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Abstract – The deployment and the exploitation of a Wireless Underground Sensor Network (WUSN) remain challenging
because of the signal attenuation in the soil and the limited battery that powers the sensor nodes. Due to the attenuation of the
signal in the ground, the reception or loss of the sent data depends on the ground conditions, which can change dynamically.
However, in existing WUSNs, each node sends the data collected in each round regardless of the signal attenuation. It is well‑
demonstrated that sensor nodes consume the most energy during transmission. Obviously, transmission without receiving
any data signiϔicantly reduces the lifetime of a sensor node uselessly. This paper presents a novel fuzzy‑based decision‑making
solution called FuzDeMa that reduces energy consumption by anticipating data losses before transmission. To do so, FuzDeMa
assesses in real‑time the loss or the reception of a packet according to the in‑situ node’s environments before its transmission
anddecideswhether to send or not the packet based on the computed reliability. To validate the proposed approach, we embed
it into a dedicated underground node called MoleNet and realised real experimentations ϔirstly with an existing dataset and
secondly, with precision measuring equipment to estimate the energy consumption. The results revealed the possibility of
prolonging the lifetime of the sensor node by saving up to 81.7876𝜇𝐽 in a single round. Additionally, FuzDeMa shows the
ability to save energy for up to 46 of additional revolutions, thus extending the life of the sensor node to 32.85% for 140 real
transmission cycles. An analytical generalisation of FuzDeMa is provided regardless of a speciϔic dataset or sensor node. Thus,
we provided the needed conditions for a random dataset to save the energy with any sensor node that implements FuzDeMa
during transmissions.

Keywords – Wireless Underground Sensor Network (WUSN), Energy‑Efϐiciency, Decision‑Making, Signal loss, Embedded
systems, Fuzzy Inference System
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1. INTRODUCTION1

Contrary to conventional Wireless Sensor Networks2

(WSN), in which nodes are located above the ground,3

a Wireless Underground Sensor Network (WUSNs) con‑4

sists of sensor nodes buried in the ground. Despite5

the increase in its popularity, deploying and operating a6

WUSN are very challenging [1]. In addition to the lim‑7

ited resources (computation, storage, energy, communi‑8

cation) of sensor nodes, a WUSN has to face several ad‑9

ditional challenges. First, the attenuation of Electromag‑10

neticwaves (EM) in soilwidely affects the linkquality dur‑11

ing each transmission [2]. In WUSN, changes in link qual‑12

ity depend on soil properties, which can vary over time13

due to weather conditions [3] and transmitted data at a14

bad instant canbe easily lost due to signal attenuation and15

not received by either an intermediate node or the ϐinal16

destination.17

A real‑time assessment of the reception/loss of data18

transmitted by a sensor node could be a good solution19

to avoid this energy wastage. Nevertheless, because us‑20

ing low power micro‑controller and low bandwidth, sen‑21

sor nodes cannot efϐiciently execute locally, or via Cloud,22

well‑known Machine Learning (ML) solutions for learn‑23

ing/predictions purposes [4]. ML solutions in WSN have24

fundamental limitations on their applications, and the ac‑25

curacy of the prediction can be affected by the data qual‑26

ity. UnsupervisedML, such as clustering , iswidely used to27

prolong the lifetime of the sensor network by organising28

the communication within the network [5, 6]. The main29

idea is to reduce the amount of data to send to save the30

sensor nodes’ energy without impacting the data qual‑31

ity. A recent application of ML to avoid energy wastage32

in WSN for precision agriculture consists in reducing the33

amount of transmitted data to the sink [7]. This solution34

helps reduce energy consumption and bandwidth while35

maintaining good accuracy by trying locally to ”guess”36

another value and send it only whether the guessing is37

wrong. Although this work applies light ML techniques in38

smart agriculture applications and demonstrates its fea‑39

sibility, it differs from our approach since it only focuses40

on data and does not consider network conditions. On the41

otherhand, recent lightweight computational Intelligence42

solutions such as fuzzy logic have been used in several ap‑43

plications as adecision‑making tool adapted to embedded44
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systems [8, 9, 10] but to the best of our knowledge, none45

