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Wasserstein contraction for the stochastic
Morris-Lecar neuron model

Maxime Herda Pierre Monmarché Benôıt Perthame

January 30, 2024

Abstract

Neuron models have attracted a lot of attention recently, both in mathe-
matics and neuroscience. We are interested in studying long-time and large-
population emerging properties in a simplified toy model. From a mathemati-
cal perspective, this amounts to study the long-time behaviour of a degenerate
reflected diffusion process. Using coupling arguments, the flow is proven to be
a contraction of the Wasserstein distance for long times, which implies the ex-
ponential relaxation toward a (non-explicit) unique globally attractive equilib-
rium distribution. The result is extended to a McKean-Vlasov type non-linear
variation of the model, when the mean-field interaction is sufficiently small.
The ergodicity of the process results from a combination of deterministic con-
traction properties and local diffusion, the noise being sufficient to drive the
system away from non-contractive domains.

Mathematics Subject Classification (2020): 35Q84; 60J60; 92B20

Keywords: Voltage-conductance kinetic equation; Neural networks; reflected
SDEs; Fokker-Planck equation; Wasserstein distance; Couplings

1 Introduction

1.1 The model

Motivated by mean field representations of neuronal networks, we consider the ques-
tion of long time behaviour for the following voltage-conductance equations.
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Let a ⩾ 0, 0 < VL < VE, γ, gL, GM > 0, G ∈ C2([VL, VE]; (0, GM ]), and let
f = f(v, g, t) solve

∂tf + ∂v [(gL (VL − v) + g (VE − v)) f ] + γ∂g [(G(v)− g) f ]− a2∂ggf = 0 ,

f(VE, g, t) = f(VL, g, t) = 0 ,

(G(v)− g) f − a∂gf = 0 at g = 0 .

(1)

Then f is the density of the process (vt, gt)t⩾0 on [VL, VE]× R+ solving the SDE{
dvt = gL(VL − vt)dt+ gt(VE − vt)dt ,

dgt = γ (G(vt)− gt) dt+
√
2adBt + dLt ,

(2)

where (Bt)t⩾0 is a standard Brownian motion on R and (Lt)t⩾0 is the local time of
gt at 0, which means gt is reflected at 0. We refer to [26, Chapter 6] for details on
local times. In particular, L is non-decreasing with a finite variation on any finite
time interval, and the Radon measure dLt on R+ is almost surely carried by the
set {t ⩾ 0, gt = 0}. The reflection of gt at 0 is the stochastic counterpart of the
zero-flux boundary condition at the level of the Fokker-Planck equation, given by
the last equation of (1).

The kinetic theory for neuronal networks, has been developed recently as the mean
field representation of large networks with applications to the visual cortex [8, 25].
Macroscopic models of neural networks, as the Integrate-and-Fire equation [6, 3, 12],
describe densities of neurons with potential v, this means that the conductance g is
supposed to be at equilibrium. System (1) is a more detailed kinetic representation
and the macroscopic limit is formally obtained as γ → ∞.

Equation (1) is a simple version of those used to represent electric cells with their
voltage v and conductance g according to the general theory of spiking neurons [4].
More precisely it is related to Morris-Lecar’s formalism [23] (a variant of Hodgkin-
Huxley) which, for a single neuron, reads in full generality

dv(t)

dt
=

I∑
i=1

gi(t)
(
Vi − v(t)

)
,

dgi(t)

dt
= λi

(
v(t)

)(
GI(v(t))− gi(t)

)
, i = 1, ..., I,

with i the ionic channels, Vi the reversal potentials, λi(v) the gating frequency and
GI(v) the equilibrium conductance (for instance of the formGI(v) = α(1+tanh(β(v−
γ)) for some parameters α, β, γ > 0, see [23]). Notice that, if it initially holds,
we have for all t, mini Vi ≤ v(t) ≤ maxi Vi and thus there are no neuron with the
extreme potentials, which explains the boundary condition in v. When considering an
assembly of neurons, noise becomes important and it is represented by the Brownian
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term. It acts only on the variable g, i.e., the synaptic activity or the opening and
closing of ion channels [9]. For the deterministic version of (2) i.e., when a = 0, the
stationary points (v∗, g∗) of (2) are determined by the relations

V (g) :=
gLVL + gVE

gL + g
, g∗ = G

(
V (g∗)

)
, v∗ = V (g∗). (3)

When G decreases such an equilibrium is unique. For more general functions G,
there can be several; then a uniqueness condition is that d

dg
G
(
V (g)

)
< 1, which is

also written
G′(V (g))(VE − V (g)) < (gL + g). (4)

This condition also implies the linear stability of this unique equilibrium.

In order to investigate the large time behavior of solutions to (1), we use a
mathematical approach based on the coupling of stochastic processes as those in (2).
It has two advantages compared to other deterministic methods used to investigate
the long time behavior of kinetic Fokker-Planck equations, such as hypocoercivity
methods [29, 15]. On the first hand, in comparison to [15], we never use the steady
state in our computations and rather use an a posteriori contraction argument to
show its existence and uniqueness. This type of methodology involving non-explicit
steady states also appears with long-time analyses based on Doeblin’s or Harris’s
theorem (see for instance [19, 28]). On the second-hand, to the expense of weak
topology, our analysis does not rely on the use of specific commutators and regularity
estimates as in [29].

Two cases are distinguished in our work: when ∥G′∥∞ is small (which implies
uniqueness of the equilibrium for the deterministic case a = 0) the deterministic
drift of (2) is contracting, namely the distance between two solutions of (2) driven
by the same Brownian motion almost surely decays, independently from the noise
intensity a. However, in the general case where ∥G′∥∞ is not assumed small, this
deterministic contraction is no longer true and we need to make use of the noise to get
two different trajectories closer on average. The difficulty is then that the diffusion
matrix is degenerate. This issue appears in [18] for the kinetic Fokker-Planck diffusion
and [10] for a stochastic FitzHugh-Nagumo model. Our work is similar to those,
although the coupling construction (and a suitable associated modified distance)
should be tailored to the specific dynamics at hand, and we have to deal with the
reflection boundary.

