Synthesis of gold(III) organometallics complexes and determination of their dissociation energy by mass spectrometry
 Clément Soep, Lyna Bourehil, Benoit Bertrand, Denis Lesage, Héloïse
 Dossmann

To cite this version:

Clément Soep, Lyna Bourehil, Benoit Bertrand, Denis Lesage, Héloïse Dossmann. Synthesis of gold(III) organometallics complexes and determination of their dissociation energy by mass spectrometry. Journées Plénières 2022 GDR EMIE, Jun 2022, Dunkerque, France. . hal-04169957

HAL Id: hal-04169957
https://hal.science/hal-04169957
Submitted on 24 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Synthesis of gold(III) organometallics complexes and determination of their dissociation energy by mass spectrometry

Clément Soep ${ }^{1}$, Lyna Bourehil ${ }^{11,2}$, Benoît Bertrand ${ }^{1}$, Denis Lesage ${ }^{1}$, Héloïse Dossmann ${ }^{1}$
${ }^{1}$ Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
${ }^{2}$ Synchrotron SOLEIL, L’Orme des Merisiers, St Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France

Introduction

$>$ Organometallics complexes are widely used in homogenous catalysis [1].
$>$ By their steric and electronic effects, ligands have the ability to impact the reactivity of the metal center they are bound with.
$>$ It is important to know these effects to choose the most adapted ligand for the design of a reaction.
$>$ Only indirect experimental methods are available (IR, NMR) [2-3] using probe ligands. In our group, a method was developed using mass spectrometry to evaluate the Bond dissociation Energy (BDE) of the Au-CO bond of [(PR_{3})AU-CO] ${ }^{+}$complexes and classify the donor ability of the Phosphine ligands [4].
> But what about direct M-L BDE measurement?

Reaction of formation of the gold(III) complexes

4-NMe

Structures of the various subsituents studied
C.Trap HCD Collision Cell

Experimental setup

$>$ Ions are formed by an electrospray source and analyzed in a LTQOrbitrap hybrid instrument ThermoFisher Corporation, San Jose, USAł.
$>$ Precursor ions are isolated in the Linear Ion Trap and accelerated into a collision cell containing N_{2} leading to the formation of fragments.

Kinetic modelling and theoretical calculations

$>$ Determination of the Survival Yield (SY) of the precursor ion: $S Y=\frac{I_{\left(P^{+}\right)}}{I_{\left(P^{+}\right)}+\sum I_{\left(F^{+}\right)}}, I_{\left(P^{+}\right)}$the abundance of the precursor ion, $\sum I_{\left(F^{+}\right)}$the sum of abundances of fragment ions.
$>$ Kinetic treatment based on the RRKM theory [5] with the MassKinetics software [6] to obtain the difference between the dissociation barrier and that of the precursor ion $\left(\mathrm{E}_{0}\right)$.
$>$ Theoretical values of BDEs obtained using the Density Functional Theory (B3PW91/ SDD (+f) (Au), 6-31G** (other atoms) with the GAUSSIAN 16 software) [7].
$>$ The Au-L bond was analyzed using the Energy Decomposition Analysis (EDA) [8] to compute the interaction energy $\Delta \mathrm{E}_{\text {int }}$:

$$
\Delta \mathrm{E}_{\text {int }}=\Delta \mathrm{E}_{\text {elect }}+\Delta \mathrm{E}_{\text {Pauli }}+\Delta \mathrm{E}_{\text {orb }}
$$

$\Delta \mathrm{E}_{\text {elect }}$ is the electrostatic interaction, $\Delta \mathrm{E}_{\text {Pauli, }}$ the Pauli repulsion and $\Delta \mathrm{E}_{\text {orb, }}$, the orbitalar interaction. This term can be further decomposed into the different contributions as σ donation , π back donation,

$-\Delta$ Pauli	$-\Delta$ elect
$-\sigma$ donation	$-\pi$ back donation
- rest of Δ orbi	

EDA results for the $\left[\left(C^{\wedge} N^{\wedge} C\right) A u-(P y r H)\right]^{+}$bond

[^0] substituted pyridines versus $E_{0}(e V)$

Experimental measurements $E_{o}(\mathrm{eV})$ versus calculated BDEs in eV

Conclusion and Perspectives

$>$ A series of $14\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\text { Pyr-R })^{+}\right]$complexes were synthetised, isolated and characterized.
$>$ Experimental and theoretical values of bond dissociation energies of the M-L bond were obtained and correlated well. They confirm the expected trends of the ligand donating effects : the richest pyridines are able to donate more to the metal and thus renders the Au-L bond stronger.
\Rightarrow EDA-NOCV analysis of the Au-L bond indicates that the σ-donor component of the bond dominates the bonding and that the π-acceptor backbonding is negligible.
$>$ This finding is confirmed by the good correlation observed between the proton affinity of the ligands and E_{0}.
$>$ Catalytic test are in progress to determine the relation between the electronic donor capability of the ligand and the yield of the reaction.

References: 1-Zecchina, A. and S. Califano, John Wiley \& Sons. 2018, 2-Tolman, C.A., Chem. Rev., 1977. 77(3): p. 313-348, 3-Huynh, H.V., Chem.Lett. 2021. 50(10): p. 1831-1841, 4-Gatineau, D. et al., Dalton Trans., 2018. 47(43): p. 15497-15505., 5-Marcus, R.A., J. Chem. Phys., 1952. 20(3): p. 359-364, 6-Drahos,L. and K. Vékey R.A. JMS., 2001. 36(3): p. 237-263, 7- Frisch, M.J., et al., ., Gaussian 16 Rev. C.01, 2016, 8-Zhao, L., et al., WIREs Comp. Mol. Sci, 2018. 8(3): p. e1345.

[^0]: Corelation of the protonic affinity (eV) of the

