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ONERA, The French Aerospace Lab, 8 Rue de Vertugadins, 92190 Meudon, France

(Dated: August 28, 2023)

Reynolds-averaged Navier-Stokes (RANS) simulations are the most widespread approach to pre-
dict turbulent flows typical of industrial problems. Despite its success, the inherent simplifications
and assumptions used to model the unknown Reynolds stresses are sources of inaccuracies. With this
in mind, data-assimilation (DA) techniques can be used to minimize errors between the predicted
and the exact flow fields by optimizing a space-dependent correction term. This correction term can
be subsequently fed into machine learning algorithms to enhance RANS turbulence models. The
main objective of this work is to assess the performance of several correction terms to match a full
mean-flow velocity field, provided by averaged DNS simulations, and analyze the pros and cons of
each when used subsequently in a machine-learning based RANS framework. Three configurations
were chosen to perform the analysis: the converging-diverging channel at Re = 12600, the flow
over periodic hills at Re = 2800, and the square cylinder at Re = 22000. Six different correction
terms were considered and discussed in this paper. Assimilations based on eddy-viscosity corrections,
albeit constrained by the Boussinesq hypothesis, were able to correct the velocity field even for flows
exhibiting large recirculation regions. However, the precise choice of the correction term employed
has a major impact in the optimization process. On the other hand, when correction is applied as
source terms in the momentum equations, better fit of the corrected mean-flow field is achieved.

I. INTRODUCTION

Turbulence is one of the most intriguing problems in classical physics and it remains as a major subject of research
until the present days. As a matter of fact, many questions related to turbulence are still open. Moreover, many
applications in engineering rely on the prediction of turbulent flows, for instance: aircraft design, atmospheric flows,
gas turbine engines, reactive flows etc. Despite the increase in computational power over the last decades, the full
solution of Navier-Stokes equations remains unfeasible for the majority of applications. Therefore, engineers have to
rely on turbulence models to overcome this challenge.

The most usual approach to predict turbulent flows is to consider the Reynolds averaged Navier-Stokes (RANS)
equations, which is based on the Reynolds decomposition, involving the mean field (statistical ensemble average) and
the fluctuation part. The Reynolds stress tensor, that accounts of the effect of the fluctuations on the mean flow, can
be modeled as functions of the mean field variables in order to close the set of equations. It is remarkably cheaper
to solve the RANS equations with a closure equation than a Direct Numerical Simulation (DNS); besides, as many
applications require only the information of the mean field, this technique presents some advantages. On the other
hand, the necessity of a model for the Reynolds stress tensor, which is usually designated as a closure model, makes
it less accurate and arduous to describe the physics properly. Between these two methods, there is the Large Eddy
Simulation (LES) in which the smallest scales of the flow are filtered and only the largest eddies are captured in
the computational grid. This approach, although less expensive than the DNS, is still prohibitive in many cases;
moreover, it still relies on turbulence modelling in the sense that the interaction between the small filtered scales and
the non-filtered ones has to be modeled.

The great efforts to develop closure equations for the RANS equations resulted in several well-known models, for
instance, the one-equation model Spalart-Almaras (SA) [1], the two-equation models k− ε [2] and k−ω [3], and their
many variations. All these models have sets of parameters which are calibrated using experimental data from some
simple canonical flows. As each model has been developed to suit a limited range of flows and their parameters seem
to be non-universal, their accuracy and uncertainties are constantly being questioned (see discussion in [4]).

A more systematic methodology is used in the general framework of data-driven turbulence modelling in order to
minimize the discrepancy between the data and the output of the model for a specific flow scenario. For instance,
Li et al.[5] determined the coefficients of a k − ω model in order to minimize the velocity error with respect to high-
fidelity simulations. The optimization problem can then be treated with, for example, gradient-based techniques or
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ensemble-based method. Unlike Li et al.[5], the technique used in the present work tries to address model-form errors
instead of parametric ones. Unlike the traditional methods based on the inference of model parameters, the idea is to
use a correction field varying in space which allows one to access solutions beyond the space solution of the original
model. This freedom makes it possible to analyze model-form errors.

Data assimilation (DA) in field inversion problems can be found in several works in the scientific literature. In
Foures et al. [6], data provided from a DNS simulation of a flow over a cylinder was used to tune the Reynolds
stress term of the RANS equations in a way to reconstruct the flow. In Franceschini et al. [7], a data-assimilation
procedure was used in the case of a backward-facing step at moderated Reynolds number to tune volumetric forces in
the momentum equations and in the Spalart-Allmaras model. Li et al. [8] also studied the problem for other cases.
Moreover, rather than additive correction terms in the models, other works considered multiplicative terms to correct
the models, for instance, in Duraisamy et al. (2017)[9], data-assimilation with respect to a field β (x), which multiplies
the production term in the Spalart-Allmaras model, was considered. Other examples are found in [10], [11] and [12].

Data-assimilation related to the Spalart-Allmaras model presented promising results in many of the previous cited
works, on the other hand, correction terms imposed on the turbulent model rather than the momentum equations
remain constrained to the validity of the Boussinesq hypothesis. Franceschini et al.[7] addressed this challenge as
the rigidity of the correction field. Their study evaluated the flexibility of several correction terms, in either the
momentum or eddy-viscosity equations, to quantify their capability to reconstruct reference mean-flows according to
the flow features, i.e., presence of large or thin recirculated region, geometry etc.

Another important motivation of the cited assimilation approach is the increasing use of machine-learning to
enhance turbulence models over the last decade. A common technique is to use high-fidelity data to directly estimate
a correction term to be learned. For instance, Wang et al.[13] used a technique based on random forest to reconstruct
the discrepancy between the Reynolds stress in RANS simulations and DNS databases. In the same direction, Wu et
al.[14] described a data-augmented turbulence framework in order to create a systematic machine-learning approach
to learn the Reynolds stress tensor. Ling et al.[15] presented a method of deep neural network to reconstruct the
Reynolds stress anisotropy tensor. Nevertheless, if input features are computed from DNS, the constructed field can be
inconsistent with the RANS model structure. On top of that, this methodology can create an ill-conditioned problem
when correcting directly the Reynolds stresses in the RANS framework (see [16, 17]). For this reason, Cruz et al.
[18], Berrone and Oberto [19] proposed to work with the Reynolds force vector (the divergence of the Reynolds stress
tensor) given by high-fidelity simulations as a target for the machine learning technique. Parish et al.[20] proposed a
two-step procedure to avoid model inconsistency, namely field inversion and machine learning (FIML), where data-
assimilation is performed to infer a model correction term and, then, machine-learning is done to generalize it.
Although, under favorable circumstances, the direct acquisition of the correction term from experiments can provide
reasonable results, the step addressing data-assimilation to compute the model correction terms, also known as field
inversion, is important to guarantee the consistency with the model structure. Other works as Duraisamy et al.
(2019)[21] and Duraisamy (2021)[22] discuss the state of the art of model-consistent machine-learning. In addition,
FIML was applied in several recent studies: Köhler et al.[23] employed FIML on a k − ε model to reconstruct
discrepancies in wall-bounded flows with separation and reattachment; Ferrero et al.[24] applied artificial neural
network, using data from correction fields, to improve RANS-SA models for low pressure gas turbine cascades; and
Rumsey et al.[25] worked on a wide variety of flows in the machine-learning step to enhance the SA model. These
works used as modelling term the β (x) field related to turbulence production. Additionally, Volpiani et al. (2021)[26]
tuned a source term in the RANS momentum equations to correct the flow over periodic hills and trained a neural
network with the data assimilated-fields to model the discrepancy between DNS and RANS.

Although several works dedicated to model the discrepancies between models and experiments through machine-
learning exist, questions about how the inverse problem should be approached remain. Therefore, the main motivation
of the present work is to compare the performance of different non-parametric control terms to solve the inverse
problem of assimilation. As the properties and behaviours of these problems are often unknown, the aim is to
pragmatically study the flexibility of the optimization procedure for different tuning terms to correct the baseline
model, being constrained to the same computational meshes as the ones used for the RANS calculations, the same
numerical methods and cost functional. The focus is directed to cases where the Spalart-Allmaras performs poorly, the
Boussinesq hypotheses is questionable or/and the character of the flow is highly unsteady. Even for these cases, some
of the control parameters can express surprising results as it is shown further. We apply the methodology presented
here in three flow cases, in which the level of accuracy of the Boussinesq hypotheses is more or less respected.