of them has ever been applied to sending decisions.46

This paper introduces a novel fuzzy logic based approach47

applied to network conditions to save energy related to48

transmission in WUSN called FuzDeMa. Knowing that49

the sensor node’s largest energy consumption source oc‑50

curs duringwireless data transmission by the transceiver.51

For that, this latter evaluates the reception probability52

of sending the data based on its environment parame‑53

ters. If the reception probability is low, the node keeps54

the data locally and avoids a useless transmission, thus55

saving energy. The results show that FuzDeMa can save56

up to 81.7876𝜇𝐽 per round in a real and dedicated un‑57

derground sensor node called MoleNet. Furthermore,58

the energy evaluation through a real dataset reveals that59

FuzDeMa can extend the lifetime of the sensor to up to60

32.85%without losing information at the sink (for 140dif‑61

ferent measurements. The main contributions of this pa‑62

per are as follows:63

• A new lightweight decision‑making approach based64

on Sugeno’s Fuzzy Inference System that accurately65

estimates packet loss before transmission.66

• The evaluation of the performance of the proposed67

FuzDeMa according to a real dataset. FuzDeMa has68

been compared to a recent and accurate path loss69

model.70

• The implementation of FuzDeMa on a real and ded‑71

icated sensor node used for underground applica‑72

tions such as precision agricultural and ecological73

monitoring.74

• The evaluation of the energy behaviour of FuzDeMa75

when operatingwithin a real sensor nodes according76

to different scenarios.77

• Theenergy consumptionof FuzDeMawas intensively78

evaluated using precision measuring equipment.79

• The analytical generalisation of FuzDeMa is per‑80

formed in order to give the energy break‑even point81

of the proposal regardless of the sensor node used.82

The rest of this paper is organised as follows: Background83

and the related works are presented in Section 2; Section84

3 presents the main motivation of this work and states85

the problem of the paper. The fuzzy‑based solution for86

decision‑making during transmission is described in Sec‑87

tion 4; Section 5 presents the performance evaluation of88

FuzDeMa on a real dataset. In integration of our proposal89

within a real sensor node is given in Section 6; Section90

7 describes the experimental setup used for the evalua‑91

tion of the energy consumption; The energy consumption92

of FuzDeMa within the MoleNet is discussed in Section 8;93

Section 9 extends the validation of FuzDeMa by providing94

a generalisationwith an analytical approach regardless of95

the sensor node. The paper endswith a conclusion in Sec‑96

tion 10.97

2. BACKGROUND AND RELATEDWORKS98

In this section, we ϐirstly present the existing path loss99

models in WUSN. The most relevant applications based100

on the fuzzy logic for the decision‑making are described101

thereafter.102

2.1 Path loss models of EM waves in WUSN103

The characteristics of the wireless underground chan‑104

nel are much different as compared to the conventional105

free spacewireless communication channel. These differ‑106

ences are caused by the wave propagation mechanism in107

the underground channel. In this section, we present the108

main existing path loss models designed for the predic‑109

tion of EM loss in the soil. According to the communica‑110

tion types inWUSN, we classiϐied the existing approaches111

into full underground and mixing path loss models.112

2.1.1 Full underground path loss models113

These models are designed to evaluate the EM loss when114

the transmitter and the receiver are both under the115

ground (underground to underground communications).116

One famous path loss model in the literature is called117

modiϐied Friis proposed by Li et al. [11]. This model118

is based on the Friis transmission equations initially de‑119

signed for Free Space communication. The authors ob‑120

tained the total loss 𝐿𝑡𝑜𝑡 of an EM crossing the ground by121

taking into account the lossdue towaveattenuation in soil122

(1)‑(3).123

𝐿𝑡𝑜𝑡 = 6.4 + 20𝑙𝑜𝑔(𝑑) + 20𝑙𝑜𝑔 (𝛽) + 8.69𝛼𝑑 (1)
124
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The constants 𝛼 and 𝛽 are the key elements of the modi‑126

ϐied Friis model and constitute the real and the imaginary127

parts of the complex propagation constant 𝛾 (𝛾 = 𝛼+𝑖𝛽).128

The permeability in vacuum 𝜇0 and the permittivity in129

free space 𝜖0 are related to the light velocity in vacuum130

by 𝜖0𝜇0𝑐2 = 1. For non‑ferrous soils, the magnetic per‑131

meability can be neglected (𝜇𝑟 = 1).132

Bogena et al. [12] proposed the semi‑empirical model133

calledCRIM‑Fresnel by combining theComplexRefractive134

IndexModel (CRIM) and Fresnel equations. They showed135

that the signal attenuation in soils𝐴𝑡𝑜𝑡 given in (4)‑(6) de‑136

pendson the soil attenuation constant𝛼, the reϐlection co‑137

efϐicient of thewave and the distance 𝑑 between the trans‑138

mitter and the receiver.139

𝐴𝑡𝑜𝑡 = 𝛼𝑑 + 𝑅𝑐 (4)
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140

𝛼 = 8.68 60𝜋(2𝜋𝑓𝜖0𝜖″ + 𝜎𝑏)

√ 𝜖′
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2𝜋𝑓𝜖0
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141

𝑅𝑐 = 10 log( 2𝑅
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√
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√

𝜖′ )
2

(6)

Where 𝑓 is the frequency in Hertz of the EM wave, 𝜖0
1 is142

the dielectric permittivity in free space, 𝜎𝑏 is the bulk den‑143

sity, 𝜖′ and 𝜖″ the real (Dielectric Constant𝐷𝐶) and imag‑144

inary (Loss Factor 𝐿𝐹 ) parts of the mixing model respec‑145

tively.146

Another semi‑empirical path loss model has been pro‑147

posed by Chaamwe et al. in [13]. This model combines148

modiϐied friis and CRIM‑Fresnel path loss models. More‑149

over, the proposed path loss model adds signal attenua‑150

tion due to the refraction phenomenon of an EM in the151

soil. The resulting path loss 𝐿𝑡𝑜𝑡 given in (7) depends on152

the refractive attenuation factor 𝐾 (8) of the EM. Here 𝜙1153

and 𝜙2 are respectively the incidence and the refraction154

angles of the wave.155

𝐿𝑡𝑜𝑡 = 6.4 + 20 log(𝑑𝛽𝐾√ 2𝑅
1 + 𝑅 ) + 8.68𝛼𝑑 (7)

156

𝐾 = 20 log(√𝜖1 cos(𝜙1)
𝜖2 cos(𝜙2)) (8)

Other path loss models are also based on the modiϐied157

Friis, however, these latter are interested in the predic‑158

tion of DC and LF. The in situ path loss model proposed by159

Sadeghioon et al. in [14] uses a real Time Domain Reϐlec‑160

tometry (TDR) topredict in real time thevaluesof𝐷𝐶 and161

𝐿𝐹 . The main challenge of this approach remains the ex‑162

pensive cost of the TDR. Another similar approach is pro‑163

posed by Wohwe S. et al. in [15] by using a new model164

called Mineralogy‑Based Soil Dielectric Model (MBSDM)165

to predict with lesser inputs the values of 𝐷𝐶 and 𝐿𝐹 .166

2.1.2 Mixing path loss models167

In contrast to path loss models designed only for under‑168

ground communications, further research is being car‑169

ried out to assess the attenuation of a wave as it passes170

through different communication media (air‑to‑ground171

or ground‑to‑air).172

By adding loss in free space path loss 𝐿𝑓𝑠 (9) to the loss173

due to underground communication 𝐿𝑡𝑜𝑡 (1), Sun et al.174

proposed in [16] a path loss model for communications175

between the air and the ground (Air‑to‑Underground176

𝐴2𝑈 and Underground‑to‑Air 𝑈2𝐴). Similar to [13], the177

Sun et al. adds to their model, the loss due to refraction.178

1𝜖0 = 8.85 ∗ 10−12𝐹.𝑚−1

The two resulting loss estimations are given in (10) and179

(11).180

𝐿𝑓𝑠 = −147.55 + 20 log(𝑑) + 20 log(𝑓) (9)
181

𝐿𝐴𝐺2𝑈 = 𝐿𝑡𝑜𝑡 + 𝐿𝑓𝑠 + 10 log⎛⎜
⎝

(𝑐𝑜𝑠𝜙1√𝜖′ − 𝑠𝑖𝑛2𝜙1)2

4𝑐𝑜𝑠𝜙1√𝜖′ − 𝑠𝑖𝑛2𝜙1

⎞⎟
⎠

(10)182

𝐿𝑈2𝐴 = 𝐿𝑡𝑜𝑡 + 𝐿𝑓𝑠 + 10 log⎛⎜
⎝

(
√

𝜖′ + 1)
2

4
√

𝜖′
⎞⎟
⎠

(11)

Dong et al. present in [17] a mixing path loss model sim‑183

ilar to [16]. However, the proposed model neglects the184

loss due to refraction for U2A communications and as‑185

sumes that the incidence angle is null. Thus, the obtained186

EM attenuations during A2U and U2A communications187

are summarised in (12) and (13) below.188

𝐿𝐴𝐺2𝑈 = 𝐿𝑡𝑜𝑡 + 𝐿𝑓𝑠 (12)
189

𝐿𝑈2𝐴 = 𝐿𝑡𝑜𝑡 + 𝐿𝑓𝑠 + 20 log
⎛⎜⎜⎜⎜
⎝

√ √(𝜖′ )2+(𝜖″ )2+𝜖′

2 + 1
4

⎞⎟⎟⎟⎟
⎠
(13)

