fact one has to set compatible FE spaces V h , M h such that the solution (U h,1 , .., U h,n , P h ) is unique.

Remark 59. If the viscous term is written as div(σ(u)) and not as (∆u -∇p), see Remark 58, then the "extra diagonal blocks A * " in (4.1.23) do not equal 0.

inf

q h ∈M h sup v h ∈V 0h b(v h , q h ) v h V ≥ β q h M (4.1.29)
That is ∃β > 0 such that:

sup v h ∈V 0h b(v h , q h ) v h V ≥ β q h M
for all q h ∈ M h (4.1.30) This is the so-called inf-sup condition, also called the Ladyzhenskaya-Babuška-Brezzi (LBB) condition.

By combining (4.1.28) and (4.1.30), it follows that:

0 = b(v h , p h ) ≥ β p h M v h V ∀v h ∈ V 0h (4.1.

31)

Therefore p h = 0, hence the uniqueness.

The LBB condition (4.1.30) is a sufficient condition for a saddle point problem to have a unique solution.

In the Stokes model case, the LBB inf-sup condition ensures that Ker(B T ) is reduced to the constant vectors.

To be admissible, any considered FE space pairs to solve the mixed formulation (4.1.20) should satisfy this LBB inf-sup condition.

For the Stokes model, this is the case of all the FE spaces pairs (V h × M h ) indicated in Fig. Where a(., .) satisfies the Lax-Milgram theory assumptions. The problem (4.2.1) is assumed to be well-posed in X, X an adequate Hilbert space.

Note that the mixed formulation formalism may be extended to forms a(., .) which are non-linear with respect to u e.g. the Navier-Stokes equation.

There is many potential reasons to finally solve the corresponding mixed formulation:

     Find (u, λ) ∈ V × M such that: a(u, v) + b(v, λ) = l(v) ∀v ∈ V b(u, µ) = 0 ∀µ ∈ M (4.2.2)
Let us cite the few following examples. Ex 1. The usual Dirichlet boundary condition u = 0 on Γ ⊂ ∂Ω may be weakly enforced i.e. as a weak constraint while the original PDE is closed with the "natural"-"do-nothing" homogeneous Neumann b.c. on Γ. For fluid flows (more precisely for the incompressible Navier-Stokes equations and the advection-diffusion equation), strongly imposed no-slip conditions at a wall may lead to inaccurate mean flow quantities for coarse boundary-layer meshes. Weakly imposed Dirichlet boundary conditions improve the scheme accuracy, see e.g. 2 .

Ex 2. The non-penetration condition u • n = 0 on Γ ⊂ ∂Ω. This boundary condition is common in micro-fluidics e.g. for biological flows, also for geophysical flows (with friction conditions at bottom). This condition has to be imposed in the weak sense; indeed if strongly enforced, the numerical solution may be locally inaccurate.

Ex 3. A non-linear rheology flow law may be relaxed from the primitive equation (4.2.1) and taken into account as an additional (weak) constraint: b(u, µ) = 0 ∀µ. Ex 4. To couple two different models with non necessarily consistent grids, the coupling conditions at interface have to be weakly enforced.

Let us point out that the POD method is nothing else than the Principal Component Analysis (PCA) employed in statistics problems. Indeed, the PCA performs an orthogonal transformation to convert a set of measured variables (potentially correlated) into a set of linearly uncorrelated variables known as principal components.

The POD method at a glance

The POD reduction method relies on a offline-online strategy.

• Offline phase.

-A set of HR solutions corresponding to a whole set of parameters values µ, µ ∈ {µ 1 , . . . , µ M }, are computed.

These HR solutions are called snapshots. They are stored in the snapshot matrix S, S ∈ M N N ×M , S = (u µ,1 | • • • |u µ,M ).

-From this collection of snapshots, a Reduced Basis representing "at best" S is extracted by using a POD (equivalently a PCA).

The POD method consists to retain the most influent modes of S by computing its Singular Value Decomposition (SVD). The retained singular vectors, typically O(10), constitute the so-called POD modes.

• Online phase.

-Given a new value of parameter µ, the reduced model matrix B T rb A µ B rb is built, (matrix of dimension , see (5.1.12), -The linear system is solved in "real-time" (in ms CPU-time) given the new values of µ.1 

Solution manifolds

A manifold is a collection of points forming a certain kind of set such as a closed surface (or an analogue of this) in three or more dimensions. We present below a few concept related to the parametrized model solutions manifold.

Solution manifolds definition

Let us denote by M the set of all solutions u when the parameter µ describes P: M = {u(µ), u(µ) solution of 5.1.9 with µ ∈ P}. The corresponding set for discrete solutions reads:

M h = {u h (µ), u h (µ) solution of 5.1.9 with µ ∈ P} (5.2.1)

M h (resp. M) is a subset of V h (resp. V ) . These sets are the solution manifolds, see Fig. 5.2.1.

Let us consider the M -dimensional parameter space P δ , P δ ⊂ P . dim(P δ ) = M .

Given µ m ∈ P δ , 1 ≤ m ≤ M , u µ,m ≡ u h (µ m ) denotes the HR FE solution, unique solutions of (5.1.2). The set

M h,δ = {u h (µ 1 ), • • • , u h (µ M )} (5.2.2)
is represented by the (N N × M )-snapshot matrix S.

The Kolmogorov-width* 2

This is a to go further subsection.

Let us now introduce the "distance" between the functions u h (µ) and a subspace X, X ⊂ V , as follows: 

Discussions

Summary of the method

Let us summarize the POD method (also called POD-Galerkin method). An offline-online strategy is adopted.

At offline phase, a sample in the parameter space P is chosen.

The HR solver is performed to computed the M corresponding HR solutions. This constitutes the reference snapshots set S.

The (spd dense) correlation matrix C is built and its eigenelements are computed (equivalently a SVD of the snapshot matrix S).

The reduced dimension basis V rb = V P OD of dimension N rb given, is the optimal basis to represent the snapshots, see Proposition 71.

The N rb first most influencial modes of C are retained. The resulting (N N × N rb )-Reduced Basis matrix B rb follows.

At on-line phase, given a new parameter value µ, the corresponding solution U µ rb is computed as the solution of the reduced dimension (5.1.9).

Since the RB stiffness matrix R µ = B T rb A µ B rb is small dimension, the linear system (5.1.12) is solved in extremely short time ("real-time").

For non-affinely parametrized PDEs, an EIM method or a "Hyper Reduction Method" has to be adopted to assembly the reduced matrix R µ in real-time.

In the end, we expect to have:

B rb U rb ≈ U h equivalently U rb ≈ B T rb U h (5.2.37)

Advantages & disadvantages of the POD method

The advantages of the POD method are clear.

• Given the snapshots set {u µ,1 , • • • , u µ,M }, the corresponding RB solutions u rb (µ) are optimal, see Proposition 71.

• At the offline phase, the POD-based method is non-intrusive: the original HR code providing the snapshots set can be employed as a black box. The snapshots can be generated using indifferently a Finite Element code or a Finite Volume code for instance.

The disavantages of the POD method are clear too.

• The dimension of P must be very small. For instance a subset of R 3 is already large if finely digitalized e.g. with M = (10 2 ) 3 .

• The choice of the snapshots and the choice of their number M is a critical point and no one really known how to choose them. 

2D Shallow-Water model

The model is the 2D Shallow Water (SW) system which is implemented in the computational code DassFlow8 . The 2D SW model is a non-linear hyperbolic system whose the variables are the water depth h(t, x, y) (m) and the discharge components (q x , q y )(t, x, y) (m 3 /s). The equations are detailed in the DassFlow documentation. They are solved by a Finite Volume scheme. The model output is (h; q x , q y )(t, x, y).

The parameter µ is here bi-dimensional, P ⊂ R 2 , defining the inflow hydrographs i.e. the BC at the incoming boundary, see Fig. 5.4.4.

Each parameter value is defined as µ = (t montee , Q max ), with t montee the peak instant (s) and Q max the maximum value of the inflow discharge (m 3 /s). We consider: t montee ∈ [2343.08, 3843.08] and Q max ∈ [500., 3000.], see Fig. 
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 111 Figure 1.1.1: Solution de l'équation biharmonique: déplacement d'une plaque compressée sur deux de ses bords (u est imposé sur ces bords-ci) et libre sur les deux autres bords.
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 121 Figure 1.2.1: Regular domain (with a partition of its boundary)

Ω

  ∇u(x)•∇v(x)dx -Γn ∇u • nv(x) ds = Ω f (x)v(x)dx since v = 0 on Γ d .Hence the weak formulation (1.2.4).
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 123 Figure 1.2.3: To go further: results related to the Sobolev space H 1 (Ω). Extracted from [1].
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 313 Well-posedness of the model Definition 10. The model is well-posed in the sense of J. Hadamard (1923) if:
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 332 Typical singularity originsAs shown above, the variational solution of the BVP (either Dirichlet or Neumann boundary conditions) can be infinitely regular if all data are C ∞ .

2 .

 2 Mixed boundary conditions (singularity in the change area of B.C. Dirichlet-Neumann), 3. A non regular geometrical domain Ω. In Case 1, typical examples are the following.
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 131 Figure 1.3.1: The domain Ω decomposed into two sub-domains.

1 .

