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Surface impedance and topologically protected interface modes

in one-dimensional phononic crystals

Antonin Coutanta, Bruno Lombarda,∗

aAix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France

Abstract

When semi-infinite phononic crystals (PCs) are in contact, localized modes may exist at their

boundary. The central question is generally to predict their existence and to determine their

stability. With the rapid expansion of the field of topological insulators, powerful tools have

been developed to address these questions. In particular, when applied to one-dimensional

systems with mirror symmetry, the bulk-boundary correspondence claims that the existence

of interface modes is given by a topological invariant computed from the bulk properties of

the phononic crystal, which ensures strong stability properties. This one-dimensional bulk-

boundary correspondence has been proven in various works. Recent attempts have exploited

the notion of surface impedance, relying on analytical calculations of the transfer matrix. In

the present work, the monotonic evolution of surface impedance with frequency is proven for

all one-dimensional phononic crystals with mirror symmetry. This result allows us to establish

a stronger version of the bulk-boundary correspondence that guarantees not only the existence

but also the uniqueness of a topologically protected interface state. This correspondence is

extended to a larger class of one-dimensional models that include imperfect interfaces, array of

resonators, or dispersive media. Numerical simulations are proposed to illustrate the theoretical

findings.

Keywords: periodic media, linear waves, imperfect interfaces, Bloch-Floquet theory, inversion

symmetry, Zak phase.
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1. Introduction

Periodic media have forbidden frequency bands, in which waves cannot propagate. This

property is very much used in various fields of wave physics, from quantum mechanics [1] to

electromagnetism [2] or acoustics [3]. It has been the subject of a great deal of theoretical

work, particularly in spectral theory [4]. When two phononic/photonic crystals (PCs) are

joined, interface modes can exist in the gaps common to both crystals, depending on the

coupling between the media [5]. These modes then remain localized (in one dimension (1D))

or can propagate at the interface (in 2D or more). However, their stability is not guaranteed.

In the presence of manufacturing defects or impurities, these waves are then diffracted in all

directions, losing the benefit of guidance.

Recently, the notion of topological insulators, initially discovered in the context of the quan-

tum Hall effect, has provided a powerful approach to obtain localized modes with high ro-

bustness against defects [6, 7]. If certain symmetries are satisfied, appropriate topological
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invariants can be obtained from the bulk properties of the material [8, 9]. The bulk-edge cor-

respondence then allows one to relate these invariants with the presence of edge or interface

localized modes [10, 11]. Despite the broad applicability of the principle, a precise statement of

the bulk-boundary correspondence depends on the symmetry class, the dimensionality and the

type of topological invariant. For this reason, providing a proof of this correspondence requires

case-by-case analyses, with the most extensively studied case being 2D systems in the unitary

class characterized by a Chern number [12, 13, 9].

In 1D continuous systems with mirror symmetry, the most popular invariant is the Zak

phase [14], which can only take values 0 or π and remains constant until a Dirac point is reached.

In this context, the Zak phases of contacting crystals govern the existence of localized modes.

These modes are topologically protected in the sense that they are maintained by symmetry

preserving continuous deformations of the medium, unless the gap is closed (Dirac point). In

this context, two classes of methods have been used to analyze the existence of topological

states and prove the bulk-edge correspondence. A first method consists of perturbing the

Hamiltonian of the system studied, in the vicinity of a Dirac point [15, 16]. It therefore

requires an a priori knowledge of Dirac points or their artificial construction by band-folding.

A second approach consists in focusing on specific models, where the correspondence can be

established by direct calculations [17]. Moreover, several works have exploited the concept of

impedance [16, 17, 18, 19], which allows one to relate the existence of interface modes to bulk

properties. This approach is elegant and offers a new point of view. However, it has been so

far limited to specific examples or perturbative approaches. The objective of the present paper

is to generalize the impedance approach to any PCs. This leads us to a proof the a stronger

version of the bulk-edge correspondence for 1D continuous systems with mirror symmetry. We

also point out that several authors have analyzed the somewhat related but different problem of

localized modes for 1D PCs with parameter dependent interfaces, and their relations to Chern

numbers [20, 21].

For this purpose, the sketch of the study is as follows. Section 2 describes elastic PCs, where

classical band structure results are recalled. Section 3 focuses on the particular case of mirror

symmetric PCs. The symmetry properties of Bloch modes at band edges are proven, based

on some existing results. Section 4 investigates two semi-infinite PCs in contact. The concept

of surface impedance is introduced. When the frequency varies in a gap, a strict decay of the

surface impedance is proven (Lemma 4). This key result allows to prove Theorem 1, which

recovers the existing results on topologically protected interface modes. The absence of such

modes with Neumann or Dirichlet conditions is also explained, contrary to the discrete case

such as SSH (Su-Schrieffer-Heeger). The latter is the simplest 1D model ensuring a nontrivial

topology [22, 8, 23]. Section 5 proposes a generalized framework to extend the Theorem 1,

notably allowing to treat the case of subwavelength PCs with Helmholtz resonators or dis-

persive media. Lastly, Section 6 concludes the paper and proposes some future directions of
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investigations.

2. Problem statement

This section starts with a presentation of the physical problem addressed. After that and

for completeness, we collect several known results about the spectrum of a periodic differential

operator. The readers are referred to [4, 26, 27] for more details about the Bloch-Floquet

theory.

2.1. Physical modeling

We consider linear elastic wave propagation at a given angular frequency ω = 2πf . The

medium is h-periodic with mass density ρ(x) and Young’s modulus E(x) which are purely real,

so that dissipation is neglected. The displacement u(x) satisfies the Helmholtz equation

d

dx

(
E(x)

du

dx

)
+ ρ(x)ω2 u = 0. (1)

The equation (1) is generic for different wave physics. For instance, the case of acoustics is

obtained changing u by the acoustic pressure p, E by 1/ρ, and ρ by 1/κ, where κ = ρc2 is the

modulus of compressibility. Similarly, the case of photonics is obtained by changing ρ by the

permittivity ε and E by 1/µ, where µ is the permeability. Without loss of generality, the edges

of the periodic cells are assumed to be located at nh, with n ∈ Z. The physical parameters are

piecewise smooth, L∞ and strictly positive.

2.2. Band structure

We denote L2[0, h] the Hilbert space equipped with the weighted inner product

〈v|w〉 =

∫ h

0

ρ(x) v(x)w(x) dx, (2)

where w refers to the complex conjugate of w. Let B = [−π, π] be the first Brillouin zone. The

Bloch Hamiltonian L(q) is defined as the linear operator

L(q)u = − 1

ρ(x)

d

dx

(
E(x)

du

dx

)
for x ∈ R, (3)

together with the Bloch-Floquet condition u(h) = eiq u(0). Given a Bloch wavenumber q ∈ B,

the Bloch Hamiltonian yields a q-dependent eigenvalue problem on R: find (λ, u) such that{
L(q)u = λu,

u(h) = eiq u(0),
(4)

in the function space

L2
q = {g ∈ L2[0, h] : g(h) = eiq g(0)}.
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The eigenvalue λ is the square angular frequency that appears in the Helmholtz equation (1):

λ = ω2. The eigenvalue problem (4) has a an infinite set of (possibly repeated) real positive

eigenvalues λn(q) := ω2
n(q) ordered by increasing value:

λ1(q) ≤ λ2(q) ≤ · · · ≤ λn(q) ≤ · · ·

The dispersion relations of the nth band q → λn(q) are continuous with respect to q ∈ B
and monotonically increasing or decreasing on each half of the Brillouin zone, i.e. [−π, 0]

and [0, π] [4, 28]. Moreover, they satisfy λn(−q) = λn(q), as imposed by reciprocity. The

eigenfunctions un are called Bloch modes, and they are orthogonal for the inner product (2).

Lastly, λ1(0) = 0, and the corresponding Bloch mode is a constant function. For each integer

n, let

λ−n = min{λn(q) : q ∈ B}, λ+
n = max{λn(q) : q ∈ B}.

