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Abstract—Hyperspectral anomaly detection (AD) task is a
typical binary classification problem, and utilizing background
prior knowledge is a key technique to solving such problems. The
two most commonly used priors for hyperspectral images are
low-rank and local smooth properties. Most traditional matrix-
based methods use two regularizations to model these two types
of priors and integrate them into one model, which makes these
two regularizations unable to maximize their effectiveness. In
addition, the matrix method also destroys the structure of the
hyperspectral images (HSI). To address these issues, this study
identified a unique sparsity property in the gradient tensor of
HSI. Specifically, the core tensor resulting from the Tucker
decomposition of the gradient tensor was observed to exhibit
sparsity. This sparsity property, referred to as GCS (the sparsity
on the core tensor of the gradient map), effectively captures the
structural information of HSI and improves detection performance.
The GCS regularization offers the following advantages: 1) GCS
regularization uses one term to simultaneously capture both
low-rankness and local smoothness, the size of the core tensor
represents the low-rank prior to the background, and the ℓ1 norm
describes the sparsity of gradient map, i.e., the local smoothness of
the original data; 2) GCS is a constrained regularization, allowing
for the full utilization of information from different dimensions of
the HSI when updating the core tensor, i.e., utilizing the spatial
and spectral information carried by three-factor matrices of the
Tucker decomposition. Finally, extensive experiments validate the
superiority of our proposed methods.

Index Terms—Hyperspectral anomaly detection, sparsity mea-
sure, Tucker decomposition, GCS regularization.

I. Introduction

BENEFITING from the rapid development of hyperspectral
remote sensing technology, hyperspectral images (HSIs)

are able to provide hundreds of narrow and contiguous spectral
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bands. The abundant spectral and spatial information makes
the precise recognition of material substance targets a reality,
and hyperspectral anomaly detection (AD), an unsupervised
target detection, is one of the most popular directions [1].
It has received scant attention in research due to its real-
world application, such as food safety [2], biomedical [3],
mineral exploration [4], and environmental monitoring [5].
Hyperspectral AD aims to detect objects of interest, separating
anomalies from the surrounding natural background. The
criterion for labeling a pixel as an anomaly or a background
pixel is that the spectral signature of the anomaly is significantly
different from the surrounding background. Nevertheless, AD
tasks suffer from unknown prior knowledge of both the target
and background spectral signatures, which brings about a
challenging task [6], [7].

In recent years, there has been a growing literature on
hyperspectral AD. The methods can be roughly divided into
two categories: data-based method [8]–[27] and model-based
method [5]–[7], [12], [28]–[39], [39].

Data-based methods apply deep learning techniques in part
or in whole. Some data-based methods can directly learn a
mapping from observation data to background or outliers using
a neural network from the paired dataset [8], [9]. These methods
do not require a priori information but have problems such as
dependence on labeled data and model mismatch. In order
to not rely on paired data, some data-based methods use
neural networks, such as autoencoders (AE) [19]–[24] and
generative adversarial networks (GAN) [16]–[18], [25]–[27],
[40]–[42], to effectively reconstruct the background component
in the original HSI data in an unsupervised manner while
the anomaly part could not be reconstructed successfully.
Then the anomalies appear as reconstruction errors or some
postprocessing is used to obtain the detection results. In order
to further characterize the prior information, some constraints
are introduced, such as sparsity constraints on encoded latent
variables or residuals of decoded reconstructed data of AE
[43] and Gaussian distribution constraints on the latent feature
discriminated by the GAN [17]. Besides, neural networks may
also be used to solve a subproblem of AD or as a preprocessing
step to obtain better results. For example, some methods try
to use the extracted features by neural networks to design
the subsequent detector [12]–[15] or use neural networks to
obtain intermediate abundance or a denoise prior [16]–[18].
Although data-based methods have achieved good results, they
still have challenges regarding generalization ability and prior
characterization of HSI data. The model-driven or non-deep
learning methods focus more on characterizing priors on HSI
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Fig. 1: Illustration of the GCS regularization term. (a) The HSI AD task is to model the background to separate the anomaly
and background; (b) The Gradient tensors of background B in the vertical, horizontal, and spectral directions, represented as
∇nB, n = 1, 2, 3, respectively; (c) The singular values curves of the three gradient tensors along the three unfolding directions,
which indicate a low-rank property of the three gradient tensors; (d) Frequency histograms of elements’ values in three gradient
tensors, respectively; (e) Tucker decomposition of the gradient tensors in (b); (f) Core tensors Gn ∈ R

20×20×7 of gradient tensors
∇nB, n = 1, 2, 3. Where the deeper color of the elements imply a larger value of core tensors, noting that the elements’ values
of three core tensor decrease from the upper left corner to the lower right corner of tensors, and we named this view as view 1.
Besides, we Observe the distribution of elements’ values in three core tensors from another view, which we named view 2.

data finely via proper regularizations.

The model-driven or non-deep learning methods focus more
on characterizing priors on HSI data finely via proper regulariza-
tions. Among all priors, the spectral global correlation property
and spatial local smoothness are the two most commonly
used properties. For the characterization of spectral global
correlation, there are three main categories of methods, namely,
Gaussian distribution-based models, sparse representation-
based models, and low-rank decomposition-based models.
Among the models based on Gaussian distribution, the typical
ones are Reed Xiaoli (RX), global RX (GRX), local RX
(LRX), weighted-RX, and kernel-RX algorithms [28]–[30].
These methods assume that the background obeys Gaussian
distribution, and use Mahalanobis distance to measure whether
the test pixel is an abnormal point. However, the assumption
of a specific distribution for the background is not valid in
real-world scenarios and hinders the improvement of AD
accuracy. Representation-based methods, including Sparse Rep-
resentation (SR)-based [12] and Collaborative Representation
(CR)-based [31], [32], which represent the background as a
sparse combination of redundant dictionary elements. Models
based on low-rank decomposition, including robust principle
component analysis (RPCA) [33], Canonical Polyadic (CP)
decomposition [34], and Tucker decomposition [5], [35], these
methods can decompose the background HSI into two low-rank
matrices/tensors, thus can characterize the global correlation of
the spectrum. However, only low-rank priors can not bring the
best performance for AD tasks. Besides, the low rank of the
spectrum, local smoothness is another frequently used prior.
The local-smooth prior is often encoded by total variation
(TV) regularization [44] on the spatial and spectral domain of

the HSI and often combined into a low-rank matrix/tensor
decomposition framework, such as [6], [7], [36]–[39], to
improve the performance of models. Whereas, the performance
of all the above matrix-based and tensor-based methods is
highly affected by the trade-off parameter imposed between the
low-rank and local smooth regularizers. It is fairly difficult to
build a general rule for finely tuning the balancing parameter in
real scenarios [45]. Moreover, the [46] and the [39] respectively
utilize the Tucker decomposition and the CP decomposition
on the original data and then unfold each gradient map in the
tensor manner to the matrix, which destroys the topological
structure of the pixel space.