 1 En thermique, cette équation modélise la diffusion du champ de température u(x) au sein d'un milieu ou matériau de géométrie Ω. Le coefficient λ est alors la diffusivité thermique du matériau et f un éventuel terme source extérieur. Le modèle doit être fermé en imposant des conditions aux limites. Pour cette équation, les conditions imposées sur le bord du domaine ∂Ω, devront être une des conditions suivantes. (a) La température est donnée: u = u d . Il s'agit des conditions de Dirichlet. (b) Le flux de température est donné: -λ∇u • n = ϕ. Il s'agit des conditions de Neumann. Le vecteur n désignera toujours la normale sortante au bord.Dans le cas d'une paroi isolée, on aura: ϕ = 0, conditions de Neumann homogène. Cette condition de flux nul au bord peut également représenter une symétrie de la solution, ou encore une condition de sortie libre dans le cas d'une frontière ouverte.(c)
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 141 Figure 1.4.1: Solution of the Poisson equation: u is the electric potential in the ring; u = 0 on the inner boundary and u = Rsin(5θ) on the outer boundary. Image source: Wikipédia.

Figure 2 .

 2 Figure 2.0.1: Examples of FE computations -simulations. (L) A car crash test. (R) A human knee joint. Images source: Wikipedia.
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 21 Basic principles 2.1.1 Internal approximation and discrete weak formulationLet us consider the following toy Boundary Value Problem (BVP) based on a linear elliptic PDE :
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 211 Figure 2.1.1: Approximation of functions on meshes. (L) In 1d: a (continuous) function v ∈ V 0 =H 1 0 (I) approximated by v h ∈ V 0h , v h a continuous piecewise linear function; V 0h ⊂ V 0 . (R) Same but on a 2d triangular mesh. Images source: Wikipedia.

  2.1.2 and 2.1.3.
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 212 Figure 2.1.2: Mesh of a 2D domain. (Up)(L) Unstructured mesh (pseudo-uniform). (Up)(R) A structured mesh (up) and an unstructured one (containing local refinements) (down). (Images source: Wikipedia). (Down) Triangle meshes: non conform elements.
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 2 Figure 2.1.3: Tetrahedra mesh of a domain Ω obtained with Gmsh software. This mesh contains "refined" elements.
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 2 Figure 2.1.4: FE space V h . Piecewise linear functions, globally continuous in Ω: the "hat" functions. Up: (L&M) In 1D (R) In a 2D triangle mesh. Down: A continuous function approximated using a piecewise linear interpolation.

Figure 2 .

 2 Figure 2.2.1: (Up) Basis functions on the elementary segment [-1,+1] (element defined by 2 points): P k -Lagrange with 2, 3 and 4 nodes. (Down) P k -Lagrange FE in 2D and 3D (d-simplices elements): order 1, 2 and 3; number of nodes n.

  2.3.1.1.

Figure 2 . 3 . 1 :

 231 Figure 2.3.1: (L)(Up) Supp(ϕ i ∩ ϕ j ) = ∅: the FE matrices are sparse. (L)(Down) A sparse FE matrix (of relatively small size and weird numbering algorithm). (R) Local and global node numbering: example for a P 1 Lagrange FE. N ON O(IE, JN ) is the connectivity table built up by the meshing software (and provided by file).

  Solution a) implies to introduce a Lagrangian multiplier, see the dedicated section at the end of the course. Solution b) is as follows. The dof vector U h = (u 1 • • • u N N ) is augmented with the Dirichlet nodes.

Figure 2 . 3 . 2 : 2 . 1 -

 23221 Figure 2.3.2: Assembly algorithm illustration

Figure 2 . 3 . 3 :

 233 Figure 2.3.3: Change of variables onto the reference element K. Here in the case of a triangle.

  2.3.4; etc. Let us denote by {M 1 , • • • , M nk } the nk points contained in the lattice Σ k . For example, Σ 1 = {A 1, A 2 , A 3 } ; n1 = 3.

Figure 2 . 3 . 4 :

 234 Figure 2.3.4: Lattice of order 1, 2, and 3 for a triangle (top) and a tetrahedron (bottom). The circles represent the points of the lattice. Image extracted from [1].

Figure 2 .

 2 Figure 2.4.1: (L) Mesh refinement : h decreases, the accuracy locally increases. h-adaptivity: refining and un-refining elements. (R) Accuracy improvement by increasing the FE order : order p of polynomials is increased (p-adaptivity).Here from 1 to 2. Image source: Wikipedia.

Figure 2 .

 2 Figure 2.4.2: (L) ∇u L ∞ ≈ 0.92 for the "coarse" mesh (1187 vertices). (M) ∇u L ∞ ≈ 1.18 for the intermediate mesh (4606 vertices). (R) ∇u L ∞ ≈ 1.50 for the "fine" mesh (18 572 vertices). Example and image extracted from [1].

3 2 )

 2 instead of 1 (resp. 2), see e.g. Fig. 2.4.3(R).

2 . 4 . 4 .

 244 This example highlights a typical singularity for 2nd order BVP (see Paragraph 1.3.3.2 too).

Figure 2 . 5 . 1 :

 251 Figure 2.5.1: Hermite FE. Basis functions on the elementary segment [-1, +1] (hence defined by 2 nodes = the 2 element vertices): 2 nodes, 4 dof. Function basis are polynomials in P 3 .

Figure 2 .7. 1 :

 21 Figure 2.7.1: FEniCS Project (https://fenicsproject.org) in Python: standard PDE models and FE schemes are available. (Snapshot made in february 2019).

Figure 2 .

 2 Figure 2.7.2: FreeFem++: A high level multi-physics FE software for non-linear multi-physics in 2D and 3D. (Snapshot made in february 2019).

Figure 3 . 3 . 1 :

 331 Figure 3.3.1: The centered FD solution oscillates if the numerical Peclet P e h is greater than 1.

  w and P e 2 = w T (3.3.22) We set: P = a b c d . From (3.3.22) it follows: P = w 1 -w 2 w 2 w 1 .

2 2 .

 2 And: D ww T = P -1 DP =

Figure 3 . 4 . 1 :

 341 Figure 3.4.1: FE methods are particularly well adapted and popular in structural mechanics. Here a computation of the von Mises Yield criterion. Image source:...

  y)∈Ω D 2 u(x, y) |∇u(x, y) -∇π h (u)(x, y)| ≤ 3 hmax sin(θmin) sup (x,y)∈Ω D 2 u(x, y) (3.5.10)where D 2 (•) denotes the Hessian, D 2 u its spectral norm, h max the greatest triangle edge and θ min the lowest triangle angle.Moreover, we have the following local interpolation error estimation too:∀K ∈ T h , |u(x, y) -π h (u)(x, y)| K ≤ c sup E∈∂K sup (x,y)∈Ω< e, D 2 u(x, y)e > (3.5.11)

  .5.43) with A the differential operator, e.g. A(u) = -div(λ∇u) + w • u + c u.

  .5.47) where A denotes the differential operator, e.g. A(u) = -div(λ∇u) + w • u + c u. z is the solution of the dual problem (3.5.40).

4. 1

 1 The (Navier-)Stokes fluid flow model 4.1.1 The flow model(s) Let us consider the Navier-Stokes equations for an incompressible flow in a bounded domain Ω ⊂ R n .

Figure 4 . 1 . 1 :

 411 Figure 4.1.1: Viscous flows around a cylinder. Stokes model is valid for low Reynolds numbers R e ≈ 1 and lower (e.g. creeping geophysical or biological flows).

( 4 . 3 B 1 B 2 A

 4312 1.20) Let us write the linear system equivalent to(4.1.20). We denote by {ϕ i (x)} i=1..N N V and by {ψ k (x)} k=1..N N M the function basis of V h,d and M h respectively. Then the discrete variables are decomposed as:v h,d (x) = N N V i=1 v i,d ϕ i (x) d = 1 • • • n and q h (x) = N N M l=1 q l ψ l (x) (4.1.21)We arrange the unknown variables as follows:U h,d = (u 1,d • • • u N N V,d ) ∈ R N N V for d = 1 • • • n and P h = (p 1 • • • p N N M ) ∈ R N N M (4.1.22)Then (4.1.20) is equivalent to the following linear system (here n = 3):11 = A 22 = A 33 ≡ A = Ω ∇ϕ j ∇ϕ i dx 1≤i,j≤N N V , d = 1, .., n(4.1.24)andB d = -Ω ψ l ∂ d ϕ i dx 1≤l≤N N M ; 1≤j≤N N V .The matrix A is of dimension N N V 2 ; it is symmetric, positive definite. Each matrix B d is rectangular of dimension (N N M × N N V ).

  4.1.3.

4. 2

 2 Mixed formulations: other examples 4.2.1 General form & originsLet us consider a general elliptic BVP and its variational form: find u ∈ X such thata(u, v) = b(v)∀v ∈ X (4.2.1)

Figure 5 . 2 . 4 :

 524 Figure 5.2.4: Sampling of the parameter space P : a key point of snapshots-based reduction methods. Here a simple 1D example, P = [µ min , µ max ], sampled by using a regular grid (equidistant points). Is it the best strategy ? Likely not...

Figure 5 . 4 . 1 :

 541 Figure 5.4.1: POD method. Linear PDE case with µ = (µ 1 , µ 2 ), non-affine parameterization: λ(µ 1 ) = exp(µ -11)), µ 1 = 9.3 and f (µ 2 ) given by 5.4.14 with µ 2 = 1.48. (Left) The HR solution. (Middle) The RB solution with N rb =. (Right) The absolute error between the FE and RB solutions. (Top) At initial instant t = 0s. (Bottom) At time instant t = 0.87s.

  5.4.3. Therefore the parameter space P = [2343.08, 3843.08] × [500., 3000.]. Moreover, the number of snapshots M = and the RB dimension N rb =. On Fig. 5.4.4, the flow model outputs, the POD-NN solution and the relative errors at t = 5681.182(s) (= 1h57min) are plotted.