Then the entire spectrum of the Hamiltonian is given by

σ(L) =
⋃
n≥1

[λ−n , λ
+
n ],

which corresponds to the essential part of the spectrum. The interval [λ+
n , λ

−
n+1] is a gap if

λ+
n < λ−n+1 for some n.

3. Phononic crystals with mirror symmetry

3.1. Parity of Bloch modes

From now on, we consider a particular case of periodic media, which are mirror symmetric,

or equivalently reflection symmetric with respect to the centre of each cell. On [0, h], we thus

have ρ(x) = ρ(h− x) and E(x) = E(h− x). One introduces the parity operator P , such that

(Pf)(x) = f(h− x). Mirror symmetry implies that

P L(−q) = L(+q)P , ∀q ∈ B. (5)

Since L(−π) = L(π), it follows from (5) that the Hamiltonian and the parity operator commute

at the band edges q = 0 and q = ±π.

Let us consider an eigenvector un(q) of L(q), with eigenvalue λn(q). Then (5) gives that

Pun(q) is an eigenvector of L(−q) with the same eigenvalue λn(q). Moreover, un(−q) is also an

eigenvector of L(−q) with eigenvalue λn(q). Assuming that λn(q) is a non-degenerate eigenvalue

(non-overlapping bands), it means that un(−q) and Pun(q) are proportional to one another.

Since P is unitary, it follows

un(−q) = µPun(q) = ei ξn(q)Pun(q), (6)

where ξn(q) is a real and locally smooth function of q. At the band edges (q = 0, π), applying P
on both sides of (6) and using the symmetry P2 = 1 gives µ2 = 1. As a consequence µ = {±1}
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and ξn = {0, π} at the band edges. The case µ = +1 (and ξn = 0) gives un(q) = Pun(q): the

Bloch mode is symmetric, and u′n is anti-symmetric, where prime denotes the space derivative.

Conversely, in the case µ = −1 (and ξn = π), then un(q) = −Pun(q): the Bloch mode is

anti-symmetric, and u′n is symmetric. We introduce the spaces of symmetric functions S and

anti-symmetric functions A

S = {g : Pg = +g} , A = {g : Pg = −g} . (7)

Then the properties of Bloch modes at the edges of the gaps (or simply ”band edges”) are

summed up as follows.

Lemma 1. Let us consider a mirror symmetric PC. We assume that the nth eigenvalues of

the Hamiltonian are not degenerate at q = 0 and π. Then the following alternative holds at the

band edges:

• either un ∈ S and u′n ∈ A;

• or un ∈ A and u′n ∈ S.

The values of un(0) and u′n(0) are deduced from the Lemma 1. First of all, un(0) and u′n(0)

cannot be simultaneously zero (and similarly at h). By uniqueness of the solution of (1), this

would imply that un is identically null.

q = 0 q = π

un ∈ S u′n(0) = 0 un(0) = 0

un ∈ A un(0) = 0 u′n(0) = 0

Table 1: Values of the Bloch modes un(0) and u′n(0) at the edges of the nth gap. The cases are distinguished

according to the symmetry of un and the value of q.

Then, let us first consider q = 0 and assume that un ∈ S. The Lemma 1 implies u′n ∈ A,

and hence u′n(h) = −u′n(0). But the Bloch-Floquet condition gives u′n(h) = ei0u′n(0) = +u′n(0),

and thus u′n(0) = −u′n(0) = 0. If un ∈ A, then similar arguments yield un(0) = −un(0) = 0.

At q = π, the Bloch-Floquet conditions gives un(h) = eiπun(0) = −un(0) and u′n(h) = −u′n(0).

If un ∈ S then un(0) = 0. Conversely, if un ∈ A then u′n ∈ S and u′(0) = 0. All these cases are

summarized in the Table 1.

Figure 1 illustrates these different cases. The physical and geometrical parameters corre-

spond to the configuration studied in Section 5.4 (with the interface spacing θ = 0.25), and will

be described later. For the moment, it is sufficient to observe the symmetry properties. Figure

1 represents the Bloch mode at q = π and at frequencies of the band edges of the first gap. At
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the entry frequency λ+
1 of gap 1 (a), u1 is symmetric. As written in Table 1, u1 is therefore

symmetric and cancels at x = 0 and x = h. On the contrary, u2 is antisymmetric at the exit

frequency λ−2 of the gap 1 (b), leading to u′2(0) = u′2(h) = 0.

(a) (b)
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x
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0 5 10 15 20
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0.8 

x

u

Figure 1: Bloch mode at the edges of gap 1 (q = π). (a): entry of the gap λ+1 ; (b): exit of the gap λ−2 . The

vertical solid lines denote the imperfect interfaces. The vertical dotted lines denote the edges of the elementary

cell. The physical parameters are described in Section 5.4.

3.2. Change of parity across a gap

Here we investigate the change of parity of the Bloch modes at q = 0 or q = π when

the frequency crosses a gap. The proof relies on the oscillation theory of Sturm-Liouville

operators, see for instance [29, 27, 16]. Let us denote λPj , λAj , λDj , and λNj the jth eigenvalues

of the Hamiltonian H on the elementary cell [0, h], respectively associated with the following

boundary conditions:

1. periodic boundary conditions: u(h) = u(0), u′(h) = u′(0), which is the Bloch condition

at q = 0;

2. antiperiodic boundary conditions: u(h) = −u(0), u′(h) = −u′(0), which is the Bloch

condition at q = π;

3. Dirichlet boundary conditions: u(h) = u(0) = 0;

4. Neumann boundary conditions: u′(h) = u′(0) = 0.
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As stated in Theorem 13-10 of [29], these eigenvalues satisfy the interlacing property:

λN1 ≤ λP1 < λA1 ≤ {λN2 , λD1 } ≤ λA2 < λP2 ≤ {λN3 , λD2 } ≤ · · ·

· · · ≤ λP2n−1 < λA2n−1 ≤ {λN2n, λD2n−1} ≤ λA2n < λP2n ≤ {λN2n+1, λ
D
2n} < λP2n+1 ≤ · · ·

(8)

In substance, this says that there is a single Neumann and a single Dirichlet eigenvalue inside

each gap (possibly closed) of the corresponding periodic problem. This leads to the following

result (see Theorem 4.4 of [16]):

Lemma 2. Let us consider a mirror symmetric PC, where the jth band is isolated. Then the

Bloch modes on each edge of a gap, i.e. (q, λ+
j ) and (q, λ−j+1) with q = 0 or q = π, attain

different symmetries.

In other words, if un ∈ S then un+1 ∈ A, and inversely. To show this, we first notice that the

boundary values in Table 1 imply that the Bloch mode on each edge of the nth gap satisfy either

Neumann or Dirichlet boundary conditions. Using the interlacing property (8), we conclude

that there is a single Neumann and a single Dirichlet eigenvalue on the gap edges. Lemma 2

then follows.

3.3. Relation between Zak phase and Bloch mode symmetry

Bands of a mirror symmetric 1D PC possess topological properties characterized by an

invariant called the Zak phase. To define it, we introduce the Berry connection An(q) of the

nth band:

An(q) = −i 〈un(q)|∂qun(q)〉 , (9)

where 〈.|.〉 is the Hermitian inner product (2). The integral of the Berry connection across the

first Brillouin zone gives the Zak phase:

Φn =

∫ +π

−π
An(q) dq. (10)

Notice that the Zak phase is defined using the Bloch mode un(q), which is not periodic in x, but

periodic in q (see equation (4)). In the case of a periodic and mirror symmetric medium, and

assuming that the nth eigenvalue is non-degenerate (no Dirac point), the Zak phase is directly

given by the change of symmetry from one edge of the band to the other, namely:

Φn = ξn(π)− ξn(0), (11)

where ξ is defined in (6). A proof of (11) is given in Appendix A. The Zak phase is defined

mod 2π, and it can be either 0 (trivial) or π (topological).

As we shall see in Section 4, the existence of an interface localized mode depends on the

symmetries on each edge of a given gap, i.e. at λ+
n and λ−n+1. As we already saw (see Lemma
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2), the two symmetries are necessarily different, so it is sufficient to know the mode symmetry

at λ+
n . Hence, we define the bulk topological index of the gap n as Jn:

Jn =

 +1 if u+
n ∈ S,

−1 if u+
n ∈ A.