2.1.3 Complete path loss models190

Only a few path loss models are designed to estimate the191

EM attenuations in the soil for the three different types192

of communication (U2U, A2U, and U2A) that can occur193

in WUSN. The most famous is the Wireless Underground194

SensorNetwork ‑ Path LossModel (WUSN‑PLM)designed195

for agricultural or ecological applications proposed in [3].196

In addition to the communication type, the WUSN‑PLM197

is able to consider the burial depth of the sensor nodes198

(transmitter and/or receiver) and to adjust the different199

losses due to the reϐlection or refraction of the EM wave.200

The depth of the proposed model is subdivided into two201

regions: topsoil (ϐirst 30cm after the ground surface) and202

subsoil (after the 30cm) regions. Furthermore, the pro‑203

posed approach uses the MBSDM as in [15] to predict the204

values of 𝐷𝐶 and 𝐿𝐹 . The overall path loss according to205

theburial depthof the transmitter is given in (14) and (14)206

for topsoil and subsoil regions respectively.207

𝐿1 = −288.8+20 log(𝑑1𝑑2𝑑𝑢𝑔𝛽𝑓2√ 2𝑅
1 + 𝑅 )+8.69𝛼𝑑𝑢𝑔

(14)208

𝐿2 = −288.8 + 20 log (𝑑1𝑑2𝑑𝑢𝑔𝛽𝑓2) + 8.69𝛼𝑑𝑢𝑔 (15)

Where 𝑑1 and 𝑑2 are traveled distance in the air by the209

wave; 𝑑𝑢𝑔 denotes the underground distance. For the210

communication between two buried nodes, 𝑑1 and 𝑑2 are211

the distance traveled by the signal inside the waterproof212

box. However, for a smaller distance (less than 1 m), the213
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signal loss in free space can be neglected [12]. In the case214

of A2U communication, 𝑑1 will represent the distance215

between the above‑ground node and the soil surface. For216

U2A communication, 𝑑2 is the height of the buried node217

relative to the ground surface.218

219

We observe that the existing path loss models are mainly220

based on the dielectric parameters of the soil summarized221

into the Constant Dielectric Complex CDC (made up of the222

Dielectric Constant 𝜖′ as the real part and the Loss Fac‑223

tor 𝜖″ as the imaginary part). In addition to parameters224

such as the volumetric water content and the distance be‑225

tween the transmitter and the receiver, other studies have226

shown that wave frequency and burial depth affect signal227

attenuation in the soil [18, 19].228

The performance comparison of some existing path loss229

models is provided in Table 1 below.230

2.2 Applications of fuzzy logic for decision231

making232

In this section, we present several works and approaches233

based on fuzzy logic for decision making. Each of the pre‑234

sented works is based on the Mamdani [20] fuzzy infer‑235

ence system (FIS) or the Sugeno FIS [21].236

Jassbi et al. [22] proposed a space fault detection model237

based on fuzzy logic. To ϐind the best performance for a238

gyroscope fault‑detection, the authors designed two FIS239

based on Mamdani and Sugeno with 73 rules. The com‑240

parisons of the two existing FIS show that despite the241

good results and the simple structure of Mamdani, the242

Sugeno FIS provides better results with the three differ‑243

ent tests.244

For evaluating the quality of experience of Hapto‑Audio‑245

Visual environments (HAVE), Hamam et al. [23] pro‑246

posed a decision‑making model based on the fuzzy logic.247

To achieve it, the authors designed and compared their248

approach based on Mamdani and Sugeno FIS. Similar to249

Jassbi et al. [22]. The output set describes the satisfaction250

and the beneϐit gained from the application and is made251

up of 5 membership functions. From the experimenta‑252

tions and comparisons, the authors show that the Sugeno253

FIS gives better results thanMamdani in their application.254

Like the previous proposals, SinglaSingla2015 uses the255

two existing FIS to design a decision‑making tool for dia‑256

betes diagnosis. As input data, the author considers 11pa‑257

rameters needed to diagnose different types of diabetes.258

The output of his proposal consists of 4 variables corre‑259

sponding to the different types of diabetes. To validate260

the tool, the author considered a dataset consisting of 150261

different cases of diagnosed patients and compared the262

results obtained with Mamdani and Sugeno FIS. The best263

result was observed with the Sugeno FIS which achieved264

146 good predictions on the 150 cases (i.e. 97.33% accu‑265

racy).266

Another fuzzy logic based application based on Sugeno267

FIS is proposed by Cavallaro [24] to ϐind the suitable sus‑268

tainability index of the biomass. The 4 inputs (Energy269

output, Energy ration, Fertilizers and Pesticides levels) of270

the proposed decision‑making tool help in giving infor‑271

mation about chemical pressure caused by crop cultiva‑272

tion and contaminant impacts due to the use of fertilizers273

and pesticides. From these inputs, the resulting index of274

the biomass consists of 5 fuzzy variables that represent275

the sustainability level of the particular crop according to276

the energy use. To validate its model, the author com‑277

pared it with real data from 5 different crops.278

Dhimish et al. [25] proposed a fault detection approach279

for PhotoVoltaic (PV) systems based on artiϐicial neural280

network and fuzzy logic. The fuzzy logic is used to ϐind the281

maximum power point tracking thnaks to the Mamdani282

and Sugeno FIS. The output of the proposed solution is283

made up of the 10 different types of fault that can occur284

in a PV system. Based on their experiments, the authors285

conclude that the Mamdani or Sugeno FIS can be used for286

fault detection of PV.287

Chaudhary [8] comparedMamdani and SugenoFIS for the288

detection of packet dropping attack in mobile ad‑hoc net‑289

works. The resulting sytem uses as inputs the ratio of290

forwarded packets and the average rate of dropped pack‑291

ets. The results show a similar performance of the 2 FIS,292

however, due to the simpliϐied defuzziϐication process of293

Sugeno, this latter is a better choice thanMamdani for the294

detection of packet attacks.295

Almadi et al. [26] proposed a novel framework based on296

the fuzzy logic to identify the behaviour of drivers. The297

resulting approach is based on the Mamdani FIS and the298

authors considered as inputs speed limits, the weather299

and road conditions. The different possible behaviours of300

the drivers are considered as output set. To validate the301

decision‑making appraoch, the authors considered a data302

set made up of 100 people grouped in 5 different age cat‑303

egories.304

The fuzzy logic is also used for Non‑deterministic Polyno‑305

mial (NP) hard optimization problem in wireless sensor306

networks. These optimisation problems include the clus‑307

tering that is widely used in several approaches based ei‑308

ther on Mamdani or Sugeno FIS [27, 5, 28, 29].309

Bayrakdar [9] proposed a fuzzy‑based solution for loss‑310

less data transmission in WUSN. This proposal efϐiciently311

selects the collector station of each underground sen‑312

sor node to improve the throughput, the average de‑313

lay, the packet loss ratio and the node’s lifetime. The314

fuzzy inference system consists of the burial depth of315

the node, the residual energy and the node’s density.316

Only one‑hop underground‑to‑aboveground communica‑317

tions between buried nodes and the base station are con‑318

sidered. The output of the FIS gives the distance of a319

gathered node with the collector station. However, this320

study does not consider real parameters such as the soil321

moisture level, the locations of the transmitter/receiver322

and the distance between nodes which widely af‑323

fect the link quality in WUSN. Furthermore, a typical324

WUSN must deal with the three communication types325
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Table 1 – Performance’s comparison of some path loss approaches

