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Abstract. This work aims at developing new methodologies to optimize computational
costly complex systems (e.g., aeronautical engineering systems). The proposed surrogate-
based method (often called Bayesian optimization) uses adaptive sampling to promote
a trade-off between exploration and exploitation. Our in-house implementation, called
SEGOMOE, handles a high number of design variables (continuous, discrete or categor-
ical) and nonlinearities by combining mixtures of experts for the objective and/or the
constraints. Additionally, the method handles multi-objective optimization settings, as it
allows the construction of accurate Pareto fronts with a minimal number of function eval-
uations. Different infill criteria have been implemented to handle multiple objectives with
or without constraints. The effectiveness of the proposed method was tested on practi-
cal aeronautical applications within the context of the European Project AGILE 4.0 and
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demonstrated favorable results. A first example concerns a retrofitting problem where a
comparison between two optimizers have been made. A second example introduces hier-
archical variables to deal with architecture system in order to design an aircraft family.
The third example increases drastically the number of categorical variables as it combines
aircraft design, supply chain and manufacturing process. In this article, we show, on
three different realistic problems, various aspects of our optimization codes thanks to the
diversity of the treated aircraft problems.

Keywords: Bayesian optimization, multi-objective problems, mixed-categorical vari-
ables, aircraft design, aeronautical applications

1 INTRODUCTION

For the last few decades, the aeronautical industry has been essentially driven by incre-
mental improvements based on aircraft design optimization [1]. The use of computer sci-
ence allowed to reuse well-proven design processes and to benefit from preexisting results
to reduce the time dedicated to development. Nonetheless, the forthcoming challenges
awaiting aircraft design call for large-scale improvements to meet future expectations in
terms of overall environmental impact, noise reduction and cost-effectiveness [2]. These
large-scale improvements, considered through novel aircraft configurations, involve an
increased proximity between Aerodynamics, Propulsion and Structural mechanics, thus
requiring to explore coupled and uncharted physics. As is the case for many industrial
complex systems, some powerful optimization algorithms for aircraft design are needed.
The H2020 European project AGILE 4.0 (2019-2023)1 [3], led by DLR, has identified sev-
eral challenging application cases linked to Multidisciplinary Design Optimization (MDO)
methods [4] and Model Based Systems Engineering (MBSE) technologies [5] that will re-
quire innovative and sustainable aircraft configurations in the years to come [6]. The
main objective is to reduce the environmental impact in terms of fuel consumption, waste
and emissions associated with all the aeronautical system activities and operations. This
purpose requires extending aeronautical research to cover the entire aircraft lifecycle, from
design and production to waste disposal after the system’s end-of-life. Consequently, the
challenge is to incorporate these new requirements into the early design phase, enabling
strategic decision-making processes to optimize the entire aircraft lifecycle [7]. To do
this, collaborative multidisciplinary aircraft design and optimization should be carried
out involving not-only the aircraft design domain (typically accounted during the con-
ceptual aircraft design) but also other industrial domains, such as manufacturing, supply
chain, maintenance or certification [8]. From the different application cases of the project,
some quantities of interest have been identified from the Multidisciplinary Design Analy-
sis (MDA) and optimization problems have been deduced involving from 2 to 5 objective
functions and several nonlinear constraints that are given by non derivative and expensive-
to-evaluate black box functions. Moreover, when evaluating new architecture systems, it is
important to take into account categorical variables such as on-board system architecture
(conventional, hybrid, electric for instance) or property materials (aluminum, titanium),
which do not have a defined order [9]. Different approaches have been investigated to deal

1https://www.agile4.eu/

https://www.agile4.eu/
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with mixed integer variables, multiple objectives and constraints handling requirements.
These optimizations return a set of feasible configurations considered as optimal trade-
offs. this set of solutions is the so-called Pareto front that consists in the set of solutions
that cannot be improved in one objective without worsening another [10].

Surrogate-Based Optimization (SBO) is a powerful technique for optimizing complex
systems requiring a significant amount of computational resources. For multi-objective
optimization problems, it involves building a surrogate model, such as a machine learning
model, to approximate the behavior of multiple objectives simultaneously, allowing for
efficient exploration of the search space and identification of the Pareto front. The surro-
gate models built offline are then used to predict the objective function values at different
points in the search space, enabling the optimization algorithm to focus its computational
resources on the most promising regions of the search space [11].

To avoid this offline cost involving a large number of function evaluations, some adap-
tive strategies have been introduced. Nowadays, Bayesian Optimization (BO) [12] is
well known as a powerful tool in scientific research for optimizing complex, expensive-to-
evaluate functions with unknown properties. It is particularly useful when only a limited
number of evaluations is available which is often the case with scientific experiments.
When multiple objectives are involved, multi-objective techniques must be used to find
the set of optimal solutions that maximize or minimize these multiple objectives simul-
taneously, rather than focusing on a single objective. Multi-objective optimization using
Bayesian algorithms is a potent strategy for optimizing intricate systems that possess
multiple, conflicting objectives. Bayesian optimization techniques allow for efficient ex-
ploration of the search space by harnessing probabilistic models to forecast the behavior
of the objectives being optimized. This facilitates a trade-off between exploration and
exploitation and allows the inclusion of prior knowledge on the objectives.

In summary, multi-objective optimization with Bayesian algorithms is a valuable tool
for scientific research, providing an efficient way to identify the Pareto front and make
informed decisions based on multiple, conflicting objectives. Here some illustrations are
done on three application cases of the AGILE 4.0 project with different characteristics. On
the first application case, about retrofitting concepts (engine, winglet, on-board systems),
the different impacts on aircraft performance are characterized (e.g., Direct Operating
Cost (DOC), emissions) to select the best retrofitting strategy. The second application
is about designing an aircraft family composed of three different aircrafts with differ-
ent commonality choices (wing, engine, empennage). Again, the different solutions are
characterized by different impacts on aircraft performance (e.g. mass, aerodynamic effi-
ciency) and different commonality choices. To finish with, the third application concerns
Horizontal Tail Plane (HTP) production and search for a equilibrium between airplane
performance, manufacturing costs and the efficiency of the supply chain.

The outline of the paper is as follows. In Section 2, the multi-objective optimization
problem is presented and two proposed frameworks are then described. A first SBO
algorithm JPAD Optimizer is introduced in Section 2.2 and a second BO framework
SEGOMOE is given in Section 2.3 where the Continuous Relaxation (CR) as well as the
use of the Partial Least Squares (PLS) technique are detailed. Some details concerning
the remote access to the frameworks are also provided. Then Section 3 presents three
MDO application cases where multiple physics and domains are involved. For each of the
application cases, multidisciplinary analysis, optimization problem as well as the obtained
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results are detailed. Conclusions and perspectives are finally drawn in Section 4.

2 MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS

To begin with, we start formulating the multi-objective paradigm over which the paper
will be based. Then, we introduce our two frameworks used to solve such multi-objective
optimization problems in an industrial context.

