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Abstract

The individual time trial discipline (ITT) in professional cycling is dubbed the race of truth as the
cyclists are racing alone against the clock. These stages can be very close and they often play a decisive
role in the Grand Tours. At the first ITT stage of the Tour de France 2022, the first and second
places were separated by 5 seconds corresponding to a 0.5% difference in the finishing times. This
makes the discipline highly interesting from an optimization perspective. A pacing strategy defines
how a cyclist distributes their power output along a course and hence also their velocity. We have
developed a numerical design methodology for computing optimal pacing strategies - i.e. the pacing
strategy that minimizes the finishing time for a given cyclist racing on a given course. We apply the
method to four hypothetical courses of 2 km simulating various gradients and wind conditions. The
optimized pacing strategies led to improved finishing times ranging from 0.45% to 2.84% compared
to benchmark pacing strategies. We also show how the method can be applied to compute an optimized
pacing strategy for a complex real world course. The result is closely related to a pacing strategy
derived from data from professional cyclist and ITT specialist Martin Toft Madsen, with the optimized
strategy being 1.2% faster over 21.3 km. We believe that the method presented here constitutes a
promising framework for computing optimal pacing strategies and with further research and a more
accurate physiological model, this could prove an important tool for strategizing in professional cycling.

Keywords: Numerical optimization, optimal pacing strategy, Finite Element Method, adjoint sensitivity
analysis, cycling time trial
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1 Introduction

In professional cycling the individual time trial
(ITT) is a discipline where competitors take turn
to race individually on a fixed course. Known as
the race of truth, the ITT involves no team tactics
so the race depends only on the individual rider’s
strength and endurance. It is famous for its salient
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Fig. 1: Picture of a power meter (small grey
box) measuring the pedal force. The velocity is
measured with a GPS and the power output is cal-
culated as the product of velocity and pedal force.

role in major competitions such as the Tour de
France and the Olympics. At the first ITT stage of
the Tour de France 2022, there was a 5 s difference
between the finishing times of the first and second
place corresponding about 0.5% over 13.1 km. The
closeness and importance of these races motivates
the search for marginal gains by optimizing all
areas that can improve the performance of riders.

This article is a contribution to the field of optimal
pacing strategies for ITT stages. The term pacing
strategy refers to the way a rider distributes their
power output along a course (Abbiss and Laursen,
2008). The pacing strategy of a rider defines both
their resulting velocity along the course and the
physiological toll of each segment as well as the
workout as a whole. An optimal pacing strategy
is a rider- and course-dependent pacing strategy
that minimizes the finishing time subjected to an
upper bound on the physiological toll. In other
words, it is the most efficient way for a rider with
a certain physique to race a given ITT. The aim
of studying optimal pacing strategies is to develop
a numerical methodology for efficient computa-
tion of physiologically accurate optimal pacing
strategies.

With modern power meters (see Figure 1) and
cycling computers one can measure the power
output and velocity of a rider in real-time. This
presents an opportunity for comparing theoreti-
cal pacing strategies with experimental data. The
long-term goal is to exploit the unique optimal

pacing strategy for a given rider when strategising
for an ITT.

1.1 Overview of the literature

The field is relatively new with most advances
made within the past decade. Early papers showed
theoretically and experimentally that varying
power output in response to changes in conditions,
such as hills and wind, can lead to improved fin-
ishing times (Swain, 1997; Atkinson et al, 2007;
Cangley et al, 2011; Atkinson and Brunskill,
2000). Although these early papers only consid-
ered simple models on piecewise linear courses,
they sparked an interest in the field.

1.1.1 The numerical methods

In recent years, there have been a number
articles published with various numerical meth-
ods (Gordon, 2005; Boswell, 2012; Sundström
et al, 2013; Yamamoto, 2018; Fayazi et al, 2013;
Wolf et al, 2019; Zignoli and Biral, 2020). Gor-
don (2005) introduced mathematical optimization
with Lagrange multipliers and Boswell (2012)
introduced a differential equation model relating
the power output of a cyclist to their velocity.
This allowed for optimization taking into account
the effects of acceleration. Sundström et al (2013)
used adjoint sensitivity analysis and the Method
of Moving Asymptotes (MMA) albeit with a very
coarse discretization.

Recent studies employ libraries with built-in opti-
mization solvers. Examples are MATLAB’s func-
tion fmincon() used by Dahmen (2016), the MAT-
LAB library FALCON.m used by Wolf et al
(2019) and the Maple package XOptima used by
Zignoli and Biral (2020). These methods have
achieved the impressive goal of optimizing real
world courses and the authors have taken further
steps such as implementing a control process and
considering the effects of corners with a three-
dimensional model (Wolf et al, 2019; Dahmen,
2016).