Balanced accuracy Matthew Correlation Coefϐicient Area Under the ROC curve
Modiϐied Friis* [11] 75.77% 0.52 0.83
NCModiϐied Friis* [13] 72.03% 0.35 0.87
ZS PLM** [16] 50% / /
XD PLM** [17] 50% / /
WUSN‑PLM [3] 81.06% 0.64 0.92

* Path loss models designed for Underground to Underground (U2U) communications
** Path loss models designed for Underground to Aboveground (U2A) and Aboveground to Underground (A2U) communications

of WUSN (underground‑to‑aboveground, aboveground‑326

to‑underground and underground‑to‑underground) de‑327

scribed in [1, 3].328

Despite a largenumber of applications of fuzzy logic in de‑329

cision making and to the best of our knowledge, there is330

no previous study or research on reliable communication331

in WUNS based on fuzzy logic that takes into account dy‑332

namic changes in the environment of sensor nodes before333

transmission.334

3. MOTIVATION AND PROBLEM STATE‑335

MENT336

In this section, the main motivation of this work is pre‑337

sented. Furthermore the problem and the differents as‑338

sumptions of the proposed work are stated.339

3.1 Motivation340

The proposition of new and accurate path loss models in341

the literature allow researchers to predict if a sent packet342

can be received or not according to the link budget equa‑343

tion and the signal attenuation in the soil (Section 2.1).344

However, the problem of real‑time prediction by the sen‑345

sor node itself still needs to be solved. Thus, a decision‑346

making tool that can be integrated into a node becomes347

the most adequate solution for this problem. Meanwhile,348

the trade‑off between performance, computational cost,349

and the energy consumption is challenging to get, espe‑350

cially for WUSN. From the existing Machine Learning and351

Computational Intelligence based approaches, fuzzy logic352

is considered to be a good candidate. Indeed, as we seen353

in Section 2.2, the fuzzy logic shows good performance re‑354

sults while reducing the computational cost in decision‑355

making for resource‑constrained systems such as sensor356

nodes. These results are possible because of its simplic‑357

ity, which allows its rapid conception, adaptability to the358

uncertainty of incomplete information and the small data359

set required for its implementation. Furthermore, as we360

shown in [30], the computation cost for fuzzy‑based sys‑361

tems can be constant, thus, no additional computation is362

needed regardless of the number of inputs. The present363

paper improve our previous works [30] that discussed364

the possible use of fuzzy logic for reliable wireless under‑365

ground communications.366

However, the validation of this type of solution needs367

more experimentations andmust be integrated in real de‑368

vices to verify its feasibility. In addition, the computa‑369

tional cost (energy consumption) should be carried out370

to verify its applicability in real applications. Thus, by ad‑371

dressing these issues, the present study is a novel contri‑372

bution in the ϐields of wireless underground communica‑373

tions and fuzzy logic for WUSN.374

3.2 Problem statement and assumption375

Nowadays, extending the lifetime of a sensor remains a376

real challenge, especially in WUSN. Furthermore, know‑377

ing that a node drainsmost of its battery during transmis‑378

sion, the energy can be wasted especially when the link is379

broken, thus no information is received. To reduce these380

energy losses, we propose a new lightweight decision‑381

making solution for reliable transmissiondescribed in the382

following sections. We assume that the deployment of383

nodes in a typicalWUSN ismainly deterministic; thus, the384

position of each of them is well‑known. Furthermore, we385

assume that the burial depth of a node is considered to be386

a known parameter by the latter.387

4. THE FUZZY‑BASED APPROACH TO RE‑388

DUCE TRANSMISSIONWASTAGE389

In this section, we brieϐly describe the functioning of a FIS390

and then the proposed approach is described in detail.391

4.1 Overview of a fuzzy Inference System392

As we can see from Fig. 1, a typical Fuzzy Inference Sys‑393

tem (FIS) consists of 3 steps : i) fuzziϐication, ii) ap‑394

plication of the inference rules and iii) defuzziϐication.395

During the fuzziϐication process, the real input variables396

are converted into linguistic fuzzy variables. Thereafter,397

the membership degree of the inputs is computed based398

on the membership functions before applying operations399

(AND,OR,NOT) according to the fuzzy rules deϐined in the400

inference system. During the defuzziϐication process, the401

output of the FIS is a fuzzy set that represents the degree402

of membership of the input variables.403

From the two famous FIS in the literature and from Sec‑404

tion 2.2, the Sugeno‑type is more suitable for low‑power405

and automated making decision‑system due to his sim‑406

ple defuzziϐication process [30]. Indeed, the output 𝑧∗ in407
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Fig. 1 – Different parts of a Fuzzy Inference System

Sugeno FIS is the weighted average of each rule inside the408

inference system (16).409

𝑍∗ = ∑𝑛
𝑖=1 𝛼𝑖𝑧𝑖

∑𝑛
𝑖=1 𝛼𝑖

(16)