2.1 Multi-objective formalism

Consider the multi-objective constrained optimization problem
min

x∈Ω×S×Fl
f(x) := [f1(x), f2(x), · · · , fn(x)]

s.t. g1(x) ≤ 0
...

gm(x) ≤ 0,

(1)

where Ω ⊂ Rd represents the bounded continuous design set for the d continuous variables,
S ⊂ Zℓ represents the bounded integer set where L1, . . . , Lℓ are the numbers of levels
of the ℓ quantitative integer variables on which we can define an order relation, and
Fl := {1, . . . , L1} × {1, . . . , L2} × . . . × {1, . . . , Ll} is the design space for l categorical
qualitative variables with their respective L1, . . . , Ll levels [9]. The objectives functions are
referred as fi : Rd → R ∀i = 1, . . . , n where n is the number objectives. The constraints
are named gj : Rd → R ∀j = 1, . . . ,m where m is the number of constraints (inequality
or equality). Due to potentially conflicting objectives, the solution of the optimization is
not unique but a range of solutions is proposed. The trade-off between these solutions
is characterized by the notion of dominance: a solution x is said to dominate another
solution x′ and denoted by x ⪯ x′ if

fi(x) ≤ fi(x
′) ∀i = 1, . . . , n.

The set of solutions representing the optimal trade-off is referred to the Pareto set (PS)
and the corresponding image of PS in the objective space is known as the Pareto front (PF)

PF := {f(x)|x ∈ PS}.

Figure 1 illustrates a Pareto front (red points) relative to two objectives. An approx-
imation to this PF is given by the scattered green dots and the associated dominated
hypervolume given by the green area. Both the SBO and BO frameworks to solve prob-
lem (1) are described in the following.

2.2 Surrogate-Based Optimization with JPAD

In this work, one of the optimization tools used is the JPAD Optimizer, which is
based on the Multi-Objective Evolutionary Algorithms (MOEA) framework. It should
be noted that the JPAD Optimizer is an independent implementation within the JPAD
library, as described in [13, 14]. The MOEA framework is a Java library that serves as an
open-source platform for the development and experimentation of various optimization
techniques. The latter offers a range of pre-implemented algorithms that can be readily
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Figure 1: Hypervolume Improvement: the hypervolume indicator of the non-dominated
set (green points) corresponds to the area dominated by it, up to R (reference point in
black). The gray rectangle is the hypervolume improvement brought by the new added
point in magenta.

employed, such as genetic algorithms and particle swarm optimization, among others. For
this particular study, the ϵ-NSGAII algorithm has been used. The ϵ-NSGAII algorithm
extends the NSGA-II algorithm by incorporating an ϵ-dominance archive and random-
ized restarts, thereby enhancing the search process and enabling the discovery of a diverse
set of Pareto optimal solutions. A comprehensive explanation of this algorithm can be
found in [15] with in-depth details and comparisons. The JPAD Optimizer requires a
comprehensive factorial database to conduct the analysis effectively. This database en-
ables the solver to construct a specific Response Surface Model (RSM) through spline
interpolation. The RSM serves as a surrogate model, capturing the relationship between
the input variables and the response variable. By utilizing the RSM as a surrogate model,
the optimization algorithm can efficiently explore the design space and identify optimal
solutions. However, it is important to note that direct inclusion of categorical variables
in the optimization is not feasible. To address this limitation, one potential solution is
to perform the optimization iteratively, considering each categorical variable separately
for each run. Still, using the JPAD Optimizer in conjunction with the MOEA framework
provides a robust and versatile approach to the optimization process. The selection of
the ϵ-NSGAII algorithm within the MOEA framework allowed for efficient and effective
exploration of the design space, leading to the identification of a diverse range of Pareto
optimal solutions. The chosen references provide additional information on the JPAD li-
brary, the MOEA framework, and the ϵ-NSGAII algorithm, serving as valuable resources
for readers interested in a more detailed understanding of the employed methodologies.
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2.3 Bayesian Optimization with SEGOMOE

The second proposed optimization process is based on a sequential enrichment ap-
proach, typically the Efficient Global Optimization algorithm [11] or Super EGO [16],
an evolution of EGO to handle constraints. Bayesian Optimization (BO) is based on
Gaussian processes (GP) [17] (also denoted by Kriging [18]) and here the idea is to use
some adaptive mixture of Kriging based models to tackle high dimension problems. The
mixture of experts (MOE) [19, 20] is known to approximate complex functions with het-
erogeneous behaviour by combining local surrogate models in a global one. In order to
consider high-dimensional functions to approximate objective functions and constraints,
we used adapted local Kriging-based models [21, 22]. Some recent developments have
been made to consider highly non linear constraints [23], mixed integer variables [24] and
multi-objective applications [10]. The general framework called Super Efficient Global
Optimization coupled with Mixture Of Experts (SEGOMOE) has been proposed by ON-
ERA and ISAE-SUPAERO. The performance of SEGOMOE is validated and proven on
different analytical and industrial test cases [25–27].

Here we consider multiple objectives and constraints with mixed integer variables.
Some continuous, integer and categorical variables are involved within the different appli-
cation cases, so the GP surrogate models have to be adapted to deal with. We proposed
to combine continuous relaxation to replace categorical variables by continuous ones and
Partial Least Squares techniques to handle the increase of dimensionality. The continuous
relaxation introduced by [28] uses a one-hot encoding strategy [29] and transforms integer
and categorical inputs into continuous ones, so some classic continuous correlation kernels
can still be used to build the Kriging models. The design space Ω× S × Fl is relaxed to
a continuous space Ω′ constructed on the following way [24]:

• ∀i ∈ {1, . . . , ℓ}, the integer variable zi is relaxed within its bounds and treated as
continuous.

• ∀j ∈ {1, . . . , l}, we use a relaxed one-hot encoding [29] for the categorical variable
cj (and its Lj associated levels) and add Lj new continuous dimensions into Ω′.

Therefore, we get, after relaxation, a new design space Ω′ ⊆ Rd′ where d′ = d + ℓ +∑l
j=1 Lj > d+ ℓ+ l. As the number of variables may increase drastically (from d to d′),

one new added variable associated to each categorical level, PLS technique is combined
with Kriging, denoted as KPLS and KPLS-K models [21, 22], to reduce the number of
hyperparameters. During experiments, the chosen number of principal components within
KPLS models does not exceed 4 or 5. The code implementation of the proposed GP has
been released in the toolbox SMT v1.12 [30].

Once the initial Design of Experiments is given in the relaxed space Ω′, Kriging based
surrogate models are built for the objective and constraint functions. Each costly function
fi(x) is approximated by a GP characterized by its mean ŷi(x) : Rd′ → R and its standard
deviation si(x) : Rd′ → R

f̂i(x) ∼ N (ŷi(x), s
2
i (x)) i = 1, . . . , n

2https://smt.readthedocs.io/en/latest/

https://smt.readthedocs.io/en/latest/
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For the multi-objective, we assume that the n components of f are independant to define
f̂ as the surrogate model associated to each component

f̂(x) ∼ N (ŷ(x),Σ(x))

where ŷ(x) : Rd′ → Rn is the GP prediction vector given by [ŷ1(x), . . . ŷn(x)] and Σ(x)
is a diagonal matrix whose diagonal vector is given by s2i (x),∀i = 1, . . . , n. So the initial
problem defined by Eq.(1) is replaced by an infill problem defined as follows

max
x∈Rd′

α
reg
f (x)

s.t. ĝ1(x) ≤ 0
...