The rest of the paper is organized as follows. The main results are stated in Sec-
tion 1.2 and proven in Section 2. They are extended to systems modeling interacting
neurons in Section 3.
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1.2 Main results

In the following, we state our result for the stochastic system (2). Denote by (Pt)t⩾0

the semigroup associated to (2), namely∫
[VL,VE ]×R+

Ptφf0 = Ef0 (φ(vt, gt)) =

∫
[VE ,VL]×R+

φft

for all bounded measurable test function φ and initial distribution f0. In other words,
Pt is the (backward) solution operator for the dual of (1).

Theorem 1 (Deterministic contraction). Let (vt, gt)t⩾0 and (v′t, g
′
t)t⩾0 be two solu-

tions of (2) driven by the same Brownian motion Bt. Assume that

(VE − VL)∥G′∥∞ < gL . (5)

Then, there are constants C, λ > 0 (explicit in the proof and independent from the
noise intensity a) such that almost surely, for all t ⩾ 0,

|(vt, gt)− (v′t, g
′
t)| ⩽ Ce−λt|(v0, g0)− (v′0, g

′
0)| . (6)

Corollary 1. Under the assumption and with the notations of Theorem 1, for all
Lipschitz continuous φ ∈ C1([VL, VE]× R+,R) and all t ⩾ 0,

|∇Ptφ| ⩽ Ce−λtPt|∇φ| . (7)

Moreover, there exists a unique invariant distribution µ
(a)
∞ of (1), which satisfies the

following log-Sobolev inequality: for all φ ∈ C∞([VL, VE]× R+) with
∫
φ2µ

(a)
∞ = 1,∫

[VL,VE ]×R+

φ2 lnφ2µ(a)
∞ ⩽

2C

λ

∫
[VL,VE ]×R+

|∇φ|2µ(a)
∞ . (8)

Finally, the deterministic ODE corresponding to a = 0 admits a unique stationary
state (v∗, g∗) and, for all a > 0,∫

[VL,VE ]×R+

(
|v − v∗|2 + |g − g∗|2

)
µ(a)
∞ (dv, dg) ⩽

C

λ
a2 .

Notice that condition (5) is stronger than (4) and thus, by itself, existence and
uniqueness of a steady state for the deterministic system is obvious.

Since the diffusion matrix of the process is degenerate, the log-Sobolev inequality
(8) does not imply the exponential decay of the relative entropy along the flow (1).
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It could however allow to get an hypocoercive decay (for (Pt)t⩾0 rather than the dual
operator acting on relative densities) using [21, Theorem 10], which doesn’t require
the explicit knowledge of the invariant measure. We do not address this question,
and refer to [1] for details on the log-Sobolev inequality and some of its consequences.

The next result deals with the general case where (5) is not enforced. The esti-
mates are no longer uniform in a > 0 (and the result doesn’t hold for a = 0). For
p ⩾ 1, we write Pp([VL, VE] × R+) the set of probability measures on [VL, VE] × R+

with a finite pth moment, and Wp the L
p-Wasserstein distance on Pp([VL, VE]×R+),

defined as

Wp(ν, µ) = inf
π∈C(ν,µ)

(∫
([VL,VE ]×R+)2

|x− x′|pπ(dx, dx′)

)1/p

where C(ν, µ) is the set of probability measures on ([VL, VE] × R+)
2 with marginals

ν and µ.

Theorem 2 (Noise-induced contraction). For any values of the parameters (G, γ,
a, gL, VE, VL) with a > 0 there are constants C, λ > 0 (explicitly given in the proof)
such that, for any initial distributions ν, µ ∈ P1([VL, VE]× R+) and all t ⩾ 0,

W1(νPt, µPt) ⩽ Ce−λtW1(ν, µ) . (9)

Moreover, the process admits a unique invariant measure µ
(a)
∞ . For all p > q ⩾ 1,

µ
(a)
∞ ∈ Pp([VL, VE] × R+) and for all ν ∈ Pp([VL, VE] × R+), Wq(νPt, µ

(a)
∞ ) → 0 as

t → ∞. For all ν ∈ P([VL, VE]× R+), νPt weakly converges to µ
(a)
∞ .

The Wasserstein contraction (9) implies ergodicity, a Markovian Central Limit
Theorem and exponential concentration inequalities for empirical averages of the
process, see e.g. [14] and references within. Recall that the convergence in the
Wq sense is equivalent to the weak convergence plus convergence of all moments
up to order q [30]. Notice that, in Theorem 1, the deterministic contraction (6)
straightforwardly implies an exponential Wasserstein contraction similar to (9) but
for Wp distances for all p ⩾ 1 (see [22] for details).

2 Proofs

2.1 The coupling(s)

In this section we introduce the couplings that will be used in the proofs.
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Let B,B′ be two independent standard Brownian motions on R, and let α, β be
two C2 Lipschitz non-negative functions on R with α2 + β2 = 1. Given some initial
condition (v0, g0, v

′
0, g

′
0), consider (vt, gt, v

′
t, g

′
t) the solution of

dvt = gL(VL − vt)dt+ gt(VE − vt)dt

dgt = γ (G(vt)− gt) dt+
√
2a [αtdBt + βtdB

′
t] + dLt

dv′t = gL(VL − v′t)dt+ g′t(VE − v′t)dt

dg′t = γ (G(v′t)− g′t) dt+
√
2a [αtdBt − βtdB

′
t] + dL′

t ,

 (10)

where
αt = α(|gt − g′t|2), βt = β(|gt − g′t|2),

and L,L′ are respectively the local time at 0 of gt and g′t.
By [27, Theorem 5.1], the process is well-defined, at least up to time τn = inf{t ⩾

0, gt+g′t ⩾ n} for all n ∈ N, and thus for all times by a standard Lyapunov argument
(using e.g. that (v, g, v′, g′) 7→ g2 + (g′)2 is a Lyapunov function).