𝑛 is the number of rules inside the inference system, and410

𝛼𝑖 denotes the aggregated membership degree of each411

rule obtained by applyingmin ormax operators. 𝑧𝑖 repre‑412

sents the linear output of rule 𝑖.413

4.2 The fuzzy‑based approach for reliable414

transmission415

Energy reduction during transmission in WUSN must be416

performed in real‑time by each node, predicting whether417

or not the data to be sent can be received before trans‑418

mission. However, sensor nodes are high resources419

restricted, and the use of a traditional ML approach420

should not be considered. We use a portable, eas‑421

ily integrated and lightweight fuzzy‑based approach for422

decision‑making before transmission in aWUSN. The pro‑423

posal consists of 4 inputs and 36 (2×3×3×2) rules inside424

the Inference System. The crisp output is the probability425

(or degree) that checks if it will have a reception or data426

loss according to input data. The input parameters give427

an overview of the environment between the transmitter428

and the data receiver. According to [3], these parameters429

are the key factors that affect wireless underground com‑430

munication. In order to make it as easy as possible to cal‑431

culate themembership degrees of the different inputs, we432

have used simplemembership functions (trapezoidal and433

triangular). The inputs are:434

Fig. 2 – Overview of the proposed FIS

• The burial depth of the transmitter (BD) and the435

burial depth of the receiver (NBD): They give the dis‑436

tance between the ground surface (zero meters) to437

the node’s location. Knowing that the soil can be sub‑438

divided into two regions (topsoil and subsoil), the BD439

and NBD each consist of two trapezoidal member‑440

ship functions close and far (Fig. 3a). The member‑441

ship functions are trapezoidal because the behavior442

of the EM is slightly the same when the burial depth443

is lesser than 50cm but depends only if the node is444

fully buried or not [31].445

• The average soil moisture proportion (MST): It rep‑446

resents the water level in the soil. Contrary to the447

previous parameters, the moisture level in the soil448

is evaluated through three triangular membership449

functions: low, average and high (Fig. 3b). We chose450

triangular functions here because of the direct im‑451

pact of the soil moisture in the quality of under‑452

ground communications. Based on calibration mea‑453

surements carried out using the dataset [31], we ob‑454

serve that the impact of soil moisture on communi‑455

cation becomesmore signiϐicant at 40%moisture re‑456

gardless of the location of the nodes. The soil mois‑457

ture varies fromdry soil (nearly 0%moisture) to free458

water (close to 100% moisture).459

• The distance between the transmitter and receiver460

(LD): It consists of 3 triangular membership func‑461

tions: close, medium and far (Fig. 3c). Similar to the462

soil moisture, the direct distance between the trans‑463

mitter and the receiver has a direct impact on the464

communication quality. For example, we have ob‑465

served that when the linear distance between nodes466

is small (less than 7m), underground communica‑467

tions are reliable with very few lost packets. The468

range value of the distance between transmitter and469

receiver (up to 30m)depends on our previous results470

[3, 30] and the dataset [31].471

Table 2 – Computation of the membership degrees

Fuzzy sets Variables Membership degree

BD / NBD close
⎧{
⎨{⎩

1 0 ≤ x ≤ 0.1
2 − 10𝑥 0.1 < x ≤ 0.2
0 else

far
⎧{
⎨{⎩

0 0 ≤ x ≤ 0.1
5𝑥 − 1/2 0.1 < x ≤ 0.3
1 else

low { 1 − 𝑥/15 0 ≤ x ≤ 15
0 else

MST average
⎧{
⎨{⎩

𝑥/20 − 1/2 10 ≤ x ≤ 15
5/2 − 𝑥/20 30 < x ≤ 50
0 else

high { 𝑥/15 − 2/3 40 ≤ x ≤ 100
0 else

close { 1 − 2𝑥/15 0 ≤ x ≤ 7.5
0 else

LD medium
⎧{
⎨{⎩

𝑥/5 − 1 5 ≤ x ≤ 10
3 − 𝑥/5 10 < x ≤ 15
0 else

far { 𝑥/20 − 0.5 10 ≤ x ≤ 30
0 else

During the fuzziϐication process, the membership degree472

of each input parameter𝑥 of the proposedFIS is evaluated473
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Fig. 3 – (a) Membership functions of the transmitter (BD) and receiver (NBD) burial depths. (b) Membership functions of the soil moisture level (MST).
(c) Membership functions of the distance between the transmitter and the receiver (LD)

according to Table 2. The probability used for decision‑474

making (defuzziϐication) in the fuzzy‑based approach is475

the average weight of the 36 rules of the inference system476

given in (16). Having only two classes (reception or not477

reception), our proposed decision‑making systemdivides478

the probability of reception into two equal parts. Thus,479

when the calculated probability is less or equal to 0.5, we480

assume that the packet to be sent will be received (recep‑481

tion), otherwise the packet will be lost, so the transmis‑482

sion can be avoided. In addition, as it is shown in [30], the483

crisp output can easily be obtained by merging several If‑484

then ruleswithout any computation, thus obtaining a con‑485

stant complexity (𝒪(1)).486

5. PERFORMANCE EVALUATION OF487

FUZDEMA488

To evaluate the performance of the proposed FuzDeMa,489

we consider the dataset of [31] also used to design and490

validate our previous works [3]. From this dataset, 140491

different scenarios were evaluated in 2 different conϐigu‑492

rations of the soil: dry and moist.493

For each scenario, we evaluate the performance of the494

FuzDeMa by considering the following metrics (17) ‑ (21)495

that depend on the values of True Positive (TP); TrueNeg‑496

ative (TN), False Positive (FP) and False Negative:497

• The Threat Score (TS): also known as the critical suc‑498

cess index (CSI) and given in (17) is a performance499

metric used to measure the success of an initiative500

(reception or loss of a packet).501

• The Fowlkes‑Mallows index (FMI): is an index used502

to determine the similarity between two different503

classes (reception or not reception). Its formula is504

deϐined in (18).505

• The Matthews correlation coefϐicient (MCC): also506

known as Phi‑coefϔicient applied in two classes helps507

to measure the correlation differences between the508

real observation and the predicted values (19).509

• The Balanced Accuracy (bACC) : It is a metric use510

when to evaluate how good a binary classiϐier is511

when the classes are imbalanced (size of the positive512

class is higher than the size of the negative class). Its513

formula is given in (20);514

• The F1‑Score : This metric is similar to the bACC but515

is appliedwhen the size of the negative class is higher516

than the size of the positive class (21).517

• The Root Mean Square Deviation (RMSD) : It is the518

square root of errors between the predicted and the519

observed values (22). It gives the magnitudes of the520

errors in predictions for varied dataset.521

𝑇 𝑆 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 + 𝐹𝑃 (17)

522

𝐹𝑀𝐼 = 𝑇 𝑃 √ 1
(𝑇 𝑃 + 𝐹𝑃)(𝑇 𝑃 + 𝐹𝑁) (18)

523

𝑀𝐶𝐶 = 𝑇 𝑃 𝑇 𝑁 − 𝐹𝑃 𝐹𝑁
√(𝑇 𝑃 + 𝐹𝑃)(𝑇 𝑃 + 𝐹𝑁)(𝑇 𝑁 + 𝐹𝑃)(𝑇 𝑁 + 𝐹𝑁)

(19)524

𝑏𝐴𝐶𝐶 = 𝑇 𝑃(𝑇 𝑁 + 𝐹𝑃) + 𝑇 𝑁(𝑇 𝑃 + 𝐹𝑁)
2(𝑇 𝑃 + 𝐹𝑁)(𝑇 𝑁 + 𝐹𝑃) (20)

525

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2𝑇 𝑃
2𝑇 𝑃 + 𝐹𝑃 + 𝐹𝑁 (21)

526

𝑅𝑀𝑆𝐷 = √ 𝐹𝑃 + 𝐹𝑁
𝑇 𝑃 + 𝐹𝑃 + 𝑇 𝑁 + 𝐹𝑁

(22)

5.1 Dry soil conϐigurations527

The 80 measurements of the dry conϐiguration occurred528

when the soil moisture was close to 0%. From the exper‑529

imental dataset, 68 and 12 observations are obtained for530

the positive and negative classes (reception rcv. and loss531

of packets not rcv.), respectively. The resulting confusion532

matrix in dry soil conϐigurations is given in Table 3.533

We observe that for dry soil, the proposed FuzDeMa534

achieve perfect predictions (𝑇 𝑆 = 𝐹𝑀𝐼 = 𝑀𝐶𝐶 = 1535

and 𝑏𝐴𝐶𝐶 = 100%) regardless of the different scenarios536

of the dataset used (with a 68.57% prevalence).537
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Table 3 – Confusion matrix for dry soil conϐigurations

Observation
rcv. not rcv.