ĝm(x) ≤ 0,

(2)

where ĝi(x) corresponds to the mean prediction of the GP constraint models and the
regularized acquisition function [10] is defined by

α
reg
f (x) := γ αf (x)− ψ(µf (x)) (3)

where αf (x) is a standard scalar acquisition (EHVI, PI, MPI, . . . ) depending on ŷ(x) and
Σ(x), and γ is a constant parameter. The function ψ : Rd′ → R is a scalarization operator.
Different choices exist for the function ψ and in [10] two options were investigated. Namely,
for a given ŷ(x) ∈ Rd′ , we consider

(reg = max) : ψ(ŷ(x)) := max
i≤d′

ŷi(x)

(reg = sum) : ψ(ŷ(x)) :=
d′∑
i=1

ŷi(x)

The performance of this regularized acquisition function (3) has been tested on analytical
examples involving continuous variables and apply with success to an aircraft design test
case in [10].

Concerning the different BO criteria relative to the hypervolume Improvement, an illus-
tration is proposed in Fig.1. The Expected Hyper-Volume Improvement (EHVI [31, 32]),
the Probability of Improvement (PI [33]), and the Minimum of Probability of Improvement
(MPI [34]) are some multi-objective extensions of the well known Expected Improvement
(EI [11]). As seen in Fig.1, with respect to the predictions in the Gaussian random
field, the idea is to measure how much hypervolume improvement (grey area) could be
achieved by evaluating the new point (magenta point), considering the uncertainty of
the prediction. These criteria differ depending how they favor well-spread solutions: for
instance for EHVI the hypervolume increase is small when adding a new value close to an
already observed one in the objective space. To solve problem Eq.(2), any optimization
algorithms capable of considering non linear constraints based either on derivative free op-
timizer such as COBYLA (Constrained Optimization BY Linear Approximation [35]) or
based on gradient method such as SLSQP (Sequential Least Squares Programming [36])
or SNOPT (Sparse Nonlinear OPTimizer [37]) can be used together with a multistart
strategy. This adaptive process is repeated until the total budget is reached. The feasible
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points of the final database represent the known Pareto optimal points. Nevertheless,
as the set of known points has been enriched sequentially to increase the hypervolume,
the final database can be used to build GP models for objectives and constraints as a
post-processing step. These final GP models can be coupled to an evolutionary algorithm
to deal with the multi-objective constrained problem and retrieve the approximated PF.
The well known NSGA-II algorithm (Non-dominated Sorting Genetic Algorithm II [38])
of the pymoo [39] toolbox3 is used for that purpose and ultimately provides the predicted
PF based on GP with almost no additional computational cost.

In the end, the proposed strategy provides two outputs: the PF database and the
predicted PF. Comparing the proximity between the two PF is a good criterion to know if
some additional enrichment points are needed or if the accuracy is sufficient. Algorithm 1
details the SEGOMOE optimization procedure.

Algorithm 1: SEGOMOE for constrained multi-objective and mixed-integer
problems.

Inputs: Initial DoE D0 and set t = 0;
while the stopping criterion is not satisfied do

1. Relax continuously integer and categorical input variables to a real
bounded space Ω′ of dimension d′ = d+ ℓ+

∑l
j=1 Lj. Namely, we

continuously relax the mixed categorical DoE to a continuous DoE Dt using
the relaxation procedure;

2. Build the GP model for each objective function fi(x) and each constraint
gj(x) related to the continuous DoE with PLS to reduce the number of the
hyperparameters and compute an estimation of the search space Ωf ;

3. Build the acquisition function α
reg
f (x);

4. Maximize the acquisition function within the feasible domain Ωf :

xt := argmax
x∈Ωf

α
reg
f (x)

5. Add xt,f(xt) and g1(xt), . . . gm(xt) to the DoE Dt+1. Increment t;

end
Post-process: Use the final database to build GP models (for fi(x) and gj(x))
and apply NSGA-II algorithm to construct the PF ;
Outputs: The PF database and the predicted PF;

2.4 Optimizers access

In AGILE 4.0 project, a Process Integration and Design Optimization (PIDO) com-
ponent, also known as RCE [40], is required to execute disciplinary workflows. This
executable workflow integrates the different disciplinary tools, which are treated as black-
boxes: only inputs and outputs are relevant for the component and the codes are not
exposed. The disciplinary tools are installed locally or in servers. Different types of MDO
problems can be executed in the component, as basic multidisciplinary analysis, DOEs

3https://pymoo.org/

https://pymoo.org/
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or full optimizations. Another key aspect of the collaborative workflow derives from the
collaborative design process. Since the different disciplinary tools can be hosted in differ-
ent locations, executable workflows are typically distributed simulation workflows across
multiple networks in multiple companies. In AGILE 4.0, Brics tool [41, 42] is used to
provide the mechanism for interconnecting PIDO environments and hence multi-partner
and distributed collaborative simulation workflows. By providing data encryption ser-
vices, Brics supports protection of the data to be exchanged to and from the central data
server in which the inputs/outputs (I/O) file is transferred between the disciplinary tools.
In the project, I/O file relies on Common Parametric Aircraft Configuration Schema
(CPACS) [43]. CPACS is an open-source, XML-based common language for the exchange
of product data. It allows storage of parametric definitions of aircraft geometries as well
as analysis results of the individual design disciplines. Therefore, any legacy engineering
tool in AGILE 4.0 context is equipped with a wrapper that enables the tool to act on
product data and produce analysis results in CPACS format.

As all the application cases have to address multi-objective optimization problems with
mixed variables, the optimization algorithms currently available through RCE were not
entirely suitable (direct application of genetic algorithms would result in an excessively
large number of evaluations). Only a few partners, such as ONERA, NLR, or UNINA,
were able to provide gradient-free algorithms capable of solving these types of optimization
problems. Therefore three different technical approaches have been applied to connect
optimizers to the workflows:

• Local optimizer: the first approach consisted in using an adequate optimization
algorithm located on the integrator’s site. This means that the integrator of the
workflow needs to have also an expertise in optimization. In AGILE 4.0, only
UNINA could apply this approach with JPAD algorithm as illustrated in Section 3.1.

• Remote optimizer through Brics call: the second approach consisted in considering
an MDA workflow as a whole that can be called remotely like any design competence
from an RCE specific workflow located in the optimizer owner’s premises. This
approach was successfully applied in multiple application cases and was retained for
the application case presented in Section 3.3.

• Remote access through WhatsOpt: the third approach applied the optimization
process not on the design workflow but directly on the architectural choices that is
connected to the RCE workflow. In that case, the optimizer is made accessible “as a
service” through WhatsOpt [44], a web application supporting MDO collaborative
activities. This approach was successfully demonstrated in the application case
illustrated in Section 3.2.