This work is organized as follows: section II presents the mathematical formulation of the problem and the de-
scription of the method, which is based on a variational formulation to solve the optimization problem related to the
data-assimilation method; section III discusses the results concerning the data-assimilation of the convergent-divergent
channel with emphasis on the different performances of each control term used; section IV continues the investigation
for the periodic hills flow case, characterized by a stronger separation and misalignment between the stress tensor
and strain tensor; section V shows the results of the data-assimilation for the square cylinder flow case to illustrate
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the performance of the method in a strongly separated flow and also highly unsteady; section VI summarizes the
advantages and drawbacks of each control term employed to correct the model in the machine-learning framework;
finally, the main conclusions are exposed.

II. METHODOLOGY

This section describes the method proposed to perform the data-assimilation. First (§II A), we present the reference
and baseline predicted solutions. We consider the RANS-Spalart-Allmaras (SA) model, even though the methodology
is not limited to this specific model and is rather general; the advantage of the SA model is its simplicity and broad
application in industry, e.g., aviation. Then (§II B), the data-assimilation problem is described in the form of a
deterministic optimization problem with various control parameters added to the baseline RANS-SA equations. The
objective functional we aim to minimize is given by the discrepancy between the reconstructed and the reference
velocity fields. After presenting in §II C the gradient of the objective with respect to the various control parameters
and their properties, we briefly recall the optimization strategy in §II D and the elements of the numerical discretization
in §II E.

A. Reference and baseline mean flows

The flow variables q = [u, p]
T

are separated into the sum of two components: the mean flow q = [u, p]
T

and the

fluctuations q′ = [u′, p′]
T

. The reference mean flow satisfies the steady incompressible RANS equations

∇ · u = 0, (1a)

u · ∇u +∇p−∇ · (ν∇su) = −∇ · (u′ ⊗ u′) (1b)

where ∇s = (∇+∇T ) is twice the symmetric component of the velocity gradient and u′ ⊗ u′ is the Reynolds stress
tensor. In the following, such reference data will be obtained from DNS data.

Using a turbulence model to close the above RANS equations, we obtain a predicted baseline mean flow q̃ = [ũ, p̃]
T

.
Here we consider the classical Boussinesq approximation for the Reynolds stress tensor −u′ ⊗ u′ = νt∇sũ− 2

3kI, where

νt is the eddy-viscosity and k = 1
2

(
u′

2
+ v′

2
+ w′

2
)

is the turbulent kinetic energy, usually accounted in the pressure

term.
We use the particular Spalart-Allmaras-neg one equation turbulence model introduced by Crivellini et al. [27]:

∇ · ũ = 0, (2a)

ũ · ∇ũ +∇p̃−∇ · (ν∇su) = ∇ · [νt(ν̃)∇sũ] , (2b)

ũ · ∇ν̃ −∇ · [η(ν̃)∇ν̃] = P (ν̃,∇ũ)−D(ν̃,∇ũ) + C(∇ν̃)︸ ︷︷ ︸
s(ν̃,∇ν̃,∇ũ)

, (2c)

while the eddy-viscosity νt(ν̃) and diffusion coefficient η(ν̃) are modelled as:

νt(ν̃) =

{
ν̃fv1, ν̃ ≥ 0
0, ν̃ < 0

, fv1 =
χ3

c3v1 + χ3
, χ =

ν̃

ν
, η(ν̃) =

{
σ−1ν (1 + χ) , χ ≥ 0
σ−1ν

(
1 + χ+ 1

2χ
2
)
, χ < 0

. (3)

The source term s(ν̃,∇ν̃,∇ũ) is composed of a production, destruction and cross-diffusion term:

P (ν̃,∇u) =

{
cb1ν̃S̃ , χ ≥ 0
cb1ν̃Sgn , χ < 0

, D(ν̃,∇u) =

{
cw1fw

(
ν̃
d

)2
, χ ≥ 0

−cw1

(
ν̃
d

)2
, χ < 0

, C(∇ν̃) =
cb2
σ
∇ν̃ · ∇ν̃, (4)

where:

S̃ = S +
ν̃fv2

k2d2
, S =

√
|∇ × u|2 +M2 −M, fv2 = 1− χ

1 + χfv1
, gn = 1− 1000

χ2

1 + χ2
,

fw = g

[
1 + c6w3

g6 + c6w3

] 1
6

, g = r + cw2

(
r6 − r

)
, r =

{
r′, 0 6 r′ 6 10,
10, r′ < 0, r′ > 10

, r′ =
ν̃

S̃k2d2
.

Here d is the distance to the nearest wall, cv1 = 7.1, cb1 = 0.1355, cb2 = 0.622, σ = 2/3, k = 0.41, cw1
= cb1/k

2 + (1 +
cb2)/σ, cw2 = 0.3, cw3 = 2. We also introduced the regularizing constant M = 10−5 to avoid differentiability issues of
S.
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B. Data assimilation framework

Six correction terms are considered in the governing equations (2):

∇ · ũ = 0, (5a)

ũ · ∇ũ +∇p̃−∇ · (ν∇sũ) = ∇ · [(1 + ξ) νt(ν̃)∇sũ + Rγδ] + f̃u, (5b)

ũ · ∇ν̃ −∇ · [η(ν̃)∇ν̃] = (1 + β)P (ν̃,∇ũ)−D(ν̃,∇ũ) + C(∇ν̃) + f̃ν̃ + g̃ν̃ ν̃. (5c)

All these terms are space-dependent: f̃u := f̃u(x), Rγδ := Rγδ(x), f̃ν̃ := f̃ν̃(x), g̃ν̃ := g̃ν̃(x), β := β(x), ξ := ξ(x).
These correctors are therefore non-parametric, i.e., they do not rely just in the tuning of numerical model coefficients,
rather they allow the model to explore solutions which would be outside the original space of solutions (see [4]).

Parameters β, f̃ν̃ and g̃ν̃ are introduced in the equation governing the turbulence variable: the correction term β
adjusts the production of turbulence-eddy viscosity, as proposed by Singh and Duraisamy [28], while parameters f̃ν̃
and g̃ν̃ fix the overall value of the source term. The effectiveness of the correction g̃ν̃ is conditioned by a non-zero value
of the turbulence variable; hence its gradient is forced to be located in boundary layers or separated regions, which
are physically meaningful regions for turbulence length-scale corrections. On the contrary, the gradient associated
to the correction f̃ν̃ is generally located more upstream and may point even to non-physical regions (for example
the uniform upstream flow region). This difference might have a strong impact on the efficiency of the optimization
procedure [12]. Finally, ξ multiplies the eddy-viscosity in the momentum equation and intends to directly fix the
eddy-viscosity value. All these parameters force the solution to be constrained within the Boussinesq hypothesis: only
the length-scale of the turbulence is corrected, not the structure of the Reynolds-stresses, which remain aligned with
the velocity gradient tensor.

On the other hand, parameters f̃u and Rγδ yield solutions that are not constrained by the Boussinesq hypothesis,

and may therefore be considered as a cure to its limitations. The parameter Rγδ =

(
γ δ
δ −γ

)
is taken as a trace-free

symmetric tensor, standing for a conservative force, which is consistent with the fact that Reynolds stresses should be
conservative. Note that the vector field (γ, δ) is defined up to a divergence-free potential flow, since (γ+∂xφ, δ+∂yφ)
with ∂xxφ+ ∂yyφ = 0 yields the same forcing as (γ, δ). This degree of freedom could in particular be used to enforce

specific conditions on the full Reynolds stresses, for example realizability [29]. The correction term f̃u is in contrast
not conservative in general.

A cost functional is then defined as the error between the computed velocity field of the model and the reference
mean velocity field:

J(ũ) =
1

2

∫
Ω

‖ũ− u‖2 dΩ, (6)

where 〈a,b〉Ω =
∫

Ω
a · b dΩ. The cost functional J is then minimized constrained to the governing equations. All

optimizations are performed with a single parameter, i.e. the various parameters introduced above are considered one
at a time.