(12)

Now, since the Bloch mode at zero frequency (λ1(0) = 0) is always symmetric (u−1 ∈ S), we

can obtain the symmetry at the entry of a given gap by checking how many symmetry changes

occur when the frequency ranges from 0 to λ+
n : for each gap there is a change, and for each

band there is a change if it is topological and none if it is trivial. As shown in [17, 16], this

translates into

Jn = (−1)n−1

n∏
j=1

ei Φj . (13)

4. Semi-infinite phononic crystals

4.1. Surface impedance

From now on, we consider two semi-infinite PCs in contact at x = 0. The interface at x = 0

is at the boundary of the unit cells for both the left and right PC, and u and E u′ are continuous

across the interface. The features of the PCs on the left (x < 0) and right (x > 0) are denoted

by the indices L and R, respectively. For instance, the Hamiltonians are LL and LR, with

eigenvalues λn,L and λn,R. In each PC, the parameters are spatially periodic and with mirror

symmetry. For simplicity, we assume that the periods are identical and equal to h, without this

being restrictive.

Let us assume that the intersection of the nth gaps of the two Hamiltonians is non empty:

Ωn = [λ+
n,L, λ

−
n+1,L] ∩ [λ+

n,R, λ
−
n+1,R] := [λ+

n , λ
−
n+1] 6= ∅. (14)

For simplicity, we assumed the left and right gaps to be labeled by the same number n, but

our results stand for any two gaps nL and nR as long as the intersection Ω as in equation (14)

is non-empty. For further use, u+
n,L denotes the Bloch mode for the eigenvalue λ+

n,L; similarly

u+
n,R denotes the Bloch mode for the eigenvalue λ+

n,R.

The wave fields with frequency in this gap, solution of equation (1), can be decomposed into

two modes, one increasing exponentially and the other decreasing exponentially as |x| → +∞.

For frequencies inside Ωn, one defines surface impedances of PC-L and PC-R [17]:

ZL(ω) = − u(0−, ω)

E(0−)u′(0−, ω)
, ZR(ω) = +

u(0+, ω)

E(0+)u′(0+, ω)
, (15)

where u is the unique solution decreasing when x → −∞ for ZL and when x → +∞ for ZR.

Inside a gap, u and u′ are real, and hence ZL,R are real. Hereafter, we will simply write Z

to characterise the generic properties of the surface impedance, independently of the medium
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considered. We will refer to both λ and ω, with λ = ω2, as the frequency, depending on the

context. Lastly, the notation Zn will denote the surface impedance at λn.

The notion of surface impedance will be fundamental in the rest of the paper. An inter-

face mode at x = 0 corresponds to two evanescent modes satisfying the continuity conditions

u(0−, ω) = u(0+, ω) and E(0−)u′(0−, ω) = E(0+)u′(0+, ω). This leads to the following Lemma.

Lemma 3. A necessary and sufficient condition for the existence of an interface localized mode

in Ωn is

ZL(ω) + ZR(ω) = 0, ω ∈ Ωn. (16)

To determine the existence of a solution to (16), we study the properties of Z in the gaps. The

first key element is that the impedance value at the edges of a gap is given by the symmetries

of Bloch modes. Indeed, at the edges of a gap, u := un and u′ := u′n. Based on the definition of

Z and on Table 1, the surface impedance Zn on the edges of a gap is either 0 or ∞, depending

on the symmetry of un. This is summarized in Table 2.

q = 0 q = π

un ∈ S Zn = ±∞ Zn = 0

un ∈ A Zn = 0 Zn = ±∞

Table 2: Surface impedance Zn on the edges of the Brillouin zone and at the edges of the nth gap, depending

on the symmetry of the Bloch mode un.

At this level, it is tempting to use a continuity argument to find solutions of equation (16),

i.e. interface modes. Table 2 is however not enough to conclude, since we don’t control the

sign of the impedance. To do so, we will now investigate the evolution with the frequency of

ZL and ZR inside a gap.

4.2. Monotony of the surface impedances in gaps

We now discuss a key new result, which will allow us to make strong statement regarding

the bulk-boundary correspondence: the in-gap impedance obtained from equation (1) is always

a decreasing function of the frequency. For this purpose, one differentiates the Helmholtz

equation (1) with respect to ω. Setting ϕ = du
dω

, one obtains

d

dx

(
E(x)

dϕ

dx

)
+ ρ(x)ω2 ϕ = −2 ρ(x)ω u. (17)

From the definition of ZR in (15), it follows

dZR
dω

=
W(0+, ω)

(E(0+)u′(0+))2 , (18)
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with the Wronskian

W(x, ω) = E(x) (ϕ(x)u′(x)− u(x)ϕ′(x)) . (19)

The prime means the derivative with respect to x. The Wronskian is then differentiated with

respect to x. Using (1) and (17) gives

W ′ = ϕ (E u′)
′ − u (E ϕ′)

′
,

= ϕ
(
−ρω2 u

)
− u

(
−2 ρω u− ρω2 ϕ

)
,

= 2 ρω u2.

(20)

The latter is integrated with respect to x on PC-R:

W(+∞, ω)−W(0, ω) = 2ω

∫ +∞

0

ρ u2 dx. (21)

In the gap, the evanescent field vanishes when x → +∞, and hence W(+∞, ω) = 0. Using

(18) and the fact that u is real in a gap leads to

dZR
dω

= − 2ω

(Eu′(0+))2

∫ +∞

0

ρ u2 dx < 0. (22)

A similar argument is used to prove that the left surface impedance decreases: dZL

dω
< 0 in a

gap. These results are summed up in the next Lemma.

Lemma 4. In a given gap ]λ+
n , λ

−
n+1[, the surface impedance decreases with frequency:

dZ

dω
< 0, ω ∈]λ+

n , λ
−
n+1[. (23)

Lemma 4 implies that Z never vanishes and never becomes infinite inside a gap. Indeed, let us

assume for instance that un ∈ S at q = 0. Table 2 states that Z := Zn = ±∞ at λ+
n . In the

gap Ωn, Z decreases monotonically, and Lemma 2 states that un+1 ∈ A, so that Z = 0 at λ−n+1.

It fixes the sign Zn = +∞ at λ+
n and ensures that Z 6= 0 and Z 6=∞ on ]λ+

n , λ
−
n+1[. A similar

argument can be used with un ∈ A at q = 0, and also at q = π. An alternative proof of this

Lemma based on the transfer matrix is proposed in Appendix B.

4.3. Topologically protected interface mode

Now we are ready to state the main result of this article.

Theorem 1. Let two mirror symmetric PCs in perfect contact at x = 0 with a non-empty

common gap Ωn (14). Let also Jn,L and Jn,R be the bulk topological indices (12) of PC-L and

PC-R, respectively. Without change of symmetry in left and right Bloch modes, ie

Jn,L + Jn,R 6= 0, (24)
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then no interface mode exists. In the opposite case of left and right Bloch modes with different

symmetries, ie

Jn,L + Jn,R = 0, (25)

then there exists a unique interface mode in Ωn at λ]n. This mode is topologically protected as it

is maintained by continuous transformations of the PCs as long as no Dirac point is reached.

Proof. Let us assume that the mode symmetries are the same for each PC and two overlapping

gaps (trivial interface). For instance, u+
n,L ∈ S and u+

n,R ∈ S at q = 0. Table 2 and Lemma

4 imply that ZL decreases from +∞ to 0 when the frequency varies from λ+
n,L to λ−n+1,L.

Similarly, ZR decreases from +∞ to 0 when the frequency varies from λ+
n,R to λ−n+1,R. It follows

that ZL + ZR > 0 never vanishes on Ωn. Lemma 3 ensures thus that no interface mode exists.

The proof in the cases u+
n,L ∈ A and u+

n,R ∈ A, as well as q = π, follows exactly the same lines.