3 APPLICATIONS

3.1 Airframe upgrade design

This first application case is part of the Upgrade driven stream and aims at accounting
retrofitting options in the aircraft MDO workflow. The AGILE 4.0 MDO framework is
used to design various retrofitting concepts, including engine replacement, OBS electrifica-
tion, and winglet installation. Each solution has different impacts on aircraft performance,
such as fuel consumption, direct operating cost (DOC), air and noise emissions, as well
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as different retrofitting costs. The objective is to be able to select the optimal retrofitting
strategy by trading DOC and emissions against retrofitting costs.
For this specific application case, a classical Multidisciplinary Feasible (MDF) approach is
being utilized. This type of architecture involves an optimizer driving an MDA workflow,
where a complete design is executed in each iteration. The MDA components comprising
the workflow can be observed in Figure 2. The workflow begins with an engine module,
which provides key engine characteristics based on the given engine ByPass Ratio (BPR)
input. This module relies on GASTurb 4 computation. The aerodynamics branch calcu-
lates values for both low-speed and high-speed conditions. To account for high-fidelity
results in high-speed conditions obtained through CFD analysis, a RSM has been devel-
oped. The tool also considers engine geometry and position as inputs. The OBS discipline,
named ASTRID [45], is responsible for sizing the overall on-board system (OBS). It de-
termines the masses and the hydraulic, pneumatic, and electric power required by each
system during different phases of the mission profile. It also calculates the power-off-takes
(secondary power computation) to consider their impact on engine fuel flow. In this study,
four different OBS architecture electrification levels are considered, ranging from CONV
(conventional) to AEA (all electric aircraft) with two intermediate architectures, namely
MEA1 and MAE2 (more electric aircraft 1 and 2). A more detailed description of these
architectures can be found in [46]. The performance tool uses a simulation-based ap-
proach to compute ground and in-flight performance. It calculates overall mission profile,
performance, fuel consumption, flight time, and gaseous emissions. The structural com-
petence relies on a surrogate model based on a high-fidelity structural analysis DOE. This
tool optimizes the wing mass by adjusting lamination parameters and thicknesses while
ensuring aeroelastic stability, angle-of-attack, strength, and buckling constraints are met.
The last three tools described are executed in a converger loop, with iterations performed
until convergence is achieved on the maximum take-off weight. The noise competence
calculates noise emissions at the certification points in accordance with FAR36 and ICAO
Annex 16 regulations. It also provides the noise margin with respect to the certification
limits. The cost competence evaluates both recurring and non-recurring costs, including
aircraft price and direct operating costs. It also estimates the development, operation,
and equipment costs associated with a retrofitting activity. Additionally, it computes cost
savings (a component of direct operating costs) resulting from reductions in fuel consump-
tion, maintenance costs, and emission taxes. The cost methodology is explained in [47].
Further details about the MDA workflow presented here can be found in [48].

This application case includes the integration of costly evaluations required to com-
pute the wing structural weight and the high-fidelity aerodynamic effect of the relative
nacelle/wing location. To mitigate the cost and computational time, for each design com-
petence, a RSM was built in an off-line process with SMT [49]. A database computed
by PROTEUS [50], a tool developed by TUD, is used to calculate the wing’s structural
mass. The RSM utilizes a database of 56 points (to achieve more than 10 points per di-
mension) obtained through a Latin Hypercube Sampling (LHS) approach. Additionally,
an RSM has been developed based on CFD analysis provided by CFSE to consider the
aerodynamic effects of both the pylon and the installed engine on the drag coefficient.
The RSM for this purpose utilizes a database of 90 points obtained through an LHS ap-
proach. For this RSM, the initial database was smaller (around 10 points per dimension)

4https://www.gasturb.de/ GasTurb
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10:
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12: 2 connection
11:

COSTS

Figure 2: XDSM DOE MDA for Airframe upgrade design.

but had to be enriched to increase the accuracy of drag prediction. These RSMs have
been incorporated as design competences within this workflow.
Regarding the choice of optimization solver, two different approaches were tested during
the frame of the project. The first optimization strategy relies on the JPAD optimizer
provided by UNINA and described in Section 2.2. In this approach, a DOE (full fac-
torial composed of 108 points) is built using the workflow illustrated in Figure 2. In a
second step, using JPAD Optimizer, four different optimizations are performed, each cor-
responding to one of the categorical variables (OBS choice) considered in the optimization
problem. For each of this optimization and each quantity of interest, a specific RSM using
spline interpolation is built based on the obtained database using the JPAD optimizer.
Subsequently, the optimization algorithm is applied, using the RSM. The generation of
the DOE dataset occurs online, while the offline optimization process takes place once
all the data are available for processing. The second optimization approach takes advan-
tage of SEGOMOE, from ONERA (see Section 2.3) that can handle directly categorical
variables. With this multi-objective BO solver, a remote call to the MDA workflow from
the ONERA location was necessary at each evaluation as explained in Section 2.4. The
optimization workflow executed using SEGOMOE is illustrated in Figure 3 starting with
an initial DOE of 13 points (selected among the 108 full factorial points) and running 68
iterations.

The optimization problem addressed by both of the methodologies presented is defined
in Table 1. Four main objective functions have been established. The first objective is
the maximum take-off weight (MTOW) of the aircraft, which is computed through the
iterative convergence process described earlier. The second objective is the cumulative
emission index (CEI), which quantifies the level of emissions in terms of air and noise. This
index is calculated as a weighted sum of three emissions, expressed in non-dimensional
units. The third objective is the difference between costs and savings. This objective
captures the disparity between two economic factors. The first factor encompasses the
capital costs incurred by the manufacturer to retrofit the aircraft, including the expenses
associated with development, operations, and equipment required for the retrofitting ac-
tivity. The second factor concerns the operational savings, which include the reductions
in fuel consumption, maintenance costs, and emission taxes achieved compared to the



N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

0, 13:

COOR
1: 2 inputs 2: 1 input 3: 2742 inputs 4: 3 inputs 5: 9 inputs 6: 832 inputs 7: 2676 inputs 8: 4 inputs 10: 1364 inputs 11: 39 inputs

13: 2 outputs
1, 12 → 2:

OPT
2: 1 connection 7: 1 connection 11: 1 connection

2:

ENGINE
3: 2 connections 6: 1 connection 11: 13 connections

3:

AERODYNAMICS
4: 1 connection 6: 7 connections 10: 148 connections

4:

AERO RSM
6: 1 connection

5, 9 → 6:

CONV
6: 7 connections 7: 2 connections

6:

PERFORMANCE
7: 19 connections 8: 4 connections 8: 2 connections 10: 39 connections 11: 1 connection

13: 4 outputs 9: 4 connections
7:

OBS
8: 4 connections 8: 1 connection 11: 8 connections

13: 2 output 9: 2 connection
8:

SFC SENSITIVITY

13: 3 outputs 9: 3 connection
8:

Structural RSM
11: 1 connection

10:

NOISE
11: 3 connections

13: 3 outputs 12: 1 connection
11:

COSTS

Figure 3: XDSM optimization for airframe upgrade design.

baseline aircraft during a typical mission. The fourth objective is the maximum specific
air range (SAR) achievable in cruise conditions and weight, representing the aircraft’s
flight efficiency and fuel consumption. Four design variables are considered. One variable
is categorical, representing four different OBS architectures that range from conventional
to all-electric configurations. The other three variables are continuous, including the en-
gine BPR and the engine X and Z locations with respect to the wing attachment points.
Figure 4 represents the system under analysis, illustrating the components that can be
retrofitted and are affected by the design variables considered in the problem. Lastly,
four constraints have been selected. The retrofit solution must maintain at least the same
maximum take-off weight and the same take-off and landing distances as the baseline
configuration. Additionally, a reduction of 6 dB in cumulative noise emissions must be
achieved compared to the original aircraft, leading to a maximum cumulative noise equal
to 263 dB.

(a) Engines and OBS are highlighted.

5 

 

nacelle location. In the targeted range of CL, around 0.45, the predicted values are in line with the computations. The 

remaining tool capabilities are based on semiempirical approaches. High-fidelity results have been validated through 

[6]. 