Though these optimization solvers are readily
implemented, we believe that there is still more
insights and possibly a higher efficiency to be
obtained with further research into the methodol-
ogy for optimizing. It is towards this aim that we
present a design methodology for optimization in
this article.
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1.1.2 The physiological constraint

The question of how to incorporate a physiologi-
cally accurate constraint modelling human fatigue
when optimizing pacing strategies has been an
active topic of research in recent years with several
different approaches appearing (Gordon, 2005;
Fayazi et al, 2013; Sundström et al, 2013, 2014;
Dahmen et al, 2012; Dahmen, 2016; Wolf et al,
2016). These include bioenergetic models which
e.g. separately take into account the effects of aer-
obic and anaerobic work based on various models
for fatigue dynamics tracing back to the work by
Morton (1986) and Morton and Billat (2004). The
arguments are mainly theoretical and all studies
conclude that further work is required to develop
a more realistic model. For this reason, the con-
cern of this paper will not be the nature of the
constraint, but rather the method of optimiza-
tion employed subsequently. Nevertheless, we will
here provide arguments in favour of our choice of
constraint.

Within the world of cycling the principle of Nor-
malized Power® (NP ) is a well established mea-
sure developed by Allen et al (2019) in the book
”Training and racing with a power meter”. It is
described in an article by Hurley (2021) as a mea-
sure that ”reflects the disproportionate metabolic
cost of riding at high intensity, by weighting hard
efforts and deemphasizing periods of easy spin-
ning”. The idea is to take the average of the
power output function raised to the fourth power
and subsequently take the fourth root. Mathemat-
ically, this is equivalent to placing an upper bound
on the p-norm, with p = 4, of the power func-
tion. This penalizes variations in power output
whilst placing an upper limit on the average power
output. Small variations in power output were
reported to have a relatively large effect on the
physiological toll in a study by Foster et al (1993).
The choice of raising the power output to the
power of 4 is based on a regression of blood lactate
due to the power output (Coggan, 2017). NP has
already been introduced as a constraint when opti-
mizing power output by Yamamoto (2018) and
we will similarly base our physiological model on
this principle. Furthermore, it is already used as
a metric for evaluating the physiological stress of
a workout by e.g. Garmin, trainerroad and train-
ingpeaks (Garmin, 2022; Hurley, 2021; Ganoung,

x

w [m/s] w [m/s] w [m/s] w [m/s]
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Fig. 2: Free body diagram of a cyclist moving on a
road defined by the height profile h(x) with wind
w(x). θ is the steepness of the course given by
θ(x) = arctan

(
dh
dx

)

2022) and Strava uses a similar weighted average
method (Strava, 2022).

2 Physical model

For a course of distance L we define the following
variables and functions:

Distance variable: x ∈ [0, L] (1a)

Height function: h : [0, L] → R (1b)

Wind function: w : [0, L] → R (1c)

Angle of slope: θ = arctan

(
dh

dx

)
(1d)

Velocity of cyclist: v(x) =
dx

dt
(1e)

As shown in Figure 2 we subject the cyclist to to
the following forces:

Gravity: Fgrv = mg (2a)

Normal force: Fnrm = mg cos(θ) (2b)

Rolling resistance: Ffrc = CrFnrm (2c)

Drag: Fdrg =
1

2
ρACd v

2 (2d)

where m [kg] is the total mass of the cyclist and
the bike, g [m/s2] is the constant of gravitational
acceleration, Cr [1] is a coefficient taking all fric-
tional forces into account, ρ [kg/m3] is the density
of air, A [m2] is the total frontal surface area of
the cyclist and the bike and Cd [1] is the total drag
coefficient of the cyclist and the bike. This leads to
our governing physics equation relating the power
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Mass: m = 85 kg

Frontal Area: A = 0.3m2

Coefficient of drag: Cd = 0.9

Rolling resistance: Cr = 0.003

Normalized Power: Pc = 450W

Gravitational constant: g = 9.807m/s2

Air density: ρ = 1.2255 kg/m3

Table 1: Constants defining a standard cyclist.

output of the cyclist to their velocity:

Power output
of cyclist︷ ︸︸ ︷
Pout(x) =

Inertia︷ ︸︸ ︷
m

dv

dx
v(x)2 +

Gravity︷ ︸︸ ︷
mg sin (θ(x)) v(x)

+ Crmg cos (θ(x)) v(x)︸ ︷︷ ︸
Total rolling resistance

+
1

2
ρACd (v(x)− w(x))

2
v(x)︸ ︷︷ ︸

Total drag

(3)

Throughout the article, the term standard cyclist
will refer to a cyclist modelled with the constants
given in Table 1. The mass m includes a cyclist of
mass 75 kg and a bicycle of mass 10 kg.