Next one considers the case of opposite symmetries, say u+
n,L ∈ S and u+

n,R ∈ A at q = 0,

(topological interface). As in the previous case, ZL decreases from +∞ to 0 when the frequency

varies from λ+
n,L to λ−n+1,L. But the antisymmetry of u+

n,R implies that ZR decreases from

0 to −∞ when the frequency varies from λ+
n,R to λ−n+1,R. Now, the lower edge of the gap

is at λ+
n,L or at λ+

n,R. At that lower edge, ZL + ZR is always strictly positive: in the first

case, (ZL + ZR)λ=λ+n,L
= +∞, while in the second case (ZL + ZR)λ=λ+n,R

= ZL(λ+
n,R) > 0.

Similarly, on the upper edge, either at λ−n+1,L or at λ−n+1,R, ZL +ZR is always strictly negative:

(ZL+ZR)λ=λ−n+1,L
= ZR(λ−n+1,L) < 0 in the first case and (ZL+ZR)λ=λ−n+1,L

= −∞ in the second

case. Hence, by continuity and monotony of ZL + ZR (Lemma 4), it vanishes a single time in

the Ωn interval. From Lemma 3, there is a unique interface localized mode in this frequency

interval.

As indicated in Section 3.3, the symmetries of u+
n,L and u+

n,R are maintained by continuous

deformations of the nth band, as long as it remains isolated. Since the interface mode is a

direct consequence of the symmetries of Bloch modes, it is topologically protected.

4.4. Absence of edge mode for one-sided systems

In the particular case of a single PC with Dirichlet boundary condition (u(0, ω) = 0) or

Neumann boundary condition (E u′(0, ω) = 0), then only one surface impedance is involved,

for instance ZR. A mode localized near x = 0 will exist if and only if ZR = 0 for a Neumann

boundary condition and ZR = ∞ for a Dirichlet one. In this case, we talk about edge modes

rather than interface modes. However, at the entry of the nth gap Ωn, it takes the value Zn = 0

or Zn = +∞, respectively. Z then decreases monotonically and never vanishes nor becomes

infinite. This was already mentioned after Lemma 4, but it results in the following Theorem.

Theorem 2. Let us consider one semi-infinite mirror symmetric PC, with Dirichlet or Neu-

mann boundary conditions. Then no edge mode exists.

12



This is a rather surprising result. First, it is in direct contrast with discrete systems (e.g. lattice

models) where edge modes can be found and protected by a quantized Zak phase. Second, it

shows explicitly that the bulk-boundary correspondence only works for interfaces in the case of

continuous systems with mirror symmetry. A third striking consequence of Theorem 2 is that

edge modes (with Dirichlet or Neumann boundary conditions) may exist only if one breaks the

mirror symmetry (either in the bulk or by an appropriate choice of edge). This is the case for

instance in the waveguide realisation of SSH [23].

Moreover, our results allow us to treat the case of (non-dissipative) Robin boundary condi-

tions quite easily. To see this, we define such a boundary condition in the form of an impedance

condition, consistent with equation (15):

E(0)u′(0, ω) = −Z0u(0, ω),

where Z0 ∈ iR. Similarly to Lemma 3, an edge mode exists in a given gap under the condition

that:

Z0 + ZR(ω) = 0.

From this and Lemma 4 we directly conclude that there is a unique edge mode if =(Z0) has

the opposite sign with respect to =(ZR(ω)), and no edge mode if they have the same sign.

Another natural one-sided system is that formed by the interface between a semi-infinite

PC and a homogeneous material. In this case however, since no evanescent mode exists in the

homogeneous media there can be no interface localized mode.

4.5. Numerical example: the bilayer model

Figure 2: Elementary cell with phases A and B.

Let us consider a bilayered periodic structure AB, each phase having length hi, density ρi

and wave velocity ci =
√
Ei/ρi, with i = A,B (Figure 2). The total length of an elementary

cell is h = hA + hB. The phases are in perfect contact. The ratio of propagation times in each

phase is assumed to be commensurable:

α =

hA
cA
hB
cB

=
hA cB
hB cA

:=
m1

m2

∈ Q.

13



There is then a Dirac point separating the spectral bands m1 +m2 and m1 +m2 +1 (numbering

by 1 the first band starting at (q = 0, ω = 0)). As proven in Appendix A of [17], this Dirac

point is located at frequency

f =
m1 +m2

2 τ
, with τ =

hA
cA

+
hB
cB
.

Here we follow the configuration used in [17, 37]: taking (hA = 4, ρA = 1000, cA = 4000) (phase A)

(hB = 6, ρB = 1000, cB = 4000) (phase B)

yields m1 = 4 and m2 = 3: bands 7 and 8 intersect at a Dirac point at the scaled frequency

f̃ = f × h/c = 2.5, where c = cB = 4000 is a normalization frequency (Figure 3-(a)).

(a) (b)
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2.6 

2.7 

q

f 
*
 h

 /
 c

Figure 3: (a) Bloch-Floquet dispersion diagrams, for various values of ν. (a): ν = 2, where bands 7 and 8 cross

at a Dirac point at scaled frequency 2.5. (b): ν = 1.95, with a zoom on the gap between bands 7 and 8. The

red curves are the imaginary values of q.

This configuration is modified through a parameter ν: the celerity in phase A becomes

cA′ = cA/ν, the other physical parameters being unchanged. To maintain similar midgap

positions, the shift τ must remain constant. It implies to modify the lengths through the

relations

hA′ = hA

1

cA
− 1

cB
1

cA′
− 1

cB

, hB′ = h− hA′ . (26)

Taking ν = 1.95 opens a gap Ω7 around f̃ = 2.5 (Figure 3-(b)), with a symmetrical Bloch mode

at f̃7. On the contrary, the gap opened using ν = 2.05 yields an asymmetrical Bloch mode at

f̃7.

14



n = 6 n = 7 n = 8

PC-L [f̃+
n , f̃

−
n+1] [2.068, 2.216] [2.477, 2.525] [2.794, 2.916]

symmetries S S A
PC-R [f̃+

n , f̃
−
n+1] [2.073, 2.214] [2.475, 2.522] [2.777, 2.936]

symmetries S A A

Table 3: Scaled frequency intervals of the gaps n = 6, 7, 8. Symmetries of the Bloch modes at scaled frequencies

f̃+n , in PC-L (ν = 1.95) and PC-R (ν = 2.05).

Two semi-infinite PCs are then built using ν = 1.95 (x < 0) and ν = 2.05 (x > 0). They

are denoted by PC-L and PC-R, respectively. The scaled frequencies and the symmetry of un

at the band edges of their respective gaps n = 6, 7, 8 are given in Table 3. We observe that the

band edges of PC-L and PC-R are close but different; the construction method detailed above

only ensures equality of the midgaps. Their intersections are denoted by Ωn. Moreover, the

symmetries of the Bloch modes are unchanged in the cases n = 6 and n = 8. On the contrary,

the opening of the Ω7 gap obtained by varying ν leads to a symmetry inversion. Based on

Theorem 1, we expect the existence of a topologically protected interface mode in the gap Ω7.

(a) (b)
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0 

0.2 

0.4 

0.6 

0.8 

1 

f * h / c
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ZL + ZR

2.48 2.49 2.5 2.51 2.52

−0.8 

−0.4 
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f * h / c

Z

ZL

ZR

ZL + ZR

Figure 4: Frequency evolution of the surface impedances of the PCs in contact. The vertical solid lines denote

the edges of the gap in scaled frequency. (a): gap Ω6, in which no topologically protected interface mode exists.

(b): gap Ω7, in which a topologically protected interface mode exists. The vertical dotted line denotes the

scaled frequency f̃ ]7 ≈ 2.50 where ZL + ZR = 0.

Figure 4 shows the frequency evolution of the surface impedance ZL in PC-L, of the surface

impedance ZR in PC-R, and finally of their sum, in the gaps Ω6 and Ω7. In Figure 4-(a), we

observe that ZL + ZR 6= 0 on Ω6: no interface mode exists. In Figure 4-(b), we observe that

ZL +ZR = 0 at f̃ ]7 ≈ 2.50 in gap Ω7: according to Lemma 3, a topologically protected interface

mode exists at this frequency.