Figure 5 . 4 . 2 :

 542 Figure 5.4.2: POD-NN method. Same case as above. (Left) The HR solution. (Middle) The POD-NN RB solution with N rb =. (Right) The absolute error between the HR solution and the POD-NN solution. Lines 1 and 2: mu 1 = 9.3 at t = 0 and t = 0.87. Lines 3 and 4: mu 2 = 2.68 at t = 0 and t = 0.87.

Figure 5 . 4 . 3 :

 543 Figure 5.4.3: The 2-D parameter space. In green, the parameter value at online phase (t montee = 2843.08s, Q max = 2000m 3 s -1 ).

  

  

  

  

  

  19. Show the stability inequality (1.3.14).

	1.3.3 On the regularity of the solution
	1.3.3.1 Regular data -regular solution

The Kolmogorov n-width si a tool to assess the effectiveness of approximating functions. It provides a characterization of optimal ndimensional spaces for approximating functions and their associated errors.

Une combinaision linéaire des deux conditions précédentes: -λ∇u•n = αu+ϕ. Il s'agit des conditions de Robin, aussi dites de Fourier. Ces conditions de Fourier représentent, modélisent, un flux dépendant linéairement de la valeur de u. En thermique, cela traduit un échange convectif sur une paroi. En propagation d'ondes, cela traduirait les effets d'un matériau absorbant. (d) Les conditions aux limites sont dites mixtes lorsque l'on considère plusieurs types de C.L.; par exemple une condition de Dirichlet est imposée sur Γ d et une condition de Neumann est imposée sur Γ n . Attention on ne peut imposer qu'une seule CL par morceau du bord, c'est à dire que dans notre exemple on aurait nécessairement: Γ d ∪ Γ n = ∂Ω. Pour une équation elliptique une condition est requise sur l'intégralité du bord ∂Ω. 2. En mécanique des structures, cette équation modélise le déplacement d'une membrane plane élastique fixée sur son bord ∂Ω. u représente alors le déplacement de la membrane, déplacement perpendiculaire au plan défini par Ω, voir la figure précédente Fig. [fig:poisson].3.En électrostatique, u représente le potentiel électrique associé à la distribution de charges f, voir la figure ci-dessous. Sur ces deux exemples, vous noterez notamment l'aspect régulier de la solution.

Quarteroni, Alfio, and Alberto Valli. "Numerical approximation of partial differential equations". Springer Science,

L. P. Franca, S. L. Frey, and T. J. R. Hughes, Stabilized finite element methods: I. application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95,

253-276 (1992).[START_REF] Benner | Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms[END_REF] Franca, Leopoldo P., G. Hauke, and A. Masud. "Stabilized finite element methods." International Center for Numerical Methods in Engineering (CIMNE), Barcelona, 2004.[START_REF] Ern | Theory and practice of finite elements[END_REF] Quarteroni, Alfio, and Alberto Valli. Numerical approximation of partial differential equations. Vol. 23. Springer, 2008.

Grätsch, Thomas, and Klaus-Jürgen Bathe. "A posteriori error estimation techniques in practical finite element analysis." Computers & structures 83.4-5 (2005): 235-265.

Bazilevs, Yuri, and Thomas JR Hughes. "Weak imposition of Dirichlet boundary conditions in fluid mechanics." Computers & Fluids

36.1 (2007): 12-26.

see e.g. Fortin, M., & Brezzi, F. (1991). Mixed and hybrid finite element methods (Vol. 734). Springer-Verlag, pp. 80-82

For steady-state models, real-time means here the shortest possible wall-clock time e.g. computations in ms. For time-dependent computations, real-time typically denotes computations in 1 unit wall-clock time for each each second dynamic model time.

The Kolmogorov n-width si a tool to assess the effectiveness of approximating functions. It provides a characterization of optimal ndimensional spaces for approximating functions and their associated errors.

DassFlow computational code: https://www.math.univ-toulouse.fr/DassFlow

ii) For all v ∈ H k+1 (Ω), the interpolation function π h (v) is well defined and it exists a constant c > 0 (c independent of v and h) such that:

Proof. Note that in 2D and 3D cases (n = 2, 3), we have (k + 1) > n 2 , therefore H k+1 (Ω) ⊂ C 0 (Ω), see Lemma 6. Therefore, here by assumption the interpolation function π h (v) is well defined.

We refer to [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] for the proof of the proposition: Section 6.2.2 in 1d and Section 6.3.2 (Proposition 6.3.16) in nD.

2.4.2 FE error estimation in the energy space V

A-priori error estimation: general case

As an immediate consequence of the interpolation error estimations above and Céa's lemma, it follows: a) the convergence of the FE scheme follows; b) an estimation of the FE error in the "energy space" V = H 1 (Ω).

We have Theorem 37. Let u be the (unique) solution of the general weak formulation (2.1.2), let V h be the P k -Lagrange FE space defined by (2.2.15) and let u h be the solution of (2.1.5) (i.e. the FE solution). The Lax-Milgram theory assumptions are supposed to be satisfied.

Then the P k -Lagrange FE scheme is convergent:

Moreover if u ∈ H k+1 (Ω), it exists a constant c > 0 (c is independent of u and h) such that:

(2.4.5) Proof. It is straightforward; the proof relies on the (relatively difficult) interpolation error estimation (2.4.3). Indeed Lemma 26 states that:

Using (2.4.3) we obtain (2.4.5).

Typical cases

The BVP is (linear) second order model (e.g. based on the Laplace operator) then the "energy space" is a subspace of H 1 (Ω). Ω may be a 2d or 3d geometry, therefore the condition (k + 1) > n 2 is satisfied. Typical cases are the following:

• Linear elements (k = 1) and a "regular" (H 2 ) solution.

If u ∈ V ∩ H 2 (Ω) then:

Then the FE scheme is linear (order 1) in the space energy V .

• Quadratic elements, k = 2 and an "extra regular" (H 3 ) solution.

If u ∈ V ∩ H 3 (Ω) (i.e. the exact solution needs to be more regular than before...) then:

Then the FE scheme is quadratic (order 2) in the space energy V (if the solution is regular enough).

Remark 38. The actual FE scheme order of a computational code may be numerically measured, see next paragraph for the method description. When numerically measuring the FE scheme order, it turns out that the FE error estimation (2.4.5) is optimal if.... the solution is regular enough.

Convergence curves from explicit solutions (1d solutions). (L) The optimal rate is obtained (the solution is regular); the FE code is fully assessed. (R) The obtained rate of convergence is not optimal since the present exact solution is not regular (here it is not in H 2 (Ω)). Curves extracted from [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF].

Such convergence curves constitute the most robust validation method of the computational code.

However, this method is possible for simple models only since based on an exact solution. Indeed, if the model is complex (eg multi-physics system, potentially coupled) then the calculations to obtain u ex may be too difficult to obtain.

In such complex cases, the reference solution (considered as almost exact) may be a solution computed on an extremely fine mesh. Next, the differences (considered as being the "errors") are evaluated between this reference solution and the others obtained on the few (eg 4) coarser meshes with h coarse , h coarse /2, h coarse /4 etc.

An illustration of mesh refinement is shown in Fig. 2.4.1 (L): h is locally decreased therefore a (local) decreasing of the error. This is a called "h-adaptivity".

Moreover, to validate a computational code, one generally consider benchmarks too.

On h -p adaptivity

The accuracy of the FE scheme can be improved too by increasing the order p of the polynomials in areas where the exact solution u is regular enough, see Theorem 37. This is the "p-adaptivity", see Fig. 2

.4.1(R).

Combinations of these two types of adaptivity is called hp-adaptivity. So-called "hp-FEM" combines adaptively elements with variable size h and polynomial degree p in order to achieve higher accuracy and/or convergence rates.

Roughly, in areas where the solution is regular decreasing the FE error is achieved by increasing the polynomials order p.

On the contrary, in areas where the solution lacks of regularity (e.g. a local singularity being between H 1 and H 2 ), it is useless to increase the polynomials order p (see e.g. (2.4.5)). In this case, decreasing the FE error may be achieved by decreasing the element size h (h adaptivity). Let ( K, P , Σ) be a P k (resp. Q k ) Lagrange FE . Then the triplet (K, P, Σ) defined by:

is a P k (resp. Q k ) Lagrange FE too (in the sense of Definition 40).

We say that the FE ( K, P , Σ) and the FE (K, P, Σ) are equivalent. Moreover if the geometric transformation F is affine, we say that ( K, P , Σ) and (K, P, Σ) are affine-equivalent.

Proof. We set: Σ = { Ni } i=1..N N E and N i = F ( Ni ); then: Σ = {N i } i=1..N N E .

We have F bijective from Konto K then: dim( P ) = Card( Σ) = N N E = dim(P ) = Card(Σ).

It remains to check that Σ is P -unisolving. We have: ∀p ∈ P , p = (p • F -1 ) ∈ P . Let { φi (x)} i=1,..,N N E be the basis functions of P . We set:

We have: ϕ i = φi • F -1 (N j ) = φi ( Nj ) = δ ij for all i, j. {ϕ i (x)} i=1,..,N N E are the basis functions of P . The triplet (K, P, Σ) is a FE (see Definition 40).

Chapter 3

Finite Element Methods: Complements

Finite Element Methods (FEM) are the numerical methods of choice to solve elliptic models (e.g. those based on the Laplace equation or on the advection-diffusion equation) and parabolic models (e.g. the heat equation). They can be used for hyperbolic models too (e.g. the transport equation) by introducing stabilizing terms (e.g. artificial diffusion).

The basic principles of FEM are presented in Part 1 of the course manuscript entitled "Finite Element Methods: Fundamentals".