If the cost-functional reaches a zero value, the full reconstructed Reynolds stress vector on the right-hand-side of
eq. (5b),

fDA = ∇ · [(1 + ξ) νt(ν̃)∇sũ + Rγδ] + f̃u, (7)

should match ũ · ∇ũ +∇p̃−∇ · (ν∇sũ), with ũ = u and p̃ = p + 2
3k. Hence, the quantity

fDNS = −∇ · (u′ ⊗ u′) +
2

3
∇k, (8)

should accurately recover fDA. In Foures et al. [6], it was checked that the rotational of the Reynolds stress forces
(which removes the potential part) perfectly agrees in such an ideal situation. In the following, we will however show
that, due to the extreme sensitivity of the relation fDA → ũ, even minute discrepancies between ũ and u will trigger
noticeable differences between the two Reynolds stress forces. Note finally that matching the Reynolds stress forces
does not induce matching the Reynolds stresses. Indeed, as already mentioned, a trace-free tensor characterized by
two fields (γ, δ) yields the same force as any other trace-free tensor characterized by (γ + ∂xφ, δ + ∂yφ as soon as
∂xxφ + ∂yyφ = 0. Hence, in the absence of any additional knowledge of the Reynolds stresses (in particular if the
objective functional only involves mean-flow velocity quantities), there is no reason a priori that the reconstructed
Reynolds stresses RDA and reference stresses RDNS , respectively defined as

RDA = (1 + ξ) νt(ν̃)∇sũ + Rγδ, RDNS = −∇ · (u′ ⊗ u′) +
2

3
kI (9)
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should match. This is a point that will also be illustrated in the following sections.

C. Objective functional gradients

The equivalent unconstrained problem can be written through the Lagrangian L, which is constructed with the
help of Lagrange multipliers or adjoint variables ũ†, p̃† and ν̃†. The Lagrangian can be written as

L
(

[ũ, p̃, ν̃] ,
[
ũ†, p̃†, ν̃†

]
,
[
f̃u, f̃ν̃ , β, ξ,Rγδ, g̃ν̃

])
=J(ũ) + 〈ũ†, ũ · ∇ũ +∇p̃−∇ · [(ν + (1 + ξ) νt(ν̃))∇sũ + Rγδ]− f̃u〉Ω + 〈p̃†,∇ · ũ〉Ω
+〈ν̃†, ũ · ∇ν̃ −∇ · (η(ν̃)∇ν̃)− (1 + β)P (ν̃,∇ũ) +D(ν̃,∇ũ)− C(∇ν̃)− f̃ν̃ − g̃ν̃ ν̃〉Ω.

(10)

The governing equations for the adjoint state are obtained by setting the variation of the Lagrangian with respect
to the direct state to zero. The adjoint equations correspond to the following set of linear forced equations (see
Appendix §A):

∇ · ũ† = 0, (11a)

ũ† · (∇ũ)T − ũ · ∇ũ† −∇ ·
[
(ν + (1 + ξ)νt)∇sũ†

]
−∇p̃† + ν̃†∇ν̃ +∇ ·

(
ν̃†∂∇ũs

)
= −(ũ− u) (11b)

− ũ · ∇ν̃† −∇ ·
(
η∇ν̃†

)
+ (∂ν̃η)∇ν̃† · ∇ν̃ + (1 + ξ) (∂ν̃νt)∇ũ† : ∇sũ− (∂ν̃s) ν̃

† +∇ ·
(
ν̃†∂∇ν̃s

)
− g̃ν̃ ν̃† = 0,

(11c)

where it is seen that the forcing term is the discrepancy between the actual and reference solutions ũ− u.
The variation of the Lagrangian with respect to each of the control terms gives the gradients:

∇f̃uJ = −ũ†, ∇Rγδ
J = ∇ũ†, (12a)

∇ξJ = νt(ν̃)∇ũ† : ∇sũ, ∇βJ = −P (ν̃,∇ũ)ν̃†, ∇g̃ν̃J = −ν̃ν̃†. ∇f̃ν̃J = −ν̃†, (12b)

The expression of these gradients yields some qualitative information on the location of the various control parameters.
For example, it is seen that g̃ν̃ (resp. β) is located in the overlap region of ν̃ (resp. P (ν̃,∇ũ)) and ν̃†, while f̃ν̃ is

located more upstream in the region where ν̃† is maximal. Hence, the f̃ν̃ control parameter may induce difficulties
for the optimization algorithm to find the nonlinear optimum since this control parameter will be searched within a
non-physical upstream region, where Reynolds stresses are weak. On the contrary, the parameter g̃ν̃ will be searched
for in a viscous region characterized by non-zero values of ν̃, which makes physical sense. Finally, the gradients
involving derivative quantities of the direct and / or adjoint quantities, such as ∇Rγδ

J or ∇ξJ , might be noisier.
These remarks will help understand some of the observations made below.

Although the adjoint equations were derived within the continuous framework, we pick a discrete adjoint approach
whenever possible to improve robustness. For example, the linear operator within (11) is simply obtained by a
transpose of the discrete linearized governing equations, while the explicit expressions of the gradients are taken from
the continuous framework within (12). The quality of the gradients has been checked against finite differences in
appendix B.

D. Optimization algorithm

We consider the data-assimilation procedure introduced by Franceschini et al. [7] to optimize a given control
parameter α (see Figure 1). We use the Low memory BroydenFletcherGoldfarbShanno (L-BFGS) implemented in
the open library scipy in Python to perform the nonlinear optimization. It is a gradient based-method (requiring
∇αJ), which approximates the Hessian in an iterative way to evaluate the optimal parameter updates δα at each
iteration. Note that the gradients being defined with respect to the scalar-product 〈a,b〉Ω, a change of variable has
to be applied to comply with the present L-BFGS implementation, which is restricted to Euclidian inner-products.
More details can be found in Franceschini et al. [7]. Also, we have shown in appendix B a typical optimization history
of the various gradient norms to assess the quality of the optimization procedures.

E. Spatial discretization and steady-state solver

The set of equations (5) is solved with a Finite Element Method (FEM) based on continuous Lagrange polynomials,
within the FreeFEM ++ open-source software [30]. Such a FEM becomes numerically unstable for high Reynolds
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Baseline RANS-SA
α = 0
(FreeFem++)

RANS-SA
α updated
(FreeFem++) Reference solution (DNS)

Cost functional J

Adjoint solution
(FreeFem++)

∇J (FreeFem++)
Optimization: L-BFGS
(Python)

new α

Initialization

Reference solution (DNS)

Cost functional J

Data-assimilation

FIG. 1: Diagram of data-assimilation. Blue color identifies where the initialization is positioned in the
data-assimilation loop. The letter α represents the general control parameter being tuned.

flows, thus a stabilization scheme is necessary. Following the works of Bao et al. (2011)[31], we chose to use the
simplified version of the Streamline-Upwind Petrov-Galerkin (SUPG) scheme[32]. Consequently, only the advection
terms are treated in this formulation. The weak form of equations 5 yields the following residual to be minmized[7]:

N ([ũ, p̃, ν̃] , [ṽ, q̃, ν̂]) =

∫
Ω

(ũ · ∇ũ) · ṽdΩ +

∫
Ω

(−p̃I + (ν + νt)∇sũ) : ∇ṽdΩ−
∫

Ω

(∇ · ũ) q̃dΩ (13)

+

∫
Ω

(ũ · ∇ν̃ − s) ν̂dΩ +

∫
Ω

η∇ν̃ · ∇ν̂dΩ (14)

+
∑
Ωk

∫
Ωk

τSUPGũ · ∇ṽ (ũ · ∇ũ) dΩk +
∑
Ωk

∫
Ωk

τSUPGũ · ∇ν̂ (ũ · ∇ν̃) dΩk, (15)

where the function τSUPG is given as:

τSUPG =
f(Reh)hT

2|u|
, f(Reh) =

{
Reh

3 , Reh 6 3
1, Reh > 3

, Reh =
|u|hT

2ν
. (16)

The local Reynolds number Reh is defined based on the local element size hT =
√

2A/hmaxT . Briefly, the aim is to find
[ũ, p̃, ν̃] such that for ∀ [ṽ, q̃, ν̂] and appropriate boundary conditions, we have N ([ũ, p̃, ν̃] , [ṽ, q̃, ν̂]) = 0. The nonlinear
problem is solved with a Newton algorithm and the resulting large sparse systems of linear algebraic equations are
solved based on the the Multifrontal Massively Parallel Sparse Direct Solver (MUMPS)[33, 34]. We use P1

b elements
for the velocity, and P1 elements for the pressure and eddy-viscosity fields, which results in a first-order accurate
scheme. Baseline meshes were constructed taking into account the wall refinement of the DNS cases, ensuring mesh
sizes below y+ = 1 close to the walls. On top of that, a grid convergence study was performed for all configurations.
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(a) RANS-SA horizontal velocity field ũ/Uref .