We look for the expected interface modes in a scattering configuration. For this purpose,
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Figure 5: Modulus of the transmission coefficient in the case N = 3 cells (a) and N = 10 cells (b) per PC. The

vertical dashed lines denote the lower and upper edges of Ω7.

one considers finite PCs consisting of N PC-L on the left (x < 0), and N PC-R on the right

(x > 0). Figure 5 shows the frequency evolution of the transmission coefficient on Ω7 through

the slab of 2N cells, for N = 3 (a) and N = 10 (b). A peak is observed in the Ω7 gap, which

becomes finer and finer as N increases. For N = 10, this peak is located at f̃ ≈ 2.5, which

corresponds to the theoretical value f̃ ]7.

(a) (b)
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Figure 6: Spatial evolution of u at the scaled frequencies f̃ ]7 = 2.5. The vertical solid lines represent the

interfaces. The red vertical dotted line at x = 0 denotes the interface between PC-L and PC-R, each being built

with N = 3 cells (a) or N = 10 cells (b).

Figure 6 represents the spatial evolution of the modulus of u at f̃ ]7 = 2.5, with N = 3 cells

(a) or N = 10 cells (b) in PC-L and PC-R. In both cases, an evanescent mode centered on

the interface between the PCs is observed. It is a clear signature of an interface mode at the
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interface between PC-L and PC-R.
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Figure 7: Frequency evolution of the topologically protected interface modes in the gap Ω7, as a function of the

parameter ν governing the properties of the elementary cell (26) (a). This scaled frequency f̃ ]7 is represented

by a red line. The blue curves represent the scaled lower edge f̃+n and scaled upper upper f̃−n+1 of the gaps Ω7.

Zoom on f̃ ]7 (b).

Finally, we study the evolution of the interface mode when the parameter ν varies in (26).

Figure 7-(a) shows f̃ ]7 as functions of ν. The blue lines denote the lower and upper edges of the

gap Ω7. The red line denotes the scaled frequency of the interface mode, computed as the zero

of ZL + ZR. At the scale of the Figure, this frequency seems constant when ν varies, which

shows the robustness of the topologically protected interface modes. Nevertheless, a large zoom

on the red line shows that f̃ ]7 is slighlty increasing with ν (b).

5. Generalizations

5.1. Framework

We now discuss some possible generalizations of the previous results. Our aim is to show

that the bulk-boundary correspondence as established here, i.e. Theorem 1, stands for many

popular cases beyond equation (1), for instance when resonators are added or with imperfect

interfaces.

On the elementary cell [0, h], a set of N interfaces is considered and is denoted by I =

{x1, · · · , xN}. Between each interface, the Helmholtz equation takes the generalized form:

d

dx

(
A(x, ω)

du

dx

)
+ V (x, ω)u = 0, (27)

where A(x, .) and V (x, .) are holomorphic real-valued function. In the case where A(x, ω) =

E(x) and V (x, ω) = ρ(x)ω2, we recover the Helmholtz equation (1).
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At xj, the fields satisfy the jump conditions:

JuKxj = αj(ω)

〈
A
du

dx

〉
xj

,

s
A
du

dx

{

xj

= −βj(ω) 〈u〉xj , (28)

with αj(ω) ≥ 0 and βj(ω) ≥ 0 holomorphic. In (28), J.Kxj and 〈.〉xj denote the jump and the

mean value at the interface xj, respectively, and they are defined for any function g(x) by

JgKxj = g(x+
j )− g(x−j ), 〈g〉xj =

1

2

(
g(x+

j ) + g(x−j )
)
. (29)

The PCs are still assumed to be mirror symmetric: A and V are even function of x for all ω,

and the interfaces are placed symmetrically in each unit cells.

To prove the Theorem 1, we needed several spectral properties of the operator studied in

Section 2. It means: i) a discrete spectrum at fixed Bloch wavenumber q; ii) a monotonic

dispersion relation over half the Brillouin zone; iii) an inversion of symmetries at gap edges.

In the following, we assume that property i) is always satisfied. Usually, it can be shown

because the spectrum is that of a self-adjoint operator. Notice that in some cases, such as the

Drude-Lorentz model (model 3 below), the spectrum can have an unusual structure, such as

the presence of accumulation points [32]. Property ii) is always true for holomorphic frequency

dispersions A(x, ω) and V (x, ω). Indeed, as stated in [28], this property comes from the second-

order character of equation (1) at fixed frequency ω, and the uniqueness of the solution. This

is unchanged in the generalization of equation (27), hence, this property is maintained. Lastly,

the property iii) is proven in the Lemma 7 of Appendix B, using the transfer matrix method.

5.2. Bulk-boundary correspondence for a generalized Helmholtz equation

Here we want to generalize Theorems 1 and 2 to the general setting defined in the previous

section. The key point is to prove that the decrease of Z(ω) across the gaps established in

Section 4.2 still holds. The first difference is that now, the impedance defined in (15) has a

frequency dependence through both the field and the coefficient A(0+, ω). Hence, the equation

(18) becomes

dZR
dω

=
1

(A(0+, ω)u′(0+))2

(
W(0+, ω)− ∂ωA(0+, ω)u(0+)u′(0+)

)
, (30)

with the Wronskian

W(x, ω) = A(x, ω) (ϕ(x)u′(x)− u(x)ϕ′(x)) . (31)

Similarly to Section 4.2, to evaluate the sign of the Wronskian, we differentiate the generalized

Helmholtz equation (27) with respect to ω yields outsides the interfaces:

(∂ωAu
′)
′
+ (Aϕ′)

′
+ ∂ωV u+ V ϕ = 0. (32)

Between each interface, the spatial evolution of the Wronskian (20) becomes

W ′ = ∂ωV u
2 + u (∂ωAu

′)
′
. (33)
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To evaluate the Wronskian at the origin, it is integrated with respect to x on the PC-R. Using

the decrease of evanescent fields at infinity, we get:

W(0+, ω) = −
∫ +∞

0

W ′(x)dx−
+∞∑
n=0

N∑
j=1

JW Kxj+nh . (34)

The jumps of the Wronskian are evaluated in Lemma 8 proven in Appendix C. Using it, one

obtains

W(0, ω) = ∂ωA(0, ω)u(0)u′(0)−
∫ +∞

0

∂ωV u2 dx+

∫ +∞

0

∂ωAu
′2 dx

−
+∞∑
n=0

N∑
j=1

(
∂ωαj 〈Au′〉2xj+nh + ∂ωβj 〈u〉2xj+nh

)
.

(35)

Injecting the latter expression into (33), we obtain the frequency evolution of ZR, which gen-

eralizes (22):

dZR
dω

= − 1

(A(0+)u′(0+))2

(∫ +∞

0

∂ωV u
2 dx−

∫ +∞

0

∂ωAu
′2 dx

+
+∞∑
n=0

N∑
j=1

(
∂ωαj 〈Au′〉2xj+nh + ∂ωβj 〈u〉2xj+nh

))
.

(36)

The sign of dZR

dω
depends obviously on the sign of ∂ωA, ∂ωV , ∂ωαj and ∂ωβj. A similar analysis

can be performed on PC-L, yielding the following generalization of Lemma 4.

Theorem 3. Let us consider mirror symmetric PCs described by equation (27) and the jump

conditions (28). We assume that A(x, .), V (x, .), αj(.) and βj(.) are holomorphic functions of

ω across the whole considered gaps and such that

∂A

∂ω
≤ 0,

∂V

∂ω
≥ 0,

∂αj
∂ω
≥ 0,

∂βj
∂ω
≥ 0. (37)

Then the conclusion of Lemma 4 holds: dZ
dω

< 0. It follows that Theorems 1 and 2 are still

valid.

Now we discuss three models involving (27) and (28). The first two models address the

interface conditions αj and βj (28), while the third focuses on dispersive media with A(x, ω)

and V (x, ω). In each case, an inner product (2) can be introduced to obtain a self-adjoint

Hamiltonian. For model 1 and 3, we provide appropriate references.