In this chapter you will learn how:

• to solve a non-linear model by the Newton-Raphson algorithm,

• to write FE schemes for time-dependent PDEs,

• to stabilize a FE scheme in presence of an advective term (transport term),

• an automatic mesh refinement works.

On all these topics, the reader may refer to e.g. [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF][START_REF] Ern | Theory and practice of finite elements[END_REF] too.

3.1 Non-linear stationary PDEs: linearization

The (scalar) non-linear BVP

Let us consider a non-linear BVP: the PDE or one of its boundary condition is non linear with respect to the unknown function u(x). More precisely, we consider the following variational problem.

Find u ∈ V satisfying:

Where:

Simple examples are the following scalar PDEs:

accompanied by boundary conditions on ∂Ω.

Remark 43. It is convenient and generally possible to consider the non-linear form a nl (u, •) as follows:

Then, by adopting the same notations as previously, we obtain the weak formulation:

Find u(t) ∈ V t such that:

Were the solution u(t, x) is here considered as a function of time t with values in V 0 :

Recall that a(•, •) is here a bilinear form, continuous, and coercive in V 0 .

To mathematically analyse (3.2.5), one has to clarify the regularity in time of the functions u(t) and f (t). Classical theorems establish the well-posedness of (3.2.5) in some functional spaces built from V 0 .

Energy estimation By setting v(x) = u(x) and by integrating in time, one obtains the energy estimation (expression in the case of (3.2.2)):

This estimation can be interpreted as follows: the norm of the solution in the energy space V is controlled by the norm of data.

The resulting energy space is

For details the reader may refer e.g. to [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] Section 8.2.

Semi-discretization in space: the mass matrix

The semi-discrete formulation consists to consider the weak formulation above and to apply a FEM like those studied in the steady-state cases.

We adopt here the same notations and the same FEMs as previously: internal approximations based on P k -Lagrange FE.

The solution u h (t) is decomposed in the FE basis {ϕ i (x)} i=1..N N :

The dof u i (t) are here time-dependent.

We obtain the following semi-discrete weak formulation (discrete in space, continuous in time):

Find u h (t) ∈ V th such that:

We recognize here the stiffness matrix A with, see Prop. 25:

Moreover, a new matrix naturally appears in (3.2.10): this is the mass matrix M , M = (m ij ) i,j=1..N N ,

The additional terms c(•, •) and k(•) in (3.3.24) consist to introduce diffusion along the streamlines. Let us define the residual function of (3.3.19):

28) The additional terms introduced in (3.3.24) satisfy:

The stability parameter α K (h) is locally defined depending on the flow regime as:

with δ a coefficient to be set, δ ∼1, and P e K the local numerical Peclet number:

For more details, the reader may refer to 1 or e.g. to the short note review 2 and references therein.

The resulting modified FE schemes above are well-posed; moreover they are strongly consistent. Indeed we have:

with u(x) ∈ V 0 the (unique) exact solution. Moreover this approach enables to preserve higher order interpolations.

We have

Theorem 50. Let us assume that: a) the (unique) exact solution u(x) of the advection-diffusion equation (3.3.19) satisfies:

Then the solution of the stabilized FE scheme (3.3.24)(3.3.27) converges to the exact solution u of (3.3.19) as follows:

with H(•) the Heaviside function.

Proof. See [L. P. Franca, S. L. Frey, and T. J. R. Hughes ' 1992].

Observe that the upper-bound error depends on the regime: advection dominated (P e K > 1) or diffusion dominated (P e K < 1).

Remark 51. A few other stabilizing technique exist in particular those consisting to enrich the FE space V h by adding a cubic bubble function in each element K. For details the reader may refer to the numerical analysis book 3 Convergence curve obtained from an explicit solution: the theoritical rate is recovered. Image source: [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF].

The general a-priori estimation

We then have the a-priori error estimation, see Theorem 37:

with the constant c independent of u and h, c > 0.

Note that these are asymptotic estimations where one do not knows the value of the constant c... However given a mesh resolution h, equivalently given a number of nodes N N (the polynomial order k is fixed), this shows that one can reach some accuracy of the FE solution.

Typically, one has the following convergence behavior, see Fig. Mesh adaptation can yield more accurate results with similar computational resources, on one hand by refining the mesh where the solution sharply varies, on the other hand by relaxing the mesh where the solution is gently varies, see e.g. Fig. 3.5.2.4.

A-posteriori estimators: basic properties

Desired properties of an a-posteriori error estimator

In next sections, methods to compute a-posteriori error estimations enabling to built refined meshes are presented.

• A-posterior error estimations differ from a-priori error estimations in that the upper bound does not depend on u H k+1 .

• A-posteriori error estimators provide local information on the error of the computed FE solution, from the data of the PDE.

The perfect FE error estimator would guarantee a maximum error value at every node. However such estimator do not exist yet ! Given the exact BVP solution u, given the FE approximlation u h ,we denote the error estimator by e(h, u h , f ). The exact solution u is here represented by the RHS f . Algorithm 3.2 Mesh adaptation algorithm based on a local error estimator e K (u h , f ).

• Given a mesh, solve the BVP A(u h ) = f : the FE solution u h is obtained in Ω, Ω = ∪ K∈T h K.

• Compute the local error indicator e K (u h , f ) for each mesh element K, K ∈ T h .

-If e K (u h , f ) is greater than a prescribed tolerance, then the mesh is locally refined, e.g. the element K is split.

-If e K (u h , f ) is lower than another tolerance, then the mesh can be locally unrefined: the element K is recombined with its neighbors.

Definition 52. A function e(h, u h , f ). is said to be an a-posteriori error estimator if:

This is the reliability property: the estimator controls the error in the energy norm. Moreover, the estimator has to be locally computable as:

The term e K (u h , f ) denotes the local error indicator.

On the control of the local errors

Let us assume that one can "localize" the norm computation, that is:

This is the case for the classical Sobolev norms. Then, one would like that the local estimator satisfies the following double inequality:

where c are constants independent of the mesh. If this inequality is satisfied then the local estimator e K (u h , f ) is equivalent to the local error u -u h V,K . Unfortunately, such inequalities are generally not satisfied or not established.

Instead, one generally manages to obtain the following two types of inequalities only:

• A perturbed lower bound:

where ∆ K is a patch of elements around K.

The term Π(h K , ∆ K , f ) is either negligible or of the same order as u -u h V,∆ K .

The mesh adaptation algorithm

Given a local error indicator e K (u h , f ), the mesh refinement strategy is simply as follows. This process can be repeated. In this case, it provides a mesh adaptation strategy: the "automatic mesh refinement" procedure, see Algo. 3.2.

V h denotes the corresponding internal approximation of V . V h ⊂ V .

For the sake of simplicity, we detail below the residual-based error estimator for the following linear BVP:

= 0 on ∂Ω (3.5.19)

The residual

Let us define the residual as follows. ∀v ∈ V ,

For the present BVP, we have:

Let us recall the Galerkin orthogonality relation (37). Then, we have: Then, it exist a constant c such that: In the case of the particular BVP (3.5.19), the local error indicator reads:

F denotes the interior faces (edges in 2d) of the element K and F K denotes the set of faces of Kwhich are not on ∂Ω.

Proof. Let π h be the P k -Lagrange interpolation operator, see (2.4.1). We have:

Let us develop the expression of a(u -u h , v -v h ). Using (3.5.22), we obtain:

due to the orthogonality relation above. Therefore:

By decomposing the integrals on each cell K and by applying the Green formula, we obtain: Well-posedness depending on the FE spaces pair (V h , M h )

We follow the presentation and proofs proposed in [1] Section 6.3.4.

As a first existence -uniqueness result, we have Proposition 60. Let us consider the linear Stokes system (4.1.23). We denote by:

ii) Uniqueness. The velocity vector U h is unique; P h is unique up to the addition of an element of Ker(B T ) only. iii) Ker(B T ) contains at least the vector

As a consequence, the discrete pressure p h is at best defined up to a constant.

Proof. i) (4.1.23) reads as:

We have: (Ker(B))

Next in vertu of the Lax-Milgram theorem (applied here in finite dimension), the existence and uniqueness of U h ∈ Ker(B) follows.

Therefore (4.1.23) has at least a solution (U

iii) Next it can be verified that P is unique up to the addition of an element of Ker(B T ).

Let us consider (w h , r h ) ∈ V 0h × M h . By definition we have:

Observe that we have:

Let us clarify the uniqueness of the discrete solution (U h , P h ) ∈ R N N V × R N N M for particular FE spaces.

Proposition 61. (P 2 -P 1 )-Lagrange FE, the Hood-Taylor element.

Let us consider P 2 -Lagrange FE for the velocity and P 1 -Lagrange FE for the pressure i.e.

Then dim(Ker(B T )) = 1: Ker(B T ) is generated by the vector

As a consequence, the (P 2 -P 1 )-Lagrange FE Stokes solution is unique, with p h defined up to a constant. The Hood-Taylor element is the most classical element if considering continuous pressure p h . It is an order 2 element.

In practice the constant may be set by imposing a value of pressure at a particular node, or by imposing its average on Ω (equal to zero for example). Now let us show that the following a-priori simple and good element is actually unstable, therefore unusable. As a consequence, if using (P 1 -P 1 )-Lagrange FE to solve the Stokes system then p h is not unique even up to a constant....

In practice spurious pressure modes appear in the numerical solution, see e.g. We point out that if considering discontinuous pressure field, like e.g. the (P 2 -b, P 1 -disc) element, the mass is preserved on each element K, see the dedicated exercise for the proof.

On the contrary if considering continuous pressure field e.g. the Hood-Taylor element, then the mass is globally preserved only.