Prediction rcv. 68 TP 0 FP
not rcv. 0 FN 12 TN

5.2 Moist soil conϐigurations538

When the soil moisture level is different of 0%, the soil539

is assumed to be wet. From the considered dataset, 60540

measurements for wet soils are recorded (Table 4). Con‑541

trary to the dry conϐiguration, here, the number of nega‑542

tive cases is higher than the number of positive cases (32543

and 28, respectively).544

Table 4 – Confusion matrix for moist soil conϐigurations

Observation
rcv. not rcv.

Prediction rcv. 25 TP 9 FP
not rcv. 3 FN 23 TN

Furthermore, due to the inequity between the size of the545

sets, the F1‑Score is more suitable than the balanced ac‑546

curacy. The performance evaluation of FuzDeMa is given547

in Table 5.548

Table 5 – Performance evaluation of FuzDeMa in moist scenarios of the
soil

TS FMI F1‑Score MCC RMSD
0.675 0.810 80.675% 0.615 0.447

The results show that FuzDeMa gets a positive correla‑549

tion between the prediction (reception or loss) and the550

actual scenarios of the data set used when the soil is wet.551

Indeed, the value of the MCC deϐines a high correlation552

between the prediction and the observation with an553

accuracy of 80.675% (F1‑Score).554

555

In short, over the 140 measurements of the used dataset556

[31], the miss‑rate (or false negative rate FNR) probabil‑557

ity and the false discovery rate (FDR) deϐined in (23) of558

FuzDeMa are 3.125% and 8.824% respectively. These low559

values demonstrate the high feasibility of FuzDeMa to ad‑560

dress the problem of reliable communications in WUSN.561

𝐹𝑁𝑅 = 𝐹𝑁
𝐹𝑁 + 𝑇 𝑃 ; 𝑃 𝐷𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇 𝑃 (23)

To validate the performance of FuzDeMa in predicting of562

the reception or the loss of packet before transmission,563

we consider the performance metrics of (17) ‑ (21). For564

each of these parameters, we compare our proposal with565

WUSN‑PLM that obtained the best results compared to566

the existing path loss models (Table 1). Table 6 sum‑567

marises the overall performance comparison of FuzDeMa568

and WUSN‑PLM. We observe that the proposed decision‑569

making tool outperforms WUSN‑PLM with higher bACC,570

MCC, TS and FMI. The comparison table reveals that571

FuzDeMa has a lower error than WUSN‑PLM in the same572

dataset.573

Table 6 – Overall comparison of performances

bACC RMSD MCC TS FMI
WUSN‑PLM 81.06% 0.39 0.64 0.81 0.89
FuzDeMa 88.21% 0.29 0.80 0.89 0.94

Additionally, to evaluate the proposed approach indepen‑574

dently of the ϐixed threshold (0.50) and the insensibility575

to class distribution, the Receiver Operating Characteris‑576

tic (ROC) curve is considered (Fig. 4). Indeed, the ROC577

curve evaluates graphically the impact of the false posi‑578

tive rate on the sensibility (truepositive rate). Weobserve579

that the ROC Curve is well above the random guess, thus580

conϐirming the good accuracy of the proposed approach581

to differentiate the reception of the loss of a packet before582

its transmission.583
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Fig. 4 – Overall ROC curve evaluation of FuzDeMa with an AUC = 0.92

The numerical evaluation of the ROC curve using the area584

under the curve (AUC) gives the same value (92%) as that585

observed for the WUSN‑PLM given in Table 1. This value586

means that FuzDeMa has a 92% chance of making the dif‑587

ference between the two classes (reception and loss of a588

packet).589

6. INTEGRATION OF FUZDEMA WITHIN A590

REAL DEVICE591

Regardless of the good performances of FuzDeMa ob‑592

served on an existing dataset, in this section, we evalu‑593

ate our proposal in a real and dedicated sensor node for594

WUSN.595
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6.1 MoleNet: A sensor Node for Underground596

Monitoring597

TheMoleNet2 [32] is a sensor node specially designed for598

ecological and agricultural monitoring. However, it can599

be used also in any other underground monitoring pur‑600

poses. The MoleNet is based on the Wattuino Pro Mini601

board powered by Atmega328p microcontroller. The602

Wireless Underground Communications are achieved by603

the RFM69CW transceiver at 433MHzmore suitable than604

868MHz or the classical 2.4GHz in underground environ‑605

ments. Like most existing sensor nodes, the MoleNet pe‑606

riodically performs the same basic tasks based on events.607

The ϐlow chart that summarises the different steps per‑608

formed by the MoleNet is illustrated in Fig. 5. To save its

Fig. 5 – Flow chart describing the functioning of the MoleNet. Overview
of the PCB and the deployment of the MoleNet at the University of
Ngaoundere [32]

609

energy, the MoleNet sleeps more than 99% of the time.610

An RTC interruption wakes up MoleNet from deep sleep611

for sensing and transmission of data to the gateway. Af‑612

ter data transmission, themicrocontrollerwaits for an ac‑613

knowledgement before going to deep sleep mode. If it614

does not receive the acknowledgement before the end of615

the timer, it saves the sensed data locally in its EEPROM616

and then goes into sleep mode.617

6.2 Integration of FuzDeMa into the MoleNet618

The previous fuzzy approach has been implemented and619

ϐlashed inside the MoleNet to allow decision‑making be‑620

fore each transmission. When it wakes up, the node621

checks the reliability of transmission after reading the622

sensor. The reliability checking is put after the reading623

of the sensor because the MoleNet is equipped with a soil624

moisture sensor, and the sensed value is after that used625

as a moisture level to evaluate the transmission reliabil‑626

ity. The values of the computed reliability vary from 0 to 1.627

2molenet.org

The proposed decision‑making consists of two equiprob‑628

able classes: reception (should send) and no reception629

(should not send). From that, the crisp output is divided630

into two equal sets for the reception ([0; 0.5[) and for the631

data loss ([0.5; 1]).632

• If the computed reliability𝑍∗ is low (𝑍∗∈[0; 0.5[), the633

MoleNet stops its round and goes into sleepmodebe‑634

cause in such case, it assumes that it cannot reach the635

gateway (receiver).636

• If the reliability 𝑍∗ is high (𝑍∗∈[0.5; 1]), the MoleNet637

presumes that the link quality is enough good for638

transmission. In that case, the gateway will receive639

the sent packet.640

The ϐlow chart of the integration of the fuzzy‑based641

decision‑making for data transmission is summarised by642

Fig. 6.643

Fig. 6 – Improvement ofMoleNet by adding the FuzDeMamodule before
the transmission of a packet. The blue elements represent the different
steps of FuzDeMa according to the MoleNet ϐlowchart. The red section
is neglected when implementing FuzDeMa in MoleNet