To alleviate the above issues, this paper proposes a new
prior characterization paradigm for fusing low-rank and local
smoothness properties by exploring the sparsity of the core
tensor of the background tensor’s gradient map. Specifically,
for an original background tensor, we can obtain the gradient
map of the background tensor through the difference operator,
so that the local smoothness of the original tensor is transferred
to the sparsity of its gradient map. Since the difference operator
is a linear operator and does not change the low-rank nature of
tensors, the gradient maps also have low-rank properties, as seen
in Figure 1. Therefore, the difference operation transfers the low
rank of the original data and the sparsity of its differential map
(that is, the local smoothness of the original data) to the low
rank and sparsity of the gradient map, which makes it possible
for us to characterize both types of priors simultaneously with
one regularizer on the gradient map. In fact, a lot of work has
been done based on gradient map modeling before, such as
[47]–[49], but these works are all based on the matrix, which
destroys the data structure to a certain extent. In order not to
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break the structure of the background tensor X ∈ Rn1×n2×n3 , here
we use tucker decomposition to explicitly encode the low-rank
property of the gradient map, i.e., X = C ×1 U1 ×2 U2 ×3 U3,
where C ∈ Rr1×r2×r3 are core tensor, Ui ∈ R

ni×ri are orthogonal
factor matrices. In Tucker decomposition, the size of the core
tensor determines the low rank of the original tensor in each
dimension, and the lower the value in a dimension, the stronger
the low rank of the tensor in that dimension. Further, since
the gradient map tensor is sparse, and three-factor matrices are
orthogonal, it can be deduced that only the sparse core tensor
can induce the sparsity of the gradient map. In fact, the core
tensor is indeed sparse, as shown in Figure 1, the number of
non-zero elements in the core tensor is extremely small. In
addition, since the value of the core tensor can be regarded
as the representation coefficient under three sets of orthogonal
bases {Ui}

3
i=1, adding sparsity to the core tensor will make

better use of the structural information (i.e., {Ui}
3
i=1) of the data

than adding sparsity to the original tensor, similar analysis can
be found in [50]. Based on the above analysis, we can achieve
the goal of simultaneously encoding the low rank and local
smoothness of the background tensor by controlling the sparsity
of the core tensor of the gradient map. For the convenience of
description, we refer to this new prior as gradient map core
tensor sparsity (GCS). Furthermore, we propose the ℓ1-norm
to encode the GCS prior for the background tensor, and the
anomaly tensor is characterized by the ℓ1-norm to separate the
anomaly from the background more accurately.

The main contributions of this paper can be summarized as
follows:

1) In terms of prior mining. We observe a new prior called
GCS prior. Unlike the low-rank or local smoothness
priors that have been discovered before, this prior can
characterize the low-rank and local smoothness of tensor
data at the same time, which allows us to use a simple
regularization to efficiently describe low-rank and local
smoothness, such as ℓ1-norm. Besides, with the help of
the physical meaning of the core tensor, the GCS prior
can also deliver the representation sparsity under Tucker
decomposition.

2) In terms of algorithm design. Since the GCS prior is
obtained through tucker decomposition under the gradient
map, it is cumbersome to solve. Here we design a fast
ADMM algorithm to solve ℓ1-norm on gradient core tensor
based on HOSVD and Fast Fourier Transform. Compared
with other tensor decomposition methods, the runtime of
our algorithm is also comparable.

3) In terms of experiment performance. Experimental results
on five real-world datasets, with 3D ROC metrics and
illustrations, demonstrate the superiority of the proposed
method.

The remainder of this paper is organized as follows. In Section
II, we introduce some notations and preliminaries of the
tensor. Section III describes the motivation and our proposed
GCS regularization for hyperspectral AD. Section IV is the
proposed method and the optimization algorithm. Evaluation
of experimental results and discussions constitute Section V.
Finally, we summarize our work in Section VI.

II. NOTATIONS AND PRELIMINARIES

In this section, we introduce some mathematical notations
and definitions of the tensors referred to in the paper to describe
the proposed method clearly. The paper uses bold lowercase
symbols for vectors, e.g., x, and capital letters for matrices,
e.g., X. Scalar is written as x. We use bold Euler script letters
to denote the third-order, e.g., X. Given a N mode tensor
X ∈ RI1×I2×···×IN , here, In, ∀n = {1, · · · ,N} is the number of
n-th mode.

Definition 1. (The mode-n unfolding and folding of a
tensor) The ”unfold” operation along mode-n on a N-mode
tensor X ∈ RI1×I2×···× IN is defined as unfoldn(X) = X(n) ∈

RIn×(I1 ··· In−1 In+1 ··· IN ). Its inverse operation is the mode-n folding,
denoted as X = foldn

(
X(n)

)
.

Definition 2. (Tucker decomposition) A Tucker decomposition
is a form of higher-order principal component analysis in
which it decomposes a tensor into a core tensor multiplied by
a matrix along each mode. Here, we give an example by a
third-order tensor X ∈ RI×J×K , then

X ≈ G×1A×2B×3C =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqrap◦bq◦cr = ⟦G; A,B,C⟧,

(1)
here, A ∈ RI×P, B ∈ RJ×Q, and C ∈ RK×R are the factor
matrices, which can be thought of as the principal components
in each mode. The core tensor G ∈ RP×Q×R, and its entries
show the level of interaction between the different components.

Definition 3. (SSTV) The spatial and spectral total variation
regularization term of tensor X is defined as:

∥X∥SSTV = ∥D1X∥ + ∥D2X∥ + ∥D3X∥, (2)

D1,D2,D3 are the first-order difference operators with respect
to the horizontal, vertical, and spectral directions of the
background. Here, the sparsity measurement of ∥X∥SSTV is
by summing the ℓ1-norm of the gradient maps along three
modes. To simplify Eq. (2), we rewritten it as

∑3
n=1 ∥∇nX∥1,

∇n, (n = 1, 2, 3), is a linear operator on X along the n-th mode,
∥ · ∥1 is the tensor ℓ1-norm.

Definition 4. (The tensor ℓ1-norm) The ℓ1-norm of the tensor
is similar to the matrix, for the given third-order tensor X ∈
RI×J×K , its ℓ1-norm is ∥X∥1 =

∑I
i=1

∑J
j=1

∑K
k=1 |xi jk |.

Definition 5. (The tensor Frobenius norm) Given a third-
order tensor X ∈ RI×J×K , its Frobenius norm is defined as
∥X∥F =

√
⟨X,X⟩.

III. SparsityMeasure on the GradientMap Tensor under
Tucker Decomposition Regularization

In this section, we first develop the problem statement to
present the motivation for the background model of hyperspec-
tral AD. The GCS regularization and the proposed method are
illustrated afterward.

