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The radio k-chromatic number rc k (G) of a graph G is the minimum integer λ such that there exists a function ϕ : v), where d(u, v) denotes the distance between u and v. To date, several upper and lower bounds of rc k (•) is established for different graph families. One of the most notable works in this domain is due to Liu and Zhu [SIAM Journal on Discrete Mathematics 2005] whose main results were computing the exact values of rc k (•) for paths and cycles for the specific case when k is equal to the diameter. In this article, we find the exact values of rc k (G) for powers of paths where the diameter of the graph is strictly less than k. Our proof readily provides a linear time algorithm for providing such labeling. Furthermore, our proof technique is a potential tool for solving the same problem for other graph classes with "small" diameter.

Introduction and main results

The theory of radio coloring and its variations are popular and well-known mathematical models of the Channel Assignment Problem (CAP) in wireless networks [START_REF] Chartrand | Radio labelings of graphs[END_REF][START_REF] Chartrand | A graph labeling problem suggested by FM channel restrictions[END_REF]. The connection between the real-life problem and the theoretical model has been explored in different bodies of works. In this article, we focus on the theoretical aspects of a particular variant, namely, the radio k-coloring. All the graphs considered in this article are undirected simple graphs and we refer to the book "Introduction to graph theory" by West [START_REF] West | Introduction to Graph Theory[END_REF] for all standard notations and terminologies used.

A λ-radio k-coloring of a graph G is a function ϕ : V (G) → {0, 1, • • • , λ} satisfying |ϕ(u) -ϕ(v)| ≥ k + 1 -d(u, v). For every u ∈ V (G), the value ϕ(u) is generally referred to as the color of u under ϕ. Usually, we pick λ in such a way that it has a preimage under ϕ, and then, we call λ to be the span of ϕ, denoting it by span(ϕ). The radio k-chromatic number 4 rc k (G) is the minimum span(ϕ), where ϕ varies over all radio k-colorings of G.

In particular, the radio 2-chromatic number is the most well-studied restriction of the parameter (apart from the radio 1-chromatic number, which is equivalent to studying the chromatic number of graphs). There is a famous conjecture by Griggs and Yeh [START_REF] Griggs | Labelling graphs with a condition at distance 2[END_REF] that claims rc 2 (G) ≤ ∆ 2 where ∆ is the maximum degree of G. The conjecture has been resolved for all ∆ ≥ 10 69 by Havet, Reed and Sereni [START_REF] Havet | L(2,1)-labelling of graphs[END_REF].

As one may expect, finding the exact values of rc k (G) for a general graph is an NP-complete problem [START_REF] Griggs | Labelling graphs with a condition at distance 2[END_REF]. Therefore, finding the exact value of rc k (G) for a given graph (usually belonging to a particular graph family) offers a huge number of interesting problems. Unfortunately, due to a lack of general techniques for solving these problems, not many exact values are known till date. One of the best contributions in this front remains the work of Liu and Zhu [START_REF] Liu | Multilevel distance labelings for paths and cycles[END_REF] who computed the exact value of rc k (G) where G is a path or a cycle and k = diam(G).

As our work focuses on finding radio k-chromatic number of powers of paths, let us briefly recall the relevant related works. For a detailed overview of the topic, we encourage the reader to consult Chapter 7.5 of the dynamic survey on this topic maintained in the Electronic Journal of Combinatorics by Gallian [START_REF] Gallian | A dynamic survey of graph labeling[END_REF] and the survey by Panigrahi [START_REF] Panigrahi | A survey on radio k-colorings of graphs[END_REF]. For small paths P n , that is, with diam(P n ) < k, Kchikech et al. [START_REF] Kchikech | Linear and cyclic radio k-labelings of trees[END_REF] had established an exact formula for rc k (P n ); whereas, recall that, for paths of diameter equal to k ≥ 2, Liu and Zhu [START_REF] Liu | Multilevel distance labelings for paths and cycles[END_REF] gave an exact formula for the radio number rc k (P k ). Moreover, a number of studies on the parameter rc k (P n ) depending on how k is related to diam(P n ), or n alternatively, have been done by various authors [START_REF] Kchikech | Linear and cyclic radio k-labelings of trees[END_REF][START_REF] Khennoufa | A note on radio antipodal colourings of paths[END_REF][START_REF] Kola | Nearly antipodal chromatic number ac ′ (Pn) of the path Pn[END_REF][START_REF] Chartrand | Radio k-colorings of paths[END_REF]. So far as works on powers of paths are concerned, the only notable work we know is an exact formula for the radio number rn(P 2 n ) of the square of a path P n by Liu and Xie [START_REF] Liu | Radio number for square paths[END_REF]. Hence the natural question to ask is whether the results for the paths can be extended to paths of a general power m, where 1 ≤ m ≤ n.