By Levy’s characterization of the Brownian motion, the processes W,W ′ defined
by

Wt =

∫ t

0

[αsdBs + βsdB
′
s] , W ′

t =

∫ t

0

[αsdBs − βsdB
′
s]

are Brownian motions too. As a consequence, Zt = (vt, gt) and Z ′
t = (v′t, g

′
t) are

solutions of (2) driven by W and W ′, so that their laws solve the PDE (1).
When α = 1 (and thus β = 0), the process (vt, gt, v

′
t, g

′
t) is called a synchronous

coupling for (2). When β(s) = 1s>0, this is called a mirror (or reflection) coupling
for (2). Although α and β are not C2 in this case, it has been shown to be well-
defined, at least for elliptic diffusion processes, see e.g. [11, 20, 31] for reflected
processes. In order to avoid technical issues in our hypoelliptic context, and since we
focus on the Wasserstein distance rather than the total variation (so that we do not
need coalescent processes), we will work with a regularized version in Section 2.3.

In the general case, for any f1, f2 ∈ C2(R), by Itô’s formula,

df1
(
|vt − v′t|2

)
= f ′

1

(
|vt − v′t|2

) [
−2(gL + gt)|vt − v′t|2 + 2(vt − v′t)(gt − g′t)(VE − v′t)

]
dt, (11)

and

df2
(
|gt − g′t|2

)
= 2(gt − g′t)f

′
2

(
|gt − g′t|2

) [
γ (G(vt)− gt −G(v′t) + g′t) dt+ 2

√
2aβtdB

′
t

]
+8a2β2

t

(
f ′
2

(
|gt − g′t|2

)
+ 2|gt − g′t|2f ′′

2

(
|gt − g′t|2

))
dt

−2g′tf
′
2

(
|g′t|2

)
dLt − 2gtf

′
2

(
|gt|2

)
dL′

t . (12)
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In the last two terms, we used that L (resp. L′) is constant whenever gt > 0
(resp. g′t > 0). Moreover, since L and L′ are non-decreasing, as soon as f2 is non-
decreasing, the contribution of the local times is negative (which is a general fact
when the boundary of the domain is convex, see [31, Lemma 2.1]).

2.2 Synchronous coupling: proof of Theorem 1

This section is devoted to the proofs of Theorem 1 and Corollary 1.

Proof of Theorem 1. Taking α = 1, β = 0 in the definition of the process (10) (which
is thus a synchronous coupling) and f1(x) = f2(x) = x in (11) and (12) we get, for
A > 0, almost surely for all t ⩾ 0,

1

2
d
(
|vt − v′t|2 + A|gt − g′t|2

)
⩽ −gL|vt − v′t|2dt+ (VE − VL)|vt − v′t||gt − g′t|dt

+Aγ
(
∥G′∥∞|vt − v′t||gt − g′t| − |gt − g′t|2

)
dt .

This is less than −λ (|vt − v′t|2 + A|gt − g′t|2) dt for some λ > 0 if A > 0 is such that

Q(A) := (VE − VL + Aγ∥G′∥∞)
2 − 4AγgL < 0 .

This is always possible whenG is constant, by taking A large enough. When ∥G′∥∞ ̸=
0, the minimum of Q is attained at

A0 =
1

γ∥G′∥∞

(
2gL

∥G′∥∞
− (VE − VL)

)
.

So, Q takes negative values on R+ iff Q(A0) < 0, namely iff

(VE − VL)∥G′∥∞ < gL ,

that is condition (5). Under this condition, we thus get

1

2
d
(
|vt − v′t|2 + A|gt − g′t|2

)
⩽ −λ

(
|vt − v′t|2 + A|gt − g′t|2

)
,

with λ = −Q(A0) > 0, from which conclusion easily follows.

Proof of Corollary 1. The first part follows from [22]. More precisely, the proof of
(7) from Theorem 1 is given in the proof of [22, Theorem 1 (iii)⇒(v)], and then
the log-Sobolev inequality is [22, Proposition 3]. Moreover, (6) implies that Pt0 is
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a contraction on the metric space (P1([VL, VE] × R+),W1) (which is complete by
[30, Theorem 6.18]) for some t0 large enough. Indeed, given ν0, ν

′
0 ∈ P1([VL, VE] ×

R+) and any coupling π0 ∈ C(ν0, ν ′
0), by considering initial conditions (z0, z

′
0) :=

((v0, g0), (v
′
0, g

′
0)) distributed according to π0, we get that (zt, z

′
t) := ((vt, gt), (v

′
t, g

′
t))

(as considered in Theorem 1, namely as two solutions of (2) driven by the same
Brownian motion) is a coupling of ν0Pt and ν ′

0Pt, from which

W1(ν0Pt, ν
′
0Pt) ⩽ E (|zt − z′t|) ⩽ Ce−λtEπ0 (|z0 − z′0|) ,

and taking the infimum over π0 yields the W1 contraction

W1(ν0Pt, ν
′
0Pt) ⩽ Ce−λtW1(ν0, ν

′
0) . (13)

Denoting by µ
(a)
∞ the fixed point of Pt0 and using that Pt0Ps = PsPt0 for all s ⩾ 0,

we get that µ
(a)
∞ Ps is a fixed point of Pt0 and thus, by uniqueness of the latter, that

µ
(a)
∞ Ps = µ

(a)
∞ for all s ⩾ 0, i.e. µ

(a)
∞ is an invariant measure of the semi-group.

For the comparison with the deterministic case, we follow the computations of
the proof of Theorem 1 except that, now, (v′t, g

′
t)t⩾0 is associated to a = 0 (i.e. a = 0

in the fourth line of (10)). Then, considering A and λ as in the previous section (in
particular they are independent from the noise intensity a), we find

1

2

d

dt
E
(
|vt − v′t|2 + A|gt − g′t|2

)
⩽ E

[
− gL|vt − v′t|2 + (VE − VL)|vt − v′t||gt − g′t|

+Aγ
(
∥G′∥∞|vt − v′t||gt − v′t| − |gt − g′t|2

) ]
+ Aa2

⩽ −λE
(
|vt − v′t|2 + A|gt − g′t|2

)
+ Aa2 .

Notice that Theorem 1 applies to the case a = 0, so we find that the condition (5)
implies that the stationary points (v∗, g∗) given by (3) are globally attractive for
the deterministic ODE. Furthermore, letting t → ∞ in the previous bound with
(v′t, g

′
t) = (v∗, g∗), we end up with∫

[VL,VE ]×R+

(
|v − v∗|2 + A|g − g∗|2

)
µ(a)
∞ (dv, dg) ⩽

A

λ
a2 ,

where µ
(a)
∞ is the invariant measure with noise intensity a.