3 Method

Our method can be summarized as the follow-
ing. First, the governing differential equation (3)
is discretized using the Galerkin Finite Element
Method (FEM). We define a design vector ρ
to tune the power output at a series of nodes.
Then we formulate the optimization problem as
a discrete minimization of a functional subject
to a residual and a functional constraint - all of
which depend on the design vector. Finally, we
introduce adjoint sensitivity analysis to solve the
optimization problem using the Method of Moving
Asymptotes (MMA) (Svanberg, 1987).

3.1 Finite Element formulation

The governing differential equation (3) is defined
in space on the interval [0, L]. We discretize this
into n elements Ωe separated by the mesh nodes

0 = x0

ρ0

v0

x1

ρ1

v1

x2

ρ2

v2

· · · xk

ρk

vk

Ωe

xk+1

ρk+1

vk+1

· · · xn = L

ρn

vn

Fig. 3: Discretization of the course. The interval
[0, L] is divided into elements Ωe separated by the
mesh nodes {xk}k=0,...,n. To each node xk we asso-
ciate a design variable ρk and a velocity variable
vk.

{xk}k=0,...,n as shown in the Figure 3. To each
node xk we associate a design variable ρk ∈
[0, 1] and a velocity variable vk ≥ 0. We col-
lect the design variables in the design vector,
ρ = (ρ0 ρ1 · · · ρn)T , and likewise the velocity

variables in the state vector, V = (v0 v1 · · · vn)T .

The power output on a given element Ωe is some
interpolation of the design variables at the neigh-
bouring nodes. By tuning the numbers ρk and
ρk+1 we can change the power output on the ele-
ment Ωe in between the nodes xk and xk+1. In
general, we say that the power output function
depends on the whole design vector by:

Pout = Ph
out (ρ) (4)

where the superscript h indicates discretization.
Similarly, the velocity function on the element Ωe

will be some interpolation of the velocity variables
vk and vk+1 at the neighbouring nodes. The veloc-
ity function therefore depends on the state vector
by:

v = vh (V ) (5)

The velocity is related to the power output via
the governing equation (3). Hence, the state vector
will depend on the design vector according to the
physics. The continuous strong form of our gov-
erning equation (3) is translated into the discrete
weak form:

K (V )︸ ︷︷ ︸
n×n

V︸︷︷︸
n×1

= F︸︷︷︸
n×1

(6)

where the stiffness matrix K has contributions
from each of the terms in the governing equation
(3):

K = Kirt +Kgrv +Kfrc +Kdrg (7)
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If we let
∑

k∈N denote the standard finite ele-
ment assembly, then these are given by the set of
equations:

Kirt =
∑
k∈N

∫
Ωe

mN
(
NTve

)2
BT dx (8a)

Kgrv =
∑
k∈N

∫
Ωe

mg sin (θ) NNT dx (8b)

Kfrc =
∑
k∈N

∫
Ωe

mgCr cos (θ) NNT dx (8c)

Kdrg =
∑
k∈N

∫
Ωe

1

2
ρACd N

(
NTve − w

)2
NT dx

(8d)

F (ρ) =
∑
k∈N

∫
Ωe

Pout(ρ
e)N dx (8e)

where N contains the shape functions (i.e. the
functions that define the interpolation for the
velocity function in (5)), B = d

dxN and ρe and
ve are the design and state vectors localised to a
single element, respectively. For example, on the
element Ωe in Figure 3, they are given by:

ρe =

(
ρk

ρk+1

)
and ve =

(
vk

vk+1

)
(9)

3.2 Optimization

The general optimization problem is to mini-
mize an objective functional f subject to three
constraints:

min
ρ

f (V )

s.t. R (ρ,V ) = 0,

g (ρ,V ) ≤ Pc,

0 ≤ ρ ≤ 1 (10)

In our case, the object functional f will be to min-
imize the finishing time T , and the constraints
are the residual equation R, a physiological con-
straint g along with a chosen upper bound Pc and
a standard box constraint on the design vector ρ.