An HSI can be naturally treated as a third-order tensor,
which avoids spatial and spectral information loss in a tensor
manner. Given an observed HSI tensor, it can be decomposed
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into a background tensor and an anomaly tensor. Then, the
model can be expressed as follows:

Y = B + E, (3)

where Y ∈ RH×W×D is the observed HSI, B ∈ RH×W×D, and
E ∈ RH×W×D are the background, and anomaly respectively. H,
W, and D represent the height, width, and number of bands of
each tensor. The purpose of AD is to yield superior performance
by recovering an accurate background image that allows the
anomaly to be more accurately separated from the background.

A. Motivation

Since the background scene is simple and usually consists
of a few materials, it indicates that the spectral bands of the
pixels belonging to the background are highly correlated and
therefore lie in a low-rank subspace. Besides, similar substances
distribute in the same region, which implies a local spatial
and spectral smoothness of the background. Here, the SSTV
regularization is usually utilized to encode the spatial-spectral
smoothness. The SSTV regularization on B can be written as:

∥B∥SSTV =

3∑
n=1

∥∇nB∥1, (4)

∇n, (n = 1, 2, 3) are the first-order difference operators with
respect to the horizontal, vertical, and spectral directions of
the background. Here, ∥B∥SSTV is by summing the ℓ1-norm of
the gradient maps along three directions. To simplify Eq. (4),
we rewritten it as

∑3
n=1 ∥∇nB∥1, ∇n is a linear operator on B

along the n-th mode, ∥ · ∥1 is the tensor ℓ1-norm.
In Fig. 1 (b), the gradient tensors obtained by the TV

regularizer smooths the background tensor along the vertical,
horizontal, and spectral dimensions, respectively. After that, we
unfold the three gradient tensors along three different modes,
as can be observed in Fig. 1 (c), the singular values curve
reflects the spectral dimension has a strong low-rank property,
and the other two spatial dimensions also have a low-rank
property. Therefore, the phenomenon inspires us to utilize
Tucker decomposition to encode the gradient tensors’ low-rank
property for the background on the three different dimensions,
which can be written as:

B = G ×1 U1 ×2 U2 ×3 U3,UT
n Un = I,

rank(G) = [r1, r2, r3], n = 1, 2, 3,
(5)

here, G ∈ Rr1×r2×r3 is the core tensor of B, {Un}
3
n=1 are the factor

matrices, with the rank of {rn}
3
n=1. Moreover, we define all the

factor matrices Un as orthogonal matrices, where UT
n Un = I,

(n = 1, 2, 3).
It should be noted that the key to achieving accurate AD

results depends on the efficiency of the low-rank background
tensor model. Combining the low-rank Tucker decomposition
with the SSTV term to encode the low-rank and the local
spatial-spectral smooth characteristics of the background has
been widely developed in HSI processing. Whereas these two
properties, as illustrated above, are characterized separately,
they cannot exploit some insightful structures in integrity to
maximize their effectiveness. There have been some attempts

for HSI recovery [45], target detection [51], denoise [47], and
others [52] to model the two priors into one regularizer, which
yields excellent performance. Up to now, on the one hand,
encoding the low rankness and smoothness properties by a
fusion regularizer is blindly in the hyperspectral AD; on the
other hand, the existing works [45], [47] are matrix based
methods that destroy the inner structure of HSI. To sum up,
it facilitates us to mine the beneficial priors underlying the
gradient domain of the background.

B. GCS Regularization

In this section, we focus on illustrating the sparsity of the
gradient map’s core tensor obtained by tucker decomposition
to verify the reason for the proposed GCS regularization term.
In addition, Fig. 1 also helps to demonstrate the sparsity of
the gradient tensors through visualization of the distribution
of the element’s value and the frequency histograms.

In Eq. (4), since the difference operator is a linear operator
and can be represented as a nearly full rank matrix D, where
rank(∇i(B)) = rank(B ×i D), rank(DB(i)) ≤ min{D,B(i)}, then
we have rank(∇nB) = rank(B), (n = 1, 2, 3). Thus, the gradient
tensor ∇nB obtained by imposing the difference operation on
the original background tensor B also inherits the low-rank
property of the background. Therefore, as shown in Fig. 1, there
always has a strong correlation between gradient maps, we
thus employ the low-rank Tucker decomposition to decompose
the gradient tensors of the background tensor with low-rank
properties encoded. We model the gradient tensor independently
as follows:

∇nB = Gn ×1 U(1)
n ×2 U(2)

n ×3 U(3)
n , n = 1, 2, 3

s.t. U(i)T

n U(i)
n = I, rank(Gn) = [r(1), r(2), r(3)], i = 1, 2, 3,

(6)

where {U(i)
n }

3
i=1, (n = 1, 2, 3) are the factor matrices, U(i)

1 , U(i)
2 ,

U(i)
3 , (i = 1, 2, 3) with the size of H × r(1), W × r(2), D ×

r(3), respectively, and we define all the factor matrices as
orthogonal matrices. Gn is the core tensor of ∇nB, (n = 1, 2, 3),
when its rank is [r(1), r(2), r(3)], its size would be r(1) × r(2) × r(3).
Thus, we can control the low rank of the three-order tensor by
presetting the rank of the core tensor.

Above we analyzed the low rank of the gradient map,
and then we analyze the sparsity of the gradient map, that
is, the local smoothness of the original data. As shown in
Fig. 1, since the gradient maps are obtained by performing
difference operations on the original data, only the edge of
the object is preserved, so the gradient map shows strong
local smoothness. There are two methods to describe the
sparseness of the gradient map. The first one directly adds an
ℓ1-norm to the gradient map as a whole, that is, the SSTV
regularization of the original tensor, but this regularity is a
kind of space-indiscriminate way to describe the sparsity, this
is because the SSTV regularization fails to make better use of
the information of each spectrum, namely, the information of
orthogonal matrices {U(i)

n }
3
i=1, (n = 1, 2, 3). The second encoding
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way is to describe the sparsity of the core tensor. Since the
gradient map has a Tucker decomposition representation, the
factor matrix is orthogonal and does not have sparsity, so the
sparsity naturally falls on the core tensor. Only the core tensor
is sparse, and under the representation of Tucker decomposition,
the original gradient map is sparse. In fact, the core tensor of
the gradient map is indeed extremely sparse, as shown in Fig.
1(e). Therefore, by using the sparsity of the core tensor, the
information of the tensor in different dimensions (i.e., {U(i)

n }
3
i=1,

(n = 1, 2, 3)) are used. Secondly, in work [50], the physical
meaning of the core tensor is also analyzed, that is, the core
tensor coefficient can be regarded as the weight coefficient
under the CP decomposition. If we limit the sparsity of the
core tensor, then we can also limit the low-rank property under
CP decomposition to some extent. Noting that in Fig. 1 (f)
the elements’ values of three core tensors decrease from the
upper left corner to the lower right corner of tensors which
further verifies the core tensors’ sparsity. Due to the sparsity of
the gradient’s core maps reflecting the sparsity of the gradient,
thereby, the ℓ1 norm is utilized to describe the sparsity of the
gradient map (i.e., the local smoothness of the background).
The size of the core tensor in Tucker decomposition determines
the low rank of the original tensor in each dimension, and the
lower the value in a dimension, the stronger the low rank of
the tensor in that dimension. Therefore, the sparsity of the core
tensor is inversely deducing that the gradient maps are sparse.