2.3 Mirror coupling: proof of Theorem 2

This section is devoted to the proof of Theorem 2. To this end, we consider the full
coupling introduced in Section 2.1. For some ξ ∈ (0, 1], which will be sent to 0 at
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the end, we choose α, β such that β(s2) = 1 for s ⩾ ξ and β(s2) = 0 for s ⩽ ξ/2
(recall that α2 + β2 = 1). As discussed in Section 2.1, this is a regularized version of
a mirror coupling.

Remark 1. In fact the use of a mirror coupling (i.e. β(s2) = 1 for s away from
zero) is not crucial in the proof. The important point is to keep some noise in the
evolution of the difference between the two processes, i.e. to avoid the synchronous
coupling (β = 0). For instance an independent coupling (corresponding to α(s2) =
β(s2) = 1/

√
2 for s ⩾ ξ) would also work. The mirror coupling is a natural choice

as it maximizes the variance of the noise.

We write xt = |vt−v′t| and yt = |gt−g′t|. To prove (9), we assume that ∥G′∥∞ ̸= 0
(otherwise (9) is simply a consequence of Theorem 1, as we saw with (13)).

We now have to design a suitable distance between the two processes, that will
tend to decrease on average. To do so, let θ1, θ2 ∈ C2(R+,R+) be non-decreasing
functions such that θ1(r) = θ2(r) = 0 for all r ∈ [0, ξ/4]. In particular, r 7→ fi(r) =
θi(

√
r) is C2 for i = 1, 2 and Itô’s formula ((11) and (12)) gives

dθ1(xt) ⩽ θ′1(xt) [−(gL + gt)xt + yt(VE − v′t)] dt

dθ2(yt) = θ′2(yt)
[
γ (G(vt)−G(v′t)− yt) dt+ 2

√
2aβtdB

′
t

]
+4a2β2

t θ
′′
2(yt)dt− θ′2(yt)(dLt + dL′

t) .

For the last term, we have simply used that, on {t ⩾ 0, gt = 0} (outside of which,
almost surely, dLt = 0), it holds 2g′tf

′
2 (|g′t|2) = 2|g′t − gt|f ′

2 (|g′t − gt|2) = θ′2(yt), and
similarly for the term 2gtf

′
2 (|gt|2) dL′

t.
Setting Rt = θ1(xt) + θ2(yt) and considering a C2 function ρ : R+ → R+,

dρ(Rt) = ρ′(Rt) (dθ1(xt) + dθ2(yt)) + 4a2β2
t (θ

′
2(yt))

2
ρ′′(Rt)dt .

As a consequence, when, additionally, ρ, θ1 and θ2 are non-decreasing we find

d

dt
E (ρ(Rt)) ⩽ E (Ψt)

where, using that the contribution of the local times is non-positive, Ψt is given by

Ψt = ρ′(Rt)
[
θ′1(xt) [−gLxt + yt(VE − VL)] + θ′2(yt)γ (∥G′∥∞xt − yt) + 4a2β2

t θ
′′
2(yt)

]
+4a2β2

t (θ
′
2(yt))

2
ρ′′(Rt) .

The key point of the proof is to establish that Ψt ⩽ −λρ(Rt) for some λ > 0 up to
some terms that vanish with ξ. To that end, we will choose more specific functions
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Figure 1: Left top: graphs of θ1 (green) and θ2 (red). Left bottom: graph of
s 7→ β(s2). Right: graph of ρ.

ρ, θ1, θ2 (which are represented in Figure 1). As will appear in the computations,
the important points are the following: the derivatives of θ1 and θ2 have to be 0 at
0 (for r 7→ θi(

√
r) to be C2). As a consequence, between ξ/4 and ξ/2, θ′′2 is very

large (when ξ is small, since θ′2 has to go from 0 to some fixed value m > 0 in a
small interval), and thus it is important that β = 0 in this region (due to the term
β2
t θ

′′
2(yt) in Ψt). Moreover, the balance between θ1 and θ2 has to switch at some

point: when yt = |gt − g′t| is too small for the noise to intervene and xt = |vt − v′t|
is the main contribution of the distance between the two processes (which can only
happen for small distances since xt is bounded), the term −gLθ

′
1(xt)xt has to control

θ′2(yt)γ∥G′∥∞xt, so that θ′2(yt)/θ
′
1(xt) has to be sufficiently small. On the contrary,

when yt prevails, the term −γθ′2(yt)yt has to control θ′1(xt)yt(VE − VL), and thus
θ′2(yt)/θ

′
1(xt) has to be large enough. Finally, in order to exploit the term β2

t ρ
′′(Rt)

in Ψt, ρ has to be sufficiently concave – while still remaining non-decreasing – up to
R∗ (after which the contraction is ensured by the deterministic drift, so that ρ can
grow linearly, ensuring the equivalence with the standard distance).

Let us now state our precise choices for the functions θ1, θ2 and ρ. Assume that
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θ′1(r) ∈ [0, 1] for all r ⩾ 0 and that θ′1(r) = 1 for all r ⩾ ξ. Let

m =
gL

2γ∥G′∥∞
, M = 4

VE − VL

γ
, R∗ = max (2∥G′∥∞(VE − VL), 2 + ξ) . (14)

Assume that M > m (otherwise Theorem 1 applies and Theorem 2 follows). Assume
that θ′2(r) ∈ [0,m] for r ∈ [0, ξ/2], that θ′2(r) = m for all r ∈ [ξ/2, 1] (in particular
θ′′2(r) = 0 on this interval), that θ′′2(r) ∈ [0,M −m] for r ∈ [1, R∗] and θ′2(r) = M for
r ⩾ R∗ (so that θ′′2(r) = 0 on this interval). Let

k =
1

8a2m2

(
1 +

1

m

(
VE − VL + 4a2(M −m)

)
+mγ∥G′∥∞

)
. (15)

Assume that ρ(0) = 0, ρ′(0) = 1, ρ′′(r) = −2krρ′(r) for all r ∈ [0, R∗] and ρ′′(r) = 0
for all r ⩾ R∗ + ξ, with ρ′′(r) ⩽ 0 for all r ⩾ 0 and ρ′(r) ∈ [e−kR2

∗−ξ, 1] for all r ⩾ 0.
First, notice that ρ(r) ⩽ r, θ1(r) ⩽ r and θ2(r) ⩽ Mr, so that

ρ(Rt) ⩽ Rt ⩽ xt +Myt .