 

Figure 3: RANS CFD analyses, Cruise condition  

 

Figure 4: RSM validation – BPR 12 

3. On-board-system and SFC sensitivity.  

The OBS discipline named ASTRID [7] sizes the overall on-board-system. It is based on semiempirical and physics-

based models. Starting from the typical loads for the OBS such us hinge moments, hot/cold air required, avionics 

functions, and others, the single user subsystem has been designed. Then, considering the loads coming from the user 

subsystems and any possible synergies, the power supply systems (i.e. hydraulic, pneumatic and electric power and 

distribution systems) have been defined. The design process is showed in Figure 5.   

 

Figure 5: ASTRID OBS design process [7] 

 

(b) CFD simulation of nacelle location effects.

Figure 4: Reference regional jet aircraft.

The following are the results of the optimization process explained earlier. Figure 5
displays the DOE points and the PF obtained using both approaches. The workflow
depicted in Figure 2 generated a total of 108 points in the DOE, represented by orange
dots in Figure 5. On the same figure are highlighted, as red crosses, the points satisfying
the optimization constraints for both DOE (45 feasible points out of 108 full factorial



N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

Table 1: Definition of the airframe upgrade design problem.

Function/variable Nature Quantity Range

Minimize Maximum Take-Off Weight cont 1
Minimize Cumulative Emission Index cont 1
Minimize Cost - savings cont 1
Maximize Max Cruise Specific Air Range cont 1

Total objectives 4

with respect to OBS architecture cat 4 levels [CONV, MEA1, MEA2, AEA]
Total categorical variables 1

Engine Bypass Ratio cont 1 [9, 15] (−)
Engine X cont 1 [−0.98,−0.80] (m)
Engine Z cont 1 [−0.39,−0.21] (m)

Total continuous variables 3
Total relaxed variables 7

subject to Maximum Take-Off Weight ≤ 39058.5 kg 1
Take-Off Field Length ≤ 1500 m 1
Landing Field Length ≤ 1400 m 1
Cumulative Noise ≤ 263 dB 1

Total constraints 4

DOE points) and JPAD optimization.
Regarding the results obtained with SEGOMOE (the workflow shown in Figure 3),

green crosses represent all the evaluated points fulfilling the optimization constraints
(among the 81 points computed with this approach). The global PF, indicated by the
15 blue circles, was derived from combining both databases obtained by JPAD optimizer
and SEGOMOE. This front is composed by 4 points from JPAD optimizer and 11 points
from SEGOMOE optimizer. Among the points on the PF, the best solution depends on
the designer’s preferences. For instance, the point with the minimum difference between
costs and savings (the lower one) is always an optimum choice in terms of economic profit.
However, it may not be the optimal solution concerning other variables such as CEI and
SAR. In fact, several solutions that offer significant benefits in terms of emissions, SAR,
and MTOW may be disregarded in the pursuit of achieving lower costs. Similarly, there
are points that offer maximum benefits in terms of other variables but may not be desir-
able due to their higher costs. When examining opposite solutions on the PF, the selection
of engine BPR and OBS architecture can vary depending on the performance objective to
be maximized: for example, a BPR of 9.0 with a conventional OBS architecture (CONV)
or a BPR of 15.0 with an advanced electric aircraft (AEA) OBS architecture. Opting for
lower BPR and a moderate level of electrification (representing state-of-the-art technolo-
gies) helps reduce retrofitting costs while achieving moderate performance improvements.
Conversely, increasing the level of retrofitting by adopting advanced engine technology
and full OBS electrification (beyond state-of-the-art) can significantly enhance overall
performance metrics like SAR and CEI, but at the cost of higher retrofitting expenses.
For instance, considering a higher BPR and advanced electrification, emissions are re-
duced (CEI decreases from 1 to 0.86), MTOW slightly decreases (around -3.1% compared
to the baseline), and SAR increases (around +25% compared to the baseline). As a result,
the costs minus savings increase to 0.44 million euros per year, indicating a loss for an
airline operating the aircraft under the considered scenarios.

In this application, two approaches were compared, both providing solutions located
on the PF. For this case, SBO with JPAD appears to be a bit more costly - in terms of
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number of function evaluations - than BO with SEGOMOE and ends up with a smaller
number of feasible solutions. Nevertheless, this approach is less sensitive to a change in
optimization problem (in terms of objectives and constraints) as it relies on an initial
database whereas SEGOMOE enrichment process is tailored for a unique optimization.

(a) Cost - Savings vs MTOW (b) Cost - Savings vs SAR

(c) Cost - Savings vs CEI

Figure 5: Different PF using four objectives: 108 DOE points for JPAD (orange dot), 15
points (blue circle) on the final PF combining JPAD (red cross) and SEGOMOE (green
cross) databases.

3.2 Design of an aircraft family

This application case is part of the upgrade-driven stream and aims at designing a fam-
ily of three business jet aircraft considering commonality options in the MDO workflow [5].
The commonality options enable sharing one or more aircraft components between the
aircraft in the family: by sharing components, design, certification, production, and main-
tenance costs are reduced. However, operating costs might be increased due to the use of
components not designed for the typical flight conditions.

Shareable components include wings, empennage (horizontal and vertical tail), engines,
on-board systems (OBS), and landing gears, shown in Figure 6. Next to the commonality
choices there are three design variables per wing: leading edge sweep, rear span loca-
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tion (determining flap size), and thickness-to-chord ratio. These three design variables
per wing are inactive if the associated wing is a shared wing. Each aircraft family is
optimized for two objectives: direct operating costs (DOC), representing the impact on
performance, and Original Equipment Manufacturer (OEM) non-recurring costs, repre-
senting the potential benefit of commonality. Table 2 presents the optimization problem
in more details.

Share engine 2&3?
Share engine 1&2?

Share wing 1&2? Share wing 2&3?

Share landing gear & systems?

Share empennage?

Figure 6: Visualization of the aircraft family including commonality sharing decisions.

The design space is modeled using the Architecture Design Space Graph (ADSG)
method [51] implemented in the ADORE tool [52], both developed during the project.
MultiLinQ is used to couple the generate architecture instances to the central data schema
used in the MDO workflow [5]. The MDO workflow consists of two levels: an aircraft-
level workflow (shown in Figure 7) applying commonality decisions and sizing one aircraft
at a time, and a family-level workflow converging the three aircraft-level workflows and
performing cost calculation on the family-level. For a more detailed overview of the design
space model, coupling to the MDO workflow and implementation of the MDO workflow
for the family design application case, the reader is referred to [3, 5].

For this application case SEGOMOE is used as optimization algorithm due to the
need to handle hierarchical, mixed-discrete design variables, and the need to minimize
the number of function evaluations as one family evaluation can take up to 2 hours. Hi-
erarchical design variables were handled using the imputation method, where inactive
variables are replaced by the mean value to prevent duplicate design vectors [27]. SEGO-
MOE was accessed through an ask-tell API implemented in WhatsOpt running on a server
at ONERA’s premises as described in Section 2.4. For a more detailed description of how
SEGOMOE was coupled to ADORE and the MDO workflow, the reader is referred to [3].

First, a 50-point DOE was executed to create the initial database of design points for
SEGOMOE and to verify the correct behavior of the MDO workflow. Then, SEGOMOE
was used to generate an addition of 18 infill points to explore the design space and
extend the Pareto front. Figure 8 shows the main Pareto front, with infill points shown
in red. Several example families are shown with colors indicating the originating family
member (colors are defined in Figure 6). As can be seen, when no components are shared
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Table 2: Definition of the aircraft family design problem.