Progressing along the same line, in this article we concentrate on powers of paths having "small diameters", that is, diam(P m n ) < k and compute the exact value of rc k (P m n ), where P m n denotes the m-th power graph of a path P n on (n + 1) vertices. In other words, the graph P m n is obtained by adding edges between the vertices of P n that are at most m distance apart, where m ≤ n. Notice that, the so-obtained graph is, in particular, an interval graph. Let us now state our main theorem. Theorem 1. For all k > diam(P m n ) and m ≤ n, we have

rc k (P m n ) =          nk -n 2 -m 2 2m if ⌈ n m ⌉ is odd and m|n, nk -n 2 -s 2 2m + 1 if ⌈ n m ⌉ is odd and m ∤ n, nk -n 2 2m + 1 if ⌈ n m ⌉ is even and m|n, nk -n 2 -(m-s) 2 2m + 1 if ⌈ n m ⌉ is even and m ∤ n,
where s ≡ n (mod m) and 1 ≤ s < m.

In this article, we develop a robust graph theoretic tool for the proof. Even though the tool is specifically used to prove our result, it can be adapted to prove bounds for other classes of graphs. Thus, we would like to remark that, the main contribution of this work is not only in proving an important result that captures a significant number of problems with a unified proof, but also in devising a proof technique that has the potential of becoming a standard technique to attack similar problems. We will prove the theorem in the next section.

Moreover, our proof of the upper bound is by giving a prescribed radio kcoloring of the concerned graph, and then proving its validity, while the lower bound proof establishes its optimality. Therefore, as a corollary to Theorem 1, we can say that our proof provides a linear time algorithm radio k-color powers of paths, optimally.

Theorem 2. For all k > diam(P m n ) and m ≤ n, one can provide an optimal radio k-coloring of the graph P m n in O(n) time.

We prove Theorem 1 in the next section.

Proofs of Theorems 1 and 2

This section is entirely dedicated to the proofs of Theorems 1 and 2. The proofs use specific notations and terminologies developed for making it easier for the reader to follow. The proof is contained in several observations and lemmas and uses a modified and improved version of the DGNS formula [START_REF] Das | A lower bound technique for radio k-coloring[END_REF].

As seen from the theorem statement, the graph P m n that we work on is the m th power of the path on (n + 1) vertices. One crucial aspect of this proof is the naming of the vertices of P m n . In fact, for convenience, we shall assign two names to each of the vertices of the graph and use them as required depending on the context. Such a naming convention will depend on the parity of the diameter of P n m .

Observation 1. The diameter of the graph

P m n is diam(P m n ) = ⌈ n m ⌉.
For the rest of this section, let q = ⌊ diam(P m n ) 2 ⌋.

The naming conventions

We are now ready to present the first naming convention for the vertices of P m n . For convenience, let us suppose that the vertices of P m n are placed (embedded) on the X-axis having co-ordinates (i, 0) where i ∈ {0, 1, • • • , n} and two (distinct) vertices are adjacent if and only if their Euclidean distance is at most m.