On the Ladyzhenskaya-Babuška-Brezzi (LBB) inf-sup condition

To go further...

We introduce below the condition such that the solution of (4.1.20) is unique. Equivalently a condition such that it exists an unique solution (U h , P h ) to (4.1.23).

To show the uniqueness, we show that b = 0 implies that the unique solution of (4.1.20) is (u h , p h ) = (0, 0). In (4.1.20) we set the test functions as: (v h , q h ) = (u h , p h ). It follows:

Next the momentum equation of (4.1.20) reads:

Let us assume that the following condition holds: (Weak model coupling is addressed in the structural mechanics course, INSA Toulouse Applied mathematics department).

Below we briefly detail the principle for the cases Ex 1. and Ex 2.

Dirichlet boundary condition

Let us consider the general (and widely present in applications) linear elliptic BVP:

Instead of imposing the boundary Dirichlet condition in the solution space V (e.g. V = H 1 0 (Ω) for g = 0) next in the stiffness matrix A as described in Algorithm 2.2, one consider the same BVP (-div(A∇u) = f in Ω) with the "naturaldo nothing" boundary condition plus the additional constraint: u = g on ∂Ω.

Then the problem reads as the following (weak) mixed formulation. Find (u, λ) ∈ H 1 (Ω) × L 2 (∂Ω) satisfying:

The constraint "u = g on ∂Ω" is imposed in the weak sense.

The system (4.2.4) can be interpreted as follows.

To obtain u = g on ∂Ω, one has to find the corresponding normal incoming flux λ = (-∇u.n) such that (u -g) = 0 on ∂Ω, see (4.2.4)(a).

For fluid flows, weakly enforced Dirichlet conditions may provide better results than strongly enforced conditions. For details on the formulation considered in fluid flow contexts (where adherence at a wall reads g = 0), the reader may refer to [Bazilevs-Hughes, Computers & Fluids] aforementioned.

Non-penetration boundary condition

Let us consider the Stokes system in variables (u, p):

with σ(u) the constraint tensor: σ(u) = 2ηD(u) -pId, η the fluid viscosity and D(u) the deformation tensor.

We have:

On the boundary ∂Ω, we set:

Here we set: ∂Ω = Γ d ∪ Γ f . On Γ d , we consider homogeneous Dirichlet conditions:

On Γ f we consider a friction condition defined as:

where β 2 is the friction parameter, a given positive function.

We denote by: u n = u.n and u τ = u.τ .

If the equation u.n = 0 is strongly enforced (i.e. point-wise imposed in the FE space V h ) then the accuracy of the pressure p h is bad in the vicinity of the wall Γ f ... Then the good option is to consider the equation u.n = 0 as a weak constraint of the system.

Then we seek the (weak) velocity u solution of (4.2.5)-(4.2.8) in the functional space V 0 defined as:

The condition u • n = 0 on Γ f is not strongly enforced in the function space but weakly as a constraint. The pressure p is sough as usual in M = L 2 (Ω)/R. Then we solve the following mixed formulation. Find (u, p, λ)

with the additional equation:

The forms a(u, v), b(v, q) and l(v) are defined as previously, see (4.1.10)-(4.1.12).

The resulting system (4.2.9)(4.2.10) reads as a mixed formulation with two Lagrangian multipliers: the pressure p and the normal component of the normal constraint λ = σ nn .

These two Lagrange multipliers are associated to the constraints div(u) = 0 in Ω and u • n = 0 on Γ f respectively The present example is studied more in detail as an exercise; see the accompanying exercises documents.

On the numerical resolution

Assuming that the PDE of the BVP is linear then the form a(., .) is bilinear and the discrete mixed formulation (4.2.2) have the following structure:

As already mentioned the well-posedness of the problem (4.2.2), equivalently the invertibility of the global matrix of (4.2.11), depends on the compatibility between the FE spaces V h and M h . It is assumed here that V h and M h are such that (4.2.11) is invertible.

As already mentioned in the Stokes model section, to solve the particular linear system (4.2.11) it is natural to employ the Uzawa algorithm based on the augmented Lagrangian. A Schur complement algorithm is well-suited too (see details in Appendix). Oher approaches may be considered see e.g. the method(s) suggested in the FEniCS demo codes.

Augmented Lagrangian & Uzawa's algorithm

Below we recall the augmented Lagrangian method to solve (4.2.11). For more details the reader may refer to his previous optimization course.

We set the Lagrangian L : V × M → R defined by:

Recall that the forms a(., .) and b(., .) are assumed to be bilinear V -elliptic and bilinear respectively. We have Proposition 63. The pair (u, λ) is solution of the mixed formulation (4.2.2) if and only if it is saddle-point of the Lagrangian L(v, µ) defined by (4.2.12). That is:

Next for numerical efficiency purpose we define the augmented Lagrangian:

with r > 0, r large. It is easy to show that any saddle-point of L r (., .) is saddle-point of L(., .) too.

Let us set: λ r = r Bu r , λ r ∈ M h . Then computing the saddle-point of the augmented Lagrangian L r (., .) is equivalent to solve the following penalized system, 3 .

Find (u r , λ r ) ∈ V h × M h such that:

Resolution by the Uzawa algorithm.

The augmented -penalized system (4.2.15) is solved by the Uzawa algorithm.

After discretization in the FE spaces V h and M h , the algorithm reads as follows.

Let Λ 0 h be given, for all k ≥ 0, solve:

where M is the pressure mass-matrix.

Note that M may be interpreted as a preconditioning matrix, hence potentially defined such that it improves the iterative algorithm convergence.

Recall that we have

Proposition 64. For 0 < ρ < 2r and for all Λ 0 , the Uzawa algorithm converges to the FE solution U h of the mixed formulation (4.2.11).

In practice, r has to be set very large; typically one (empirically) set: ρ = r ≈ 10 7 . Larger r is, more efficient the minimization is, but worse the conditioning number of the momentum equation is too... Remark 65. -Recall that the Uzawa algorithm may be viewed as a gradient algorithm applied to the dual function

-It follows from (4.2.16):
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Next the momentum equation reads:

The matrix C represents the "stiffness Stokes matrix" in the penalized system.

The Schur complement method

The Schur complement method consists to decompose and reduce the linear system (4.2.11); the reduced system may be solved by the preconditioned conjugate gradient algorithm. This approach leads to an efficient algorithm since it is parallelizable. It constitutes the earliest version of nonoverlapping Domain Decomposition Method (DDM).

For details the reader may consult the hand written notes available on the INSA Moodle platform and more importantly the complimentary DDM part of the present course.

On the mixed FE method

To go further...

Let us finish by point out that the concept of mixed formulation may be considered for the Laplace operator or even any elliptic operator.

For example let us consider the elliptic BVP:

with adequate boundary conditions e.g. u = 0 on ∂Ω. Instead of solving these equations, one solve an extended problem taken into account the flux as a variable. To do so, one set the new additional variable:

and one consider the following mixed formulation. Find (φ, u) such that:

Then the corresponding FE method differs from the one presented in the present course: it is the so-called mixed Finite Element method.

Chapter 5

Model Reductions: Reduced Basis & Machine Learning

The CPU-time of a FE code can be high, especially for 3D time-dependent non-linear models. High CPU-time for computing a numerical solution can be critical in many modeling scenari. Extremly fast computations (achieving "realtime" computations) may be necessary, for instance, when employing iterative optimization methods (requiring O(10 p ) , p = 2 -4, model solvings) or where real-time model outputs are necessary, such as for on-board predictions.

Another situation where fast computations are required arises when computing solutions for various values input parameter values µ, for instance if considering the µ-parametrized diffusive model -div(µ∇u) = f .

The computation of the model outputs u corresponding to different values input parameter µ is necessary in the following cases: a) optimal control problems where the objective is to control the model by adjusting the parameter µ; b) calibration problems where the aim is to determine the value of the uncertain parameter µ; c) optimization problems and design explorations.

In all of the aforementioned scenari, a large number of FE model resolutions are required. Therefore, in such contexts, a drastical reduction in the CPU time needed for solving the model is necessary, while maintaining an acceptable level of numerical solution accuracy.... Remark 66. Reduced modeling may be done by reducing the complexity of the mathematical model e.g. by reducing a spatial dimension by integrating 3D equations along one direction. This is the reduction technique classicaly employed in the: -(fluid mechanics) the depth-integrated shallow-water flows models; -(structural mechanics) shell models where the solid thickness is small compared to the two other directions. Even for such mathematically reduced models, an additional numerical model dimension may be required.

By a reduction of degrees of freedoms (dof) of the numerical model, an approximation of the High Resolution ("highfidelity") FE solution is computed: this is a Reduced Basis (RB) method.

The latter are projection-based techniques for reducing the computational complexity of parametrized PDEs.

In order to be applicable to real-world problems, the requirements of a reduced order model are :

• A low computational cost (nearly real-time) while conserving fundamentals properties (e.g. consistancy and stability),

• A reasonable approximation error compared to the HR FE solution.

The methods presented in this chapter are: a) the Proper Orthogonal Decomposition (POD) method (equivalently PCA) which is optimal in some sense in the case linear PDEs; b) a hybrid POD-Neural Network method for non-linear PDEs.

Moreover, the greedy algorithm is briefly presented.

Finally, the reduction property of Auto-Encoders is briefy presented too.