In this paper, we construct a novel tensor regularizer by the
sparsity measure, namely ℓ1-norm, on the core tensor of the
gradient map under tucker decomposition achieves the purpose
of encoding low-rank and local smooth properties at the same
time through a regularization. In particular, the size of the core
tensor represents the low-rank prior of the background, and
the ℓ1 norm describes the sparsity of the gradient map (i.e.,
the local smoothness of the original data). This new form of
tensor-based prior characterization is named gradient map core
tensor sparsity (GCS), we define it as following Eq. (7). To
simplify notations, the collection of unknowns is union defined
Θ =

{
B,Gn,U

(1)
n ,U

(2)
n ,U

(3)
n ,E

}
, n = 1, 2, 3, and the background

model is finally written as follows:

min
Θ

3∑
n=1

∥Gn∥1

s.t.Y = B + E,∇nB = Gn ×1 U(1)
n ×2 U(2)

n ×3 U(3)
n ,U

(i)T

n U(i)
n = I,

rank(Gn) = [r(1), r(2), r(3)], n = 1, 2, 3,
(7)

where ∥ · ∥1 is the tensor ℓ1-norm.

IV. Hyperspectral AD Underlying GCS Regularization

A. Proposed Method

Since anomalies make up a small proportion of the whole
HSI, which is usually assumed with a sparse property, thus, we
utilize the ℓ1-norm to characterize the anomaly tensor’s sparsity,
aiming to separate the anomaly from the background more
accurately. Therefore, based on the model (8), we proposed a

gradient tensors’ low-rank Tucker decomposition modeling for
hyperspectral AD as follows:

min
Θ

3∑
n=1

∥Gn∥1 + λ∥E∥1

s.t. Y = B + E,∇nB = Gn ×1 U(1)
n ×2 U(2)

n ×3 U(3)
n ,U

(i)T

n U(i)
n = I,

rank(Gn) = [r(1), r(2), r(3)], n = 1, 2, 3,
(8)

here, λ>0 is the trade-off parameter that controls the sparsity
of the anomaly part.

B. Optimization Algorithm

We optimize the model (8) by the alternating direction
method of multipliers (ADMM) [53], the augmented La-
grangian function of the model (8) is

L (Θ,Γ,Mn, µ) =
3∑

n=1

∥Gn∥1 + λ∥E∥1 + ⟨Γ,Y − B − E⟩

+
µ

2
||Y−B−E||2F +

3∑
n=1

〈
Mn,∇nB−Gn ×1 U(1)

n ×2 U(2)
n ×3 U(3)

n

〉
+
µ

2

3∑
n=1

||∇nB − Gn ×1 U(1)
n ×2 U(2)

n ×3 U(3)
n ||

2
F ,

(9)

which is under the constraints of ∇nB = Gn ×1 U(1)
n ×2 U(2)

n ×3

U(3)
n ,U

(i)T

n U(i)
n = I, rank(Gn) = [r(1), r(2), r(3)], (n = 1, 2, 3, i =

1, 2, 3), whereMn, n = 1, 2, 3, Γ are the Lagrangian multipliers,
and µ is a positive scalar in the ADMM algorithm. Here, we can
optimize the augmented Lagrangian function (9) by updating
one variable while fixing the others. Specifically, the initial
value of k is set to 1. When the update time is k + 1, the
variables refer to the model (8) iterate as follows:

1) update Ek+1: The optimization problem for Ek+1 is

Ek+1 = arg min
E

λ∥E∥1 +
µk

2
||Y − Bk − E +

Γk

µk ||
2
F , (10)

Ek+1 can be efficiently computed by

Ek+1 = softthre(Y − Bk +
Γk

µk ,
λ

µk ), (11)

where softthre(·, ·) is the soft-thresholding function.
2) Update {U(i)

n
k+1
}3i=1, (n = 1, 2, 3): Here, we update them

by the classic HOOI algorithm [54].
3) Update Gk+1

n , (n = 1, 2, 3): The optimization problem for
Gk+1

n can be written as follows:

Gk+1
n =arg min

Gn

3∑
n=1

∥Gn∥1+

µk

2

3∑
n=1

∥∇nB
k−Gn×1U(1)

n
k+1
×2U(2)

n
k+1
×3U(3)

n
k+1
+
Mk

n

µk ∥
2
F ,

(12)

here, we solve Eq. (12) by the soft-thresholding function [55],
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Gk+1
n = softthre(Temp,

1
µk ), (13)

where Temp= (∇nB
k +

Mk
n
µk )×1U(1)

n
Tk
×2U(2)

n
Tk
×3U(3)

n
Tk

.
4) Update Bk+1: The optimization problem for Bk+1 is:

Bk+1 = arg min
B

µk

2
||Y − B − Ek+1 +

Γk

µk ||
2
F+

µk

2

3∑
n=1

∥∇nB−G
k+1
n ×1U(1)

n
k+1
×2U(2)

n
k+1
×3U(3)

n
k+1
+
Mk

n

µk ∥
2
F ,

(14)

the above optimization problem can be transformed into the
following linear system: 3∑

n=1

∇T
n∇n+I

Bk+1= Y − Ek+1 +
Γk

µk +

3∑
n=1

∇T
n

(
Gk+1

n ×1U(1)
n

k+1
×2U(2)

n
k+1
×3U(3)

n
k+1
−
Mk

n

µk

)
,n =1, 2, 3,

(15)

where ∇T
n indicates the ‘transposition’ operator of ∇n. Con-

sidering to the block-circulant of matrix corresponding to
the operator ∇T

n∇n, (n = 1, 2, 3), we diagonalized it by the
FFT matrix [56]. Here, referring [57], Bk+1 can be efficiently
computed by


HB =

∑3
n=1∇

T
n

(
Gk+1

n ×1U(1)
n

k+1
×2U(2)

n
k+1
×3U(3)

n
k+1
−
Mk

n
µk

)
+Y − Ek+1 + Γ

k

µk ,n =1, 2, 3,
TB = |fftn(D1)|2 + |fftn(D2)|2 + |fftn(D3)|2,
Bk+1 = ifftn

(
fftn(HB)

I+TB

)
,

(16)
where fftn and ifftn are the fast Fourier transform and its inverse
transform, respectively. Here, | · |2 is the elements-wise square,
and the division is also performed element-wisely.