Function/variable Nature Quantity Range

Minimize Direct Operating Costs cont 1
Minimize OEM Non-Recurring Costs cont 1

Total objectives: 2

with respect to engine commonality 1&2 cat 2 levels sharing yes/no
engine commonality 2&3 cat 2 levels sharing yes/no
wing commonality 1&2 cat 2 levels sharing yes/no
wing commonality 2&3 cat 2 levels sharing yes/no

landing gear commonality 1&2 cat 2 levels sharing yes/no
landing gear commonality 2&3 cat 2 levels sharing yes/no

OBS commonality 1&2 cat 2 levels sharing yes/no
OBS commonality 2&3 cat 2 levels sharing yes/no

empennage commonality 1&3 cat 2 levels sharing yes/no
empennage commonality 3&2 cat 2 levels sharing yes/no

Total categorical variables: 10
Leading edge sweep* cont 3 [30.0, 42.0] (deg)
Rear span location* cont 3 [0.72, 0.82] (%chord)

Wing thickness/cord ratio* cont 3 [0.06, 0.11] (−)
* only active if the corresponding wing is not shared

Total continuous variables: 9
Total relaxed variables: 29

subject to Balanced Field Length ≤ 1524 m 1
Landing Field Length ≤ 762 m 1

Total constraints: 2

Figure 7: MDA for family aircraft design.

(family #1) the OEM non-recurring costs are high whereas the operating costs are low,
because all aircraft components are used at the operating points they are designed for.
Introducing more component sharing reduces OEM NRC: family #62 achieves the lowest
operating costs at a reduced NRC. Family #54 represents the opposite extreme: the lowest
NRC coupled with the highest operating costs, as achieved by a high number of shared
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components. Family #30 represents a good compromise, at a reduced NRC compared to
family #62, with only a moderate increase in DOC.

Family #54: lowest NRC, highest DOC (in Pareto front)

Family #62: highest NRC, lowest DOC (in Pareto front)

Family #30: low NRC, low DOC (good compromise)

Family #1: high NRC, low DOC (no commonality)

Figure 8: Results of the aircraft family design, showing the Pareto front for minimization
of Original Equipment Manufacturer Non-Recurring Cost and Direct Operating Cost and
several families. The initial DOE is given by the 50 black dots. Infill points generated by
SEGOMOE are shown in red. Colors correspond to the originating aircraft as defined in
Figure 6.

3.3 Aircraft design with supply chain, performance and manufacturing pro-
cess

This application case is part of the Production stream and aims at accounting the sup-
ply chain aspects in the aircraft MDO workflow, in addition with design and manufactur-
ing aspects. The application focuses on the design of a horizontal tail plane (HTP) made
by different materials and produced by different supply chains, combination of enterprises.
The different solutions are characterized by different impact on aircraft performance (e.g.
mass, aerodynamic efficiency), different manufacturing processes and different combina-
tions of supply chains.

The objective is to have the ability to select the best HTP to produce by trading
performance vs manufacturing costs vs supply chain performance. In this study, HTP
structure breakdown includes skin, stringers, spars and ribs that impact the three domains:

• the manufacturing domain deals with the choices of materials, manufacturing and
assembly processes feasible for the aircraft components. For each combination of
materials, a Technology Factor (TF), a dimensionless number ranging from 0 to 1,
is produced.

• the design domain deals with the estimation of the aircraft performance. The Tech-
nology Factor is considered in the evaluation as it quantifies the impact that mate-
rials, manufacturing and assembly processes, have on the mass and drag of the HTP
and, consequently, on the fuel consumption of the vehicle in cruise. The estimation
of the fuel consumption is the main output of the design domain.
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• the supply chain domain estimates the production performance by characterizing the
enterprises involved in the aircraft production and assembly. Here, each component
of the HTP is characterized by a Production Quantity (PQ) that indicates the
percentage of this component that each enterprise has to produce. The cost, time,
quality and risk are the main outputs of this domain.

For more details regarding this study, the reader can refer to [6, 8, 53]. Figure 9 proposes
a sketch of the interaction between the three domains to build the MDA.

Figure 9: MDA including Manufacturing, Supply Chain and Aircraft Design Variables.

In a first step, the focus was on the supply chain aspect in order to define the for-
malization, the settings of the optimizer, and the settings for remote calls. During this
step, the initial problems are used to calculate the full enumeration of solutions in order
to compare the performance of the optimizer with the true Pareto Front of the database.
Several increasingly complex problems were tackled, starting with a reduced number of
components (for instance only skins and stringers), limited PQ numbers, and limited pro-
duction sites. Eventually an optimization problem considering all the HTP components
and all possible supply chain sites was successfully tackled.

In a second step, the activities focus on integrating the manufacturing options in the
overall optimization problem. It requires to add more variables, namely the choice of
materials and their associated manufacturing processes for each HTP component. In
addition, two constraints have now to be considered:

• the material incompatibility, that aims at discarding all the unfeasible combinations
of material and manufacturing processes for the HTP components (for instance,
an HTP can not be made using both skin in Aluminium - Machining and ribs in
Thermoset - Hand Lay Up);

• the minimal supply chain site competence that checks that no combination of skin,
spar, stringer and ribs (depending of their material and manufacturing process) can
be produced on a site with a competence of 0.
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Table 3 presents the optimization problem in more details. Five objectives are considered,
Cost, Risk, Time and Quality that are related to the supply chain domain and Fuel
Consumption that is connected to the overall aircraft design and manufacturing domain.
The variables represent all the possible choices of the HTP components characteristics and
are treated as categorical variables in the optimization problem. Two types of variables
are considered for each HTP component:

• the choice of production and assembly site. Here the PQ have been frozen to 1, but
all the possible production sites are available. Each component can therefore be pro-
duced among 21 different sites, either belonging to the OEM (Original Equipment
Manufacturer) or to a supplier or sub-suppliers.

• the choice of materials and their associated manufacturing processes. Depending of
the component, several combinations of material and manufacturing process can be
selected (up to 6 for skin). For instance, choices could be Aluminium - Machining,
Thermoset - Hand Lay Up or Thermoset - Infusion Process.

Finally, the two constraints described earlier are included.

Table 3: Definition of the complete problem.

Function/variable Nature Quantity Range

Minimize Cost cont 1
Minimize Risk cont 1
Minimize Time cont 1
Minimize Fuel Burn cont 1
Maximize Quality cont 1

Total objectives 5

with respect to skin prod. location cat 21 levels geographic sites
spar production location cat 21 levels geographic sites

stringer production location cat 21 levels geographic sites
rib production location cat 21 levels geographic sites

skin Material & Manuf. process cat 6 levels Alu-Machining,...
spar Material & Manuf. process cat 5 levels Alu-Machining,...

stringer Material & Manuf. process cat 4 levels Alu-Machining,...
rib Material & Manuf. process cat 5 levels Alu-Machining,...