(b) Error field eũ/Uref

FIG. 2: Velocity field (u-component) of baseline RANS-SA, and the dotted lines represent level curves corresponding
to the DNS field for comparison. Normalized error field based on equation 17. Red box indicates zone where

discrepancies are highest, see figure (b).

III. CONVERGING-DIVERGING CHANNEL

A. Reference and base flows

We consider the converging-diverging channel at Re = 12600 (based on the inlet reference velocity) available within
the public database in the Turbulence Modelling Resource from the Langley Research Center. Experimental tests were
conducted in the wind tunnel of the Laboratoire de Mécanique de Lille by Bernard et al.[35] and Direct Numerical
Simulations were done based on the same geometry (see [36] and [37]). The bump geometry was firstly designed
to model an airfoil subjected to an adverse pressure gradient (APG) but sufficiently weak preventing the boundary
layer from separating for the Reynolds number of the experiments. However, DNS computations ([36], [37]) showed
a narrow region of re-circulation for the Reynolds numbers chosen. The works from Marquillie et al. (2008) [36]
and Marquillie et al. (2011) [37] detail the main characteristics of the flow. The geometry can be found in other
papers in the literature ([38], [39]). In the following, the inlet (resp. outlet) boundary condition is located at x/h = 0
(resp. x/h = 12.5), while the top-wall is at y/h = 2. The reference velocity scale Uref is taken as the velocity at
(x/h = 0, y/h = 1).

The baseline SA solution is illustrated in Figure 2a. The inlet velocity profile is set using the DNS results with
ν̃ reconstructed from the turbulent stresses. While the upstream part of the bump is characterized by a favorable
pressure gradient, its diverging part is dominated by an APG. The error field (Fig.2b) computed as

eũ (x) =
[
(ũ (x)− u (x))

2
+ (ṽ (x)− v (x))

2
] 1

2

, (17)

shows where the DNS and RANS-SA strongly disagree, i.e., the region downstream of the separation. Although the
area characterized by the boundary separation seems to be rather small in the DNS, it is a challenging flow to be
evaluated with the RANS-SA equations due to the thin elongated re-circulation and high-velocity gradients. The
separation point predicted by the RANS computation is displaced downstream and the boundary layer does not seem
to reattach until the final portion of the channel. Failing to reproduce the position of separation and reattachment of
the boundary layer for this type of flow will impact the evaluation of quantities of interest such as the skin-friction or
the pressure distribution.

B. Assimilated mean fields

The results of the data-assimilation concerning the f̃u, Rγδ, β, f̃ν̃ , g̃ν̃ and ξ terms are now presented. The data-

assimilation procedure based on the momentum forcing f̃u and conservative momentum forcing Rγδ are less constrained
than the ones that modify the value of the eddy-viscosity field νt. The cost functional decreased almost three orders of
magnitude (see Figure 3) for the terms that directly affect the momentum equation. Nevertheless, the overall velocity
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FIG. 3: Cost functional during data-assimilation iterations.

TABLE I: Cf error computed as ECf =
√∫

(C
DA/RANS
f − CDNSf )2ds/

∫
(CDNSf )2ds and final relative velocity error

Eũ =
√∫∫

e2
ũdΩ/

∫∫
U2
refdΩ for each reconstructed field.

RANS f̃u Rγδ β f̃ν̃ g̃ν̃ ξ

ECf 0.39 0.059 0.057 0.18 0.19 0.12 0.23

Eũ 4.9 · 10−2 3.1 · 10−3 2.9 · 10−3 8.4 · 10−3 8.1 · 10−3 4.6 · 10−3 1.2 · 10−2

fields corrected with β, f̃ν̃ and g̃ν̃ were also greatly improved. Although the ξ term had the lowest performance, the
overall reconstruction is still reasonable. These conclusions are illustrated by the reconstructed velocity profiles with
three correction terms (f̃u, g̃ν̃ and ξ) in Figure 4. General profiles related to Rγδ, β and f̃ν̃ (not shown) were similar

to f̃u and g̃ν̃ .
The u+ profiles (Figures 4b and 4c) as well as the skin friction coefficient Cf (Figure 5) were considered to assess

the quality of the reconstruction close to the wall. The dimensionless velocity profiles were computed in two ways:
i) considering the DNS shear stress as reference scale (Figure 4b), i.e., uτ =

√
τDNSw /ρ, and ii) considering each

assimilated shear stress as the reference scale (Figure 4c), i.e., uτ =

√
τ
DA/RANS
w /ρ. The first case confirms the

improvement of the velocity profiles both close to the wall and in the bulk as the curves collapse using the same shear
velocity. However, we reveal more of the differences between the reconstructed fields if we use the corresponding
assimilated shear velocity as reference. These differences are reflected in the streamwise shear stress distribution,
shown in Figure 5. The fact that J represents an L2-norm of the error in the velocity field makes the assimilation of
the whole domain prioritized over the correction of small or localized regions, e.g., very close to the wall.

The values of each Cf = 2u2
τ/U

2
ref were integrated along the wall and compared to the base flow. They are presented

in table I jointly with the final cost functional achieved with the algorithm. We notice a similarity between the Cf
and J reduction for the cases f̃u and Rγδ; as well as f̃ν̃ and g̃ν̃ . The similarities are expected, at certain level, due to
the fact that these terms are related.

The norm of the gradients are presented in Appendix §B to verify if a local minimum was approached and the
capability of the algorithm to find a descent direction. It was found that the ξ correction rapidly interrupts the
L-BFGS iterations. Furthermore, the optimization problem related to ξ can be ill-conditioned as discussed in [40] and
this fact is evidenced in the form of small perturbations of the assimilated field in the separated region (see Figure
5f); this conclusion is in agreement with [40].

In figure 6, we compare the eddy viscosity obtained via different DA procedures, the original SA model and an
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(a) Velocity profiles of the RANS-SA, DNS and assimilated solutions for f̃u, g̃ν̃ and ξ.

(b) u+ and y+ at x
h

= 10. Shear velocity

computed as uτ =
√
τDNSw /ρ.

(c) u+ and y+ at x
h

= 10. Shear velocity

computed as uτ =

√
τ
DA/RANS/DNS
w /ρ

FIG. 4: Velocity (u-component) profiles of the assimilated solutions and DNS; red box indicates the approximated
region at x

h = 10 where u+ and y+ were traced.

estimation from the DNS. The estimated νt obtained from the DNS solution was computed using the mean velocity
fields and the components of the Reynolds stress tensor, as done in [41]:

νt =
RDNS : ∇su
∇su : ∇su

, (18)

where the notation R1 : R2 designates the double contraction between two tensors. Note that equation (18) remains
an approximation and injecting the resulting turbulence viscosity in a RANS equation does not guarantee a perfect
mean field. Nevertheless, it remains a good approximation for attached flows [41]. The baseline SA simulation mimics
with a good accuracy the reference turbulence viscosity, but it presents lower values after the obstacle and on the top
wall. The β-correction increases the production of νt and, consequently, the eddy viscosity attains higher values in
this same region. Quantities based on f̃ν̃ and g̃ν̃ are also modified in the incoming boundary layer and in the top wall
region. Since f̃ν̃ and g̃ν̃ are less spatially constrained than β (which is restricted to turbulent production regions),
the νt values for the former cases are more scattered in the full separated region. Yet, the resulting eddy viscosity
strongly differs from the expected one (for example, for the g̃ν̃-correction, the eddy viscosity reaches very high values
in the central region of the channel after the bump), even though the assimilated mean-velocity results match the
DNS with an excellent accuracy. The eddy viscosity computed using the ξ-parameter, (1 + ξ)νt, is pretty much in
agreement with the one predicted by the DNS, indicating that the DA managed to improve the original field and that
it found a local minimum. For this case, we observe a noisy behavior in the eddy-viscosity field, especially where the
flow separates, which can harm the optimization procedure and create numerical issues. Close to the walls, there is
an important disagreement in the skin-friction profile between RANS-SA and DNS and all DA procedures manage to
minimize this discrepancy.