Conversely, ρ(r) ⩾ e−kR2
∗−ξr, θ1(r) ⩾ r − ξ and θ2(r) ⩾ mr − ξ, so that

ekR
2
∗+ξρ(Rt) ⩾ Rt ⩾ xt +myt − 2ξ .

Let us prove that, whatever the values of xt, yt ⩾ 0,

Ψt ⩽ −λe−ξρ(Rt) + Cξ , (16)

for some constants C, λ > 0 independent from ξ. We distinguish different cases.

• When yt ⩽ ξ, we have β2
t θ

′′
2(yt) = 0, θ′2(yt) ⩽ m and β2

t ρ
′′(Rt) ⩽ 0, hence

Ψt = ρ′(Rt) [θ
′
1(xt) [−gLxt + yt(VE − VL)] + θ′2(yt)γ (∥G′∥∞xt − yt)]

⩽ ρ′(Rt)xt [−gLθ
′
1(xt) +mγ∥G′∥∞] + ξ(VE − VL) .

– If xt ⩾ ξ, it yields

Ψt ⩽ ρ′(Rt)xt [−gL +mγ∥G′∥∞] + ξ(VE − VL)

⩽ −gL
2
xtρ

′(Rt) + ξ(VE − VL)

thanks to the definition (14) of m. Since xt ⩾ ξ ⩾ yt, we get Rt ⩽
xt(1 +M) and

Ψt ⩽ − gL
2 + 2M

Rtρ
′(Rt)+ξ(VE−VL) ⩽ − gL

2 + 2M
e−kR2

∗−ξρ(Rt)+ξ(VE−VL) .

11



– If xt ⩽ ξ, it gives

Ψt ⩽ ξmγ∥G′∥∞ + ξ(VE − VL) .

Besides, ρ(Rt) ⩽ (1 +M)ξ so that, for any λ independent from ξ,

Ψt + λρ(Rt) ⩽ Cξ

for some C > 0 independent from ξ.

• When yt ∈ [ξ, 1], βt = 1. Using that θ′1 ⩽ 1, θ′2(yt) = m, ρ′′(r) = −2krρ′(r),

Ψt ⩽ ρ′(Rt) [yt(VE − VL) +mγ∥G′∥∞xt]− 8ka2m2Rtρ
′(Rt)

⩽ ρ′(Rt)Rt

[
VE − VL

m
+mγ∥G′∥∞ − 8ka2m2

]
+ 2ξ

(
VE − VL

m
+mγ∥G′∥∞

)
⩽ −ρ′(Rt)Rt + Cξ

⩽ −e−kR2
∗−ξρ(Rt) + Cξ

for some C > 0 independent from ξ thanks to the choice (15) of k.

• When yt ∈ [1, R∗], the only difference with the previous case is that θ′′2(yt) = 0.
Using that g′′(yt) ⩽ M −m, g′(yt) ∈ [m,M ] and yt ⩾ 1,

Ψt ⩽ ρ′(Rt)
[
yt(VE − VL) +Mγ∥G′∥∞xt + 4a2(M −m)

]
+ 4a2m2ρ′′(Rt)

⩽ ρ′(Rt)
[
yt
(
VE − VL + 4a2(M −m)

)
+Mγ∥G′∥∞xt

]
+ 4a2m2ρ′′(Rt) .

So we are exactly in the same case as before up to a slight change of constant,
but again the choice k in (15) ensures that

Ψt ⩽ −e−kR2
∗−ξρ(Rt) + Cξ

for some C > 0 independent from ξ.

• When yt ⩾ R∗, we have θ
′
2(yt) = M hence, using that ρ′′ ⩽ 0 and xt ⩽ VE−VL,

Ψt ⩽ ρ′(Rt) [yt(VE − VL) +Mγ (∥G′∥∞(VE − VL)− yt)]

⩽ −Mγyt
4

ρ′(Rt)

thanks to the choices of M and R∗ in (14). Moreover,

yt ⩾
yt +R∗

2
⩾

yt + xtR∗/(VE − VL)

2
⩾ min

(
1

2M
,

R∗

2(VE − VL)

)
Rt .

12



Using again that Rtρ
′(Rt) ⩾ e−kR2

∗−ξρ(Rt), we thus get

Ψt ⩽ −γ

8
min

(
1,

MR∗

VE − VL

)
e−kR2

∗−ξρ(Rt) .

This concludes the proof of (16), with

λ = min

(
1,

gL
2 + 2M

,
γ

8
,

γMR∗

8(VE − VL)

)
e−kR2

∗ .

This implies that
d

dt
E (ρ(Rt)) ⩽ −λe−ξE (ρ(Rt)) + Cξ .

Hence,

E (|vt − v′t|+m|gt − g′t|) ⩽ ekR
2
∗+ξE (ρ(Rt)) + 2ξ

⩽ ekR
2
∗+ξe−λe−ξt E (ρ(R0)) +

(
CekR

2
∗+2ξ

λ
+ 2

)
ξ

⩽ ekR
2
∗+ξe−λe−ξt E (|v0 − w′

0|+M |g0 − g′0|) +

(
CekR

2
∗+2ξ

λ
+ 2

)
ξ .

Taking initial conditions distributed according to an optimal coupling for W1, we get

W1(νPt, µPt) ⩽ C ′max(1,M)

min(1,m)
e−λe−ξtW1(ν, µ) + C ′ξ

for some C ′ > 0 independent from ξ∈ (0, 1]. Yet, W1(νPt, µPt) for t ⩾ 0 does not
depend on ξ so we let ξ vanish to conclude the proof of (9).