We start by selecting the layer L 0 consisting of the vertex, named c 0 , say, positioned at (qm, 0) for even values of diam(P m n ). On the other hand, for odd values of diam(P m n ), the layer L 0 consists of the vertices c 0 , c 1 , • • • , c m , say, positioned at (qm, 0), (qm + 1, 0), • • • , (qm + m, 0), respectively, and inducing a maximal clique of size (m + 1). The vertices of L 0 are called the central vertices, and those positioned to the left and the right side of the central vertices are naturally called the left vertices and the right vertices, respectively.

After this, we define the layer L i as the set of vertices that are at a distance i from L 0 . Observe that the layer L i is non-empty for all i ∈ {0, 1, • • • , q}. Moreover, notice that, for all i ∈ {1, 2, • • • , q}, L i consists of both left and right vertices. In particular, for i ≥ 1, the left vertices of L i are named l i1 , l i2 , • • • , l im , sorted according to the increasing order of their Euclidean distances from L 0 . Similarly, for i ∈ {1, 2, • • • , q -1}, the right vertices of L i are named r i1 , r i2 , • • • , r im , sorted according to the increasing order of their Euclidean distance from L 0 . However, the right vertices of L q are r q1 , r q2 , • • • , r qs , where s = (n + 1) -(2q -1)m -|L 0 | (observe that this s is the same as the s mentioned in the statement of Theorem 1), again sorted according to the increasing order of their Euclidean distances from L 0 . That is, if m ∤ n, then there are s = (n + 1) -(2q -1)m -|L 0 | right vertices in L q . Besides L q , every layer L i , for i ∈ {1, 2, • • • , q -1}, has exactly m left vertices and m right vertices. This completes our first naming convention. Now, we move to the second naming convention. This depends on yet another observation.

Observation 2. For k ≥ diam(P m n ), let ϕ be a radio k-coloring of P m n . Then ϕ(x) ̸ = ϕ(y) for all distinct x, y ∈ V (P m n ). Let ϕ be a radio k-coloring of P m n . Thus, due to Observation 2, it is possible to sort the vertices of P m n according to the increasing order of their colors. That is, our second naming convention which names the vertices of

P m n as v 0 , v 1 , • • • , v n satisfying ϕ(v 0 ) < ϕ(v 1 ) < • • • < ϕ(v n ).
Clearly, the second naming convention depends only on the coloring ϕ, which, for the rest of this section, will play the role of any arbitrary radio k-coloring of P m n .

The lower bound

Next, we shall proceed to establish the lower bound of Theorem 1 by showing it to be a lower bound of span(ϕ). To do so, however, we need to introduce yet another notation. Let f :

V (P m n ) → {0, 1, • • • , q} be the function which indicates the layer of a vertex, that is, f (x) = i if x ∈ L i .
With this notation, we initiate the lower bound proof with the following result.

Lemma 1. For any

i ∈ {0, 1, • • • , n -1}, we have ϕ(v i+1 ) -ϕ(v i ) ≥ k -f (v i ) -f (v i+1 ) + 1 if diam(P m n ) is even, k -f (v i ) -f (v i+1 ) if diam(P m n ) is odd. Proof. If diam(P m n ) is even, then L 0 consists of the single vertex c 0 . Observe that, as v i is in L f (vi) , it is at a distance f (v i ) from c 0 . Similarly, v i+1 is at a distance f (v i+1 ) from c 0 .
Hence, by the triangle inequality, we have

d(v i , v i+1 ) ≤ d(v i , c 0 ) + d(c 0 , v i+1 ) = f (v i ) + f (v i+1 ).
Therefore, by the definition of radio k-coloring,

ϕ(v i+1 ) -ϕ(v i ) ≥ k -f (v i ) -f (v i+1 ) + 1.
If diam(P m n ) is odd, then L 0 is a clique. Thus, by the definition of layers and the function f , there exist vertices c j and c j ′ (j