Overall, g̃ν̃ , f̃ν̃ and β recover very accurately the reference mean-velocity fields. Yet, it seems that this is at the
expense of large eddy-viscosity corrections, which very strongly overshoot the reference values. Hence, we may be in
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(a) Assimilation with f̃u (b) Assimilation with Rγδ

(c) Assimilation with β (d) Assimilation with f̃ν̃

(e) Assimilation with g̃ν̃ (f) Assimilation with ξ

FIG. 5: Cf of the assimilated solutions, DNS reference and the baseline RANS-SA. Black lines correspond to the
DNS, dashed red lines correspond to the RANS-SA, dash-dotted colored lines correspond to the assimilated solutions

the case of a classical over-learning situation and a sole criterion on the mean-flow recovery may be insufficient to
reach a good optimum. For example, penalizing the cost-functional J with a constraint on the norm of the control
parameter, e.g.

Jnew(ũ, g̃ν̃) = J(ũ) + l2
∫

Ω

g̃2
ν̃ dΩ, (19)

or a constraint to remain close to a prior in νt, e.g.

Jnew(ũ, ν̃) = J(ũ) + l2
∫

Ω

(
νt(ν̃)− νRANSt

)2
dΩ, (20)

could help balance, by tuning the parameter l2, the dual requirement to both accurately recover the mean velocity
field and preserve a physical relevance of the control parameter (or the eddy-viscosity field). This double requirement
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is very important especially if the control parameters are further used as data in a machine-learning strategy to correct
the turbulcence model (see §VI). It seems that the ξ parameter reaches such a good compromise without penalizing
term since both the velocity field and the eddy viscosity field are overall good at the end of the optimisation.

(a) Reference (b) Baseline

(c) Assimilation with β (d) Assimilation with f̃ν̃

(e) Assimilation with g̃ν̃ (f) Assimilation with ξ

FIG. 6: Distribution of νt/ν for the DNS, RANS - SA and assimilated fields. For the ξ-correction, the field
represented is (1 + ξ) νtν .

C. Validity of the Boussinesq hypotheses

We may discuss the alignment between the anisotropic stress tensor and the strain tensor, which is the basic idea
of the Boussinesq hypothesis. In other words, given the anisotropic stress tensor R and the strain tensor ∇su, one
can define ρRS as

ρRS =
|R : ∇su|
‖R‖‖∇su‖

(21)

where the norm ‖ · ‖ is defined as ‖R‖2 = R : R.
In the work of Schmitt (2007)[42], the indicator ρRS is used to test the Boussinesq hypotheses. If ρRS is 1, it means

that the tensors R and ∇su are aligned and the Boussinesq hypothesis is totally respected, if it is 0, the tensors
are orthogonal. In Schmitt (2007) [42], ρRS above 0.86 is considered to be good enough to assume the validity of
the Boussinesq hypothesis. Figure 7 shows the values of ρRS in regions where turbulence is sufficiently strong. In
other words, the velocity fluctuations can be very small in low turbulent regions and ρRS may be meaningless or
deprecated[42] in these zones. Thus, Figure 7 is constrained to the regions where the turbulent kinetic energy is more
important (k > 0.1kmax). Considering only regions where turbulence intensity is important, the ρRS values behind the
hill very close to the wall (where reverse flow occurs) is below 0.8. This may indicate that the Boussinesq hypothesis
is not adequate to predict the flow close to that region. However, the data-assimilation with g̃ν̃ was particularly
robust to reconstruct this area (Figure 5e). A case where the alignment between the strain tensor and the anisotropic
Reynolds stress may be clearly weak is presented next.

IV. PERIODIC HILLS

A. Reference and base flows

The flow over periodic hills has been extensively explored to study numerical methods and turbulence modelling
(e.g. [43],[44],[45]). Thanks to the availability of high-fidelity data ([46],[47]), it is possible to test and compare
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FIG. 7: Distribution of the indicator ρRS constrained to turbulent kinetic energy above 10% of kmax, i.e., ρ∗RS = ρRS

for k > 0.1kmax and ρ∗RS = 0 otherwise. Dashed line represents ρ∗RS = 0.8. Result computed from the reference DNS
data.

FIG. 8: Distribution of the indicator ρRS. Dashed line represents ρ∗RS = 0.8. Result computed from the reference
DNS data.

different data-assimilation techniques. We consider the case where the bulk Reynolds number equals 2800. This
case presents a curved geometry with a strong recirculating bubble. Flow separation occurs at the crest and the
reattachment point is located at the flat surface. One main difference from the convergent-divergent channel is the
intensity of the recirculation bubble and the strong unsteady dynamics associated to the large-scale eddies observed
in the separated shear-layer containing most of the energy [45]. Additionally, the Boussinesq hypotheses is highly
questioned for the periodic-hill case; the alignment between the stress tensor and the strain tensor measured by ρRS
is less than 0.8 in much of the domain below y/h = 1, where separation occurs (Figure 8).

B. Assimilated mean fields

Similarly to the previous case, the decrease of J showed in Fig. 9 may indicate that the velocity fields resulting
from f̃u and Rγδ corrections match the DNS better. Surprisingly, in spite of being constrained to the Boussinesq

hypothesis, the terms f̃ν̃ and g̃ν̃ were also able to recover the overall DNS velocity profiles (not shown). The skin
friction showed in Fig. 10 confirms that even close to the walls, the velocity gradients were significantly improved by
correcting the eddy-viscosity model. The g̃ν̃ correction presents faster decay in the cost functional compared to f̃ν̃ .
The same conclusion was traced for the convergent-divergent channel. Notwithstanding, the correction through the
production control β and ξ were not as effective (Figs. 10c and 10f) and it seems to be rather limited to decrease the

cost functional compared to f̃ν̃ and g̃ν̃ (Fig. 9). The fact that g̃ν̃ and f̃ν̃ do so well despite their use of the Boussinesq
hypothesis seems to indicate that missing the proper stress alignment does not play a large role for predicting the
mean flow, even for this case where the stress misalignment is quite large.

Table II shows the final values of the relative velocity error and the relative error of Cf . The values are overall
greater than the ones found in the convergent-divergent channel which seems reasonable due to the higher complexity
of the flow. Moreover, the differences in the evolution of J for each correction approach are more evident. For the
cases presented, it seems that f̃u and Rγδ corrections followed by g̃ν̃ and f̃ν̃ present more flexibility to reconstruct the
DNS flow.
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FIG. 9: Cost functional during data-assimilation iterations for the periodic hill flow.

TABLE II: Cf error computed as ECf =
√∫

(C
DA/RANS
f − CDNSf )2ds/

∫
(CDNSf )2ds and final relative velocity error

Eũ =
√∫∫

e2
ũdΩ/

∫∫
U2
refdΩ for each reconstructed field. Periodic hills case.

RANS f̃u Rγδ β f̃ν̃ g̃ν̃ ξ

ECf 0.38 0.17 0.26 0.27 0.23 0.20 0.30

Eũ 7.1 · 10−2 3.8 · 10−3 3.7 · 10−3 3.2 · 10−2 7.8 · 10−3 7.5 · 10−3 4.3 · 10−2

V. SQUARE CYLINDER FLOW

A. Reference and base flows

The third case of study concerns the turbulent flow around a square cylinder at Re = 22000. Differently from the
circular cylinder, the separation on the square cylinder is imposed by the corners of the square for sufficient high
Reynolds numbers. This canonical configuration has been studied both experimentally and numerically [48]. Two
of the main challenges for steady-state RANS modelling of this configuration are: capturing the highly unsteady
(vortex shedding) character of the flow (without resorting to unsteady RANS computations) and the weakness of the
Boussinesq hypothesis assumed in the RANS model. Figure 11 compares both the steady RANS and DNS solutions.
One major difference between both results (RANS and DNS) is the size of the separation bubble downstream the
cylinder. The aim of this section is to apply our assimilation approach to a bluff body configuration.

To understand the limitation of the Boussinesq hypotheses, the ρRS indicator is plotted in figure 12. Similarly to
the conclusion traced in Schmitt (2007)[42], the region where the Boussinesq hypotheses is acceptable (ρRS > 0.8)
is restricted to a few areas, with the indicator remaining unacceptably low (below the threshold) in most of the flow
region.