The objective functional f is expressed as an
integral over space using dt = dx/v:

f (V ) := T =

∫ L

0

1

vh (V )
dx (11)

The residual R is the discretized governing
equation (6) rewritten as:

R (ρ,V ) := K (V )V − F (ρ) = 0 (12)

As argued for in Section 1, we choose our physi-
ological constraint based on the principle of Nor-
malized Power (NP ). It is defined by Coggan
(2017) as the 4-norm of the power output function:

NP :=

(
1

T

∫ T

0

Ph
out

4
dt

)1/4

(13)

Weighted averages like this are commonly used
(e.g. by Strava and Garmin Strava (2022); Garmin
(2022)) to measure the physiological toll of a work-
out. We rewrite this to an integral over space and
define the constraint as:

g(ρ,V ) :=

(
1

T

∫ L

0

Ph
out(ρ)

4

vh (V )
dx

)1/4

(14)

The strategy for minimizing the objective func-
tion is to compute the sensitivities of the objective
function df/dρ and the constraint dg/dρ and then
use MMA to update the design vector ρ until an
optimal solution is reached.

3.3 Adjoint sensitivity analysis

To compute the sensitivities of the objective func-
tional, df/dρ, we define the Lagrangian:

L = f + λTR (15)

where λ is the vector of Lagrange multipliers for
the residual equations. Taking the total derivative
of the Lagrangian yields:

dL
dρ

=
∂f

∂V

∂V

∂ρ
+
∂f

∂ρ
+λT

(
∂R

∂V

∂V

∂ρ
+

∂R

∂ρ

)
(16)
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which can be rewritten to:

dL
dρ

=
∂f

∂ρ
+λT ∂R

∂ρ
+

(
∂f

∂V
+ λT ∂R

∂V

)
∂V

∂ρ
(17)

By defining λ as the solution to the following
adjoint problem, the parenthesis above is made
equal to zero:(

∂R

∂V

)T

λ = −
(

∂f

∂V

)T

(18)

The sensitivities are then given by:

df

dρ
=

∂f

∂ρ
+ λT ∂R

∂ρ
= λT ∂R

∂ρ
(19)

where the last equality is a result of f not depend-
ing explicitly on the design vector ρ in (11). We
can go through the exact same procedure for the
sensitivities of the constraint g using a differ-
ent Lagrange multiplier vector λ̃ and write the
sensitivities as:

dg

dρ
=

∂g

∂ρ
+ λ̃T ∂R

∂ρ
(20)

where λ̃ is given via the corresponding adjoint
problem: (

∂R

∂V

)T

λ̃ = −
(

∂g

∂V

)T

(21)

The procedure for solving the optimization prob-
lem numerically is now the following. Start with
an initial guess of ρ satisfying the criteria in (10)
and then execute the following loop:

• Assemble the matrix K with (7) and Finite
Element assemblies (8).

• Solve the non-linear system of equations (6) for
V .

• Compute the objective functional f using (11)
and the constraint g using (14).

• Compute the sensitivities of f and g with (18)-
(21).

• Use the sensitivities to update the design vec-
tor using the Method of Moving Asymptotes
(MMA) Svanberg (1987).

• Break loop if solution is considered converged.

4 Results

We implemented the method from Section 3 in
the COMSOL Multiphysics® software (COMSOL
Inc., 2022). We applied it to four hypothetical
courses (from here on: ”Elementary Courses”) as
well as one course adapted from a real world route
(from here on: ”Real Course”), labelled Course
1-5. The hypothetical courses are designed to iso-
late the most elementary conditions allowing for
insights into the basic properties of the optimized
strategies. Furthermore, we believe these elemen-
tary courses allow future work to readily make
comparisons to our method and results.

The Elementary Courses 1-4 are 2 km long and
were discretized using 2000 elements (see Figure
3). The Real Course 5 is 21.3 km and was dis-
cretized with 20 000 elements. For the numerical
optimization to yield a result, a strictly positive
initial velocity was required. This was chosen to
be 3m/s in all cases. The initial guess for the opti-
mization algorithm was always a constant pacing
strategy. At points where the conditions change
(height gradient or wind) we included a transi-
tion zone of 20m such that height profiles and
wind functions always have 2 continuous deriva-
tives. We elaborate on these numerical subtleties
in Section 5.

4.1 Elementary Courses

Course 1 is a flat course with no wind. Figure
4a shows the benchmark and optimized pacing
strategies for a standard cyclist. The optimized
pacing strategy is 0.45% faster than the bench-
mark. The main strategy difference is a power
surge in the very beginning and a sharp decrease in
power towards the end. The result is a faster accel-
eration of the cyclist. At 100m the velocity with a
constant pacing strategy is 8.80m/s and with an
optimal pacing strategy the velocity is 9.25m/s.
The optimized pacing strategy at the extremities
of the course seems to be a general result, as they
appear for all courses considered here.