The existence of an invariant measure is implied by the fact that, for t large
enough, Pt is a contraction of (P1,W1), which is a complete space. Hence, for a
given t > 0, Pt has a unique fixed point µ∗ in P1, and the semigroup property
PsPt = Pt+s = PtPs implies that this fixed point is in fact an invariant measure of
Ps for all s ⩾ 0. To see that µ∗ has in fact all moments finite, consider for k ⩾ 2 the
observable φk(v, g) = |g|k. It is clear that

d

dt
E (φk(vt, gt)) ⩽ −δE (φk(vt, gt)) + C

13



for some C, δ > 0, from which Ef0 (φk(vt, gt)) ⩽ e−δtEf0 (φk(v0, g0)) + C/δ for all
initial condition f0. Letting t → ∞ gives finite moments for µ∗. To get the long-
time convergence in Wq for q > 1, notice that for two random variables X, Y , from
Hölder’s and Minkowski’s inequalities, for any α ∈ (0, 1)

E (|X − Y |q) ⩽ [E (|X − Y |)]α
[
E
(
|X − Y |

q−α
1−α

)]1−α

⩽ [Cq,αE (|X − Y |)]α
([

E
(
|X|

q−α
1−α

)]1−α

+
[
E
(
|Y |

q−α
1−α

)]1−α
)

for some Cq,α. From this, in our case, we get that for any probability measures ν, ν ′,

Wq(ν, ν
′) ⩽ C ′

q,αW
α/q
1 (ν, ν ′)

(
1 + ν

(
φ(q−α)/(1−α)

)
+ ν ′ (φ(q−α)/(1−α)

))
for some C ′

q,α > 0 (we used that (1 − α)/q ⩽ 1 for simplicity). Noticing that
(q − α)/(1 − α) may be taken arbitrarily close to q by taking α small enough and
using the previous uniform in time moment bounds, we get that for any ν ∈ Pp for
some p > q,

Wq(νPt, µ∗) ⩽ Ce−αλt/q

for some C, α > 0 independent from t.
Finally, for any initial condition ν (not necessarily with moments), we can de-

compose ν = ν1B(n) + ν1B(n)c where B(n) is the ball of R2 centered at the origin
with radius n. From the previous results, writing νn = ν1B(n)/ν(B(n)) the law of the
initial condition conditioned to be in B(n), we know that νnPt → µ∗ as t → ∞, and
on the other hand ν(B(n)) → 1 as n → ∞, which concludes the proof of Theorem 2.

2.4 Fokker-Planck interpretation of the coupling

Although our proofs rely on the probabilistic couplings of Section 2.1, let us briefly
and informally discuss their PDE counterpart, that is the Fokker-Planck equation
for the law Πt of (vt, v

′
t, gt, g

′
t). In order to determine the equation on Πt, one can use

Itô’s formula to get, for a test function φ ≡ φ(v, v′, g, g′, t) that

φ(vt, v
′
t, gt, g

′
t, t) = φ(v0, v

′
0, g0, g

′
0, 0) +

∫ t

0

(∂s + L)φ(vs, v′s, gs, g′s, s)ds

+

∫ t

0

∂gφ(vs, v
′
s, 0, g

′
s, s)dLs +

∫ t

0

∂g′φ(vs, v
′
s, gs, 0, s)dL

′
s

+

∫ t

0

√
2aαs(∂g+∂g′)φ(vs, v

′
s, gs, g

′
s, s)dBs+

∫ t

0

√
2aβs(∂g−∂g′)φ(vs, v

′
s, gs, g

′
s, s)dB

′
s.
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with L the differential operator

Lφ = (gL (VL − v) + g (VE − v)) ∂vφ+ γ (G(v)− g) ∂gφ

(gL (VL − v′) + g′ (VE − v′)) ∂v′φ+ γ (G(v′)− g′) ∂g′φ

+ a2∂ggφ+ 2a2(α2(|g − g′|2)− β2(|g − g′|2))∂gg′φ+ a2∂g′g′φ.

Let us restrict to test functions φ ∈ C1,2
b ([0, T ] × Ω̄) with Ω = (VL, VE)

2 × (0,∞)2

such that ∂gφ(g = 0) = ∂g′φ(g
′ = 0) = 0, in order to get rid of the local time

contributions. By taking expectations in the formula above one obtains∫
Ω

φ(T )dΠT =

∫
Ω

φ(0)dΠ0 +

∫ T

0

∫
Ω

(∂s + L)φ(s)dΠs.

After formal integration by parts, one recovers the strong form of the Fokker-Planck
equation for the coupling

∂tΠt + ∂v ([gL (VL − v) + g (VE − v)] Πt) + γ∂g ([G(v)− g] Πt)

∂v′ ([gL (VL − v′) + g′ (VE − v′)] Πt) + γ∂g′ ([G(v′)− g′] Πt)

− a2∂ggΠt − 2a2∂gg′
([
α2(|g − g′|2)− β2(|g − g′|2)

]
Πt

)
− a2∂g′g′Πt = 0,

and at the boundaries, on the one hand,

Πt = 0 when v = VE or v = VL or v′ = VL or v′ = VE,

and, on the other hand,

γG(v)Πt − a2∂gΠt − 2a2∂g′ [(α
2(|g′|2)− β2(|g′|2))Πt] = 0 when g = 0,

γG(v′)Πt − a2∂g′Πt − 2a2∂g [(α
2(|g|2)− β2(|g|2))Πt] = 0 when g′ = 0,

and
(α2(0)− β2(0))Πt = 0 when g = g′ = 0.

Formally, one can check that the marginals follow the original Fokker-Planck equa-
tion (1). To conclude this section let us stress again that this PDE was not used in
our proofs, which are based on the SDE representation of the couplings. The rigorous
justification of these computations is unclear because of the combination of bound-
ary reflection and coupling, which can in some cases create density in non-trivial
subspaces even when the initial distribution is smooth (see [5] for instance).
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3 Interacting neuron networks

3.1 Finite system of neurons

For N > 1, write v = (v1, . . . , vN) ∈ [VL, VE]
N , g = (g1, . . . , gN) ∈ RN

+ . Consider the
process (vt,gt)t⩾0 solving

∀i ∈ J1, NK ,
{

dvit = gL(VL − vt)dt+ git(VE − vit)dt

dgit = γ (Gi(vt)− git) dt+
√
2adBi

t + dLi
t ,

(17)

where B1, . . . , BN are independent Brownian motions, Li is the local time at 0 of gi

and Gi ∈ C1([VL, VE]
N , (0,∞)).