5.3. Families of models

Model 1: imperfect contacts. As a first example, one considers usually A(x, ω) = E(x) and the

bulk potential V (x, ω) = ρ(x)ω2, whereas the interface parameters and the interface potentials

write

αj = 1/Kj, βj(ω) = Mj ω
2. (38)
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In (38), Kj > 0 and Mj ≥ 0 are stiffness and mass terms. The mirror symmetry implies that

Kj = KN−j+1 (j = 1, · · · , N) and similarly for Mj. This model describes imperfect transmission

of elastic waves through glue layers or cracks [33]. Conservation of energy is proven in [34].

The usual case of perfect contact is recovered when Kj → +∞ and Mj = 0. The inner product

is defined in Appendix A of [33]. Since ∂ωβj = 2Mj ω ≥ 0, the assumptions of Theorem 3 are

satisfied.

Model 2: Helmholtz resonators. A second example concerns the propagation of acoustic waves

in a waveguide connected with an array of Helmholtz resonators. This configuration is modelled

by the Helmholtz equation (1) and the jump conditions

JpKxj = 0, JvKxj = i gj
ω2

ω2 − ω2
j

p(xj), (39)

where v = −p′/(iωρ) is the acoustic velocity. The resonance frequencies ωj and the coupling

coefficients gj > 0 are related with the geometry of the jth Helmholtz resonator. The jump

conditions (39) can be replaced by (28) with

αj = 0, βj = −gj
ω2

ω2 − ω2
j

. (40)

Since

∂ωβj(ω) = 2 gj ω
2
j

ω(
ω2 − ω2

j

)2 > 0, (41)

the assumptions of Corollary 3 are satisfied except in gaps containing a resonance frequency.

This argument can be used to prove rigorously the existence of topologically protected interface

mode in a guide connected with a one-dimensional array of Helmholtz resonators [24, 25].

Model 3: dispersive media. As a third and last example, we consider acoustic dispersive me-

dia with null jump conditions (αj = 0 and βj = 0 in (28)) but with frequency-dependent

parameters:

ρ(x, ω) = ρ0(x)

(
1−

Ω2
ρ

ω2 − ω2
ρ

)
, κ−1(x, ω) = κ−1

0 (x)

(
1− Ω2

κ

ω2 − ω2
κ

)
, (42)

with ρ0(x) > 0 and κ0(x) > 0. Such parameters are generally obtained through an homoge-

nization process. See [35] and references therein for application of (42) to acoustics in a guide

with an array of Helmholtz resonators and membranes (model 2) in the low frequency range. In

photonics, similar expressions hold for the permittivity and / or the permeability in the Drude-

Lorentz model. Kramers-Kronig relations would involve additional imaginary parts iγρω and

iγκω in the pole of (42). However, these lossy terms are assumed to be small and are neglected

here.
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Injected in the acoustic Helmholtz equation (1), the parameters (42) lead to the potentials

in (27) with

A(x, ω) =
1

ρ(x, ω)
, V (x, ω) = κ−1(x, ω)ω2. (43)

Since

∂ωA = − 1

ρ2(x, ω)
∂ωρ = − ρ0(x)

ρ2(x, ω)

Ω2
ρ ω

(ω2 − ωρ)2 < 0,

∂ωV = 2κ−1
0 (x)ω

(
1 +

(
Ωκ ωκ
ω2 − ω2

κ

)2
)
> 0,

(44)

the conditions (37) in Corollary 3 are satisfied. The spectral properties of (27) for a general

dispersive medium are analyzed in [30, 31]. The particular case of the Drude-Lorentz (42)-(43)

is studied in [32] in the context of high-frequency homogenization. In the latter reference, it

is shown that a spectrum accumulation point exists at the frequencies where A(x, ω) = 0 or

V (x, ω) = +∞. It occurs at
√
ω2
ρ + Ω2

ρ or ωκ. At the other frequencies, the coefficients of the

dispersion relation are holomorphic. The roots of the dispersion relation are then isolated, en-

suring the discrete nature of the spectrum. As a final remark, we notice that the generalization

of (42) to multiple resonances is staightforward and yields a similar conclusion.

5.4. Numerical example: array of imperfect contacts

We now consider a configuration to illustrate the generalization presented previously (sec-

tion 5). As we have shown in Theorem 3, we observe the presence of topological interface

modes when the Zak phase differ on the left and right side of the interface, similarly to what

we obtained for the bilayered model of section 4.5.

h

h2 h1/2h1/2

Figure 8: Elementary cell of a mirror symmetric PC. The red vertical solid lines denote the two interfaces with

imperfect contacts. The blue vertical dotted lines denote the edges of the cell.

The model we consider contains two interfaces with imperfect contacts (28)-(38) of identical

stiffness Kh/E = 5.2 and M = 0 (model 1 of section 5). The cell is mirror symmetric: the

positions of the interfaces in the cell are denoted by h1 = θh and h2 = (1− θ)h, with 0 < θ < 1

(Figure 8). The transformation θ 7→ 1 − θ yields a similar PC with identical gaps, contrary

to the case of perfect contacts separating different media [17]. However, the symmetries of the
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Bloch modes may differ, which will be useful for the construction of topologically protected

interface modes.
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Figure 9: (a) Bloch-Floquet dispersion diagram in the case θ = 0.25, with the Bloch shift q = kh, in scaled

frequency (a). Parametric study of the Bloch modes at the band edges, in terms of θ (b). The full and empty

circles denote the lower edge λ+n and the upper edge λ−n+1 of the gap Ωn (n = 1 · · · 3), respectively. The blue

and red circles denote symmetric and antisymmetric Bloch modes, respectively. The vertical dotted lines denote

θ = 0.25 and θ = 0.75.

Figure 9-(a) displays the Bloch-Floquet dispersion diagram in the case θ = 0.25. The vertical

axis shows the range of scaled frequencies f̃ = f × h/c. A similar scaling is used all along the

text; notably, one denotes f̃±n =
√
λ±n /(2π)× h/c. As stated in Lemma 1, the Bloch modes at

these edges are either symmetric or antisymmetric. Figure 9-(b) displays a parametric study of

the symmetries of Bloch modes at the band edges, in terms of θ. The lower frequency λ+
n and

the upper frequency λ−n+1 of the gaps Ωn are denoted by full and empty circles, respectively. A

blue circle represents a symmetric Bloch wave, whereas a red circle represents an antisymmetric

Bloch wave. One notices the symmetry of the frequencies with respect to θ = 0.5, induced by

the invariance of the PC by the transformation θ 7→ 1− θ. However, the symmetries of Bloch

modes may differ when comparing θ and 1− θ.
From now on, we focus on two particular values of θ: 0.25 and 0.75. The PCs built using

these values are named PC-L and PC-R, respectively. The intersections between the bands

and the vertical dotted lines in Figure 9-(b) determine the symmetries of un at the band edges.

For instance, u1 at the lower edge f̃+
1 = 0.385 of the gap Ω1 is expected to be symmetric (at

θ = 0.25) and antisymmetric (at θ = 0.75). Figure 10 displays these Bloch modes; Figure 10-(a)

amounts to u1 in Figure 1-(a). One observes the change of symmetry of u1 between PC-L and

PC-R at this band edge.
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Figure 10: Bloch wave u1 at the lower edge of gap Ω1 (f̃+1 = 0.385). (a): θ = 0.25, (b): θ = 0.75. The vertical

solid and dotted lines denote the interfaces and the edges of the elementary cell, respectively.

n = 1 n = 2 n = 3 n = 4

[f̃+
n , f̃

−
n+1] [0.385, 0.470] [0.814, 0.874] [1.124, 1.440] [1.575, 2.000]

PC-L S S A S
PC-R A S S S

Table 4: Scaled frequency intervals of the gaps Ωn (n = 1 · · · 4). Symmetries of the Bloch modes at scaled

frequencies f̃+n , in PC-L (θ = 0.25) and PC-R (θ = 0.75).

The scaled frequencies and the symmetry of un at the band edges of Ωn (n = 1 · · · 4) are

given in Table 4. Based on Theorem 1, we expect the existence of topologically protected

interface modes in the gaps Ω1 and Ω3. On the contrary, no interface modes are expected in

the gaps Ω2 and Ω4, where the symmetries of un are identical when θ = 0.25 and θ = 0.75.

Now we glue PC-L and PC-R at x = 0 to illustrate this claim.