B. Assimilated mean fields

The horizontal component of the assimilated velocity and the absolute error fields are compared in Figures 13 and
14 respectively. Figures 14b and 14c, which correspond to the f̃u and Rγδ corrections, show that both choices of
correction parameters successfully reproduce the DNS simulation. As discussed before, it is reasonable to believe that
they can perform corrections even in more complex flows. For this reason, Volpiani et al.(2021) [26] employed the
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(a) Assimilation with f̃u (b) Assimilation with Rγδ

(c) Assimilation with β (d) Assimilation with f̃ν̃

(e) Assimilation with g̃ν̃ (f) Assimilation with ξ

FIG. 10: Cf of the assimilated solutions, DNS reference and the baseline RANS-SA. Black lines correspond to the
DNS, dashed red lines correspond to the RANS-SA, dash-dotted colored lines correspond to the assimilated solutions

f̃u-type correction to construct a machine-learning based model for flows over periodic hills. The Rγδ corrector also
managed to do the assimilation. This is an encouraging result and it reinforces that Rγδ can perform similarly to

f̃u, however the results for Rγδ were slightly noisier. It is possible that these deviations could have been originated
due to numerical errors; for example, the gradient of the cost functional w.r.t. Rγδ may add rounding errors, once it

needs additional information of the adjoint velocities spatial derivatives, which is not required in the f̃u correction.
The assimilated fields with β and f̃ν̃ are similar. Yet, before, the latter one provided better corrections than the

former one, now, the opposite occurs here. Both fields improve the solution, decreasing the re-circulation bubble and
approaching to the DNS simulation. The greatest portion of the velocity error in Fig. 14 is located in the recirculation
zone, thus, the optimization problem is concentrated in reducing the discrepancy of the flow there. For case f̃ν̃ , the
optimization seems to follow this path even though the shear flow above the cylinder is deteriorated (Figure 14e).
The initial decrease of the cost functional is then associated to the correction of the bubble and, after that, the shear
flow over the cylinder gains importance regarding the L2 norm employed. The reconstruction of this zone seems to be
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FIG. 11: Velocity fields (u-component) of the baseline RANS-SA, positive y-axis, compared to the DNS, negative
y-axis. Full black lines delimit the bubble of re-circulation. The coordinates are normalized by the side L of the

square cylinder.

FIG. 12: Distribution of the indicator ρRS constrained to turbulent kinetic energy above 10% of kmax, i.e.,
ρ∗RS = ρRS for k > 0.1kmax and ρ∗RS = 0 otherwise. Result computed from the reference DNS data.

more complicated. Note that even when averaging, the flow is still poorly predicted there[49]. Notwithstanding, the
correction with g̃ν̃ was surprisingly effective and it performed almost as well as the source terms in the momentum
equations.

The ξ approach was not able to correct the field, even though the re-circulation zone has decreased (figure 13f). A

priori, the ξ control parameter was expected to perform similarly to β and f̃ν̃ but, from both the channel and the
cylinder studies, it does not seem to be the case. In fact, the data-assimilation through terms directly placed on the
Spalart-Allmaras model showed better robustness. To quantify the performance of each assimilation, Fig. 15 shows
the cost functional decrease throughout the optimization procedure.

C. Discussion about assimilated and real quantities

Even if the assimilated fields can be overall similar to the DNS one, some quantities computed from the velocity
fields can be very sensitive even to small differences or poorly predicted in the new flow. An evaluation a posteriori
can be made using the assimilated fields to reconstruct other quantities. As evoked in [26], it is valuable to compare
the stresses originated from the eddy-viscosity model with the reference from the DNS.

The components RDNS of the traceless Reynolds stress tensor defined in (9) can be directly obtained by processing
the DNS solution. They can be compared to the reconstructed stresses RDA obtained from the RANS base flow or
the data-assimilated flows and also defined in (9). Figures 16 and 17 compare the components R11 and R12 for several
cases. We notice that the computed stress for the baseline SA result is very weak compared to the DNS. The data
assimilation increases the overall magnitude of the stresses, however it is clear that they do not match exactly the
reference DNS, even for the fields with great decrease of the cost functional (as case Rγδ). Other evident problem
is the stress distribution close to the corners of the cylinder, particularly for the cases Rγδ and g̃ν̃ . Although an
accurate velocity reconstruction in these regions, the recovered stresses are wrong. It is therefore confirmed that, in
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(a) Assimilation with f̃u (b) Assimilation with Rγδ (c) Assimilation with β

(d) Assimilation with f̃ν̃ (e) Assimilation with g̃ν̃ (f) Assimilation with ξ

FIG. 13: Velocity fields (u-component) of the assimilated fields (positive y-axis) compared to the DNS (negative
y-axis). The coordinates are normalized by the side L of the square cylinder.

(a) RANS - SA (b) Assimilation with f̃u (c) Assimilation with Rγδ

(d) Assimilation with β (e) Assimilation with f̃ν̃ (f) Assimilation with g̃ν̃

FIG. 14: Error of RANS and reconstructed velocity fields for f̃u,Rγδ, β, f̃ν̃ and g̃ν̃ .

the absence of any knowledge from the reference Reynolds stresses, the mean-flow prediction can be accurate even
though the Reynolds stresses are wrong. Nevertheless, some assimilations produced interesting results, for example,
the R12 stress component for β, f̃ν̃ and g̃ν̃ seems to have greatly improved close to the cylinder. Overall, the g̃ν̃
correction not only improves the velocity field, but also manages to capture a realistic stress tensor especially in
the wake region. Note finally that for the Rγδ reconstructions, we have to keep in mind that the stresses (γ, δ) are
reconstructed up to a potential vector field (γ + ∂xφ, δ + ∂yφ), with ∂xxφ + ∂yyφ = 0, as mentioned in §II B. This
degree of freedom could be used to improve the Reynolds stress reconstructions. For example, the knowledge of the
Reynolds stresses in some region of the flow could be incorporated in the objective functional to precisely reconstruct
the stresses.

For completeness, we also plot the full Reynolds force vector from the DNS, fDNS defined in (8), and the recon-
structed one fDA, defined in (7) in figures 18 and 19. Figure 18 shows the horizontal components fDNSx , fDAx and
Figure 19 shows the vertical components fDNSy , fDAy . Firstly, we observe that the force vector given by the baseline SA
model misrepresents the exact quantity computed from the DNS. This is of course expected given the mis-prediction
of the solution for this test case. For case f̃u, we note that the total force has a good accuracy in the shear and
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FIG. 15: Cost functional during data-assimilation iterations for the square cylinder flow.

(a) RANS - SA (b) Assimilation with Rγδ (c) Assimilation with β

(d) Assimilation with f̃ν̃ (e) Assimilation with g̃ν̃ (f) Assimilation with ξ

FIG. 16: R11 component of the trace-less Reynolds stress tensor for RANS-SA, Rγδ, β, f̃ν̃ and g̃ν̃

wake regions if we consider the most dominant component (fDAx ), but it lacks accuracy in the other direction (fDAy ).
Despite the fact that the assimilation based on Rγδ does not give the correct stresses, it captures reasonably well the
horizontal force fDAx . This indicates that even with the wrong stresses, it is possible to have accurate mean fields, as
long as the Reynolds force vector is correctly represented. Concerning the correction included in the SA transport
equation, both parameters β and f̃ν̃ give similar predictions and approach the reference data. On the other hand, the
forcing fields resulting from the DA based on g̃ν̃ approximates better the DNS solution in the recirculation region,
thanks to the good stress prediction. This is particularly interesting due to the fact that the correction was not simply
able to approximate the DNS velocity field but also the stresses and forces in the wake region.
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(a) RANS - SA (b) Assimilation with Rγδ (c) Assimilation with β

(d) Assimilation with f̃ν̃ (e) Assimilation with g̃ν̃ (f) Assimilation with ξ

FIG. 17: R12 component of the trace-less Reynolds stress tensor for RANS-SA, Rγδ, β, f̃ν̃ and g̃ν̃

(a) RANS - SA (b) Assimilation with f̃u (c) Assimilation with Rγδ

(d) Assimilation with β (e) Assimilation with f̃ν̃ (f) Assimilation with g̃ν̃

FIG. 18: fx for RANS-SA, f̃u, Rγδ, β, f̃ν̃ and g̃ν̃

VI. DISCUSSION DIRECTED TO MACHINE-LEARNING APPLICATIONS

Although our study aims to address a general framework concerning data-assimilation approaches, one of the main
motivations of this study concerns the augmentation of turbulence models based on field-inversion techniques [20].
Therefore, pros and cons are highlighted in this section considering that researchers and engineers may want to further
apply machine-learning to enhance turbulence models.