Theorem 3 (Wasserstein contraction for networks). Assume that there exists K > 0
such that |∂viGi(v)| ⩽ K for all v ∈ [VL, VE]

N , i ∈ J1, NK. Let M,m, λ, k, R∗ be as
in Section 2.3 (except that ∥G′∥∞ is replaced by K). Then, for all t ⩾ 0 and all
µ, ν ∈ P1([VL, VE]

N × RN
+ ),

W1,ℓ1(νPt, µPt) ⩽
max(1,M)

min(1,m)
e−(λ−η)tW1,ℓ1(ν, µ) ,

where W1,ℓ1 is the Wasserstein-1 distance associated to ∥(v,g)−(w,h)∥1 =
∑N

i=1 |vi−
wi|+ |gi − hi|, and

η = MγekR
2
∗ max
1⩽i⩽N

N∑
j ̸=i

∥∂vjGi∥∞ .

In particular, if λ > η, the process admits a unique invariant measure µN
∗ , whose

moments are all finite and which is globally attractive for Wp for all p ⩾ 1.

Remark 2. The point is that when K is independent from N , so is λ.

Proof. We consider a particle-wise mirror coupling as in Section 2.3, in the sense
that we consider independent Brownian motions Bi, B′i for all i ∈ J1, NK and we
let (vi, gi, v′i, g′i) solve (10), driven by these Brownian motions, with α, β as in Sec-
tion 2.3, except that G(v) is replaced by Gi(v). We also consider θ1, θ2, ρ some
non-negative non-decreasing C2 functions and let xi

t = |vit − v′it |, yit = |git − g′it |,
Ri

t = θ1(x
i
t) + θ2(y

i
t). Then, as in Section 2.3,

∂tE
(
ρ(Ri

t)
)

⩽ E
(
Ψi

t

)
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with

Ψi
t = ρ′(Ri

t)

[
θ′1(x

i
t)
[
−gLx

i
t + yit(VE − VL)

]
+ θ′2(y

i
t)γ

(
N∑
j ̸=i

∥∂vjGj∥∞xj
t +Kxi

t − yit

)

+4a2β2
t,iθ

′′
2(y

i
t)

]
+ 4a2β2

t,i

(
θ′2(y

i
t)
)2

ρ′′(Ri
t)

:= Ψ̂i
t + θ′2(y

i
t)ρ

′(Ri
t)γ

N∑
j ̸=i

∥∂vjGj∥∞xj
t ,

where Ψ̂i
t is exactly as in Section 2.3 with ∥G′∥∞ replaced by K. So we take ρ, θ1, θ2

exactly as in Section 2.3 (with ∥G′∥∞ replaced by K), in particular Ψ̂i
t ⩽ −λe−ξRi

t+
Cξ for an arbitrary ξ. Besides, we can bound

θ′2(y
i
t)ρ

′(Ri
t)γ

N∑
j ̸=i

∥∂vjGj∥∞xj
t ⩽ MγekR

2
∗+ξ

N∑
j ̸=i

∥∂vjGj∥∞ρ(Rj
t ) ,

and thus,

∂t

N∑
i=1

E
(
ρ
(
Ri

t

))
⩽ −

(
λe−ξ − ηeξ

) N∑
i=1

E
(
ρ
(
Ri

t

))
+ Cξ .

Conclusion follows as in the case N = 1.

3.2 Non-linear limit in the mean-field case

As a simple example of interacting neurons (see [3, 12] for more realistic mean field
limits, or [2] and references therein for spatially extended mean-field interactions),
we consider the case where

Gi(v) = H0(v
i) +

1

N − 1

∑
j ̸=i

H1(v
i, vj) (18)

for some functions H0 ∈ C1([VL, VE], (0,∞)), H1 ∈ C1([VL, VE]
2, (0,∞)). In that case,

|∂viGi(v)| ⩽ |H ′
0(v

i)|+ 1

N − 1

∑
j ̸=i

|∂viH1(v
i, vj)| ⩽ ∥H ′

0∥∞ + ∥∇H1∥∞ , (19)

and, for j ̸= i,

|∂vjGi(v)| =
1

N − 1
|∂vjH1(v

i, vj)| ⩽ 1

N − 1
∥∇H1∥∞ , (20)
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from which K and η in Theorem 3 can be taken independent from N .
The law of the first neuron is expected to converge as N → ∞ to the solution of

the non-linear equation
∂tf + ∂v [(gL (VL − v) + g (VE − v)) f ]

+γ∂g [(H0(v) +H1 ⋆ f(v)− g) f ]− a∂ggf = 0
f(VE, g, t) = f(VL, g, t) = 0
(H0(v) +H1 ⋆ f(v)− g) f − a∂gf = 0 at g = 0 ,

(21)

where

H1 ⋆ f(v) =

∫
[VL,VE ]×R+

H1(v, w)f(w, h)dwdh .

The well-posedness of the system (21) for f0 ∈ P1([VL, VE] × R+) follows from a
classical fixed-point argument, using again a synchronous coupling to see that the
solution is Lipschitz in terms of the non-linearity. We do not detail this and refer to
e.g. the similar proof of [17, Propostion 1.1].

Similarly, propagation of chaos, i.e. convergence of the joint law of a fixed number
of neurons of (17) toward independent solutions of the non-linear system (21), is
classically obtained using a synchronous coupling:

Proposition 1 (Propagation of chaos). Let a ⩾ 0, 0 < VL < VE, γ, gL > 0, H0 ∈
C1([VL, VE], (0,∞)), H1 ∈ C1([VL, VE]

2, (0,∞)) and f0 ∈ P1([VL, VE] × R+). There
exist C0, c > 0 such that the following holds. For all integer N ≥ 2, let (v,g) be a
solution of (17) in the mean-field case (18) with initial condition distributed according

to f⊗N
0 . For k ⩽ N , Denote by f

(k,N)
t the law of (v1t , g

1
t , . . . , v

k
t , g

k
t ). Consider f̄ the

solution of (21) with initial condition f0. Then, for all t ⩾ 0,

W2

(
f
(k,N)
t , f̄⊗k

t

)
⩽

√
k√
N
C0e

ct .