̸ = j ′ ) in L 0 satisfying d(v i , c j ) = f (v i ) and d(v i+1 , c j ′ ) = f (v i+1
). Hence, by triangle inequality again, we have

d(v i , v i+1 ) ≤ d(v i , c j ) + d(c j , c j ′ ) + d(c j ′ , v i+1 ) = f (v i ) + 1 + f (v i+1 ).
Therefore, by the definition of radio k-coloring,

ϕ(v i+1 ) -ϕ(v i ) ≥ k -f (v i ) -f (v i+1 ).
Hence we are done. Notice that it is not possible to improve the lower bound of the inequality presented in Lemma 1. Motivated by this fact, whenever we have

ϕ(v i+1 ) -ϕ(v i ) = k -f (v i ) -f (v i+1 ) + 1 if diam(P m n ) is even, k -f (v i ) -f (v i+1 ) if diam(P m n ) is odd.
for some i ∈ {0, 1, • • • , n -1}, we say that the pair (v i , v i+1 ) is optimally colored by ϕ. Moreover, we can naturally extend this definition to a sequence of vertices of the type

(v i , v i+1 , • • • , v i+i ′ ) by calling it an optimally colored sequence by ϕ if (v i+j , v i+j+1 ) is optimally colored by ϕ for all j ∈ {0, 1, • • • , i ′ -1}. Furthermore, a loosely colored sequence (v i , v i+1 , v i+2 , • • • , v i+i ′
) is a sequence that does not contain any optimally colored sequence as a subsequence. An important thing to notice is that the sequence of vertices (v 0 , v 1 , • • • , v n ) can be written as a concatenation of maximal optimally colored sequences and loosely colored sequences. That is, it is possible to write

(v 0 , v 1 , • • • , v n ) = Y 0 X 1 Y 1 X 2 • • • X t Y t
where Y i s are loosely colored sequences and X j s are maximal optimally colored sequences. Here, we allow the Y i s to be empty sequences as well. In fact, for 1 ≤ i ≤ t -1, a Y i is empty if and only if there exist two consecutive vertices v s ′ and v s ′ +1 of P m n in the second naming convention such that (v s ′ , v s ′ +1 ) is loosely colored and that

X i = (v s , v s+1 , • • • , v s ′ ) and X i+1 = (v s ′ +1 , v s ′ +2 , • • • , v s ′′ ) for some s ≤ s ′ < s ′′ . Moreover, Y 0 (resp. Y t ) is empty if and only if the pair (v 0 , v 1 ) (resp. (v n-1 , v n )
) is optimally colored. By convention, empty sequences are always loosely colored and a sequence having a singleton vertex is always optimally colored. From now onward, whenever we mention a radio k-coloring ϕ of P m n , we shall also suppose an associated concatenated sequence using the same notation as mentioned above.

Let us now prove a result which plays an instrumental role in the proof of the lower bound.

Lemma 2. Let ϕ be a radio-k coloring of P m n such that

(v 0 , v 1 , • • • , v n ) = Y 0 X 1 Y 1 X 2 • • • X t Y t .
Then, for even values of diam(P m n ), we have

span(ϕ) ≥ n(k + 1) -2 q i=1 i|L i | + f (v 0 ) + f (v n ) + t i=0 |Y i | + t -1
and, for odd values of diam(P m n ), we have

span(ϕ) ≥ nk -2 q i=1 i|L i | + f (v 0 ) + f (v n ) + t i=0 |Y i | + t -1 ,
where |Y i | denotes the length of the sequence Y i .