Figure 11 shows the frequency evolution of the surface impedance ZL in PC-L, of the surface

impedance ZR in PC-R, and finally of their sum. In Figure 11-(a), we observe that ZL+ZR = 0

at f̃ ]1 ≈ 0.420 in the gap Ω1: according to Theorem 1, a topologically protected interface mode

exists at this frequency. In Figure 11-(b,d), ZL + ZR 6= 0: no interface mode exists. In Figure

11-(c), ZL+ZR = 0 at f̃ ]3 ≈ 1.289 in the gap Ω3: once again, a topologically protected interface

mode exists at this frequency.

Now, we look for the expected interface modes in a scattering configuration [37]. For this

purpose, one considers finite PCs consisting of N cells with θ = 0.25 on the left (x < 0), and

N cells with θ = 0.75 on the right (x > 0). Figure 12 shows the frequency evolution of the
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Figure 11: Frequency evolution of the surface impedances of the PCs in contact. The vertical solid lines denote

the edges of the nth gap in scaled frequency. (a-c): gaps Ω1 and Ω3, in which a topologically protected interface

mode exists. The vertical dotted line denotes the scaled frequency f̃ ]1 ≈ 0.42 and f̃ ]3 ≈ 1.28 where ZL +ZR = 0.

(b-d): gaps Ω2 and Ω4, in which no topologically protected interface mode exists.

transmission coefficient through the slab of 2N cells, for N = 3 (a) and N = 5 (b). Successions

of N − 1 equidistant oscillations are observed in the bands, corresponding to the modes of a

cavity. More interestingly, isolated peaks are observed in the gaps Ω1 (at f̃ ≈ 0.420) and Ω3

(at f̃ = 1.289). These scaled frequencies corresponds very accurately to the roots f̃ ]1 and f̃ ]3
of ZL + ZR = 0 observed in Figure 11-(a,c). As N increases, these peaks become thinner. In
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12-(b), the peak in Ω3 is so thin that the frequency discretization is insufficient to capture its

spatial support.

(a) (b)
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Figure 12: Modulus of the transmission coefficient in the case of N = 3 cells (a) and N = 5 cells (b) per PC. The

vertical dashed lines denote the lower and upper edges of the gaps Ωn (n = 1 · · · 3), denoted by their numbering.

An isolated peak is observed in the gaps Ω1 and Ω3.

Figure 13 represents the spatial evolution of the modulus of u at f̃ ]1 and f̃ ]3, with N = 3

cells in PC-L and PC-R. In both cases, an evanescent mode centered on the interface between

the PCs is observed. It is a clear signature of an interface mode at the interface between PC-L

and PC-R.

Finally, we study the evolution of the interface modes when the geometry of the elementary

cell varies. The length h remains constant, but the parameter θ varies; the PC-R is built using

the parameter 1− θ. Figure 14 shows f̃ ]1 (a) and f̃ ]3 (b) as functions of θ. In (b), the minimum

value of θ is 0.1; below this value, a Dirac point exists, as observed in the gap Ω3 on Figure

1-(b). The blue lines denote the lower and upper edges of the gap Ω1 (a) and Ω3 (b). The red

line denotes the scaled frequency of the interface mode, computed as the zero of ZL + ZR. At

the scale of the Figure, this frequency seems contant when θ varies, which shows the robustness

of the topologically protected interface modes. Nevertheless, a large zoom on the red line would

show that f̃ ]3 is not rigourously constant.

6. Conclusion

In this work, we considered semi-infinite PCs with mirror symmetry, which are joined to-

gether. To prove the existence of topologically protected interface modes in their common gaps,

we used the concept of surface impedance. Initially introduced in [17] in the case of a bilayer
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Figure 13: Spatial evolution of u at the scaled frequencies f̃ ]1 = 0.420 (a) and f̃ ]3 = 1.289. The vertical solid

lines represent the interfaces with imperfect contacts. The red vertical dotted line at x = 0 denotes the interface

between PC-L and PC-R, each being built with N = 3 cells.
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Figure 14: Frequency evolution of the topologically protected interface modes in the gaps Ω1 (a) and Ω3 (b),

as a function of the parameter θ governing the geometry of the elementary cell. These scaled frequencies f̃ ]1 (a)

and f̃ ]3 (b) are represented by a red line. The blue curves represent the scaled lower edge f̃+n and scaled upper

upper f̃−n+1 of the gaps Ωn.

medium, we extended this approach to any mirror symmetric PC in 1D. The main result ob-

tained in Theorem 1 states that a change of Zak phase, or equivalently a symmetry inversion
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of Bloch modes at gap edges, guarantees the existence and unicity of topologically protected

interface localized modes.

This work opens several research directions. The first natural extension would be the gen-

eralization of this approach to higher spatial dimensions. Zak phases have been used as topo-

logical indices in 2D systems characterizing the presence of edge waves [38, 39], but a relevant

bulk-boundary correspondence has not been established so far [40]. Similarly, the concept of

higher-order topological insulators have attracted a lot of attention in the recent years [41, 42].

For instance, 2D higher order topological insulators can host localized modes in their corners.

Again, a complete understanding of the a higher-order bulk-boundary correspondence is still

lacking, but the similarity with the present problem suggests that similar techniques might lead

to progresses in that direction. Indeed, the study of 2D photonic surface modes from surface

impedances was carried out for instance in [43], but so far without the prism of topology.

A simpler generalization of the present work would be to extend the proof to quasi-1D

regimes. This work and previous ones [44, 17, 20, 21, 16] heavily rely on having only two modes

at a given frequency (equation (1) is second order in space). It is an open question how to

extend this to multimodal systems, such as finite width waveguide [45], or dispersive media

containing higher-order spatial derivatives, such as flexural beams [46].

Another interesting research direction would be the investigation of topological modes in

nonlinear regimes. In [47], the emergence of a topological mode in a discrete system alternating

different nonlinear springs is shown, depending on the amplitude of the perturbations. The

study of nonlinear topological modes in a continuous medium remains a open subject. Let us

note that the imperfect conditions (28) easily allow the introduction of nonlinear mechanisms

[34].

Finally, we have considered lossless media here, which simplifies the spectral structure. It

would be interesting to generalize the analysis of topological modes by surface impedance to

the case of dissipative media.

Acknowledgements. We thank one of the Reviewers for drawing our attention to the spectral

properties of dispersive media (Section 5). Clarifications on this point have resulted from

very interesting discussions with Marie Touboul and Raphaël Assier, who are hereby warmly

thanked. We also thank Guillaume Demesy for suggestion of a generalization.

Note added. After we submitted this manuscript, we became aware of reference [18], which

reaches similar conclusions. In particular, the monotonicity of the impedance with frequency

is also shown, although restricted to the Helmholtz equation (1) and not the generalization of

equation (27).
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Appendix A. Zak phase as a topological invariant

In this appendix, we show how to relate the Zak phase with the symmetries of the Bloch

modes on the band edges. To ease the discussion, we start by recalling the definition of the

Berry connection in equation (9):

An(q) = −i 〈un(q)|∂qun(q)〉 . (A.1)

The Berry connection in (A.1) is defined up to a gauge transformation. Indeed, one can always

redefine the Bloch modes by changing its phase, as

ũn(q) = eiθ(q)un(q). (A.2)

Assuming that θ is a smooth function of q, this gives the new connection

Ãn(q) = An(q) +
dθ

dq
. (A.3)

Remembering that the Zak phase is obtained as the integral of the Berry connection over the

Brillouin zone, as defined in equation (10), the latter can be computed with either connection.