5) Update multipliers Γk+1, Mk+1
1 ,Mk+1

2 , Mk+1
3 , and µ :

Γk+1 = Γk + µk
(
Y − Bk+1 − Ek+1

)
,

Mk+1
1 =M

k
1+µ

k
(
∇1B

k+1−Gk+1
1 ×1U(1)

1
k+1
×2U(2)

1
k+1
×3U(3)

1
k+1

)
,

Mk+1
2 =M

k
2+µ

k
(
∇2B

k+1−Gk+1
2 ×1U(1)

2
k+1
×2U(2)

2
k+1
×3U(3)

2
k+1

)
,

Mk+1
3 =M

k
3+µ

k
(
∇3B

k+1−Gk+1
3 ×1U(1)

3
k+1
×2U(2)

3
k+1
×3U(3)

3
k+1

)
,

µk+1 = min(1.5µk, 1e5).
(17)

C. Computational Complexity Analysis

As shown in Algorithm 1, the computational cost of per-
iteration underlying the GCS mainly lies in the subproblems of
B and ∇nB, n = 1, 2, 3. Updating ∇nB seek for the HOOI algo-
rithm to estimate the U(i)

n , n = 1, 2, 3, i = 1, 2, 3. The time com-
plexity of factor matrices (Update U(i)

n ): O(3Tmax(H2r(2)r(3) +

(r(2)r(3))3 + W2r(1)r(3) + (r(1)r(3))3 + D2r(1)r(2) + (r(1)r(2))3)).
(Update ∇nB): O(r(1)r(2)r(3)H + r(3)Hr(2)W + (HWr(3))3D). The
update for B depends on the computational cost of FFT.

Algorithm 1 GCS algorithm
Input: HSI tensor Y, regularized parameters λ.
Initialization: E, B, Gn are set to zero tensor, U(1)

n , U(2)
n ,

U(3)
n , Γ are set to matrices, µ = 10−2, µmax = 105, Tmax = 50,

k = 1, and the residual error ξ = 10−6.
Repeat:
1. Update E with Eq. (11).
2. Update U(1)

n , U(2)
n , U(3)

n by the HOOI algorithm, and update
Gn, n = 1, 2, 3 with Eq. (12).
3. Update B with Eq. (14).
4. Update Γ, M1, M2, M3, and µ with Eq. (16), and Eq.
(17).
5. k ← k + 1.
Until either Tmax = 50 or

∥∥∥B(t+1) − B(t)
∥∥∥

2 /
∥∥∥B(t+1)

∥∥∥
2

< ξ are satisfied.
Output: anomaly map T.

(Update B): O(HWD log(HWD)). So the time complexity
of Algorithm 1 is O((H2r(2)r(3) + (r(2)r(3))3 + W2r(1)r(3) +

(r(1)r(3))3 +D2r(1)r(2) + (r(1)r(2))3))+ (r(1)r(2)r(3)H + r(3)Hr(2)W +
(HWr(3))3D) + HWD log(HWD)).

V. Experimental Results and Discussion

In this section, the proposed GCS method was carried out on
five real HSI datasets for AD, and the gray values of the five
datasets are normalized to the scale of (0−1) before performing
the experiments. Where the detailed description is listed in
the following subsections, all the experimental algorithms are
performed in MATLAB 2016b on a computer with a 64-bit
quad-core Intel Xeon 2.40 GHz CPU and 32.0 GB of RAM
in Windows 7. The deep learning experimental algorithm is
performed in Python 3.7, PyTorch 1.10, and a 6GB of NVIDIA
GeForce RTX 2060 GPU.

A. Experimental Datasets

1) AVIRIS Airplane Datasets: The AVIRIS airplane dataset
was collected by AVIRIS in San Diego. There are 189 bands
retained, while the water absorption regions, low-SNR, and
bad bands are removed. As shown in Fig. 2 (a1), the subimage
is named the AVIRIS-1 dataset, and it is located in the top-left
corner of the AVIRIS image with a spatial size of 100 × 100.
The contained anomaly is the three airplanes, and the ground
truth is shown in Fig. 2 (a2). AVIRIS-2 dataset is located
in the center of San Diego, as shown in Fig. 2 (b1), and
the groundtruth, as shown in Fig. 2 (b2), with the size of
100 × 100 × 186.

2) HYDICE Dataset: The real data was collected by the
hyperspectral digital imagery collection experiment (HYDICE)
sensor, and the original image has a size of 307 × 307 × 210.
In this experiment, there preserved 175 bands when removed
the low-SNR and water vapor absorption bands. An 80 × 100
subspace is cropped from the top right of the whole image, and
the cars and roofs in the image scene are considered anomalies.
The false color image and the corresponding ground truth map
are shown in Fig. 2 (c1) and (c2).
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AVIRIS-1 AVIRIS-2 HYDICE Abu-urban-1 Abu-urban-2

 (a1)  (b1)  (c1)  (d1)  (e1)

 (a2)  (b2)  (c2)  (d2)  (e2)

Fig. 2: The False color image and Ground-truth map of the anomalies on the AVIRIS-1, AVIRIS-2, HYDICE, Urban-1, and
Urban-2 datasets.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3: 2D plots of the detection results obtained by all competing methods on the AVIRIS-1 dataset. (a) RX. (b) RPCA. (c)
LRTV. (d) GTVLRR. (e) E-3DTV. (f) PTA. (g) GVAE. (h) TRPCA. (i) LRTDTV. (j) GCS.

3) Urban (ABU) Datasets: The Urban dataset was collected
with AVIRIS sensors and contained five images of five different
scenes. In this paper, we select the Urban-1 image and Urban-
2 image, captured at different locations on the Texas Coast,
to perform the experiment. The spatial size of the Urban-1
dataset is 100 × 100, the number of spectral bands is 204, and
its false-color image and the ground truth are presented in
Fig. 2 (d1) and (d2). For the Urban-2 dataset with a size of
100 × 100 × 207, Fig. 2 (e1) and (e2) are the corresponding
false color image and the ground truth.

B. Evaluation Metrics and Parameter Settings

Nine SOTA hyperspectral AD methods are selected as
the comparison algorithms to assess the performance of the
proposed GCS method. In order to demonstrate GCS is efficient
in performing the Tucker decomposition on the gradient maps
of the tensor background, we apply the LRTDTV method [38]
for AD that is ever used for HSI restoration. The RX [58] is the
benchmark method based on the statistical model of AD. RPCA
[59], LRTV [60], GTVLRR [6], and E-3DTV [47] assume the
background has a low-rank property while the anomaly is
sparse. Based on the assumption, GTVLRR employs a TV
regularization term with the background spatial smoothness
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4: 2D plots of the detection results obtained by all competing methods on the AVIRIS-2 dataset. (a) RX. (b) RPCA. (c)
LRTV. (d) GTVLRR. (e) E-3DTV. (f) PTA. (g) GVAE. (h) TRPCA. (i) LRTDTV. (j) GCS.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5: 2D plots of the detection results obtained by all competing methods on the HYDICE dataset. (a) RX. (b) RPCA. (c)
LRTV. (d) GTVLRR. (e) E-3DTV. (f) PTA. (g) GVAE. (h) TRPCA. (i) LRTDTV. (j) GCS.

encoded. The above methods are Matrix-based operations.
In addition, PTA [61], TRPCA [62], the LRTDTV and our
proposed GCS are the tensor-based methods underlying the low-
rank background tensor and sparse anomaly tensor assumption.
The PTA is the SOTA tensor-based AD method adapted for
comparison with the tensor-based methods. Significantly, the
matrix-based method E-3DTV and the tensor-based method
GCS both focus on exploiting the property of the gradient maps
underlying the background. Moreover, GVAE [9], a SOTA deep
learning method, is adopted as the comparison method.