Course 2 includes a 1 km long climb with a con-
stant gradient of 10% from 0.5 km to 1.5 km.
Figure 4b shows the benchmark and optimized
pacing strategies for a standard cyclist. The opti-
mized pacing strategy is 1.41% faster than the
benchmark. Optimizing leads to increased power
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(a) Course 1: Flat.
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(b) Course 2: Ramp.
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(c) Course 3: Triangular hill.
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(d) Course 4: Flat with wind.

Fig. 4: Model predictions of a standard cyclist (1) racing on the Elementray Courses employing a bench-
mark pacing strategy (faded black) with constant power output resulting in a benchmark velocity curve
(faded blue) with finishing time fbench., and the optimized pacing strategy (black) resulting in the opti-
mized velocity curve (blue) with finishing time fopt.. The optimized pacing strategies are 0.45%, 1.41%,
2.84% and 0.44% faster than the benchmark for Course 1-4, respectively. All courses are 2 km long with
conditions indicated in the background (dimgray). Course 1 is flat, Course 2 includes a 1 km climb with
constant gradient of 10%, Course 3 includes a 0.5 km climb followed by a 0.5 km descend with constant
gradients of ±10%, Course 4 is flat with a 0.5 km tailwind segment followed by a 0.5 km headwind seg-
ment with wind strengths of ±5m/s

output on the uphill segment of the course com-
pared to the flat segments in the beginning and
end. Despite the very sudden change in height
gradient at 500m (within 20m), the model yields
a smooth increase in power from about 200m
to 650m. For this course, it is advantageous to
accelerate several hundred meters before the climb
begins and to not reach maximum power output
until after the velocity has dropped sufficiently
due to gravity. On the other hand, the fall in power

output at the top of the hill is almost instan-
taneous. To the best of our knowledge, features
such as these have not been reported by previous
studies.

Course 3 includes a 0.5 km climb with a con-
stant gradient of 10% from 0.5 km to 1 km followed
by a 0.5 km descend with a constant gradient of
−10% from 1 km to 1.5 km. Figure 4c shows the
benchmark and optimized pacing strategies for
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a standard cyclist. The optimized pacing strat-
egy is 2.84% faster than the benchmark. This is
the largest relative difference in finishing times
among the five courses presented. The optimized
pacing strategy on the first half of the course is
similar to Course 2 in Figure 4b, though the max-
imum power output on the climb is 40W higher
for Course 3 than Course 2. The optimized power
output falls significantly over the top of the hill.
Contrary to the climb segment, the power does
not stabilize to a constant value on the descend.
A minimum in power output is reached at 1.25 km
followed by a slow increase until 200m after the
bottom of the hill. We notice that positive changes
in the height gradient can result in a slow and dis-
persed increase in power output whilst negative
changes in the height gradient may induce a quick
and sharp decrease in power output.

Course 4 in Figure 4d is flat with a 0.5 km tail-
wind segment from 0.5 km to 1 km followed by a
0.5 km headwind segment. The wind strength is
5m/s. Contrary to the force of gravity, the force of
drag depends on the velocity of the rider. For this
reason, we see a more complicated and non-linear
response in the optimized pacing strategy to a con-
stant wind compared to a hill with constant height
gradient. We also notice that locally a change in
wind conditions mainly induces a response in the
rate of change of power output and not the power
output itself.

Below is a summary of the main takeaways from
the optimized pacing strategies on the Elementary
Courses:

1. Power outputs are increased on uphill and
headwind segments and decreased on downhill
and tailwind segments.

2. There is a surge in power output at the very
beginning of the course, to accelerate the
cyclist, and a sharp decline just before the
finish line, where the relative gain is lowest.

3. The increase in power output due to a pos-
itive change in height gradient may be slow
and dispersed over several hundred meters. A
negative change in height gradient can result
in a quicker and relatively local drop in power
output.

4. The response in power output due to wind is
non-linear and velocity dependent. The power
output may not stabilize to a constant value.

5. Locally, a change in wind condition mainly
affects the rate of change of power output
instead of the power output itself.

4.2 Real world course

Course 5 is a real world course in Norway. Pro-
fessional cyclist Martin Toft Madsen has provided
us with the data measured by his cycling com-
puter and power meter while he was racing on this
course. Madsen won gold at the Danish National
Road Championship in the individual time trial
discipline in 2016, 2017 and 2018 and silver in
2019, 2020 and 2021. The data includes GPS and
altitude measurements along with his power out-
put. The altitude and power data was imported to
COMSOL Multiphysics® and a linear interpola-
tion was used to create a height profile and power
function compatible with our model. The result-
ing power function constitutes Madsen’s pacing
strategy on the course with a Normalized Power
of Pc = 385W.