As we shall calculate the two additive components of Lemma 2 separately, we introduce short-hand notations for them for the convenience of reference. So, let

α 1 = n(k + 1) -2 q i=1 i|L i | if diam(P m n ) is even, nk -2 q i=1 i|L i | if diam(P m n ) is odd, and α 2 (ϕ) = f (v 0 ) + f (v n ) + t i=0 |Y i | + t -1.
Observe that α 1 and α 2 are functions of a number of variables and factors such as, n, m, k, ϕ, etc. However, to avoid clumsy and lengthy formulations, we have avoided writing α 1 and α 2 as multivariate functions, as their definitions are not ambiguous in the current context. Furthermore, as k and P m n are assumed to be fixed in the current context and, as α 1 does not depend on ϕ (follows from its definition), it is treated and expressed as a constant as a whole. On the other hand, α 2 is expressed as a function of ϕ. Now we shall establish lower bounds for α 1 and α 2 (ϕ) separately to prove the lower bound of Theorem 1. Let us start with α 1 first. Lemma 3. We have

α 1 = nk -n 2 +m 2 -s 2 2m if diam(P m n ) is even, nk -n 2 -s 2 2m if diam(P m n ) is odd, where s = (n + 1) -(2q -1)m -|L 0 |.
Next, we focus on α 2 (ϕ). We shall handle the cases with odd diam(P m n ) first.

Lemma 4. We have

α 2 (ϕ) ≥ 0 if diam(P m n ) is odd and m|n, 1 if diam(P m n ) is odd and m ∤ n.
Next, we consider the cases with even diam(P m n ). Before starting with it though, we are going to introduce some terminologies to be used during the proofs. So, let X i be an optimally colored sequence. As X i cannot have two consecutive left (resp., right) vertices as elements, the number of left vertices can be at most one more than the number of right vertices and the central vertex, the latter two combined together.

Lemma 5. We have

α 2 (ϕ) ≥ 1 if diam(P m n ) is even and m|n, m -s + 1 if diam(P m n ) is even and m ∤ n,
where s ≡ n (mod m).

Combining Lemmas 2, 3, 4 and 5, therefore, we have the following lower bound for the parameter rc k (P m n ).

Lemma 6. For all k ≥ diam(P m n ) and m ≤ n, we have

rc k (P m n ) ≥          nk -n 2 -m 2 2m if ⌈ n m ⌉ is odd and m|n, nk -n 2 -s 2 2m + 1 if ⌈ n m ⌉ is odd and m ∤ n, nk -n 2 2m + 1 if ⌈ n m ⌉ is even and m|n, nk -n 2 -(m-s) 2 2m + 1 if ⌈ n m ⌉ is even and m ∤ n,
where s ≡ n (mod m) and 1 ≤ s < m.

Remark 1. Our lower bound technique can be applied to a graph G of diameter more than k also. This can be achieved by taking a subgraph H of G induced on q i=0 L i , where q = ⌊ k 2 ⌋ and diam(H) ≤ k. Thus, a lower bound for H serves as a lower bound for G as well.

The upper bound

Now let us prove the upper bound. We shall provide a radio k-coloring ψ of P m n and show that its span is the same as the value of rc k (P m n ) stated in Theorem 1. To define ψ, we shall use both naming conventions. That is, we shall express the ordering (v 0 , v 1 , • • • , v n ) of the vertices of P m n with respect to ψ in terms of the first naming convention.

Let us define some ordering for the right (and similarly for the left) vertices:

(1)

r ij ≺ 1 r i ′ j ′ if either (i) j < j ′ or (ii) j = j ′ and (-1) j-1 i < (-1) j ′ -1 i ′ ; (2) r ij ≺ 2 r i ′ j ′ if either (i) j < j ′ or (ii) j = j ′ and (-1) m-j i < (-1) m-j ′ i ′ ; (3) r ij ≺ 3 r i ′ j ′ if either (i) j < j ′ or (ii) j = j ′ and i > i ′ ; and (4) r ij ≺ 4 r i ′ j ′ if either (i) j < j ′ or (ii) j = j ′ and (-1) j i < (-1) j ′ i ′ .
Observe that, the orderings are based on comparing the second co-ordinate of the indices of the right (resp., left) vertices, and if they happen to be equal, then comparing the first co-ordinate of the indices with conditions on their parities. Moreover, all the above four orderings define total orders on the set of all right (resp., left) vertices. Thus, there is a unique increasing (resp., decreasing) sequence of right (or the left) vertices with respect to ≺ 1 , ≺ 2 , ≺ 3 , and ≺ 4 . Based on these orderings, we are going to construct a sequence of vertices of the graph and then greedy color the vertices to provide our labeling.