To effectively evaluate the performance of the hyperspectral
AD detectors as above referred, the 3-D Receiver Operating
Characteristic (3D-ROC) curve (PD,PF, τ) [63], and it further
generates three 2D-ROC curves of (PD,PF), (PD, τ), (PF, τ) with

their corresponding AUC values that are denoted as AUC(PD,PF),
AUC(PD,τ), AUC(PF,τ) are introduced. In addition, we employed
a new AUC measure overall detection probability (OD), which
is denoted as

AUC(OD) = AUC(PD,PF) + AUC(PD,τ) − AUC(PF,τ). (18)

The following are the description for the different metrics.
• (PD,PF) assesses the overall detection performance
• (PD, τ) evaluates the target preservation
• (PF, τ) evaluates the background suppression
• (OD) for the overall performance evaluation
As such, the performance tends to be favorable as

AUC(PD,PF) → 1, AUC(PD,τ) → 1, AUC(PF,τ) → 0, and
AUC(OD) → 2. Besides, it is desired that the curves of (PD,PF),
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6: 2D plots of the detection results obtained by all competing methods on the Urban-1 dataset. (a) RX. (b) RPCA. (c)
LRTV. (d) GTVLRR. (e) E-3DTV. (f) PTA. (g) GVAE. (h) TRPCA. (i) LRTDTV. (j) GCS.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: 2D plots of the detection results obtained by all competing methods on the Urban-2 dataset. (a) RX. (b) RPCA. (c)
LRTV. (d) GTVLRR. (e) E-3DTV. (f) PTA. (g) GVAE. (h) TRPCA. (i) LRTDTV. (j) GCS.

(PD, τ), and (PF, τ) are close to the upper left, upper right, and
lower left corners of the coordinate axis, respectively.

In the proposed GCS, λ is a parameter to control the sparsity
of the anomaly and varies in [1, 0.001], which needs to be
carefully tuned. The rank constraint of the gradient map tensors
rank(Gn) = [r(1), r(2), r(3)], n = 1, 2, 3, that is, the r(3) of the
Gn on the spectral dimension are vary in [5, 10] due to the
high spectral bands correlation. The rank r(1), r(2), of the spatial
dimension, highly depends on the structural complexity in the
background scene of the experimental dataset.

C. Detection Performance

We investigate the performance of RX, RPCA, LRTV,
GTVLRR, E-3DTV, PTA, GVAE, TRPCA, LRTDTV, and
GCS, ten methods from the quantitative and qualitative views.
Specifically, Fig. 3-Fig. 7 shows the 2-D plots of the detection
maps from the referring methods on the five datasets. Fig.
8 includes five subfigures, showing the ROC curves of the
five datasets underlying the referring methods from (a) to (d).
Each subfigure includes a (PD,PF, τ) curve and its generative
three 2D-ROC curves of (PD,PF), (PD, τ), (PF, τ). Fig. 9 shows
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Fig. 8: The ROC curves of different comparison methods on the five datasets. (a) AVIRIS-1. (b) AVIRIS-2. (c) HYDICE.
(d) Abu-urban-1. (e) Abu-urban-2. (Left to right) 3D-ROC curve, 2D-ROC curve of (PD,PF), 2D-ROC curve of (PD, τ), and
2D-ROC curve of (PF, τ).
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Fig. 9: Box and whisker plots of the different methods under comparison for the five real datasets: (a) AVIRIS-1. (b) AVIRIS-2.
(c) HYDICE. (d) Abu-Urban-1. (e) Abu-Urban-2.
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Fig. 10: The AUC values vary with the different λ on the five datasets, respectively. (a) AVIRIS-1. (b) AVIRIS-2. (c) HYDICE.
(d) Abu-urban-1. (e) Abu-urban-2.

0 10 20 30 40 50 60

Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
la

ti
v
e
 e

rr
o
r

AVIRIS-1

HYDICE

Abu-Urban-2

Fig. 11: Convergence error curves of proposed method on the
AVIRIS-1, HYDICE, and Abu-urban-2 datasets.

the box and whisker plots of the different methods under
comparison for the five real datasets aiming to demonstrate
their efficiency in separating the anomalies from the background.
Beyond the AUC values metrics mentioned above, TABLE I
also lists the AUC(OD) value to account for the performance
of the ten methods comprehensively. Moreover, TABLE II
compares the computation times(s) of the ten algorithms on
the five datasets. It needs to figure out the running time of
GVAE is the Traning time(s) + Test time(s).

Here, we give the AVIRIS-2 as an example to demonstrate
the superiority of the proposed GCS method.

1) AVIRIS-2: When we set the Tucker decomposition rank
of the gradient tensors as [35,35,6], the proposed GCS achieved
the best performance.

As Fig. 2 shows, the anomalies are the three airplanes.
The 2D plot detection maps obtained by ten methods can be
observed in Fig. 4. Referring to the color bar in Fig. 4 (i), the
proposed GCS aims to detect the three airplanes accurately.
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TABLE I: The AUC values obtained by different AD algorithms on the five real datasets.

Datasets AUC Values
Matrix-based operations DL Tensor-based operations

RX RPCA LRTV GTVLRR E-3DTV PTA GVAE TRPCA LRTDTV GCS

AVIRIS-1

AUC(PD ,PF) ↑ 0.9638 0.8935 0.9484 0.9583 0.9834 0.9876 0.9509 0.9872 0.9843 0.9909
AUC(PD ,τ) ↑ 0.0926 0.0585 0.4027 0.2328 0.3086 0.5772 0.3423 0.4249 0.3152 0.3512
AUC(PF ,τ) ↓ 0.0172 0.0255 0.1024 0.0574 0.0608 0.1080 0.1278 0.1187 0.0472 0.0625
AUC(OD) ↑ 1.0392 0.9265 1.2486 1.1337 1.2312 1.4568 1.1654 1.2934 1.2523 1.2796

AVIRIS-2

AUC(PD ,PF) ↑ 0.9488 0.9824 0.9818 0.9913 0.9830 0.9831 0.9596 0.9590 0.9890 0.9928
AUC(PD ,τ) ↑ 0.0560 0.1797 0.5034 0.3908 0.4420 0.4756 0.3423 0.4622 0.4319 0.4818
AUC(PF ,τ) ↓ 0.0127 0.0265 0.0855 0.0530 0.1614 0.0952 0.1278 0.1100 0.0736 0.0436
AUC(OD) ↑ 0.9921 1.1356 1.3997 1.3291 1.2636 1.3400 1.1734 1.3353 1.3473 1.4310