Figure 5 compares his pacing strategy to the
benchmark pacing strategy and the optimized pac-
ing strategy constrained by the same Normalized
Power. The finishing times for a standard cyclist
(1) are 1814 s, 1810 s and 1788 s for the bench-
mark, Madsen’s and the optimized pacing strat-
egy, respectively. The optimized pacing strategy is
1.2% faster than Madsen’s pacing strategy.

There was close to no wind and the course only
had a single turn sharp enough so that Martin Toft
Madsen had to use his breaks. This occurred at
about 9 km and is the reason for the sharp trough
followed by a peak in his power data. This makes
the course and data obtained close to ideal for
the purpose of comparing the predictions of our
model to his choice of pacing strategy. For visual
purposes, Madsen’s pacing strategy is smoothed
with a rolling average of about 53m.

The main takeaways are that: 1) the method
allows for efficient computation of optimized pac-
ing strategies on real world courses; 2) the opti-
mized pacing strategy is close to Martin Toft
Madsen’s pacing strategy. Regarding point 1, the
time it takes for the method to converge on a solu-
tion for the optimized pacing strategy depends
on numerous factors such as the implementation
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Fig. 5: Course 5: Real world. A 21.3 km real world course (dimgray) with the following plots: A benchmark
pacing strategy (red) with constant power output, the power output data from professional cyclist Martin
Toft Madsen (faded blue) racing on this course and the optimized pacing strategy (black). The Madsen
data is smoothed with a rolling average of 53m for visual purposes solely. The Normalized Power of each
strategy is g = 385W and the finishing times for a standard cyclist (1) are 1814 s, 1810 s and 1788 s for
the benchmark, Madsen’s and the optimized strategy, respectively. The optimized strategy is 1.2% faster
than Madsen’s strategy

chosen, the mesh for discretization and the crite-
ria one sets for convergence. We noted that using
COMSOL Multiphysics® and a mesh of 20 000
elements, a solution with finishing time within
1 s of the optimal pacing strategy could be com-
puted with only 2-3 iterations of the method and
within 25 s. Regarding point 2, a pertinent ques-
tion is how close the optimized pacing strategies,
computed within the model presented here, are
to the actual optimal pacing strategies in the real
world. As for all frameworks for computing opti-
mal pacing strategies, this can only be answered
with appropriate experimental studies. However,
we consider the comparison to the pacing strat-
egy of Martin Toft Madsen provided here as a first
test of the relevance of our method for real world
courses. In conclusion, we believe this example
provides some credibility towards the capability
of our method to efficiently compute relevant
optimized pacing strategies for real world courses.

Finally, it is worth mentioning that realizing a 22 s
(1.2%) difference in the finishing time by optimiz-
ing ones pacing strategy is sufficient to make a
significant contribution to performances of cyclists
competing in the ITT discipline.

5 Discussion

5.1 Physical model

In this paper, we have chosen a relatively simple
equation for the governing physics - e.g. we have
not differentiated between different types of fric-
tions. Our focus is on the method of optimization
and we believe the method can be adapted to more
detailed equations. Though a crucial element that
is unaccounted for here is the effects of sharp turns
forcing the cyclist to brake. This is clear in Figure
5 where Madsen encountered a sharp turn and
had to brake at the distance of 9 km. Zignoli and
Biral (2020) considered a three-dimensional road
geometry and cornering strategies in their paper,
so there is some work on this problem within the
field.

Any physical model of bicycle dynamics also faces
the problem of constants measurement. The drag
coefficient Cd, for example, might be very diffi-
cult to measure to a high accuracy. The drag term
in the governing equation is therefore difficult to
predict, highly dependent on both the rider and
course conditions, due to the surface area A and
effects of wind w, and at the same time it will have
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significant influence on pacing strategies and finish
times. Furthermore, the riders maximal available
Normalized Power may also be difficult to estimate
prior to the race, which in part motivates an opti-
mal control formulation (Wolf et al, 2019; Zignoli
and Biral, 2020). A feedback loop can be used to
update the constants during a race when the mea-
sured power output and velocity do not match the
predictions of the chosen physical model.

A third problem concerning the physical model
is whether a cyclist can maintain a smooth and
consistent power output as opposed to constantly
oscillating slightly up and down. In Figure 5, the
measured power output of Madsen clearly oscil-
lates much more than the optimized power curve
and this is after his data has been smoothed with
a rolling average of 53m. The model should take
any oscillations in the power output due to human
factors into account before optimization.