The sequences of the vertices are given as follows:

(1) An alternating chain as a sequence of vertices of the form (a Notice that the special alternating chains, the reverse alternating chain and the canonical chains can exist only when the number of right and left vertices are equal. Of course, when m|n, both the chains exist. Otherwise, we shall modify the names of the vertices a little to make them exist.

1 , b 1 , a 2 , b 2 , • • • , a p , b p ) such that (a 1 , a 2 , • • • , a p )
We are now ready to express the sequence (v 0 , v 1 , • • • , v n ) by splitting it into different cases which are depicted in Figures 1,2, 3 and 4 for example. In the figures, the both naming conventions for each of the vertices are given so that the reader may cross verify the correctness for that particular instance for each case. For convenience, also recall that q = ⌊ diam(P m n ) 2

⌋.

Case 1: when diam(P m n ) is even, m|n and k > diam(P m n ). First of all, (v 0 , v 1 , • • • , v 2qm-1 ) is the alternating chain. Moreover, v n = c 0 . l24 l23 l22 l21 l14 l13 l12 l11 c0 r11 r12 r13 r14 r21 r22 r23 r24 Case 2: when diam(P m n ) is odd, m|n and k > diam(P m n ). Let the ordering of the vertices be (v 0 , v 1 , • • • , v 2qm+m ). Now, v j(2q+1) = c j for all 0 ≤ j ≤ m. The remaining vertices follow the canonical chain. 

= V (G) = {v 0 , v 1 , v 2 , • • • , v 2qm+s }. Then S ⋆ is defined as described. First, define T = {v t : 0 ≤ t ≤ s(2q + 1)} -{v j(2q+1) : 0 ≤ j ≤ s}.
Order T ⋆ as a canonical chain. Also, define v j(2q+1) = c j for all 0 ≤ j ≤ s.

Assume G ′ to be the subgraph of G induced by the subset S -{r q1 , r q2 ,

• • • , r qs } of S. Then G ′ ∼ = P m n ′ , m|n ′ and diam(G ′ ) = n ′ m is even, where n ′ = n -s. Define v n = l 11 and U = {v t : s(2q + 1) + 1 ≤ t < n}.
Note that U ⊂ V (G ′ ). Order U ⋆ (as vertices of G ′ ) by the following.

(i) Special alternating chain when m and s have the same parity.

(ii) Alternating chain when m is even and s is odd.

(iii) Special canonical chain when m is odd and s is even. Case 4: when diam(P m n ) is even, m ∤ n and k > diam(P m n ). Notice that, in this case, the left vertices are (m -s) more than the right vertices. Also, L 0 has only one vertex in this case. We shall discard some vertices from the set of left vertices, and then present the ordering. To be specific, we disregard the subset {l 11 , l 12 , • • • , l 1(m-s) }, temporarily, from the set of left vertices and consider the alternating chain. First of all, (v 0 Thus, we have obtained a sequence (v 0 , v 1 , • • • , v n ) in each case under consideration. Now, we define, ψ(v 0 ) = 0 and ψ(v i+1 ) = ψ(v i ) + k + 1 -d(v i , v i+1 ), recursively, for all i ∈ {0, 1, 2, • • • , n -1}. Next, we note that ψ is a radio kcoloring.

, v 1 , • • • , v 2qm-2m+2s-1 ) is the alternating chain. Additionally, (v 2qm-2m+2s , v 2qm-2m+2s+1 , v 2qm-2m+2s+2 , • • • , v 2qm-m+s ) = (c 0 , l 11 , l 12 , • • • , l 1(m-s)
Lemma 7. The function ψ is a radio k-coloring of P m n .

This brings us to the upper bound for rc k (P m n ).