For linear PDE cases, the presentation done in this chapter follows [START_REF] Quarteroni | Reduced basis methods for partial differential equations: an introduction[END_REF][START_REF] Benner | Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms[END_REF][START_REF] Jan S Hesthaven | Certified reduced basis methods for parametrized partial differential equations[END_REF]. For non-linear PDE cases, the presentation is inspired from recent research articles which are cited along the text. All the all the numerical results illustrating this chapter have been performed by Mustapha Allabou, PhD INSA-IMT, 2021-24. Given µ ∈ P, find u(µ) ∈ V satisfying:

Example. The parameter µ denotes the diffusivity in the diffusion-reaction operator: A(µ; u) = -div(µ∇u) + cu 3 with µ ∈ P ⊂ L ∞ (Ω).

In this example the map µ → A(µ; u) is affine.

In the general problem (5.1.1), the map µ → A(µ; u) is a-priori non-affine. This is a non-affinely parametrized PDE.

In this section (and the POD method section), it is assumed that the PDE (5.1.1) is linear that is the mapping u → A(µ; u) is linear.

As a consequence, the form a(µ; •, •) is bilinear. Moreover it is assumed to be V -coercitive. Therefore, Problem (5.1.1) fits into the Lax-Milgram theory.

The corresponding FE parametrized model reads as follows. Given µ ∈ P, find u h (µ) ∈ V h satisfying:

We denote by Φ(x) the FE basis, Φ(x) = {ϕ i (x)} 1≤i≤N N . Therefore:

The vector of dof

satisfies the following linear system:

Since it is assumed that the problem fits into the Lax-Milgram theory, the a-priori error estimation (2.4.5) holds. For regular exact solutions u(µ) (given µ), the estimation reads:

for a given order interpolation k. (Classically k = 2 or by at worse 1).

In all the sequel, the FE basis Φ(x) is called the High-Resolution (HR) basis.

The Reduced Basis FE model

Let us define the Reduced Basis (RB) V rb as an internal approximation of V h :

V rb = span Ξ(x), Ξ(x) = (ξ 1 (x), . . . , ξ N rb (x)), (5.1.5)

Next, we define the RB problem as the same as the original one but in the RB V rb : Given µ ∈ P, find u rb (µ) ∈ V rb satisfying:

Let us set B rb the change of variable matrix between V h and V rb :

(5.1.10) The vector ξ n denotes here the coordinate vector of the function ξ n (x) in the FE basis Φ(x). It follows:

The matrix B T rb encodes the change of variable from the HR FE basis Φ(x) to the Reduced Basis Ξ(x). A classical algebra result states that the matrix B T rb A µ B rb represents the bilinear form a(•, •) in the basis V rb . Given the HR FE system (A µ U h = F µ ), see (5.1.3), the RB solution U rb ∈ R N rb is defined as the solution of the following reduced dimension linear system:

(5.1.13) Note that R µ = B T rb A µ B rb is a dense matrix (however of small dimension N rb × N rb ). Note that B rb U rb ∈ R N N . Then, one expects to have:

Of course, the key point of a Reduced Basis method is the definition of V rb, V rb = span{ξ 1,••• , ξ N rb }, equivalently the definition of the matrix B rb .

Remark 67. Note that if writing the basic FE decompositions, u rb (x) = Ξ T (x)U rb and u h (x) = Φ T (x)U h (with U rb and U h the respective dof vectors), it follows that:

Remark 68. The difference between the HR solution and the RB solution satisfies:

with (5.1.4) which holds. The definition of V rb has to provide a satisfying estimation of the error u h (µ) -u rb (µ) V .

Linear PDEs case: the POD reduction method

The Proper Orthogonal Decomposition (POD) method is far to be recent. It has been applied e.g. in turbulent fluid mechanics by J.L. Lumley in 1967. Its fundamental feature remains very interesting: under some assumptions, the PODbased RB is optimal in the energy norm • V . 

The Kolmogorov N rb -width of M h in reduced spaces of dimension N rb is then defined as:

In other words, the Kolmogorov N -width measures how M h (the set of all HR FE solutions when µ describes P) can be approximated by reduced solutions u rb of dimension N rb .

Recalls on the Singular Value Decomposition (SVD) and pseudo-inverse

SVD denotes a diagonalization process that can be applied to rectangular matrices. It involves left and right multiplication by orthogonal matrices.

The POD method and PCA method in data analysis are the same mathematical tool. Both rely on a SVD and an analysis of the most influencial modes.

SVD, singular vectors

The SVD of a rectangular (real) matrix A is as follows.

For A ∈ M N ×M a (real) matrix, it exists two orthogonal matrices

The numbers σ i are the singular values of A.

The vectors {l i } 1≤i≤N are the left singular vectors of A, {r i } 1≤i≤M are the right singular vectors. They satisfy:

For i = 1, . . . , D, Ar i = σ i l i and A T l i = σ i r i (5.2.6) Moreover the SVD (5.2.5) implies the following spectral decompositions:

with ΣΣ T = diag(σ 2 1 , . . . , σ 2 D , 0, . . . , 0) and Σ T Σ = diag(σ 2 1 , . . . , σ 2 D , 0, . . . , 0) (5.2.8)

We have the relation:

Since AA T (resp. A T A) is symmetric, the left (resp. right) singular vectors of A are the eigenvectors of AA T (resp. A T A).

Recall that Rank(A)=Rank(Σ).

Pseudo-inverse

Let us denote by r the rank of A ∈ M N ×M . Then the matrix A † = RΣ † L T with Σ † = diag(σ -1 1 , . . . , σ -1 r , 0, . . . , 0), is the pseudo-inverse of A.

It satisfies:

for rank(A) = M < N . Note that if rank(A) = M = N , we have:

The Schmidt-Eckart-Young theorem

Let us mention the Schmidt-Eckart-Young theorem (beginning of 20th century) which provides the best approximation (in some sense) of an arbitrary matrix by a matrix of lower rank n, n given.

We refer e.g. to [START_REF] Quarteroni | Reduced basis methods for partial differential equations: an introduction[END_REF] Chapter 6.

Theorem 69. (Schmidt-Eckart-Young theorem). Let A ∈ M N ×M be a real matrix of rank r. The matrix

is optimal in the sense

(5.2.11)

The Schmidt-Eckart-Young approximation theorem will enable in next paragraph to establish an error estimation of the POD method.

The POD method

The POD method enables to reduce the dimension of a given snapshot set by representing it onto an orthonormal basis which is somehow optimal in the least-squares sense (following the Schmidt-Eckart-Young theorem).

The primitive variables are transformed into uncorrelated variables (the POD modes). The first modes are the most influencial in the sense they contain most of the "energy" of the snapshot set.

The presentation below follows those proposed in [START_REF] Quarteroni | Reduced basis methods for partial differential equations: an introduction[END_REF] Chapter 6.

Preliminaries: L 2 -norm vs energy V -norm

Let us first recall a basic result on scalar products and norms.

In the sequel we denote by (•, •) the scalar product either in L 2 ( = L 2 or by simply omiting the symbol ) or in V : = V .

Let us consider here the classical case V = H 1 (Ω). Let us assume that the PDE model is well-posed in V. In this case, V is called the energy space: V is the largest space such that the energy expression is well-defined in V .

With

In the discrete FE space V h , considering internal approximation (V h ⊂ V ), we have:

where N h is a symmetric positive definite linear operator, a spd matrix of M N N ×N N , .

In this case, the matrix N h is computed as the rigidity matrix of the bilinear form corresponding to the operator (-∆v + v).

Definition of V P OD : SVD, eigenvectors

The snapshot matrix S and its SVD Let u µ,m = ((u µ,M ) 1 , . . . , (u µ,M ) N N ) ∈ R N N be the dof vector of the m-th snapshot. Each snapshot u µ,m belongs to V h .

The snapshot matrix S, S ∈ M N N ×M , is built as: Equivalently, we have:
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The correlation matrix C Recall the m-th snapshot decompositions:

We define the M × M correlation matrix C by C = (c mn ) 1≤m,n≤M ,

In the case of the basic L 2 -scalar product, (u µ,m , u µ,n ) = (u µ,m , u µ,n ) L 2 , we obtain:

In the case of the V -scalar product, we obtain:
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with N h the symmetric positive definite matrix as previously defined.

Spectrum of C In both cases, C is symmetric positive definite then its spectrum is real strictly positive. The eigenelements of C satisfies the relation, see (5.2.15):

where the eigenvalues λ m (C) = σ 2 m (S), m = 1, . . . , M . The eigenvectors of C defined as above are the right singular vectors of S.

Remark 70. One could consider the "other correlation matrix" i.e. the large dimension one defined by SS T (L 2 -scalar product case). In this case, the eigenelements problem to solve would be of large dimension therefore CPU-time consuming.

Definition of V P OD : the RB Ξ(x) and the matrix B rb For a reduced basis dimension N rb ≤ M (see later for the choice of the rank N rb ), the POD space V P OD is defined as:

with l n (x) ∈ V h defined as the N rb first left singular vectors {l m } 1≤m≤N rb of S.

(The singular vector l m is the coordinate vector of the function l m (x) in the FE basis Φ(x)).

In the case of the basic L 2 scalar product, these singular vectors {l m } 1≤m≤N rb are defined by (5.2.15).

In the case of the V scalar product, these singular vectors {l m } 1≤m≤N rb are defined as in (5.2.15) but for the matrix S, S = N

The left singular vectors {l m } 1≤m≤M can be efficiently deduced from the eigenvectors {r m } 1≤m≤M of C (equivalently the right singular vectors of S) as:

Following the basic principle (5.1.5)(5.1.12), we set:

(5.2.23) The m-th column of B rb contains the coefficients of the m-th RB vector l m in the FE basis Φ(x) = {ϕ i (x)} 1≤i≤N N , see (5.2.23).

B rb : a semi-orthonormal matrix. By construction, B rb is an (semi-)orthonormal basis since we have (L 2 -scalar product case) B T rb B rb = I N rb ; however B rb B T rb = I N N .