5.2 Normalized Power constraint

Our choice of constraint for optimization is based
on the principle of Normalized Power and is moti-
vated in Section 1.1.2. The formula is a p = 4
norm of the power output with respect to time as
given in equation (13). Firstly, the choice of taking
the fourth power might not be the most phys-
iologically accurate way to constrain the power
output of a cyclist. A higher exponent penalizes
variations in power output more and therefore
forces the cyclist to maintain a closer to the aver-
age power output throughout the course. Hence,
a high exponent might be more suitable for longer
courses where long-term endurance is imperative.
A shorter course might allow for larger variations
in power output and therefore require a lower
exponent in the constraint. Hence, the constraint
itself can be course dependent. Additionally, the
physiology of a unique rider may also influence
which constraint leads to the actual optimal pac-
ing strategy of that rider.

Secondly, regardless of the choice of exponent, the
constraint is solely global as a measure of the phys-
iological toll of the workout as a whole. Consider
a course that starts with steep hill followed by a
long downhill segment. Our constraint would allow
a pacing strategy with a very high power output
on the hill as long as the power output on the long
descend is sufficiently low. It does not consider the

local question of whether or not the cyclist can
actually maintain the high power output all the
way up the hill. This is where more sophisticated
and physiologically accurate constraints that con-
sider the effects of different types of work done
during a race, though these demand experimen-
tal verification. That being said, we believe our
method of optimization can be adapted to more
advanced constraints.

5.3 Numerical method

The differential equation model for the governing
physics requires a choice of initial velocity. Since,
we have discretized the course (Figure 3), the ini-
tial velocity affects the whole first element and not
just the boundary. Because of this, the numeri-
cal method requires a non-zero initial velocity to
allow the modelled cyclist to simply accelerate
and start cycling. In general, the finer the dis-
cretization the lower this initial velocity can be,
but it also depends on the course conditions in the
beginning. Throughout this article, we have cho-
sen an initial velocity of 3m/s, which turned out
to be a safe choice, in terms of not running into
the mentioned problems, when discretizing with
approximately 1 element per meter. The initial
velocity is also related to initial power output of
the optimized pacing strategy. A low initial veloc-
ity might lead to the optimized power output on
the first few elements being unreasonably high.
Hence, there is a trade-off between having closer to
realistic initial conditions and the methods ability
to yield a reasonable result or even a result at all.

Secondly, the optimization method requires an ini-
tial choice of pacing strategy, which amounts to
choosing an initial design vector, in order to start
the optimization loop. We always chose a constant
power output, referred to as the benchmark pac-
ing strategy, as the initial guess. The immediate
question is whether or not the resulting optimized
pacing strategies depend on this initial guess. That
is, would we see different results if other initial
pacing strategies were chosen? We will not fully
address this problem but nonetheless, mention
that for the real world course in Figure 5, the exact
same optimized pacing strategy is obtained when
using Madsen’s power output as the initial guess.



Springer Nature 2021 LATEX template

Optimal pacing strategy 11

5.4 Application to real world courses

With Figure 5 we conclude that our method may
be applied to real world courses and, by com-
paring the pacing strategy of professional cyclist
Madsen, that the optimized pacing strategy seems
reasonable in this example. Clearly, this single
application and single comparison to experimental
data does not validate our methods applicability
to real courses. A far larger study of how the meth-
ods predictions compare to experimental data is
necessary.

We implemented the method with the COMSOL
Multiphysics® software (COMSOL Inc., 2022).
Because of this, the GPS data used for the real
world course in Figure 5 had to be interpreted
accordingly. We used a linear interpolation of the
altitude measurements to create a height profile
suitable for COMSOL. In general, any implemen-
tation of the method will require some manipu-
lation of GPS data. A potential problem arises
if the GPS measurements are either not accurate
enough or too far apart to create an accurate
representation of the actual course. We have not
yet considered how to construct the most accu-
rate height profile from the available data. For
these reasons, a different implementation of the
method might be more appropriate for applying
the method to real world courses.

6 Conclusion

We have presented a design methodology for com-
puting the optimal pacing strategy for a cyclist
competing in the ITT discipline of professional
cycling. We used a Finite Element formulation and
adjoint sensitivity analysis to minimize the finish-
ing time subjected to a physiological constraint
based on the principle of Normalized Power.

We applied the method to four hypothetical
courses to simulate various gradients and wind
conditions as well as one real world course. With
the hypothetical courses, we saw that the method
can effectively compute the highly non-trivial opti-
mized pacing strategies, which led to relative time
gains between 0.45% to 2.84% compared to a
benchmark strategy. Furthermore, we saw how
the optimized pacing strategies can provide cer-
tain insights into local strategy questions such
as how one should distribute power output at

the beginning of a hill, over the top of a hill or
when the wind changes. Lastly, we saw how the
method can effectively be applied to a real world
course. The computed optimized pacing strategy
was similar to a strategy obtained from data from
professional cyclist and ITT specialist Martin Toft
Madsen cycling the same route. The optimized
pacing strategy was 1.2% faster than the Mad-
sen’s strategy and 1.4% faster than the benchmark
strategy.