The gauge transformation (A.3) shows that:∫ π

−π
Ãn(q)dq =

∫ π

−π
An(q)dq + θ(π)− θ(0). (A.4)

Since eiθ(q) must be 2π-periodic, θ(π)− θ(0) is a multiple of 2π. This shows that the Zak phase

modulo 2π is a gauge invariant quantity (i.e. independent of a particular choice of Bloch mode

basis). At this level, it is worth noting that the Berry connection is defined here using Bloch

modes satisfying the Bloch condition uq(x+h) = eiquq(x) (see equation (4)). The advantage is

that uq is periodic in q, and hence, the proof of gauge invariance follows naturally, as we just

saw. An alternative definition is sometimes found in the literature [48], which uses the periodic

part of uq:

ψq(x) = e−iqx/huq(x). (A.5)

While ψq(x) is periodic in x, it is no longer in q, and hence, the gauge invariance of the Zak

phase defined in this manner is quite cumbersome. 1

Moreover, when the system is mirror symmetric, the connection at q can be related to that

at −q. Indeed, by taking the derivative of equation (6) with respect to q, and the scalar product

with un(−q) we obtain:

An(−q) = An(q) + ∂qξn. (A.6)

1In fact, the original paper by Zak uses the latter choice, and hence contains a lengthy discussion about

gauge invariance.
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In other words, the Berry connection at q differs from that at −q by a total derivative. Now,

if we integrate this relation over half of the Brillouin zone, we obtain

−
∫ 0

−π
An(q)dq =

∫ π

0

An(q)dq + ξn(π)− ξn(0). (A.7)

Combining the two integrals gives the integral over the whole Brillouin zone, and hence, the

identity (11) for the Zak phase. We can also notice that for mirror symmetric systems, the

Zak phase defined using the spatially periodic modes ψq(x) differs by π. More precisely, by

inspecting equation (A.5) and using the expression (11), we see that the Zak phase computed

with ψq is 0 when Φn is π, and vice-versa. Importantly, while the value of the Zak phase differ,

the change of topological phase between two system is identical whether one uses uq of ψq.

Appendix B. Transfer matrix

Alternative proofs can be obtained through the usual transfer matrix. Here we list some

useful results. Setting

U(x, ω) =

(
u

E u
′

)
, A(x, ω) =

(
0 1/E(x)

−ρ(x)ω2 0

)
, (B.1)

then the Helmholtz equation (1) writes as a differential equation on [0, h]

d

dx
U = A U, x /∈ I, (B.2)

where I = {xi, · · · , xN} is the set of interfaces on a elementary cell. The generalizations de-

scribed in Section 5 can be included in this formalism; in particular, the case of dispersive media

is described by considering frequency-dependent physical parameters in (B.1). Integration of

(B.2) on the subintervals ]xj, xj+1[ and use of the jump conditions lead to

U(h, ω) = M U(0, ω), (B.3)

where M is the transfer matrix in M2(R). Reciprocity and conservation of energy yields the

general form

M(ω) =

(
α(ω) β(ω)

β̃(ω) α(ω)

)
, det(M) = 1. (B.4)

Bloch-Floquet theorem implies that U(h, ω) = Λ U(0, ω) with Λ = eiq, where q ∈ [0,±π] is the

Bloch wavenumber. Comparison with (B.3) gives that Λ := Λ0,1 are the eigenvalues of M. One

also obtains the relations

Λ0 + Λ1 = 2α ∈ R, Λ0 Λ1 = α2 − ββ̃ = 1. (B.5)

Depending on ω, two cases occur. In the first case |Λ0,1| = 1, the eigenvalues are complex

conjugate, hence q0,1 is purely real: it corresponds to a band. In the second case |Λ0,1| 6= 1, the

eigenvalues are real and have the same sign, hence q0,1 is purely imaginary: it corresponds to a

gap. Some useful results on the coefficients of M are now stated.
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Lemma 5 (Coefficient α). The following properties hold:

• in bands: |α(ω)| < 1;

• in gaps: |α(ω)| > 1;

• on the edges of gaps: |α(ω)| = 1.

Proof. In a band, Λ0,1 are complex conjugates. From (B.5), it follows that α = <e(Λ0) ∈]0, 1[,

and hence |α| < 1. In a gap at q = 0, then Λ0 = y ∈]0, 1[ and Λ1 = 1/y. It follows

α = (y + 1/y)/2 and dα
dy

= (1− 1/y2)/2 < 0. Since α = 1 when y = 1, then α > 1 for all y < 1.

The same argument holds in a gap at q = π. Lastly, at the band edges one has Λ0 = Λ1 = ±1,

which concludes the proof.

Lemma 6 (Coefficients β and β̃). The following properties hold:

• in bands, β(ω) and β̃(ω) have opposite signs;

• in gaps, β(ω) and β̃(ω) have the same sign;

• β(ω) or β̃(ω) vanishes at edges of gaps.

Proof. From (B.5), it follows β β̃ = α2−1. The different cases in Lemma 5 allow to conclude.

From these results on the coefficients of M, we obtain an alternative proof of Lemma 2

without using the property of interlacing (8).

Lemma 7 (Inversion of parity). Let us consider a mirror symmetric PC, where the jth band is

isolated. Then the Bloch modes on each edge of the gap [λ+
j , λ

−
j+1] attain different symmetries.

Proof. The impedance Z reaches ±∞ or 0 at the edge of the gap and is a strictly decreasing

function of ω (Lemma 4 and Table 2). There are then 3 cases: i) Z(λ+
j ) = +∞ and Z(λ−j+1) = 0;

ii) Z(λ+
j ) = 0 and Z(λ−j+1) = −∞; iii) Z(λ+

j ) = +∞ and Z(λ−j+1) = −∞. In cases i) and ii),

there is a symmetry inversion of the Bloch mode. Let’s show that case iii) is impossible.

From (B.4), the components of the eigenvector U(0) of M satisfy β E u
′
(0, ω) = (Λ− α)u(0, ω),

β̃u(0, ω) = (Λ− α)E u
′
(0, ω),

and hence

Z(ω) =
β(ω)

Λ(ω)− α(ω)
.

In gaps, Lemmas 5 and 6 give α(ω) 6= Λ(ω) and β(ω) 6= 0. It implies that the surface impedance

is real, finite, and never vanishes. Since Z is continuous, this implies that case iii) is impossible.
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Hence, Z(ω) is ±∞ on one edge of the gap, and vanishes on the other edge. Using Table 2,

this means that either the symmetry of the Bloch modes are changed, or the value of the

Bloch wavenumber changes. However, the latter is impossible by the continuity of the function

ω 7→ α(ω) (it is holomorphic). Indeed, if the gap starts at q = 0 (i.e. α = 1), then α(ω) > 1

in that gap. By continuity, the gap must end again at q = 0 (α = 1). The same follows for a

gap starting at q = π (i.e. α = −1), which must end at q = π. This concludes the proof of

Lemma 7.

Appendix C. Jump of the Wronskian across an imperfect interface

The following Lemma used in Section 5.2 is introduced.

Lemma 8. Let xj be an interface with jump conditions (28). Then the jump of the Wronskian

(19) across xj satisfies

JWKxj = ∂ωαj 〈Au′〉2xj + ∂ωβj 〈u〉2xj + J∂ωAuu′Kxj . (C.1)

Proof. Let ϕ = ∂ωu. For any two functions f and g, the following identity (that can be proved

directly) is valid:

JfgKxj = JfKxj 〈g〉xj + 〈f〉xj JgKxj . (C.2)

Differentiating (28) with respect to ω yields

JϕKxj = ∂ωαj 〈Au′〉xj + αj 〈∂ωAu′〉xj + αj 〈Aϕ′〉xj ,

J∂ωAu′Kxj + JAϕ′Kxj = −∂ωβj 〈u〉xj − βj 〈ϕ〉xj .
(C.3)

Using (19), (C.2) and (C.3) leads to

JWKxj = JϕAu′Kxj − JuAϕ′Kxj ,

= JϕKxj 〈Au
′〉xj + 〈ϕ〉xj JAu′Kxj − JuKxj 〈Aϕ

′〉xj − 〈u〉xj JAϕ′Kxj ,

= ∂ωαj 〈Au′〉2xj + ∂ωβj 〈u〉2xj + αj 〈Au′〉xj 〈∂ωAu
′〉xj + J∂ωAu′Kxj 〈u〉xj ,

= ∂ωαj 〈Au′〉2xj + ∂ωβj 〈u〉2xj + JuKxj 〈∂ωAu
′〉xj + J∂ωAu′Kxj 〈u〉xj .

(C.4)

Applying the identity (C.2) to the last two terms concludes the proof.
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