Total categorical variables 8
Total relaxed variables 104

subject to Material incompatibility 1
Supply chain sites 1

Total constraints 2

Regarding optimization process, a 300-point DOE was executed to create the initial
database of design points for SEGOMOE and to verify the correct behavior of the MDO
workflow. Then, SEGOMOE was used to generate 450 additional infill points to explore
the design space and extend the Pareto front. The main results of the optimization
process are depicted in Figure 10 and Figure 11. Figure 10 presents the PF database
obtained at the end of the optimization run with 450 iterations. The initial DOE points
are represented by orange dots and can provide information concerning the workflow
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(a) Fuel Burn vs Cost (b) Risk vs Cost

(c) Time vs Cost (d) - Quality vs Cost

Figure 10: Database for five objectives: initial DOE of 300 points (orange dots), 450
enrichment points (red crosses) and, from the complete database (750 points) 65 feasible
points on the PF are identified by the blue circles.

behavior. The enrichment process of SEGOMOE added the 450 red crosses points that
extended the database in direction of the Pareto Front (as it can be seen, for instance, on
the -Quality vs Cost Figure 10d). As the optimization is considering two constraints, not
all the database points are feasible and, at the end of the process, 65 points are identified
on the PF (all highlighted with blue circles).

As indicated in Algorithm 1, a post-processing step is then performed applying NSGA-
II algorithm to construct the predicted PF (using the GP models built upon the database).
Figure 11 illustrates the results of this step with the PF database still depicted by blue
circles. The predicted PF is represented by green diamonds, consisting of 33 candidates.
It can be observed that both databases appear intermingled, indicating that the PF
database already exhibits promising performance. Nevertheless, as an additional step,
all the points belonging to the predicted PF have been evaluated with the workflow and
the outputs are depicted in black diamonds. Two pieces of information can be derived
from this evaluated PF. Firstly, the evaluated candidates closely align with the predicted
values (with the exception of a few), indicating the accuracy of the GP models, despite
being built upon 750 points. Secondly, the PF database appears to maintain its good
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(a) Fuel Burn vs Cost (b) Risk vs Cost

(c) Time vs Cost (d) - Quality vs Cost

Figure 11: Comparison of PF (predicted and evaluated) with five objectives: 65 points
from the PF database (blue circles), 33 points from the predicted PF (green diamonds) or
evaluated with the workflow (black diamonds). The predicted and evaluated points are
quite close to each other and complementary to the PF database.

performance, characterized by its proximity to the evaluated PF. To verify this, both
the PF database and evaluated PF were sorted, revealing that 52 points (out of 65)
from the PF database and 26 points (out of 33) from the evaluated PF contribute to
the final combined PF. As expected, the post-processing step of SEGOMOE successfully
populates the PF identified by the algorithm, thereby enriching the available choices for
the application stakeholders.

4 CONCLUSIONS AND PERSPECTIVES

Within the frame of AGILE 4.0 project, multi-objective problems involving mixed
integer variables have been successfully solved using SBO and BO optimizers based on two
associated frameworks JPAD Optimizer and SEGOMOE. In terms of function evaluations,
the number of calls to the expensive black boxes (objectives and constraints) is still small
compared to the number of design variables involved. SEGOMOE has been successfully
applied to three realistic problems involving 2 to 5 objective functions with mixed integer



N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

variables. The use of continuous relaxation strategy to handle the categorical variables
has been coupled with PLS to reduce the increase of dimension allowing to consider up
to 104 choices.

To apply BO to even more complex multidisciplinary processes, several developments
need to be addressed. Future work will focus on extending the handling of hierarchical
and mixed discrete variables while improving computational efficiency for larger databases.
Specifically, with regards to mixed integer variables, the intention is to integrate recent
advancements done within the SMT toolbox concerning mixed correlation kernels [9] or
hierarchical kernels [49] for Gaussian processes into BO and validate their effectiveness.
These studies will be conducted within the context of the Horizon Europe COLOSSUS
project 5. The COLOSSUS project aims to develop a system-of-systems design method-
ology that facilitates the integrated optimization of aircraft, operations, and business
models. This methodology will be applied to intermodal transport and wildfire-fighting
scenarios.

ACKNOWLEDGEMENTS

This work is part of the activities of ONERA - ISAE - ENAC joint research group.
The research presented in this paper has been performed within the framework of the AG-
ILE 4.0 project (Towards Cyber-physical Collaborative Aircraft Development) and has
received funding from the European Union Horizon 2020 Programme under grant agree-
ment n◦815122. Some methodology developments have been performed in the framework
of the COLOSSUS project (Collaborative System of Systems Exploration of Aviation
Products, Services and Business Models) and has received funding from the European
Union Horizon Programme under grant agreement n◦101097120. The authors are also
grateful to the partners of the AGILE 4.0 consortium for their contribution and feedback.

REFERENCES

[1] A. Chan, A. F. Pires, and T. Polacsek. Trying to elicit and assign goals to the right
actors. In Conceptual Modeling: 41st International Conference, ER 2022, 2022.

[2] M. Fioriti, P. D. Vecchia, and G. Donelli. Effect of progressive integration of on-board
systems design discipline in an mda framework for aircraft design with different level
of systems electrification. Aerospace, 9(3), 2022.

[3] J. Bussemaker, L. Boggero, and B. Nagel. The AGILE4.0 project: MBSE to support
cyber-physical collaborative aircraft development. In 33rd Annual INCOSE Interna-
tional Symposium, Honolulu, HI, USA, 2023. To be published.

[4] J. R. R. A. Martins and A. B. Lambe. Multidisciplinary design optimization: A sur-
vey of architectures. AIAA Journal, 51(9):2049–2075, 2013. doi:10.2514/1.J051895.

[5] J. H. Bussemaker, P. D. Ciampa, J. Singh, M. Fioriti, C. C. D. L. Hoz, Z. Wang,
D. Peeters, P. Hansmann, P. D. Vecchia, and M. Mandorino. Collaborative design of
a business jet family using the AGILE 4.0 MBSE environment. In AIAA AVIATION
2022 Forum, 2022. doi:10.2514/6.2022-3934.

5https://colossus-sos-project.eu/

https://doi.org/10.2514/1.J051895
https://doi.org/10.2514/6.2022-3934


N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

[6] G. Donelli, J. M. Mello, F. I. Odaguil, T. van der Laan, T. Lefebvre, N. Bartoli,
L. Boggera, and B. Nagel. Value-driven systems engineering approach addressing
manufacturing, supply-chain and aircraft design in the decision-making process. In
INCOSE 33rd Annual International Symposium 2023, 2023.

[7] A. Chan, A. Fernandes Pires, T. Polacsek, and S. Roussel. The aircraft and its
manufacturing system: From early requirements to global design. In Advanced Infor-
mation Systems Engineering: 34th International Conference, CAiSE 2022, Leuven,
Belgium, June 6–10, 2022, Proceedings, pages 164–179. Springer, 2022.

[8] U. Merola, G. Donelli, T. Lefebvre, N. Bartoli, J. M. Mello, F. I. Odaguil, T. van der
Laan, and B. Nagel. Value-driven optimization campaign addressing manufacturing,
supply chain and overall aircraft design domains in the early development stage. In
INCOSE 33rd Annual International Symposium 2023, 2023.

[9] P. Saves, Y. Diouane, N. Bartoli, T. Lefebvre, and J. Morlier. A mixed-
categorical correlation kernel for Gaussian process. arXiv preprint, 2022.
doi:https://doi.org/10.48550/arXiv.2211.08262.

[10] R. Grapin, Y. Diouane, J. Morlier, N. Bartoli, T. Lefebvre, P. Saves, and J. Busse-
maker. Regularized infill criteria for multi-objective bayesian optimization with ap-
plication to aircraft design. In AIAA AVIATION 2022, 2022.