The orthogonal projector and error estimation

The orthogonal projector P rb Let us detail the expression of the orthogonal projection from V h on V rb = span Ξ(x) :

Let us write the projector expression in matrix form.

For the L 2 -scalar product (•, •), the projector expression reads:

For the V -scalar product (•, •) V (energy norm case), the projector expression reads: Error estimation Before stating the error estimation, let us define the set of semi-orthonormal 3 bases of dimension N rb :

Recall that N h = Id N N in the case of the basic L 2 -norm.

Proposition 71. Among the semi-orthonormal basis of dimension N rb , the POD space V P OD represented here by B rb is optimal in the least square sense. Indeed we have:

where u µ,m denotes the m-th snapshot and λ m denotes the m-th eigenvalue of the correlation matrix C.

In the present formalism, we necessarily have N rb ≤ M (M the total number of snapshots and N rb the RB dimension).

The proof of Proposition 71 derives from the Schmidt-Eckart-Young theorem showing that the best approximation of a given matrix by a lower rank matrix is the one obtained by SVD. The complete proof of the proposition can be found in [START_REF] Quarteroni | Reduced basis methods for partial differential equations: an introduction[END_REF] Chapter 6.

In practice, it is frequent to observe an exponential decay of the eigenvalues λ m , see Fig. 5.2.3.

Remark 72. Proposition 71 states that given N rb , the POD basis B rb is the optimal basis (optimal in the least square sense) to represent the M snapshots. However it is a-priori not optimal for solutions corresponding to other values of parameter µ ! Reduced basis dimension: the maximal conserved rank N rb In practice, the dimension of the RB is defined from the error estimation (5.2.28).

From the "energy-based ratio"

the modeler chooses the energy ratio to be preserved.

The later is defined as defined as R(n) = (1-ε lost ) with ε lost to be set. Typical values of energy loss will be ε lost ∼ 10 -5 . Then, N rb is defined as the minimal value such that:

N rb is the maximal conserved rank.

What relation(s) between U rb and U h ?

Recall that:

• U h ∈ R N N is defined as the unique solution of AU h = F , see (5.1.3).

• U rb ∈ R N rb is defined as the unique solution of B T rb AB rb U rb = B T rb F , see (5.1.12).

• Given the HR FE solution U h , if we define

• Proposition 71 states that the snapshots approximations

) are optimal in the least square sense (considering the L 2 -scalar product).

• The pseudo-inverse B ‡ rb satisfies:

.9). Therefore:

As a consequence:

Indeed, let us calculate the residual of the reduced model applied to W rb :

Hence the statements.

However, for U h not being a snapshot we expect to have:

A few other remarks

• The POD solution accuracy (the accuracy of u rb ) depends on the discretization of the parameter space P i.e. both on the number M and on the choice of these M snapshots.

The sampling of P , equivalently the choice of the snapshots, is a key point of the method.

Unfortunately, the strategy to define P remains an open question.

• On the orthonormalization of the snapshots If the M snapshots {u µ,1 , • • • , u µ,M } are nearly linearly dependent then the snapshot matrix S presents a large condition number. In this case, it is a good idea to orthonormalize the snapshots by using the Gram-Schmidt algorithm before computing the eigenvectors.

The algorithm

The POD-based reduction method provides the algorithm below, Algo. 5.1.

Algorithm 5.1 The POD-based Reduced Basis algorithm

Offline phase

• Define the M values of parameters µ you want the solution.

For µ ∈ δ with δ of dimension d, the parameter space may be regularly digitalized as a hypercube of dimension d, with M = M d 0 .

• Compute the M corresponding snapshots (HR FE solutions) u µ,m ≡ u h (µ m ), 1 ≤ m ≤ M with µm previously chosen.

The dof of the HR solution uµ,m(x) are denoted by uµ,m.

Store these HR solutions in the (N N × M )-snapshot matrix:

C is symmetric positive definite. It is a dense matrix.

• Compute its eigenelements:

Define the target conserved ratio energy (1 -ε lost ) providing the maximal conserved rank N rb from the "conserved

• Deduce the N rb largest left singular vectors of S from the eigenvectors r n :

• Build up the (N N × N rb )-Reduced Basis matrix B rb :
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End: the reduced system has been built from the M (arbitraly?) chosen snapshots.

Online phase (real-time computations)

Given a new parameter value µ,

• Re-assembly the (N N × N N )-rigidity matrix A µ .

For non-affinely parametrized PDEs, this step necesitates O(kN N ) operations: it is CPU-time consuming !... To avoid this bottlneck, Empirical Interpolation Method (EIM) or a Hyper Reduction Method (HRM) can be considered, see e.g. [START_REF] Benner | Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms[END_REF] for details.

For affinely parametrized PDEs, the stiffness matrix can be decomposed as A µ = A0+µA1. As a consequence, the computation of A µ can be done in real-time.

• Build up the RB stiffness matrix R µ , R µ = B T rb A µ B rb , and the RHS f µ , see (5.1.12).

• Solve the low dimension (N rb × N rb )-linear system (5.1.12): the Reduced Basis (POD) solution

The RB solution u rb (x) can be written in the FE basis {ϕ i (x)} 1≤i≤N N , specifically to visualize it on the FE mesh, as:

Given N rb and following Proposition 71, the vector U N N rb belongs to the optimal RB.

• At the offline phase. The computation of the eigenvalues of the dense matrix C by a Lanczos method requires O(N rb • N N 2 ) operations. Therefore for a large number M of snapshots and for N N large, the offline phase can be very CPU-time consuming.

• At the online phase. For non-affinely parametrized linear model, one has A(µ) = A 0 + µA 1 . As a consequence, the assembly of the HR stiffness matrix A µ depends on N N . The be actually real-time, an EIM or "Hyper Reduction Method", see e.g. [START_REF] Benner | Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms[END_REF], has to be adopted to built up A µ in real-time.

Finally, the POD method constitutes the reference method for linear PDEs (affinely poarametrized or not) presenting a few number of parameter µ only (µ ∈ P ⊂ R d with d ≈ 3).

5.2.6.3 How about in the context of Finite Volumes or when dealing with non-linear PDEs?

On the use of other type of numerical methods It is important to note that the offline phase can be done using any other numerical methods than the FEM. Indeed, the snapshots can be computed by employing any numerical solver, for instance a Finite Volume Method. Next, Proposition 71 states the optimality of the RB B rb from the snapshots data only. The estimation (5.2.28) is purely algebraic. As a consequence, the offline phase can rely on a non-linear Finite Volume code for instance.

On the contrary the computation of the RB solution U rb relies here on the expression of the bilinear form a(•, •) in the RB V rb , see (5.1.9). As a consequence, the present online approach relies on a FE method.

Case of non-linear PDEs In the case of a non-linear PDEs solved by a FEM, one naturally reduce the linearized PDE solved e.g. in the Newton-Raphson algorithm.

However this natural simple approach does not offer any guarantee of convergence. Worse, the RB linearized may be ill-posed. In short, this approach may at best roughly work, or more likely not at all... For non -linear PDEs, a few approaches are possible but none is universal for all types of non-linearity. For a more detailed discussions, the reader may consult [START_REF] Quarteroni | Reduced basis methods for partial differential equations: an introduction[END_REF] Chapter 11.

For non-linear PDEs, the POD basis V P OD can be employed if completed by a Machine Learning process. Such a hybrid POD-DNN approach is presented in the next section.

Greedy algorithm*

Greedy algorithm denotes an iterative procedure where one (1) basis function is added at each iteration. Therefore the computation of 1 HR FE solution is required at each iteration.

For a linear coercive equation, the fundamental feature of the greedy algorithm is the availability of an error estimation predicting the error made at each iteration.

For complex non-linear problems, the greedy method can be empirically used only since no criteria is known for the choice of the snapshots.

If interested, the reader may consult [START_REF] Benner | Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms[END_REF] Chapter 1.

Numerical results

Advection-diffusion equation

The numerical results below have been extracted from the proposed Programming Practical (PP).

Consult the INSA Moodle page of the course for details and to obtain Python codes. Other examples can be produced by performing your own PP code :)

The domain Ω is a square. The boundary ∂Ω is decomposed as: ∂Ω = Γ diri ∪ Γ neumann . The model is the following linear convection-diffusion one: 

The model is µ-parameter through the diffusivity coefficient λ(µ), λ(µ) > 0 a.e.

Offline phase

The number M of snapshots is empirically chosen following a few trial-error tests. Each snapshot is a HR FE solution corresponding to a different value of the parameter µ.

Online phase

Given a new parameter value, the RB solution u rb is computed.

A few Python libraries

Few open-source Python libraries to develop reduced models have been released. Let us mention some of them existing in 2021. (This may have evolved since !). RBniCS (Reduced Basis in FEniCS) library 4 is "an implementation in FEniCS of several reduced order modelling techniques (and, in particular, certified reduced basis method and Proper Orthogonal Decomposition-Galerkin methods) for parametrized problems".

We may mention a few others:

• The pyMOR library 56 which is a "software library for building model order reduction applications with the Python programming language. Implemented algorithms include reduced basis methods for parametric linear and non-linear problems, as well as system-theoretic methods such as balanced truncation or IRKA (Iterative Rational Krylov Algorithm)".

• The EZyRB 7 (Easy Reduced Basis method) Python library based on POD.

Please consult the indicated webpages to obtain detailed information and the accompanying scientific references. Therefore, the offline phase requires an huge amount of data ans is very CPU-time consuming (ML process), moreover without a-posteriori error estimation. However, it can be applied to non-linear PDEs on contrary to the standard POD method.