Lemma 8. For all k > diam(P m n ) and m ≤ n, we have As ψ is explicitly known, it is possible to calculate it and prove the above. However, we omit the rest of the proof due to space constraint.

rc k (P m n ) ≤          nk -n 2 -m 2 2m if ⌈ n m ⌉

The proofs

Finally we are ready to conclude the proofs.

Proof of Theorem 1 The proof follows directly from Lemmas 6 and 8.

Proof of Theorem 2 Notice that the proof of the upper bound for Theorem 1 is given by prescribing an algorithm (implicitly). The algorithm requires ordering the vertices of the input graph, and then providing the coloring based on the ordering. Each step runs in linear order of the number of vertices in the input graph. Moreover, we have theoretically proved the tightness of the upper bound. Thus, we are done.

For the full version of the paper, please go to https://homepages.iitdh. ac.in/ ~sen/Supraja_IWOCA.pdf.

  is the increasing sequence of right vertices with respect to ≺ 1 and (b 1 , b 2 , • • • , b p ) is the decreasing sequence of left vertices with respect to ≺ 2 . (2) A canonical chain as a sequence of vertices of the form (a 1 , b 1 , a 2 , b 2 , • • • , a p , b p ) such that (a 1 , a 2 , • • • , a p ) is the increasing sequence of right vertices with respect to ≺ 3 and (b 1 , b 2 , • • • , b p ) is the decreasing sequence of left vertices with respect to ≺ 3 ; (3) A special alternating chain as a sequence of vertices of the form (a 1 , b 1 , a 2 , b 2 , • • • , a p , b p ) such that (a 1 , a 2 , • • • , a p ) is the increasing sequence of right vertices with respect to ≺ 2 and (b 1 , b 2 , • • • , b p ) is the decreasing sequence of left vertices with respect to ≺ 1 ; and (4) A special canonical chain as a sequence of vertices of the form (a 1 , b 1 , a 2 , b 2 , • • • , a p , b p ) such that (a 1 , a 2 , • • • , a p ) is the increasing sequence of right vertices with respect to ≺ 4 and (b 1 , b 2 , • • • , b p ) is the decreasing sequence of left vertices with respect to ≺ 4 .

Fig. 1 :

 1 Fig. 1: Case 1. n = 16, m = 4, diam(P 4 24 ) = 4, k = 6.

Fig. 2 :

 2 Fig. 2: Case 2. n = 20, m = 4, diam(P 4 20 ) = 5, k = 7.

Fig. 3 :

 3 Fig. 3: Case 3. n = 19, m = 4, diam(P 4 19 ) = 5, k = 7, s = 3.

Fig. 4 :

 4 Fig. 4: Case 4. n = 14, m = 4, diam(P 4 22 ) = 4, k = 6, s = 2.
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  is odd and m|n, nkn 2 -s 2 2m + 1 if ⌈ n m ⌉ is odd and m ∤ n, nk -n 2 2m + 1 if ⌈ n m ⌉ is even and m|n, nk -n 2 -(m-s) 2 2m + 1 if ⌈ n m ⌉ is even and m ∤ n,where s ≡ n (mod m) and 1 ≤ s < m.Proof. Observe that, rc k (P m n ) ≤ span(ψ). So, to prove the upper bound, it is enough to show that for all k > diam(P m n ) and s ≡ n (mod m),

	span(ψ) =	         nk -n 2 -m 2 2m nk -n 2 -s 2 2m + 1 nk -n 2 2m + 1 nk -n 2 -(m-s) 2 2m	if ⌈ n m ⌉ is odd and m|n, if ⌈ n m ⌉ is odd and m ∤ n, if ⌈ n m ⌉ is even and m|n, + 1 if ⌈ n m ⌉ is even and m ∤ n.

In the case that diam(G) = k, k + 1 or k + 2, the radio k-chromatic number is alternatively known as the radio number denoted by rn(G), the radio antipodal number denoted by ac(G) and the nearly antipodal number denoted by ac ′ (G), respectively.
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