HYDICE

AUC(PD ,PF) ↑ 0.9768 0.9591 0.9421 0.9659 0.9773 0.9221 0.8981 0.9029 0.9725 0.9957
AUC(PD ,τ) ↑ 0.1053 0.1235 0.5720 0.4038 0.3049 0.5396 0.4306 0.4327 0.4933 0.4675
AUC(PF ,τ) ↓ 0.0175 0.0293 0.1380 0.0704 0.0555 0.1027 0.2567 0.1311 0.0887 0.0335
AUC(OD) ↑ 1.0646 1.0533 1.3761 1.2993 1.2267 1.3590 1.0720 1.2045 1.3771 1.4297

Abu-urban-1

AUC(PD ,PF) ↑ 0.9934 0.9916 0.9705 0.9093 0.9794 0.9852 0.9778 0.9823 0.9870 0.9961
AUC(PD ,τ) ↑ 0.3442 0.3117 0.5098 0.4403 0.6078 0.6130 0.3729 0.6956 0.5432 0.5494
AUC(PF ,τ) ↓ 0.0329 0.0496 0.0766 0.1261 0.2374 0.1869 0.0925 0.2450 0.0868 0.0451
AUC(OD) ↑ 1.3047 1.2537 1.4038 1.2235 1.3498 1.4113 1.2582 1.4329 1.4434 1.5004

Abu-urban-2

AUC(PD ,PF) ↑ 0.9946 0.9960 0.9914 0.9967 0.9382 0.9992 0.9828 0.9456 0.9904 0.9994
AUC(PD ,τ) ↑ 0.2880 0.2347 0.2481 0.2295 0.8871 0.3213 0.1400 0.6048 0.2668 0.2545
AUC(PF ,τ) ↓ 0.0611 0.0283 0.0239 0.0487 0.5681 0.0672 0.1976 0.0325 0.0459 0.0176
AUC(OD) ↑ 1.2215 1.2024 1.2224 1.1775 1.2572 1.2533 0.9252 1.5179 1.2113 1.2362

TABLE II: Comparison of computation times(s) on the five real datasets.

Dataset
Matrix-based methods Deep learning Tensor-based methods

RX RPCA LRTV GTVLRR E-3DTV GVAE TRPCA LRTDTV PTA GCS
AVIRIS-1 0.490 6.786 34.916 333.311 28.332 0.40 × 10000 + 0.569 153.577 37.720 20.017 133.745
AVIRIS-2 0.395 6.328 30.449 363.714 25.799 0.36 × 10000 + 0.575 153.443 27.182 19.708 147.349
HYDICE 0.741 6.668 22.410 279.832 20.550 0.33 × 10000 + 0.385 113.790 21.967 15.810 111.197

Abu-urban-1 0.448 8.002 44.171 364.148 29.377 0.68 × 10000 + 0.425 181.422 33.803 22.041 126.255
Abu-urban-2 0.719 8.938 43.772 362.679 31.215 0.68 × 10000 + 0.518 189.801 31.619 22.147 129.852

As shown in Fig. 8(b), the ROC curve (PD,PF) located in
the upper left corner, and the corresponding AUC(PD,PF) in the
TABLE I further prove its superiority AD performance. Under
the evaluation of the target preservation and the background
suppression performance, the AUC(OD) and the 3D ROC
curve (PD,PF, τ) of the GCS comprehensively demonstrate
an excellent overall performance when compared with the
other nine comparison methods. The performance also proved
that exploiting the property of gradient tensors, such as low
rankness and sparseness, contributes to an efficient AD method.
The AUC values in the TABLE I show that the tensor-based
methods, including GCS, LRTDTV, TRPCA, and PTA, are
competitive, thanks to the tensor that preserve the spatial
and spectral structure information. Whereas in TABLE II,
it can be observed that the computation time of TRPCA is
higher than the GCS, PTA costs a low time due to its matrix-
based operation. As can be observed in Fig. 4(g) and (i), the
background suppression of the background is better than the

GCS, while the anomaly detection and the noise removal are
both inferior to the GCS, the AUC values in the TABLE I
also demonstrate it. In TABLE II, the running time of the
LRTDTV is shorter than the GCS, whereas, Fig. 4(i), Fig. 4(j),
and the TABLE I the detection result of the GCS is better than
the LRTDTV since GCS prior describes the sparsity of the
core tensor of the gradient map under Tucker decomposition
that fuses spatial information to fully deliver the information
of tensors in different dimensions. Fig. 4 and the TABLE
I from the quality and quantity illustrate the efficiency of
the proposed GCS method in anomaly detection, background
suppression, and noise removal. The LRTV, GTVLRR, E-
3DTV, PTA, and GCS impose the TV regularization on the
background; in Fig. 4, it can be observed that the TV term
is good at smoothing away the noise and then strength the
outlier between the background and the anomaly. As the Fig.
4, Fig. 8, TABLE I, and TABLE II show GVAE, a SOTA
deep learning method for AD, presents poor generalization
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performance, while GCS based on model modeling can better
characterize the background and thus have better AD results.
In Fig. 9 (b), the red box represents anomalous targets, while
the blue one represents the background pixels. It is concluded
that among all the comparison methods, the interval between
the red box and the blue box of our proposed GCS is larger
than the other nine algorithms, which indicates that the GCS
achieves the best separability of anomaly from the background.

2) AVIRIS-1: The best detection result was achieved when
the tucker decomposition rank of the gradient tensors is
[35, 35, 7]. In reference to the color bar, the anomaly airplane
can be clearly observed in Fig. 3(i) of the PTA method, which
indicates good anomaly preservation. Otherwise, the back-
ground also clearly appeared that refer to a poor background
suppression performance. In our proposed GCS method, not
only the anomaly airplane can be clearly seen in Fig. 3(j),
but the background is well suppressed. Besides, as shown
in Fig. 8(a) and TABLE I, the ROC curve (PD,PF) of PTA
located on the top left corner with the highest AUC(PD,τ) value
achieved, and the ROC curve (PD, τ) of GCS is closest to
the up right corner and obtained a best AUC(PD,τ) value. The
phenomenon demonstrates that underlying the low rank and
sparse assumption, imposing the SSTV regularization term on
the background efficiently smoothes away the sparse anomaly,
yielding a superior performance of GCS. As can be observed in
Fig. 4(h) and (j), the background suppression of the background
is better than the GCS, while the anomaly detection and the
noise removal are both inferior to the GCS, the AUC values in
the TABLE I also demonstrate it. LRTV also behaves a good
performance in terms of the AUC(OD), the low computation
time in TABLE II due to it being a matrix-based operation.
GVAE achieves a general performance, and the test time is
short while the training time is high. As shown in Fig. 9(a),
the interval between the red and blue boxes of LRTV, E-3DTV,
PTA, TRPCA, LRTDTV, and GCS are better than the RX,
RPCA, GTVLRR, GVAE, which indicate that former methods
separating the anomalies from the background are better than
the latter ones. The interval between our proposed GCS’s red
and blue boxes is larger than the LRTV, E-3DTV, PTA, TRPCA,
and LRTDTV, further demonstrating that the GCS performs
the best separation performance.