For a non-linear PDEs, one has the following discrete non-linear system to solve:

(5.4.1) By applying the same change of variables as in the linear case, one obtains the following reduced system:

The goal is to obtain:

The issue is here to handle the N N non-linear equations represented by the term A µ (B rb U rb ).

During the last decades, a large litterature has tackled a variety of non-linear problems. The mathematical analyses are extremely challenging. A few semi-empirical methods have been developed. Recently to handle non-linear model terms, it has been proposed to combine classical RB methods, like POD, with ML techniques. This is what is done here.

Construction of the same RB Ξ(x) as POD

The offline phase of the POD method consisting to built up B rb is performed exactly the same, see 5.1:

• The parameter space P is digitalized by choosing M values of parameters (µ 1 , . . . , µ M ).

• The corresponding M snapshots (HR FE solutions) u µ,m , 1 ≤ m ≤ M , are computed.

They are stored in the (N N × M )-snapshot matrix S = (u µ,1 | • • • |u µ,M ).

• The M × M -correlation matrix is built up: C = S T N h S.

Its eigenelements are computed:

• N rb is set from the ratio R(n), see (5.2.29).

• The N rb largest left singular vectors of S are deduced from the eigenvectors ψ n :

• The (N N × N rb )-Reduced Basis matrix B rb is built up as:

The matrix B rb encodes the change of variable from the FE basis Φ(x) to the RB Ξ(x).

Remark 73. The reduced dimension basis V rb = V P OD is the optimal one to represent the snapshots (Proposition 71), whatever if the undelying PDE is linear or not. Indeed, the estimation (5.2.28) is purely algebraic and based on the snapshots set (dataset) S.

5.4.2 Learning the coefficients of each snapshot in the RB Ξ(x)

Next, the idea of the method is as follows.

Given V rb = span Ξ(x), equivalently the matrix B rb , see (5.2.23), a Deep Neural Network (DNN) is trained to learn the snapshot coefficients in Ξ(x).

More precisely, given the set of parameters (µ 1 , . . . , µ M ), given the corresponding snapshots set S = (u µ,1 | • • • |u µ,M ), given the RB matrix B rb , a DNN is trained to learn the following map:

where U µ h denotes the dof vector of the HR FE solution u µ , u µ ∈ V h .

This mapping F represents the HR FE solution u(µ) of the non-linear PDE in the RB V rb .

From a large set of (input(s), output(s)) pairs (called "examples" or "samples" in the ML jargon), a trained deep NN may enable to simulate the non-linear map F , in an "interpolation mode".

Here, the learning samples are the M (parameter values µ m , snapshots u µm ).

Training a DNN necesitates to compute a very large number M of snaphots, typically M = 10 p with p ≈ 3 -4 in 1D only (i.e. for P ⊂ R).

The offline phase is very CPU time consuming too.

After training, the DNN outputs denoted by N (µ), are supposed to satisfy:

For each parameter value µ m , N (µ m ) ≈ B T rb U µm h (5.4.6)

Online phase: definition of U rb

Given a new value of parameter µ, the reduced basis solution U µ rb is simply obtained by performing the NN with µ as a new input value, see (5.4.5).

Indeed, the reduced dimension solution U µ rb , U µ rb ∈ R N rb , is here defined as:

Recall that U µ rb reads in the HR FE basis as:

(5.4.8)

Summary of the method & remarks

The offline phase is the same as the in the standard POD method (adopted for linear PDEs) plus the training phase of a NN to learn the map:

That is: A sample in the parameter space P is chosen. The HR solver is performed to computed the M corresponding HR solutions. This constitutes the reference snapshots set S. M must be large enough to well perform the NN.

The (spd dense) correlation matrix C is built and its eigenelements are computed (equivalently a SVD of the snapshot matrix S).

The reduced dimension basis V rb = V P OD of dimension N rb given, is the optimal basis to represent the snapshots, see Proposition 71.

The N rb first most influencial modes of C are retained. The RB B rb is stored. The resulting (N N × N rb )-Reduced Basis matrix B rb follows.

Like in the standard POD method, this phase may be done by employing any numerical methods: FE, FV, FD etc. The on-line phase simply consists to compute a RB solution U µ rb given a new parameter value µ by performing the trained NN. Therefore, the computations can be done in real-time.

We obtain

and we expect to have

Finally let us point out that:

• The POD-NN method remains the same for linear or non-linear PDEs, affinely parametrized or not.

• Moreover, since the online phase does rely on any matrix-based system, the complete POD-NN method is nonintrusive. Moreover it can be developed from any computational codes (employed as black box) relying on any numerical methods (FE, FV, FD etc).

• Numerical experiments show that this empirical method provides reduced models with acceptable accuracies, at least in a few cases...

Numerical results

We present below two examples. The first example relies on the classical linear unsteady convection-diffusion equation, non-affinely parametrized. In this case, both the POD method and the POD-NN method can be applied. They are then compared.

The second example relies on a more complex model: the 2D shallow-water flow model which is solved by a Finite Volume (FV) scheme. This model is widely employed for instance to simulate flood plain dynamics (inundations).

Unsteady convection-diffusion equation

We consider a 2D parameter space:

The model is the following unsteady advection-diffusion BVP in Ω = (-1, 1) × (-1, 1):

(5.4.12)

The boundary of Ω is split into two parts as:

This BVP is here non-affinely parameterized since we set: The parameter space P = . The number of snapshots M =. The RB dimension N rb =.

POD method results 

POD-NN method results

Model reductions using Auto-Encoders (AE)*

This is a "to go further section". This section has been written with the help of M. Allabou, PhD INSA-IMT 2021-24.

AEs have been recently employed to reduce non-linear BVP, see e.g. [Fresca et al. JSC 2021]. This is the idea briefly presented in this section.

Model reductions using AE constitutes a purely-data driven method. As a consequence no conservation law is respected by the reduced model. This lack of physical consistency can be an issue.

Purely-driven approaches should be improved in the next few years by taking into account additionnal physical constraints such as e.g. mass conservation, symmetries of solutions etc. We called them "hybrid AI" or "Physics-Informed Machine Learning".

Basic principles of AEs

Let us first recall what is an AE. An AE consists of two parts: the Encoder and the Decoder. Each part is a Feed-Forward Neural Network.

The AE is trained to approximate the function F AE defined by:

with the goal to obtain:

Xh ≈ X h (5.5.1)

W E (resp. W D ) denotes the parameters of the Encoder (resp. of the Decoder). The functions F D and F E are such that:

The Encoder (resp. the Decoder) aims at approximating the function F E (resp. F D ).

AEs are trained by solving the following optimization problem:

(W E , W D ) = arg min (w E ,w D ) Xh -F D • F E (w E , w D ; X) (5.5.2) That is F AE = (F D • F E ) aims at approximating the Identity function.

AE are forced to reconstruct the input by preserving the "most relevant aspects" of the data. AEs are considered as an unsupervised ML method. AEs have appeared in the 80s.

The Encoder is classically chosen as a Convolution Neural Network aiming at down-sampling the input variable U h . In other words, the Encoder computes a projection of U h onto a low-order space (the "latent space").

On the contrary, the Decoder aims at up-sampling the Encoder output U rb , see Fig. 5.5.1. It is then defined as a deconvolution NN.

The fundamental result

It is shown e.g. in (Kunin-Bloom et al., 2019) that a basic two-layers linear AE is equivalent to the probabilistic PCA (that is the POD with Gausiann perturbed noise).

Definitions

Definition 74. Let us consider a small dimension N rb -dimensional vector X rb with X rb ∼ N (0, I), a scalar value µ and a N N -dimensional vector representing an error term, ∼ N (0, σ 2 I).

We set: X = W 0 X rb + µ+ (5.5.3) with W 0 a N N × N rb -matrix. X rb is sometimes called a probabilistic PCA model.

Note that one has: p(X/X rb ) = N (X/ W 0 X rb + µ, σ 2 I).

Definition 75. We call a Linear Auto Encoder (LAE) an AE with one Encoder layer only, and one Decoder layer only, with Identity as activation functions. With the previous notations, we then have: W 1 ∈ M N rb ×N N and W 2 ∈ M N N ×N rb .

The loss function to be minimized is then defined as:

where • F denotes the Frobenius norm. Theorem 76. Let us consider the following regularization of the LAE loss function:

Then, the critical points of L λ coincide with the probabilistic PCA model.

In other words, a regularized LAE is nothing else than the POD with a probabilistic input variable.

Reducing PDE-based models using AEs

Following the equivalency result above (Theorem 76 which is valid for a simple LAE only), one may be inspired to attempt to reduce non-linear models using AEs... This is roughly the idea developed in [Fresca et al. JSC 2021]. The proposed algorithm is as follows.

Offline phase

• The parameter space P is digitalized: M snapshots (HR FE solutions) are computed and stored in the snapshot matrix S. M has to be large enough to train an AE at next step. We denote as previously:

• The AE is trained by solving the optimization problem:

The Encoder provides a reduced vector U µ rb hopefully approximating (in some sense) the HR FE solution U µ h . • Given the numerous examples (µ, U µ rb ) obtained at the previous step, another NN representing the following map is trained:

(5.5.4)

Online phase

• Given a new parameter value µ, the trained AE is performed to obtain the reduced dimension vector U µ rb . Note that here no approximating result insures that the reduced vector U µ rb is satisfying approximation of the HR FE solution U µ h ...

Numerical results

Numerical results are shown for the same BVP as previously (Section X): the steady-state linear convection-diffusion equation.

The model is non-affinely parametrized through the diffusivity coefficient λ(µ), λ(µ) > 0 a.e.