In conclusion, the results show that the method
is relevant as an effective optimization methodol-
ogy for pacing strategies and capable of providing
insights that have not been seen in the current
literature.

7 Replication of results

The method described in Section 3 can be
implemented in a variety of programming lan-
guages and software. We employed the COMSOL
Multiphysics® software (COMSOL Inc., 2022).
The following is available from the correspond-
ing author upon reasonable request: an example
of COMSOL file used, the data generated with
COMSOL for the Figures 4 and 5, the data from
professional cyclist Martin Toft Madsen (raw data
and the cleaned data) used in Figure 5 and lastly
all python scripts used for creating the plots in
Figures 4a to 4d and 5 and the script to clean
the data from Martin Toft Madsen for compati-
bility with COMSOL. Researchers and interested
parties are welcome to contact the authors for fur-
ther explanation, who may also provide further
material under request.

References

Abbiss CR, Laursen PB (2008) Describing and
understanding pacing strategies during athletic
competition. Sports medicine 38(3):239–252

Allen H, Coggan AR, McGregor S (2019) Training
and racing with a power meter. VeloPress

Atkinson G, Brunskill A (2000) Pacing strategies
during a cycling time trial with simulated head-
winds and tailwinds. Ergonomics 43(10):1449–
1460



Springer Nature 2021 LATEX template

12 Optimal pacing strategy

Atkinson G, Peacock O, Passfield L (2007) Vari-
able versus constant power strategies during
cycling time-trials: Prediction of time savings
using an up-to-date mathematical model. Jour-
nal of Sports Sciences 25(9):1001–1009

Boswell GP (2012) Power variation strategies
for cycling time trials: a differential equation
model. Journal of Sports Sciences 30(7):651–659

Cangley P, Passfield L, Carter H, et al (2011)
The effect of variable gradients on pacing
in cycling time-trials. International journal of
sports medicine 32(02):132–136

Coggan AR (2017) Training and racing using a
power meter: an introduction. URL http://www
ipmultisport com/ref lib/Coggan Power Meter
pdf Accessed 8

COMSOL Inc. (2022) Comsol multiphysics® v.
6.0. URL http://www.comsol.com/products/
multiphysics/

Dahmen T (2016) A 4-parameter critical power
model for optimal. In: Workshop Modelling in
Endurance Sports, p 7

Dahmen T, Wolf S, Saupe D (2012) Applications
of mathematical models of road cycling. IFAC
Proceedings Volumes 45(2):804–809

Fayazi SA, Wan N, Lucich S, et al (2013) Opti-
mal pacing in a cycling time-trial considering
cyclist’s fatigue dynamics. In: 2013 American
Control Conference, IEEE, pp 6442–6447

Foster C, Snyder A, Thompson NN, et al (1993)
Effect of pacing strategy on cycle time trial per-
formance. Medicine and science in sports and
exercise 25(3):383–388

Ganoung G (2022) What is normalized power?
URL https : / /www.trainingpeaks.com/blog /
what- is-normalized-power/, [Online; accessed
10-07-2022]

Garmin (2022) What is normalized power and
how is it calculated on my garmin device? URL
https : / / support.garmin.com / en - US/?faq =
8r4llV3DFK5jc13BOHion5, [Online; accessed
10-07-2022]

Gordon S (2005) Optimising distribution of power
during a cycling time trial. Sports Engineering
8(2):81–90

Hurley S (2021) Normalized power®: What
it is and how to use it. URL https : / /
www.trainerroad.com/blog/normalized-power-
what - it - is - and - how - to - use - it/, [Online;
accessed 19-04-2022]

Morton RH (1986) A three component model of
human bioenergetics. Journal of mathematical
biology 24(4):451–466

Morton RH, Billat LV (2004) The critical power
model for intermittent exercise. European jour-
nal of applied physiology 91(2):303–307

Strava (2022) Strava training glossary for cycling.
URL https ://support.strava.com/hc/en- us/
articles/216917147-Strava-Training-Glossary-
for-Cycling, [Online; accessed 10-07-2022]

Sundström D, Carlsson P, Tinnsten M (2013) On
optimization of pacing strategy in road cycling.
Procedia Engineering 60:118–123

Sundström D, Carlsson P, