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ABSTRACT
Acceptability and trust toward an Artificial Agent (AA) are known 
to be strongly related to the transparency of its behavior. How-
ever, the opacity of the AI techniques implemented to drive the 
behavior of AAs is growing in parallel with their performance 
(performance/transparency trade-off). Thus, i t is crucial and in-
creasingly required to identify minimal and necessary information 
for achieving efficient human/AA interaction in order to include 
them as AAs’ requirements at design stage. For this purpose, this 
paper proposes to bring knowledge and methods from domains 
accustomed to human behavior studies. Based on ergonomic and 
cognition literature, this paper tests through a user-study the hy-
pothesis that sharing distal, proximal and motor intentions (what 
we call intention-based explanations) will improve the acceptability 
of an AA. The "Overcooked" task from Carroll and colleagues [3] 
- which requires coordination on goals and motor levels - is used
as a test-bed for hypotheses manipulation. Our experimental work
consisted in implementing a modified version of the task, analyzing
60 subjects performance, behaviors and feelings in two groups (con-
trol and hypothesis-testing) and having them filled an extensive
survey. Half of them interact with an agent sharing its intentions
while the other half stand in the control group without any informa-
tion shared by the agent. The results show that intentions sharing
leads to a greater acceptability - by means of delegation of control
towards the AA - as well as trust. Critically, acceptability and trust
seem to be decoupled from team performance.

These results suggest the importance of intention-based expla-
nations as a support for cooperation between the human operator 
and artificial agents. This work demonstrates the need to take into 
account human cognition when designing systems requiring ac-
ceptable and trustworthy AI techniques.
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1 INTRODUCTION
Academic technical progresses within artificial intelligence (AI) 
techniques have led to outstanding capabilities demonstrations

such as AlphaGo [42]. Consequently industrial companies have
started to fund and realize projects integrating these techniques,
from personal assistants to autonomous cars. AI engineers focused
primarily on pure performance metrics, developing increasingly
complex and opaque algorithms. This approach came with a perfor-
mance/transparency trade-off [10] [6]: the more an AI technique is
efficient, the less the ins and outs of its operating are understand-
able by humans. This problem of transparency is more commonly
known as the AI black box problem. The relative importance of
the transparency problem is amplified by the use-cases considered
for this techniques: they aim at being embedded in artificial agents
(AAs) designed in order to act in multi-agent systems including
humans. In such scenarios, AAs are assigned to roles from advisors
to co-actors. This is the case for autonomous cars which should
deal with humans supervisors (the driver) or humans partners co-
operating in avoiding accidents (pedestrians, other cars’ drivers).

As every technological object, AI faces public and institutional
acceptance [12] [11]. The acceptance is strongly linked to the trust
AI inspires and consequently to the black-box problem [41]. As
a result, growing research towards Explainable AI (XAI) or "how
to open the black box" emerged. This way, a consensus emerged
regarding the importance of causal explanations for public trust
and acceptance [27] [41]

However, public trust and acceptance is not the same as trust and
acceptance of the people who directly work with the AA. We still
know little about what XAI should explain when it comes to make
an artificial agent more acceptable and trustworthy from the point
of view of the operator who interacts with it. What form should the
explanation take when it comes to support human AI cooperation
then becomes a critical question that we will call operational XAI.

This paper first presents the first consensus of XAI about causal-
based explanations. Then, it is shown how studying the literature
of human-human joint-action leads to propose the communication
of intention-based explanations from AAs as joint-action enablers.
Then, the experimental method of hypothesis testing is used to
evaluate the benefits of intention based explanations on joint-action
metrics (performance, trust, fluency...). This study shows significant
effects of intention based explanations on participant’s behavioral
patterns as well as on their trust for the AA. Finally, some of the
results which are counter-intuitive - especially on performance -
plead for a wider use of this method in human-AA joint action
research.

2 RELATIVE WORK
The present paper is in line with others calls [27] [10] to benefit of
the plentiful literature and experimental methods of human social
cognition, human-machine, robot and computer interaction (HMI,
HRI, HCI). Tim Miller’s contribution [27] [28] [26] about what
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should be explained and how is a step forward in the design of
recommender system based on the knowledge of social sciences.
In these papers, Miller shows why AI researchers developing XAI
mainly from their intuition looks like "inmates running the asylum"
[28]. Then, papers elicit when people need explanations (mainly
when the behavior of the system is different of one’s belief of what
if would be) and how causal explanations answer to this need.
These results about causal-based explanations were later enforced
by empirical results [41]. But this work doesn’t cover the wider
interaction when the AI is used for AAs integrating social work
systems. In this regards, efforts are made in the development of
"human-aware" AI models but these models often imply to put all
the weight of the cooperation at all levels (objectives, methods,
action) on the AA’s side [3]. However, it is known that coordination
is a collective work in such systems [37], and relies on precise
information exchanges (either verbal [5] or sensorimotor [16]).
Gambling on the availability of the relevant information is risky for
systems which are not designed with this interaction requirements.
Thus, the next section will dive into ergonomics and cognition
theories of human-autonomy teaming and human-human joint-
action in order to hypothesize about minimal explanations content
that AA designer should think as requirements at design stage.

3 THEORETICAL BACKGROUND AND
HYPOTHESIS

The introduction of any kind of new agent in a work system is going
to move its equilibrium through a transition phase. In particular,
the coordination framework is renewed and new classes of problem
are created by the failures in the interactions between agents. The
magnitude of these problems is dependent of the relative impor-
tance of the new agent in the work system. But these problems have
been identified and handled since automated systems have been
given responsibilities such as plane autopilots. The human factor
literature is rich of models allowing to handle them, though there is
a need for stepping-up as AAs provided with AI are expected to be
handled with more and more critical - and interaction demanding -
tasks.

3.1 Shared Mental Models and Team Situation
Awareness

One of the first occurrence of the term "human-machine coopera-
tion" is Hoc [13] in 2000, while the first theories of shared control
on action between humans and automation can be found in [40].
The necessity for human and artificial partners to develop a "team
situation awareness, (TSA)" [9] and shared mental models (SMM)
has emerged as a consensus, with respective definitions from the
American Psychological Association (APA) being:

• Team Situation Awareness: "For every member of the team,
the perception of the elements in the environment within
a volume of time and space, the comprehension of their
meaning, and the projection of their status in the near future,
required for his/her job"

• Shared Mental Model: ”in ergonomics, a mental model of a
work system that is held in common by the members of a
team. Ideally, team members should have a shared mental
picture of the system and its attributes, a shared knowledge

of all relevant tasks, and a shared understanding of the team’s
progress toward its goal. Coordination, efficiency, and accu-
racy will increase as team members converge on a common
mental model that is accurate and complete yet flexible. Also
called team mental model."

Then, requirements for cooperating artificial agents have been pro-
posed: the Situation Awareness-based Agent Transparency model
by [4] or the transparency on intentional, task, analytical, envi-
ronment and teamwork agent’s models by [20]. Agents developed
according to these requirements were tested in user studies [24]
[21]. Although, these models are very demanding both in terms
of raw-material (information) and in mental resources to value
them, so at least two reasons encourage to look for finer cognitive
mechanisms with minimal information requirements:

• the performance/transparency trade-off of AI techniques
presented in [10]

• in time-constrained situations faced to cognitively demand-
ing tasks - e.g. the cooperation between humans and robots
rescuers after an earthquake - people need heuristics [8]
about their partner behavior. Heuristics are "rules of thumb"
used to simplify complex cognitive tasks, and create action
reflexes.

Therefore identifying the minimal information that would trigger
these heuristics is particularly relevant. Interestingly, problems
found in human/AA interaction are very similar to the ones which
have led to a large literature in cognition regarding joint-action:

"any form of social interaction whereby two or more
individuals coordinate their actions in space and time
to bring about a change in the environment" [37]

The next subsection sums-up the main learnings from joint-action
literature regarding human/AA interaction.

3.2 Intentions sharing in joint-action
Many researchers in the fields of psychology and cognitive science
are exploring the underlying mechanisms of a joint action task. An
extensive review of ergonomic concepts cognitive mechanisms of
cooperation can be found in [18]. Two key mechanisms for joint-
action have been identified:

• shared-task representation (STA) which is for each cooper-
ator the mental representation of the task of every team-
member in a plan accomplishment [16]

• mentalization, which is "the ability to understand one’s own
and others’ mental states, thereby comprehending one’s own
and other’ intentions and affects" (APA). This is a process by
which useful heuristics can be built.

Both mechanisms are supported by behavioral and electrophysio-
logical studies [39][33][47]. Interestingly, several authors support
the role of communication of intentions in the production of joint
action [36][43][2] [25]. For example, Sebanz et al. [38] described
the ability to make prediction about the intention of other inter-
acting partners as a critical part in a successful performance of a
joint action task. However, if the human operator has access to a
multitude of cues when it comes to understanding the intentions of
a human partner, access to the intentions of artificial agents seems



quite difficult, especially considering the opacity of the systems
discussed earlier.

3.3 The role of trust in joint-action
Trust, defined as "an individual’s willingness to make himself or
herself vulnerable to the actions of another person with the expec-
tation of positive outcomes" [23] is known to be essential in the use
of automation under one’s control: Muir [29] [30] demonstrated
that the more an automation is trusted, the less the operator will
retake manual control on it. On the other hand, the study of human-
human interactions shows evidences for the role of interpersonal
trust in cooperative activities. For example, trust is known to be
associated with joint-efforts (as opposed to individual efforts) in
the achievement of a common-goal [7]. More generally, Lyu et al.
[22] review studies measuring the effects of trust, showing positive
effects on creativity, intention to quit, knowledge exchange and
creation and others in work context. This literature taken together
justifies the use of trust as a key dependent variable when assessing
the quality of human-AA joint-action. Although - to the best of
our knowledge - lab studies of the impact of trust on cognitive
joint-action mechanisms are lacking even if first studies [35] shows
an impact of self-confidence on joint-action.

3.4 General hypothesis
In this paper, we propose that intention-based explanations of the
behavior of an artificial agent is a critical element when it comes
to create more cooperative systems. In our view, intention-based
explanations could suit to the problem of human-AA joint-action
as causal-based explanations do towards public and institutional
acceptance. Here, intentions are considered as "an initial represen-
tation of a goal or state to be achieved, which precedes the initiation
of the behavior itself" [31]. Particularly, we take as a starting point
the hierarchical model of intentions that made a distinction between
Distal intentions, Proximal intentions, and Motor intentions - DPM
model [32]. Using a joint action task, the following study explore
how communicating system’s intention improve acceptability and
trust in artificial partner.

4 USER-STUDY PRESENTATION
4.1 Overcooked task
To meet our research goals, the task for the user-study had to met
two main requirements:

• Allow coordination between the human participant and the
AA at the task level and at the spatial level

• Being challenging enough to be considered by the (X)AI
community and simple enough to meet the cognition user-
study methods

In that respect, the "sequential stag-hunt" from [47] and "over-
cooked" from [3] were the best candidates, and the recent popular-
ity of the "overcooked" as well as the code availability weighted in
favor of the last. The adaptation of the available code to scalable
user-studies with different missions, bloc and experimental con-
ditions combinations is a significant contribution of this research
work.

Figure 1: Our overcooked environment

Figure 1 represents the task: two cooks share the same kitchen
provided with assets (onion, tomato and dish dispensers, pot and
serving area). User-study participants play the blue hat and are
asked to score the maximum recipes among the ones presented in
the all-orders panel within 50 seconds. A typical game sequence,
if we consider a solo player working on the 2 onions + 1 tomato
recipe would be : onion dispenser→ pot→ onion dispenser→ pot
→ tomato dispenser → pot + start cooking → dish dispenser →
pot → serving area → start with another recipe...

In this first study, participants played with an artificial agent
which behavior is directed by a basic algorithm adapted fromCarroll
et al.’s [3] planning agent. The game is played at 10 fps (10 game
tick per seconds, this has a direct influence on the agent’s playing
speed).

4.2 Participants and group design
32 women and 28 men participants were recruited through Prolific
recruitment platform, aged minimum 20 and maximum 35. They
were randomly splitted with gender equality respect between the
control group U(nxplained) and the test group E(xplained). Group
U was only provided with the information available on figure 1,
whereas the participants from group E were provided with addi-
tional information about their partners’ intentions as shown in
Figure 2.

4.3 Procedures
After giving their consent for the use of their data, participants
were introduced (see supplementary material for detailed instruc-
tions [19]) to the task and had to play 3 tutorial games. Then, both
group played 5 blocs of 10 missions lasting 50 seconds each. The
10 missions layouts can be seen in Figure 3. In order to moderate
the effect of training on particular layouts, successive 90° rotations
were applied at bloc 2,3,4 and a transposition at bloc 5 on every
layout. Participants could take a break at the end of each bloc. The
median time spent by every participant in the study was 1h02mn
and they were rewarded by Prolific with £7.50.



Figure 2: The additional information provided to participants
in group E

4.4 Measures and hypotheses on dependent
variables

The main goal of the study is to evaluate to what extent the in-
formation about intentions provided to the group E brings an ad-
vantage compared to group U on perception (trust, acceptability)
and performance (score) levels. Regarding perception, subjective
measures (questionnaire) have been taken from Hoffman’s work
[14] for purposes of coherence with the existing knowledge on
human/AA fluency. The questionnaire is presented at the end of
the last bloc (bloc 5). Participants answer "Please rate your agree-
ment with the following affirmations" on a 5 points Likert’s scale
(strongly disagree - disagree - neutral - agree - strongly agree) for
the 23 affirmations, all available in the supplementary material.
This questionnaire makes it possible to get scores on higher level
axes:

• Trust: evaluates the trust the robot evokes
• AA’s relative contribution: evaluates AA’s relative contribu-
tion to the team performance. According to Vantrepotte [44,
experiment 4, 134-161], the choice to delegate control to a
system may be considered as a proxy for AA’s acceptability.

• Working Alliance for H-R Teams: adapted from Horvath et
al.’s Working Alliance Inventory [15], evaluates the quality
of the working alliance between the human and the artificial
partner.

• Human/AA fluency: evaluates the overall fluency between
the human and the robot

On the other hand, the average score on each bloc will be used
to measure each group performance regardless of missions. It is
presumed that explanations will bring a performance improvement
without additional cost [24]. Additionally, improvement over blocs
is expected.

When studying human behavior, it is essential to account for the
potential impact of different sources of variability on the measures
collected. Classically, statistical methods are used to reduce the
effect of these sources of variability on the answers to the questions
of interest and help draw more definitive scientific conclusions. The
type of statistical method that will be used to analyze the data will
depend on the experimental design, the specific questions that the

Figure 3: Layouts and recipes of the 10 missions

experiment is intended to answer, and the nature of the metrics
being collected.

In this work, we used various tests account for the robustness
of our results. The significance level was set at 0.05, meaning that
we considered every test result/statistic with a p-value < . 05 to be
"significant." In other words, we were willing to take a 5 percentage
risk in concluding that there was a difference when there was not.

Behavioral data were analysed using a 2×5 repeated-measures
ANOVAwith group (Unexplained vs. Explained) as between subject
factors and bloc (from bloc 1 to bloc 5) as within-participants factor.
Subjective data were analysed using a Mann-Whitney T-test.

5 RESULTS
5.1 Subjective measures
A confirmatory factor analysis performed on the data confirms the
coherence of Hoffman’s categories [14] on the collected data for
HR fluency, Robot’s Relative contribution and Working Alliance



Index (see supplementary material for details). Results of the T-
Tests on Hoffman’s categories are reported in figure 4, and detailed
per-group descriptive statistics as a well as individual questions
results can be found in supplementary material.

Figure 4: Average scores to Hoffman’s subjective categories
[14] depending of group. Mann-Whitney test-results are re-
ported. * stands for statistical significance (p<0.05). Error bars
represent 95% error interval

Interesting results can be noted:
• Participants from E(xplained) group perceive significantly
better AA’s relative contribution to the teamwork(W=590.500,
p=0.019).

• Participants from E(xplained) group trust significantly more
AA’s for efficient action (W=574.500, p=0.028).

• There is no statistical effect of explanations on Working
Alliance Index

• There is a weak evidence (W=556.000, p=0.056) for a better
perceived human/AA fluency in E(xplained) group.

5.2 Behavioral measures
Score means and standard-deviation regarding blocs and group
are presented in figure 5. The hypothesis of a direct performance
improvement can be visually discarded, and the repeated-measures
ANOVA test excludes (F=0.815, p=0.370) any stastistically signif-
icant effect of group on score, while confirming a training effect
(F=24.485, p<0.001) as blocs go along.

5.3 Exploratory analysis
The analysis of the correlations between the variables (figure 7)
shows that the score correlates negatively with AA’s contribution
and positively with actions. On the other side, HR-fluency, Trust
and AA’s contribution correlate positively. This suggests that hu-
man’s individual action is more efficient than trying to coordinate

Figure 5: Scores by bloc and group. Error bars represent 95%
error interval

with the AA in the configuration of the study. Beside the depen-
dent variables linked to hypotheses, the data collected allows an
exploratory analysis. First of all, the number of actions (press on
keyboard) performed by every participants have been recorded. A
repeated-measure ANOVA performed on this data shows that group
E is less active than group U (F=4.151, p=0.046). Then, given the
importance of AA’s relative contribution for AA’s acceptability (see
section 4.4), it is interesting to look for an objectivemeasure. For this
purpose, a correlation test is performed between the sum of scores
and the sum of "interact" actions performed by the participant and
the agent. "Interact" action gather the actions of pulling/putting an
onion/tomato/dish, start-cooking and deliver which can be consid-
ered as actions with high added-value. Pearson’s r=0.900 (p<0.001)
(versus r = 0.652 for the total number of actions performed) (see
figure 7). This comparison presented in figure 8 shows a stronger
effect of explanations on subjective than on objective AA’s relative
contribution.

Figure 6: Participant’s actions (keyboard press) by group and
bloc. Error bars represent 95% error interval



Figure 7: Between variables correlations (Pearson’s r)

Figure 8: Comparison of perceived and objective AA’s contri-
bution across groups.Error bars represent 95% error interval

6 DISCUSSION
The goal of the present study was to explore how communicating
the intentions of an artificial agent improves acceptability and trust
towards it when engaged in cooperative activities. Three main re-
sults were found. As expected, communicating system’s intentions
is associated with increased trust in the artificial partner. Second,
communicating system intention is also associated with an increase,
albeit marginal, in the perceived fluency of the human-agent inter-
action. Finally, while the number of total actions performed by the
participants decreases when communicating the system’s intention,

the number of high value-added actions ("interact", see section 5.3)
remains constant.

The first key result concerns the relationship between commu-
nication of system intentions and trust in the partner. We hypoth-
esized in section 3.2 that the communication of intentions by an
artificial partner will increase trust toward it. The results obtained
here confirm this hypothesis by showing the role of the readability
of partners’ intentions in the trust that we will develop for this
partner. This result is all the more important as this communicat-
ing system’s intentions is not associated with an increase in the
team’s performance. In other words, the participants seem to be
more confident in the system when the intentions of the system
are presented even though the performance obtained tends to de-
crease. While most research focuses solely on the performance of
the system, this result indicates that the information returned by
the system about its own behavior may be just as important in
building trust. However, this is not to deny the role played by the
system’s performance on the operators’ trust.

Today, many studies emphasize the role of predictive mecha-
nisms when controlling our own actions [34], but also when coordi-
nating with others[17][45][34]. Furthermore, the ability to infer the
intentions of others seems to contribute to this predictability [38].
Therefore, it is likely that the communication of artificial partners’
intentions has an impact on the ability to cooperate and thus on
trust in the partner. Behavioral results and subjective feedbacks
point in this direction. Subjectively, the participants report a greater
fluidity of interaction when they have access to the intentions of
the artificial partner. Regarding objective measurements, we ob-
served that participants behaved more efficiently in the presence
of the partner’s intentions since our results show a decrease in the
number of total actions without a decrease in the number of rele-
vant actions (interact). At last, the poor correlation between scores
and the perceived HR-fluency show that fluency is not enough for
performance and agent’s ability to cooperate in its behavior is also
essential, confirming [3] results.

The last relevant point concerns the acceptability of the system
and the role of intention communication on this acceptability. In
this study, we did not have a direct measure of the acceptability of
the system. We decided to use the delegation of authority as a proxy
for acceptability, according [44, experiment 4, 134-161]. Subjective
results on robot’s contribution (see figure 8) show that participants
provided with explanations have the feeling - without any opera-
tional benefit (see results on scores 5) - to give more control to their
artificial partner. This result is consistent with [1] which shows
that AI’s explanations influence humans to accepts suggestions and
plans from the AA. This inclination to attribute more control to
their artificial partners is likely to indicate a better acceptability of
the system. Moreover, results on participant’s activity (see figure
6) may indicate an increase of willingness to coordinate (ie: adapt-
ing to AA’s declared intentions) more than a wait-and-see attitude
which would be translated into objective release of control in figure
8.

Further work will need to show how these variables evolves in
situations where coordination is either forced or the artificial agent
more efficient. Such tests can be done by proposing missions more
demanding in term of coordination and/or by changing AA’s be-
havior or execution speed. Moreover, easier comparisons between
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objectives and subjective dependent variables should be allowed
at design stage (ie: rating AA’s relative contribution in percentage,
so it can be easily compared to its objective contribution). It would
be of particular interest to exchange with researchers engaged in
artificial agent design in order to ally the best of both expertises.
Indeed, it is maybe easier to design models allowing the extraction
of such intention-based explanations than eliciting causal expla-
nations such as "the agent moved right a timestep t because the
environment showed feature A in combination with feature B... etc".
For example, considering deep reinforcement learning techniques -
very challenging for why explanations - design practices such as hi-
erarchical reinforcement learning [46] look at first sight compatible
with intention sharing.

Finally, the scope of this paper is limited by the choice of the
task, which remain relatively simple compared to potential real-life
situation such as search and rescue AAs. However, showing that
intention-based explanations has such an influence on behavior
and trust in this simple environment justifies to scale-up regarding
the tasks. It would be very interesting to see how the DPM model
and the relative importance of each of the distal, proximal and
motor intentions evolves with complexity? Do intention-based
explanations remain realistic regarding the cognitive load of human
partners? Our first thought is that the relative importance of distal
intentions will grow with complexity. Of course, this need to be
tested in further studies, alongwith the influence of team experience
on intention-based explanations (and every level of intentions)
relevance.

7 CONCLUSION
The whole paper shows that there are both theoretical (section 3)
and empirical reasons (section 5) showing that being able to provide
intention-based explanation from the artificial agent to its human
partners is essential for trust and acceptability of the system. We
do not pretend that explaining the why of AA’s actions (regarding
the environment state) is useless. Only that allowing its partners
to build and exploit a mental model of its behavior by reading its
intentions will result in more trust and acceptability toward it.

The second main contribution of the paper is methodological:
as Miller [27] advocated, AI research and engineering would be
mad ignoring decades of behavioral studies on human-human and
human-automation interactions when working on AAs destined
to interact with humans (and they all are). The results presented
in this paper also shows that even when interactions hypotheses
are formulated from strong cognitive models, user-studies must be
conducted rigorously for evaluation: the results on performance
presented here are a good reminder, because they go against the
initial hypothesis (there is no performance improvement) and also
against the visual analysis (which looks like there is a deprecation
whereas statistically it is impossible to reject the null hypothesis).

Finally, this work calls for more integration between research
fields. In the particular case studied of overcooked, it would be
particularly interesting to ally innovation in AI techniques from
[3] with the design guidelines suggested here.
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