In fact, using the W1 contraction of Theorem 3, one can get a similar result
uniformly in time, i.e. without the ect term (with W1 instead of W2 on the left-hand
side). However the basic propagation of chaos result stated here (in finite time) is
already sufficient to allow to let N → ∞ in Theorem 3. Before providing the proof
of Proposition 1, let us thus simply state what this yields (using as in the proof of
Theorem 2 that (P1,W1) is a complete space to get a unique fixed point in the case
λ > θ).

18



Theorem 4 (Non-linear Wasserstein contraction). Under the assumptions and with
the notations of Theorem 3 in the mean-field case (18) (in particular with λ, η in-
dependent from N thanks to (19) and (20)), for any ft, f

′
t (weak) solutions of the

non-linear PDE (21) with f0, f
′
0 ∈ P1([VL, VE]× R+) and all t ⩾ 0,

W1(ft, f
′
t) ⩽

max(1,M)

min(1,m)
e−(λ−θ)tW1(f0, f

′
0) .

In particular, if λ > θ, then (21) admits a unique stationary solution, which is
globally attractive in W1.

Proof of Proposition 1. We consider the synchronous coupling of a process (v,g)
solving (17) and of N independent non-linear processes with law f̄t, namely, for all
i ∈ J1, NK,

dvit = gL(VL − vit)dt+ git(VE − vit)dt

dgit = γ
(
H0(v

i
t) +

1
N−1

∑
j ̸=i H1(v

i
t, v

j
t )− git

)
dt+

√
2adBi

t + dLi
t

dv′it = gL(VL − v′it )dt+ g′it (VE − v′it )dt

dg′it = γ
(
H0(v

′i
t ) +H1 ⋆ f̄t(v

′i
t )− g′it

)
dt+

√
2adBi

t + dL′i
t ,

with the same initial conditions distributed according to f⊗N
0 . In particular, by Itô

calculus, the law of (v′i, g′i) solves (21) and is thus equal to f̄ , from which

W2
2

(
f
(k,N)
t , f̄⊗k

t

)
⩽ E

(
k∑

i=1

|vit − v′it |2 + |git − g′it |2
)

=
k

N
E

(
N∑
i=1

|vit − v′it |2 + |git − g′it |2
)

, (22)

where we used the interchangeability of the neurons.
Similarly to the proof of Theorem 1, using in particular that the contribution of

the local times is negative and that H0, H1 are Lipschitz, we get

1

2
d

N∑
j=1

(
|vjt − v′jt |2 + |gjt − g′jt |2

)
⩽ c

N∑
j=1

(
|vjt − v′jt |2 + |gjt − g′jt |2

)
dt

+
N∑
j=1

∣∣∣∣∣H1 ⋆ f̄t(v
′j
t )−

1

N − 1

∑
i ̸=j

H1(v
′j
t , v

′i
t )

∣∣∣∣∣
2

dt
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for some constant c > 0, where we have bounded∣∣∣∣∣H1 ⋆ f̄t(v
′j
t )−

1

N − 1

∑
i ̸=j

H1(v
j
t , v

i
t)

∣∣∣∣∣
⩽

∣∣∣∣∣H1 ⋆ f̄t(v
′j
t )−

1

N − 1

∑
i ̸=j

H1(v
′j
t , v

′i
t )

∣∣∣∣∣+ 1

N − 1

∑
i ̸=j

∣∣H1(v
′j
t , v

′i
t )−H1(v

j
t , v

i
t)
∣∣

⩽

∣∣∣∣∣H1 ⋆ f̄t(v
′j
t )−

1

N − 1

∑
i ̸=j

H1(v
′j
t , v

′i
t )

∣∣∣∣∣+ ∥H ′
1∥∞

(
|vjt − v′jt |+

1

N − 1

∑
i ̸=j

|vit − v′it |

)
.

Using that v′it and v′jt are independent when i ̸= j and that H1⋆f̄t(w) = E[H1(w, v
′i
t )]

for any w ∈ [VL, VE], expanding the square for a fixed j ∈ J1, NK leads to

E

∣∣∣∣∣H1 ⋆ f̄t(v
′j
t )−

1

N − 1

∑
i ̸=j

H1(v
′j
t , v

′i
t )

∣∣∣∣∣
2

=
1

(N − 1)2

∑
i ̸=j

E
∣∣H1 ⋆ f̄t(v

′i
t )−H1(v

′j
t , v

′i
t )
∣∣2 ⩽

4∥H1∥2∞
N − 1

.

Using Gronwall’s Lemma (and the fact that the initial conditions are the same for
the two processes) thus yields

N∑
j=1

E
(
|vjt − v′jt |2 + |gjt − g′jt |2

)
⩽

4N

N − 1
∥H1∥2∞tect ,

which, thanks to (22), concludes the proof.

4 Conclusion

The statistical physics representation of the Morris-Lecar equation is a simplified
model for neural assemblies describing the number of neurons with voltage v (a
macroscopic variable) and conductance g (a mesoscopic variable). In the determin-
istic case this system admits various long term behaviours related to the number of
stationary states. With a degenerate diffusion on the kinetic variable, we are able
to prove exponential convergence to the steady state. Our method uses synchronous
or mirror couplings of the related processes. It is flexible and allows us to study the
long term behaviour of N interacting individual neurons as well as their mean field
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limit.

Several extensions are possible. Firstly, our model is simplified with two con-
ductances, as a consequence periodic solutions of the deterministic model are not
observed. Our coupling method should extend without difficulty to more elaborate
Morris-Lecar systems, as described in the introduction. Secondly, we have used a
standard mean-field limit as used for particles approximation in kinetic theory. The
extension to more realistic mean-field limits leading to Integrate-and-Fire equations,
with coupling between neurons through voltage discharges, is an interesting exten-
sion. The mathematical analysis of the underlying nonlinear kinetic equations faces
difficulties due to boundary conditions that change type and, as here, to degeneracy
of the Fokker-Planck equation. Existence of bounded stationary solutions has been
developed in [24, 16], numerical analysis in [7]. Also, the derivation from stochastic
models of interacting individual neurons has attracted a lot of attention, see [3, 13]
and references therein.
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