7. EXPERIMENTS AND EVALUATIONS644

In this section, we describe the experimental set‑up used645

to evaluate the energy consumption of theMoleNet in dif‑646

ferent scenarios. After that the results, discussions and647

validation are provided after.648

7.1 Measurement setup649

To evaluate the energy consumption of the MoleNet, we650

consider the set‑up of Fig. 7. The R&S®HM8143 delivers651
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to power the MoleNet during the experiment. The preci‑652

sion multi‑meter R&S HM8112‑3 is also connected to the653

MoleNet to measure the voltage values in real‑time and654

the current variations. The digital oscilloscope Tektronix655

TBS 1102B is also used to visualise the voltage of the656

MoleNet. We consider each measurement’s output CSV657

ϐiles for the numerical analysis. To check if the MoleNet658

has sent data, we used the digital spectrum analyser RF659

Explorer COMBO.660

Fig. 7 –Evaluation of the energy consumption during different scenarios
of data transmission in the ComNets lab at the University of Bremen,
Germany

Each transmission of the MoleNet occurs only from the661

nodes to the Gateway through a single‑hop communica‑662

tion. After sending a packet, the MoleNet waits for an ac‑663

knowledgement sent by theGatewaybefore going to sleep664

mode. Thus, two scenarios are possible:665

• The Gateway is not reachable: here, the node sends666

a packet, but after the ϐixed time, it does not re‑667

ceive an acknowledgement from the Gateway. Dur‑668

ing this scenario, a communication round of the669

MoleNet contains four different stages (Fig. 8a):670

1)sleep, 2)micro‑controller computation, 3)Trans‑671

mission, and 4)waiting for an acknowledgement. As672

we can see, MoleNet spends additional energy after673

the transmission before switching off the transmis‑674

sion module and going to sleep mode.675

• The Gateway is reachable: the node sends a packet676

and receives an acknowledgement from the Gateway677

node. After the successful transmission, the node678

goes into sleep mode (Fig. 8b). Unlike the ϐirst sce‑679

nario, the MoleNet does not go through step 4 and680

avoids the energy spent by the communication mod‑681

ule after a packet transmission.682
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Fig. 8 – Energy consumption of the MoleNet during a round. (a) Energy
consumed when the Gateway is not reachable. (b) Energy consumed
when the Gateway is reachable

7.2 Evaluation683

To evaluate the energy consumed by the node during a684

round is achieved by considering the set‑up of Fig. 7. The685

value of the energy consumed in Joules (24) is explained686

in function of the voltage 𝑢 (in Volt), time 𝑡 (in second)687

and the resistance 𝑅 (set to 10Ω for computation conve‑688

nience). From the output CSV ϐile, more than 2500 mea‑689

surements (each 4ms) of the time and voltage are pro‑690

vided by TBS 1102B.691

𝐸 = 𝑢2𝑡
𝑅 (24)

From the setup of Fig. 7, several shots have been per‑692

formed and the average values of the energy consumed693

by the MoleNet is summarised in Table 7 below.694

Table 7 – Energy consumed by the MoleNet in a round

Gateway not reach. Gateway reach.
Energy (J) 133.3141𝜇𝐽 59.8134𝜇𝐽

As the table above shows, the power consumption of695

the MoleNet doubles when the gateway is not reachable696

for about the same running time. This large difference697

between these values can be explained by the fact that698

the communication module stays in listening mode for699

longer. Additionally, It is well known that the commu‑700

nication module is the most energy‑intensive module of701

a sensor node. In other words, the node will consume702
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133.3141𝜇𝐽 per transmission when the link to the gate‑703

way (or any other receiver) is broken due to bad ground704

conditions.705

8. EVALUATIONOFTHEENERGYCONSUMP‑706

TION707

The evaluation of the energy consumed during the com‑708

putation of the FuzDeMa is summarised in Fig. 9.709
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Fig. 9 – Evaluation of the energy drained by the proposed approach. (a)
Computation of the proposed FuzDeMa (no TX). (b) Computation of the
proposed FuzDeMa (TX)

We observe that the energy consumed by the MoleNet710

while performing our proposal during transmission is711

similar to the energy consumed during transmission by712

the conventional MoleNet (Fig. 9b). Table 8 gives the nu‑713

merical values of the energy consumed with and without714

transmission while running our proposed approach.715

Table 8 – Energy consumed by FuzDeMa

FuzDeMa (no TX) FuzDeMa (TX)
Energy (J) 51.5264𝜇𝐽 68.0133𝜇𝐽

Despite the short time used to transmit data, we observe716

that the MoleNet consumes more than 16𝜇𝐽 . Thus, by717

cancelling a transmissionwhen the environment does not718

allow to reach a distant node (here the Gateway), we can719

save this energy, thus increasing the lifetime of the sensor720

node. The energy consumption of the MoleNet while run‑721

ning or not our proposed fuzzy‑based making‑decision722

tool is summarised in Fig. 10.723

Fig. 10 – Comparison the energy consumption per round

Moreover,weevaluate and compare the energy consumed724

in two cases: (i) the gateway is reachable; (ii) the gateway725

is not reachable.726

8.1 The gateway is reachable727

Since the node cannot knowby itself perfectly (with prob‑728

ability 1) when the gateway is reachable or not, we eval‑729

uate in this subsection the energy consumed during and730

without transmission of our proposal. When the gate‑731

way is reachable, the conventional MoleNet consumes732

around 59.8134𝜇𝐽 per round, and it is assumed that the733

link with the gateway is not broken. When the fuzzy ap‑734

proach decides to send data (TX) according to the com‑735

puted reliability (True Positive), the node will consume736

8.2𝜇𝐽 more than in the conventional MoleNet (Fig. 11).737

In other words, although this case is the worst of our pro‑738

posal, we see that the additional energy consumed by the739

node is minimal and can be neglected.740
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Fig. 11 – Energy saved (and lost) while using FuzDeMa when the gate‑
way is reachable

However, if the proposed FuzDeMa does not decide to741

allow a transmission (False Negative), thus, the energy742

saved by FuzDeMa is around 8.287𝜇𝐽 (Fig. 11). In this743

case, the MoleNet sends and receives an acknowledge‑744

ment from the gateway, and the fuzzy‑based control will745

not proceed to transmission and thus save 8.287𝜇𝐽 . The746

bad side of the fuzzy‑based decision‑making tool is that747

the gateway will not receive any data from the sensor748

node. In short, we summarise in Table 9 the energy saved749

and data status when the gateway is reachable.750
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Table 9 – Evaluation of FuzDeMa (Gateway is reachable)

Energy saved Data
True Positive −8.2𝜇𝐽 send & receive
False Negative 8.287𝜇𝐽 not send & not receive