The correction through f̃u and Rγδ are the ones that best recovered the reference field. Both corrections are not
restricted to the Boussinesq hypotheses nor eddy-viscosity models and they excelled even for the highly unstable
mean flow over the square cylinder. Rγδ has the advantage of directly providing the anistropic component of the
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(a) RANS -SA (b) Assimilation with f̃u (c) Assimilation with Rγδ

(d) Assimilation with β (e) Assimilation with f̃ν̃ (f) Assimilation with g̃ν̃

FIG. 19: fy for RANS-SA, f̃u, Rγδ, β, f̃ν̃ and g̃ν̃

Reynolds stress tensor but with the downside of additional derivatives computations. For machine-learning purposes,
f̃u and Rγδ demand more computational resource due to their vectorial/tensor form and guaranteeing the rotational
invariance can be non trivial (especially in 3D) [26, 50]. Besides, they are dimensional quantities, which may pose an
additional difficulty to the generalization process.

In spite of being constrained to the Boussinesq hypothesis, the g̃ν̃ assimilation had results comparable to the ones
of f̃u and Rγδ for all three cases. The results for our flow cases indicated the possibility of correcting the velocity
field by means of an eddy-viscosity model even in the presence of great separation. Moreover, the g̃ν̃ is a scalar field,
consequently, it would require less computational cost to be modelled by machine-learning techniques.

The β parameter was one of the first quantities to be studied in the Field-Inversion/Machine-Learning framework
[11, 20]. Differently from the other source terms in the SA equation, it aims at fixing the production of the turbulence
viscosity. This parameter is very interesting from a FIML perspective because it is a non-dimensional scalar quantity.
This can facilitate the learning process of a neural network algorithm (differently from vectors and tensors). One
drawback of the β type correction is its limitation to assimilate the velocity field compared to the other control terms.
The same drawback can be addressed to f̃ν̃ .

The multiplicative term ξ in the eddy-viscosity was able to partially correct the channel flow but performed poorly
for the periodic-hill and square-cylinder flow. The advantages of this method are that it can provide corrections that
are independent from the eddy-viscosity transport equation, and the correction is a scalar and dimensionless quantity.
We showed that this approach lacks accuracy and robustness at least for the types of flows studied herein. Nevertheless,
this eddy-viscosity correction can be easily estimated based on other assimilation procedures and generalized using
ML to improve a RANS model as done in [41]. Table III summarizes what was discussed in this section.

VII. CONCLUSIONS

In this work, we studied different correction approaches in data-assimilation procedures in order to quantify their
performance in recovering the reference solution taking into consideration the same mesh, numerical methods and
cost functional. The assimilations were made by including correction terms in the averaged momentum equations, the
Spalart-Allmaras model and the eddy-viscosity field. Tests were performed in three different cases: a limited-separated
flow in a convergent-divergent channel, the flow over periodic hills and a strongly separated flow over a square cylinder.
The first approach (i.e., correction through forcing terms in the averaged momentum equations) demonstrated better
performance overall, justified by the fact that the data assimilation associated with these quantities is not restricted to
the Boussinesq hypothesis. The second approach (correction through terms in the Spalart-Allmaras model) recovered
in general the mean field for the two first cases, however the correction of the square cylinder flow was partial for β
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TABLE III: Summary table about the performance of each assimilation for the presented cases with pros and cons
of each control term chosen. CDC: Convergent-divergent channel, PH: Periodic hills, SC: Square cylinder. Double

check, single check, and x-mark indicates the correction performance, from best to worst; x-mark being failure

Control
term

CDC PH SC Pros for ML applications Cons for ML applications

f̃u 33 33 33 Excellent precision, robustness and not
constrained to the Boussinesq hypothe-
ses

Dimensional quantity, additional complexity
in 3D, source term in the momentum equation

Rγδ 33 33 33 Excellent precision, robustness and not
constrained to the Boussinesq hypothe-
ses

Dimensional quantity, additional complexity
in 3D

β 3 3 3 Naturally dimensionless, good perfor-
mance, scalar field

Constrained to the Boussinesq hypotheses

f̃ν̃ 33 33 3 Good performance, scalar field Constrained to the Boussinesq hypotheses and
not naturally dimensionless

g̃ν̃ 33 33 33 Excellent precision, scalar field Constrained to the Boussinesq hypotheses and
not naturally dimensionless

ξ 3 3 7 Naturally dimensionless, scalar field Constrained to the Boussinesq hypotheses,
poor performance and robustness

and f̃ν̃t . Interestingly, the g̃ν̃t control term showed good performance for all three cases, even the most challenging

one, the square cylinder. Both source terms f̃ν̃ and g̃ν̃ fix the balance of production, destruction and cross-diffusion in
the SA equation, but the latter term is conditioned by the turbulence variable in order to reject unphysical corrections
at locations where turbulence is weak. We showed that this constraint helps the optimization procedure and improves
the assimilation results. The study showed that the performance of the second approach can be highly dependent
on the control term chosen in the Spalart-Allmaras model (β, f̃ν̃t and g̃ν̃t). The third approach (correction of the
eddy-viscosity field) was not as satisfactory as the others, even though it improved the final velocity field for the first
two cases. The optimization of the inverse problem for that approach was particularly troublesome for the flow over
the square cylinder. We showed that trying to fix the turbulence-eddy viscosity based on the ξ-correction gives less
accurate results than the other Boussinesq-like corrections and that placing the correction terms directly on the SA
model improves numerical robustness regardless of the test case. Concerning the reconstruction of the skin-friction
profile, the best assimilation parameters were clearly f̃u, Rγδ and g̃ν̃t . One important finding of this study is that it is
possible to accurately reconstruct the mean field, despite the usage of the Boussinesq hypothesis and misprediction of
the Reynolds stresses. As a matter of fact, the g̃ν̃t-correction not only successfully improved the velocity field, but it
also predicted a realistic Reynolds stress and force vector in a large part of the domain. It is worthy noting that this
study treated data assimilation using only dense velocity field measurements. Therefore, further analysis is needed
when considering sparse reference data.
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Appendix A: Derivation of adjoint equations

The adjoint set of equations to be solved are computed from the Frchet derivative of the Lagrangian, from equation
10, with respect to the state vector q̃. It is written as:

∂L

∂q̃
δq̃ = lim

ε→0

1

ε

{
J(ũ + εδũ) + 〈ũ†, (ũ + εδũ) · ∇(ũ + εδũ) +∇(p+ εδp)

−∇ · [(ν + (1 + ξ) [νt(ν̃ + εδν̃)])∇s(ũ + εδũ) + Rγδ]− f̃u〉Ω + 〈p̃†,∇ · (ũ + εδũ)〉Ω
+〈ν̃†, (ũ + εδũ) · ∇(ν̃ + εδν̃)−∇ · [[η(ν̃ + εδν̃)]∇(ν̃ + εδν̃)]− s(ν̃ + εδν̃,∇(ν̃ + εδν̃),∇(ũ + εδũ))− f̃ν̃
−g̃ν̃ (ν̃ + εδν̃)〉Ω − J(ũ)− 〈ũ†, ũ · ∇ũ +∇p−∇ · [(ν + (1 + ξ) νt(ν̃))∇sũ + Rγδ]− f̃u〉Ω − 〈p̃†,∇ · ũ〉Ω

−〈ν̃†, ũ · ∇ν̃ −∇ · (η(ν̃)∇ν̃)− s(ν̃,∇ν̃,∇ũ)− f̃ν̃ − g̃ν̃ ν̃〉Ω
}

(A1)

The source term of the Spalart-Allmaras model can be expanded as:

s(ν̃ + εδν̃,∇(ν̃ + εδν̃),∇(ũ + εδũ)) ≈

s(ν̃,∇(ν̃),∇(ũ)) + εδν̃
∂s

∂ν̃
+ ε∇(δν̃) · ∂s

∂(∇(ν̃))
+ ε∇(δũ) :

∂s

∂(∇(ũ))

= s(ν̃,∇(ν̃),∇(ũ)) + εδν̃∂ν̃s+ ε∇(δν̃) · ∂∇(ν̃)s+ ε∇(δũ) : ∂∇(ũ)s

(A2)

The terms J(ũ + εδũ), νt(ν̃ + εδν̃) and η(ν̃ + εδν̃) can also be expanded. If one substitutes the above expansions
in equation A1, considering only the first order terms, the equation becomes:

∂L

∂q̃
δq̃ = lim

ε→0

1

ε

{
εδũ

∂J

∂ũ
+ 〈ũ†, εδũ · ∇ũ + ũ · ∇(εδũ) +∇(εδp)

−∇ · ((ν + (1 + ξ) νt)∇s(εδũ))−∇ ·
((

(1 + ξ) εδν̃
∂νt
∂ν̃

)
∇sũ

)
〉Ω + 〈p̃†,∇ · (εδũ)〉Ω

+〈ν̃†, ũ · ∇(εδν̃) + (εδũ) · ∇ν̃ −∇ · (η∇(εδν̃))−∇ · (εδν̃ ∂η
∂ν̃
∇ν̃)

−εδν̃∂ν̃s− ε∇(δν̃) · ∂∇ν̃s− ε∇δũ : ∂∇(ũ)s− g̃ν̃εδν̃〉Ω
}

(A3)

Or

∂L

∂q̃
δq̃ = δũ

∂J

∂ũ
+ 〈ũ†, δũ · ∇ũ + ũ · ∇δũ +∇δp

−∇ · ((ν + (1 + ξ) νt)∇sδũ)−∇ ·
((

(1 + ξ) δν̃
∂νt
∂ν̃

)
∇sũ

)
〉Ω + 〈p̃†,∇ · δũ〉Ω

+〈ν̃†, ũ · ∇δν̃ + δũ · ∇ν̃ −∇ · (η∇δν̃)−∇ · (δν̃ ∂η
∂ν̃
∇ν̃)

−δν̃∂ν̃s−∇δν̃ · ∂∇ν̃s−∇δũ : ∂∇(ũ)s− g̃ν̃δν̃〉Ω

(A4)

Equation A4 is set to zero for any variation of the state variables assumed. Integration by parts is used in order to
put the variational terms out of the differential operators. Each term from the RHS, starting from the second one, is
rewritten and integrated by parts. They are numbered from I to XIII and are developed as follows.

Terms I and II:

〈ũ†, ũ · ∇δũ〉Ω + 〈ũ†, δũ · ∇ũ〉Ω =

−〈δũ, (ũ · ∇)ũ†〉Ω + 〈δũ, ũ†∇ũT 〉Ω + 〈δũ, ũ†(ũ · n)〉δ
(A5)

Term III:

〈ũ†,∇δp〉Ω = −〈∇ · ũ†, δp〉Ω + 〈ũ† · n, δp〉δ (A6)
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Term IV :

〈ũ†,−∇ · ((ν + (1 + ξ) νt)∇sδũ)〉Ω =

−〈δũ,∇ · (ν + (1 + ξ)νt)∇sũ†〉Ω + 〈δũ, (ν + (1 + ξ)νt)(∇sũ†)n〉δ
−〈ũ†, (ν + (1 + ξ)νt)(∇sδũ)n〉δ

(A7)

Term V :

〈ũ†,−∇ ·
((

(1 + ξ) δν̃
∂νt
∂ν̃

)
∇sũ

)
〉Ω =

〈(1 + ξ) δν̃
∂νt
∂ν̃

,∇ũ† : ∇sũ〉Ω − 〈ũ†,
(

(1 + ξ) δν̃
∂νt
∂ν̃

)
∇sũ · n〉δ

(A8)

Term V I:

〈p̃†,∇ · δũ〉Ω = −〈∇p̃†, δũ〉Ω + 〈p̃†n, δũ〉δ (A9)

Terms V II and V III:

〈ν̃†, ũ · ∇δν̃ + δũ · ∇ν̃〉Ω = −〈δν̃,∇ν̃† · ũ〉Ω + 〈δũ, ν̃†∇ν̃〉Ω + 〈δν̃, ν̃†ũ · n〉δ (A10)

Term IX:

〈ν̃†,−∇ · (η∇δν̃)〉Ω = −〈δν̃,∇ · (∇ν̃†η)〉Ω + 〈δν̃, η∇ν̃† · n〉δ − 〈ν̃η,∇δν̃ · n〉δ (A11)

Term X:

〈ν̃†,−∇ · (δν̃ ∂η
∂ν̃
∇ν̃)〉Ω = 〈δν̃, ∂ν̃η∇ν̃† · ∇ν̃〉Ω − 〈δν̃, ∂ν̃ην̃†∇ν̃ · n〉δ (A12)

Term XI:

〈ν̃†,−δν̃∂ν̃s〉Ω = −〈δν̃, ν̃†∂ν̃s〉Ω (A13)

Term XII:

〈ν̃†,−∇δν̃ · ∂∇(ν̃)s〉Ω = 〈δν̃,∇ · (ν̃†∂∇ν̃s)〉Ω − 〈δν̃, ν̃†∂∇ν̃s · n〉δ (A14)

Term XIII:

〈ν̃†,−∇δũ : ∂∇(ũ)s〉Ω = 〈δũ,∇ ·
(
ν̃†∂∇(ũ)s

)
〉Ω − 〈δũ, ν̃†∂∇ũs · n〉δ (A15)

The terms containing integrals over the domain originate the adjoint equations while the terms over the boundaries
originate the adjoint boundary conditions. If the terms with δũ are grouped and set to zero for any δũ, one has the
adjoint equation analogous to the momentum equation. For the term with δp̃, one has an equation similar to the
incompressibility. Finally, the terms with δν̃ gives the adjoint equation for the adjoint eddy-viscosity. In summary:

∂L

∂q̃
δq̃ = δũ

∂J

∂ũ
+−〈δũ, (ũ · ∇)ũ†〉Ω + 〈δũ, ũ†∇ũT 〉Ω − 〈∇ · ũ†, δp〉Ω

−〈δũ,∇ · (ν + (1 + β)νT )∇sũ†〉Ω + 〈(1 + ξ) δν̃
∂νt
∂ν̃

,∇ũ† : ∇sũ〉Ω − 〈∇p̃†, δũ〉Ω

−〈δν̃,∇ν̃† · ũ〉Ω + 〈δũ, ν̃†∇ν̃〉Ω − 〈δν̃,∇ · (∇ν̃†η)〉Ω + 〈δν̃, ∂ν̃η∇ν̃† · ∇ν̃〉Ω
−〈δν̃, ν̃†∂ν̃s〉Ω + 〈δν̃,∇ · (ν̃†∂∇ν̃s)〉Ω + 〈δũ,∇ ·

(
ν̃†∂∇(ũ)s

)
〉Ω − 〈δν̃, ν̃†g̃ν̃〉Ω + boundary integrals

(A16)
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FIG. 20: Gradient test

Which gives the adjoint equations:

∇ · ũ† = 0,

ũ† · (∇ũ)T − ũ · ∇ũ† −∇ ·
[
(ν + (1 + ξ)νt)∇sũ†

]
−∇p̃† + ν̃†∇ν̃ +∇ ·

(
ν̃†∂∇ũs

)
= −(ũ− u),

−ũ · ∇ν̃† −∇ ·
(
η∇ν̃†

)
+ (∂ν̃η)∇ν̃† · ∇ν̃ + (1 + ξ) (∂ν̃νt)∇ũ† : ∇sũ− (∂ν̃s) ν̃

† +∇ ·
(
ν̃†∂∇ν̃s

)
− ν̃†g̃ν̃ = 0.

(A17)

Appendix B: Gradient test

Given the cost functional J = J(f) and a small variation of the control vector f , written as εδf , the cost functional
can be expanded as

J (f + εδf) = J (f) + ε〈∇fJ, δf〉+O
(
ε2
)

(B1)

with ε a small parameter. Honnorat[51] details a procedure to verify if the gradient computed from the adjoint
approach matches to the true gradient. In order to do the test, the gradient is computed by means of a forward finite
differences and the ratio defined If is defined as

If =
J (f + εδf)− J (f)

〈∇fJ, δf〉
(B2)

and the property lim
f→0

If = 1 should be verified. The value of If is plotted against ε in Figure B for four representative

cases. As the finite differences used was of first order, the overall linear behavior is expected.
In order to verify if a local minimum is being approached, the relative L2 norm of each gradient is plotted in Figure

21. In the end of the assimilation procedures, most of the gradients decreased of three or four orders of magnitude,
except the gradient with respect to ξ, which after the first iterations remains on a high plateau. This might be due
to precision issues due to the fact that the gradient with respect ξ, shown in eq. (12), involves many (two) gradients.
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FIG. 21: ‖∇J‖‖∇J0‖ during data-assimilation iterations.
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