[11] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[12] R. Garnett. Bayesian Optimization. Cambridge University Press, 2023.

[13] F. Nicolosi, A. De Marco, L. Attanasio, and P. D. Vecchia. Development of a
java-based framework for aircraft preliminary design and optimization. Journal of
Aerospace Information Systems, 13(6):234–242, 2016.

[14] V. Trifari, M. Ruocco, V. Cusati, F. Nicolosi, and A. De Marco. Java framework for
parametric aircraft design–ground performance. Aircraft Engineering and Aerospace
Technology, 89(4):599–608, 2017.

[15] J. B. Kollat and P. M. Reed. Comparison of multi-objective evolutionary algorithms
for long-term monitoring design. In Impacts of Global Climate Change, pages 1–11.
2005.

[16] M. Sasena. Flexibility and efficiency enhancements for constrained global design op-
timization with Kriging approximations. PhD thesis, University of Michigan, 2002.

[17] C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning,
volume 1. MIT press Cambridge, 2006.

[18] D. G. Krige. A statistical approach to some basic mine valuation problems on the
witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy,
52(6):119–139, 1951.

https://doi.org/https://doi.org/10.48550/arXiv.2211.08262


N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

[19] D. Bettebghor, N. Bartoli, S. Grihon, J. Morlier, and M. Samuelides. Surrogate
modeling approximation using a mixture of experts based on EM joint estimation.
Structural and Multidisciplinary Optimization, 43(2):243–259, 2011. ISSN 1615-
147X. URL http://dx.doi.org/10.1007/s00158-010-0554-2. 10.1007/s00158-
010-0554-2.

[20] R. P. Liem, C. A. Mader, and J. R. R. A. Martins. Surrogate models and mixtures
of experts in aerodynamic performance prediction for mission analysis. Aerospace
Science and Technology, 43:126–151, 2015. doi:10.1016/j.ast.2015.02.019.

[21] M. A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier. Improving kriging surro-
gates of high-dimensional design models by partial least squares dimension reduc-
tion. Structural and Multidisciplinary Optimization, 53(5):935–952, 2016. ISSN
1615-1488. doi:10.1007/s00158-015-1395-9. URL http://dx.doi.org/10.1007/

s00158-015-1395-9.

[22] M. A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier. An improved approach for
estimating the hyperparameters of the kriging model for high-dimensional problems
through the partial least squares method. Mathematical Problems in Engineering,
2016, 2016.

[23] R. Priem, H. Gagnon, I. Chittick, S. Dufresne, Y. Diouane, and N. Bartoli. An
efficient application of bayesian optimization to an industrial mdo framework for
aircraft design. In AIAA AVIATION 2020 FORUM, page 3152, 2020.

[24] P. Saves, N. Bartoli, Y. Diouane, T. Lefebvre, J. Morlier, C. David, E. Nguyen Van,
and S. Defoort. Multidisciplinary design optimization with mixed categorical vari-
ables for aircraft design. In AIAA SCITECH 2022 Forum, page 0082, 2022.

[25] N. Bartoli, T. Lefebvre, S. Dubreuil, R. Olivanti, R. Priem, N. Bons, J. R. Martins,
and J. Morlier. Adaptive modeling strategy for constrained global optimization with
application to aerodynamic wing design. Aerospace Science and Technology, 90:85–
102, 2019. doi:https://doi.org/10.1016/j.ast.2019.03.041.

[26] T.Lefebvre, N. Bartoli, S. Dubreuil, M. Panzeri, R. Lombardi, P. D. Vecchia,
L. Stingo, F. Nicolosi, K. Anisimov, A. Savelyev, A. Mirzoyan, and A. Isyanov.
Enhancing optimization capabilities using the agile collaborative mdo framework
with application to wing and nacelle design. Progress in Aerospace Sciences, 2020.
doi:10.1016/j.paerosci.2020.100649.

[27] J. H. Bussemaker, N. Bartoli, T. Lefebvre, P. D. Ciampa, and B. Nagel. Effectiveness
of surrogate-based optimization algorithms for system architecture optimization. In
AIAA AVIATION 2021 FORUM, page 3095, 2021. doi:10.2514/6.2021-3095.

[28] E. C. Garrido-Merchán and D. Hernández-Lobato. Dealing with categorical and
integer-valued variables in bayesian optimization with gaussian processes. Neuro-
computing, 380:20–35, 2020.

http://dx.doi.org/10.1007/s00158-010-0554-2
https://doi.org/10.1016/j.ast.2015.02.019
https://doi.org/10.1007/s00158-015-1395-9
http://dx.doi.org/10.1007/s00158-015-1395-9
http://dx.doi.org/10.1007/s00158-015-1395-9
https://doi.org/https://doi.org/10.1016/j.ast.2019.03.041
https://doi.org/10.1016/j.paerosci.2020.100649
https://doi.org/10.2514/6.2021-3095


N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

[29] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google
vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, page
1487–1495, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3097983.3098043. URL https://doi.org/10.1145/3097983.3098043.

[30] M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and J. R. R. A.
Martins. A python surrogate modeling framework with derivatives. Advances in
Engineering Software, 135, 2019. doi:10.1016/j.advengsoft.2019.03.005.

[31] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca. Per-
formance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on evolutionary computation, 7(2):117–132, 2003.

[32] M. T. Emmerich, K. C. Giannakoglou, and B. Naujoks. Single-and multiobjec-
tive evolutionary optimization assisted by gaussian random field metamodels. IEEE
Transactions on Evolutionary Computation, 10(4):421–439, 2006.

[33] D. R. Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of global optimization, 21:345–383, 2001.

[34] A. A. Rahat, R. M. Everson, and J. E. Fieldsend. Alternative infill strategies for
expensive multi-objective optimisation. In Proceedings of the genetic and evolutionary
computation conference, pages 873–880, 2017.

[35] M. J. Powell. A direct search optimization method that models the objective and con-
straint functions by linear interpolation. In Advances in optimization and numerical
analysis, pages 51–67. Springer, 1994.

[36] D. Kraft et al. A software package for sequential quadratic programming. DFVLR
Obersfaffeuhofen, Germany, 1988.

[37] P. E. Gill, W. Murray, and M. A. Saunders. Snopt: An sqp algorithm for large-scale
constrained optimization. SIAM review, 47(1):99–131, 2005.

[38] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):
182–197, 2002.

[39] J. Blank and K. Deb. Pymoo: Multi-objective optimization in python. IEEE Access,
8:89497–89509, 2020.

[40] B. Boden, J. Flink, N. Först, R. Mischke, K. Schaffert, A. Weinert, A. Wohlan, and
A. Schreiber. Rce: An integration environment for engineering and science. softwarex
15, 100759 (2021), 2021.

[41] E. Baalbergen, E. Moerland, W. Lammen, and P. Ciampa. Methods to support
efficient collaboration for competitive aircraft design. In 6th CEAS Aerospace Europe
Conference, 2017.

https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1016/j.advengsoft.2019.03.005


N. Bartoli, T. Lefebvre, R. Lafage, P. Saves, Y. Diouane, J. Morlier, J.H. Bussemaker, G. Donelli, Joao
Marcos Gomes de Mello, M. Mandorino and P. Della Vecchia

[42] E. Baalbergen, J. Vankan, L. Boggero, J. H. Bussemaker, T. Lefèbvre, B. Beijer,
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