8.2 The gateway is not reachable751

When the gateway is not reachable, the MoleNet does not752

receive an acknowledgement, thus, it will consume addi‑753

tional energy (Fig. 8a). In other words, the link between754

the sensor node and the gateway may be broken. During755

this scenario, the MoleNet will consume 133.3141𝜇𝐽 per756

round (Table 7).757

If the fuzzy‑based control allows a transmission (TX) even758

if the gateway is not reachable (False Positive), the sen‑759

sor node will consume 65.3007𝜇𝐽 per round lesser than760

in the conventional MoleNet (Fig. 12). This difference is761

explained by the fact that the MoleNet stays a few times762

waiting for the acknowledgement from the gateway and763

then wastes more energy. In that case, we notice that the764

saved energy is slightly enough for another round of our765

proposed fuzzy‑based decision‑making tool (59.8134𝜇𝐽766

or 68.0134𝜇𝐽).767

Meanwhile, when our fuzzy controller decides not to al‑768

low transmission (no TX), the saved energy increases up769

to 81.786𝜇𝐽 . This case is the best scenario in which the770

efϐiciency of our proposed approach (True Negative) can771

be observed. Here, the sensor node will save energy and772

no data is missed.773
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Fig. 12 – Energy saved while using FuzDeMa when the gateway is not
reachable

The overall energy saved when the Gateway is not reach‑774

able according to the status of the data is shown in Ta‑775

ble 10 below.776

Table 10 – Evaluation of FuzDeMa (no Gateway)

Energy saved Data
False Positive 65.3007𝜇𝐽 send & not receive
True Negative 81.7876𝜇𝐽 not send & not receive

9. DISCUSSION AND GENERALISATION OF777

FUZDEMA778

One key limitation of the MoleNet that we can easily ob‑779

serve occurs when the gateway is not reachable. During780

that case, the buried node keeps the transceiver in listen781

mode to receive any acknowledgement from the gateway.782

From Section 7.1, the energy drained by the MoleNet be‑783

comes substantial (≈133𝜇𝐽 per round). However, with a784

different node the presented results may vary. Here, we785

analyse deeply the impact of the FuzDeMa for any kind of786

device.787

Let’s assume a random sensor ϐield 𝐹 made up of 𝑁 ho‑788

mogenous nodes. Each sensor node 𝑛𝑖 (𝑖∈ [1 𝑁]) sends789

periodically the collected information to the base station.790

Furthermore, to reduce the energy consumption, there is791

only one transmission per round in a non‑connected way792

(none acknowledgment is needed from the base station).793

During a round, a node without the FuzDeMa will con‑794

sumes 𝐸𝑖 (25). 𝑚𝑐𝑐𝑜𝑚𝑝 denotes the computation made795

by the microcontroller and 𝑡𝑥𝑐𝑜𝑠𝑡 is the energy consumed796

by the transceiver during a transmission. Thus, after 𝑘797

rounds, the energy consumed by a sensor node is 𝑘𝐸𝑖.798

𝐸𝑖 = 𝑚𝑐𝑐𝑜𝑚𝑝 + 𝑡𝑥𝑐𝑜𝑠𝑡 (25)

Meanwhile, when a node integrates the proposed799

FuzDeMa, the overall energy consumed 𝐸′
𝑖 per round800

is given in (26). 𝑓𝑢𝑧𝑐𝑜𝑠𝑡 is the additional calculation801

cost of the FuzDeMa. After 𝑘 rounds, the overall energy802

consumed by node 𝑛𝑖 depends on the number of data803

receptions 𝛼 (with 𝑘 ≥ 𝛼). This is because the FuzDeMa804

does not allow a transmission when the conditions are805

not sufϐicient for a reception.806

𝐸′
𝑖 = {𝐸𝑖 + 𝑓𝑢𝑧𝑐𝑜𝑠𝑡 if transmission

𝐸𝑖 + 𝑓𝑢𝑧𝑐𝑜𝑠𝑡 − 𝑡𝑥𝑐𝑜𝑠𝑡 else
(26)

Aswe canobserve fromFig. 10, the energy consumeddur‑807

ing transmission is higher than the additional calculation808

of FuzDeMa (𝑡𝑥𝑐𝑜𝑠𝑡 > 𝑓𝑢𝑧𝑐𝑜𝑠𝑡), thus, when there is no809

transmission, 𝐸′
𝑖 ≤ 𝐸𝑖. However, after 𝑘 random rounds,810

FuzDeMa will save energy when 𝑘𝐸𝑖 ≥ 𝑘𝐸′
𝑖 . (27).811

𝑘𝐸𝑖 ≥ 𝑘(𝑚𝑐𝑐𝑜𝑚𝑝 + 𝑓𝑢𝑧𝑐𝑜𝑠𝑡) + 𝛼𝑡𝑥𝑐𝑜𝑠𝑡 (27)

In short, theFuzDeMawill improve the lifetimeof any sen‑812

sor node𝑛𝑖 after𝑘 roundswhen the relationof (28) ismet.813

𝛼 ≤ ⌊𝑘(𝑡𝑥𝑐𝑜𝑠𝑡 − 𝑓𝑢𝑧𝑐𝑜𝑠𝑡)
𝑡𝑥𝑐𝑜𝑠𝑡

⌋ (28)

When the condition (28) is met, the overall energy 𝐺𝑖814

saved by a node 𝑛𝑖 that implements the FuzDeMa after 𝑘815

random rounds with 𝛼 reception(s) is resumed by (29).816

Fig. 13 below presents the evolution of the energy saved817

by FuzDeMa after 1000 rounds.818

𝐺𝑖 = 𝑡𝑥𝑐𝑜𝑠𝑡(𝑘 − 𝛼) − 𝑘𝑓𝑢𝑧𝑐𝑜𝑠𝑡 (29)
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Fig. 13 – Energy saved by FuzDeMa according to the number of recep‑
tions

10. CONCLUSION819

In this paper, we proposed and evaluated a novel portable820

fuzzy‑based approach for decision‑making during trans‑821

mission in WUSN to avoid energy waste called FuzDeMa.822

The main idea of our proposed solution is to allow a sen‑823

sor node to senddata onlywhen it is ”sure” of its reception824

according to a calculated reception probability. The out‑825

put of the fuzzy inference system used is the reliability of826

data reception which depends on the soil moisture level,827

the distance between nodes and the burial depths of the828

transmitter and receiver. Evaluation of the energy con‑829

sumed during different scenarios (TN, TN, FP, FN) reveals830

that the approach can save up to 81.7876𝜇𝐽 per transmis‑831

sion cycle. Moreover, the validation of FuzDeMa is based832

on a real dataset made up of 140 different measurements833

in two different conϐigurations (dry and moist soils). The834

results showed that, the proposed FuzDeMa is able to ex‑835

tend the lifetime of a sensor node to up 32.85%.836
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