3) HYDICE: The best performance of the proposed GCS
was achieved when we set the tucker decomposition rank
of the gradient tensors as [70, 70, 5]. Considering Fig. 2 the
ground truth as a comparison, the 2D plot detection map
of the proposed GCS in Fig. 5(j) exhibits an accurate AD
result. As shown in Fig. 8, the location of 3D ROC curve
and three 2D ROC curves (PD,PF), (PD, τ), (PF, τ) reflect that
the GCS perform an excellent performance on the overall
detection, anomaly preservation, and background suppression.
Meanwhile, the TABLE I further proves its efficiency by
computing corresponding AUC values. Even though the PTA
has the highest AUC(OD) among all the matrix-based operations,
the (PD,PF), (PF, τ) curves and values in Fig. 5(i) and TABLE I
shows it’s at too low a level among all the competitive methods.
The performance of the GVAE method on the HYDICE dataset
is inferior to the other comparison methods in view of quality
and quantity. In addition, as shown in Fig. 9(c), the RX, RPCA,

and proposed GCS achieve the best ability to separate anomalies
from the background than other algorithms. Whereas, the ROC
curves shown in Fig. 8 and the corresponding auc result in
TABLE I confirm that the GCS yields the best performance.

4) Abu-Urban-1: When we set the tucker decomposition
rank of the gradient tensors as [30, 30, 7], the best AD
performance is achieved. In Fig. 6(j), the anomalies are clearly
detected, and the background is better suppressed. It also can
be observed in Fig. 8 that the (PD,PF) located in the upper
left corner, yet the (PF, τ) curve close to lower left corner.
In the TABLE I, the AUC(PD,PF), and AUC(PF,τ) also prove its
efficiency, it worth to note that the AUC(OD) comprehensively
demonstrates the GCS performed an excellent performance.
Beyond that, both PTA and TRPCA achieved a high AUC(OD),
whereas, their overall detection performance and background
suppression are inferior to the GCS. The LRTDTV method is
competitive with our proposed method comprehensively, yet
all of the four AUC measures for AD performance are not
as good as the GCS. In addition, in TABLE I, the AUC(PD,PF)
of RX and RPCA are very high, nevertheless, the low values
for target preservation result in an unsatisfactory AD result.
As shown in Fig. 9(d), the interval between the red box and
blue box of TRPCA is larger than GCS, whereas, the detection
results in TABLE I demonstrate that our proposed method is
the best algorithm.

5) Abu-Urban-2: When we set the tucker decomposition
rank of the gradient tensors as [20, 20, 7], the best AD
performance is achieved. As shown in Fig. 7(j) and TABLE
I, the AUC(OD) of TRPCA is the highest, yet the value of the
(PD,PF) is inferior to the others. Besides, the computation times
of TRPCA are much higher than the average time. In TABLE
I, even though the AUC(OD) values of PTA are not the best, the
performance of the PTA in terms of the other three 2D ROC
values is good. As observed in the Fig. 7(i), the background is
well suppressed, the AUC(PD,PF) is highest and the AUC(PD,PF)
shown in TABLE I verify the phenomenon. Whereas, the
high background suppression may result in the anomaly being
detected as the background, which generates inferior target
preservation and an overall performance evaluation. Compared
to the LRTDTV with the GCS, as shown in Fig. 7(h) and
(j), the background of GCS is very clear in Fig. 8. Besides,
the (PF, τ) curve and value in Fig. 8(e) reflects the excellent
performance of GCS for background suppressing. As shown
in Fig. 9(d), the separability of E-3DTV is comparable with
our proposed GCS, whereas, the AUC(PD,PF) of GCS is much
better than E-3DTV.

D. Discussion
We perform the proposed GCS method and nine comparison

methods on the five datasets and summarize the efficiency of
the proposed method as follows:

1) Effectiveness: In this paper, we observe a new prior
named GCS prior. Different from the traditional methods
that characterize the low-rank and local smoothness priors
separately, the GCS can characterize the low-rank and local
smoothness of tensor data at the same time, which allows
us to use one regularization term to efficiently describe low-
rank and local smoothness. Besides, with the help of the
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physical meaning of the core tensor, the GCS prior can also
deliver the representation sparsity under Tucker decomposition.
As shown in Fig. 3-Fig. 7 and TABLE I, the proposed
method underlying five datasets performs the best background
suppression performance, which demonstrates the efficiency of
background modeling.

2) Performance: Nine comparison algorithms are presented
to sufficiently demonstrate the proposed method’s performance.
Unlike the low-rank and local smoothness priors that have been
discovered before, such as LRTV, GTVLRR, LRTDTV, which
characterize these two priors separately; the observed GCS
prior can better characterize the low rank and local smoothness
of the background with one regularizer. Even though the E-
3DTV can encode the two priors under one regularization term,
the matrix-based method unavoidably destroys the spatial or
spectral information. Our proposed method encodes the GCS
prior in a tensor manner, preserving the inner structure. PTA
is a tensor-based but matrix-based operation method that is
competitive with the proposed method, but its performance
cannot be generalized to all datasets. The deep learning method
GVAE has a low test time, whereas the training time assumption
is high, and the AD performance is general.

3) Parameter Analysis: We discuss the robustness of the
parameter λ referring to the proposed GCS method on the five
datasets. Fig. 10 reflects the sensitivity of the overall detection
performance within the scope of λ. It shows that the best
performance is achieved on the five datasets when λ setting as
0.001, 0.006, 1, 0.05, and 0.003, respectively. Fig. 10 (a), (b),
(d), and (e) with a similar trend that is the curve first reaching
the peak and then, downward to stable. Whereas the curve in
Fig. 10 (c) keeps going up, and then it tends to be stable.

4) Convergence Analysis: Fig. 11 displays the relative errors
versus the iteration numbers on the AVIRIS-1, HYDICE, and
ABU-Urban-2 three datasets. It can be observed from the curves
that when the number of iteration numbers increases from 1
to 20, the corresponding relative errors go down very sharply.
After that, the downward trend of the curves becomes stable,
and relative error values approach zero.

VI. CONCLUSION

In this paper, we find a new prior named GCS prior. GCS
prior describes the sparsity of core tensor of gradient map
under tucker decomposition, which is the kind of representation
sparsity that fuses spatial information so that the information
of tensors in different dimensions can be more fully delivered.
Different from the traditional method that utilizes the low rank
and smoothness priors separately, here, our observed prior
can fuse the two priors and be encoded with one regularizer,
which is general and maximizes their effectiveness. To further
separate the background from the anomaly, the anomaly sparsity
is encoded by the ℓ1-norm. The experimental results on the
five real hyperspectral image datasets show that the proposed
method can effectively suppress the background and highlight
the target. The excellent performance of the proposed method
also verifies the effectiveness and robustness compared with
other methods in the view of quality and quantity.
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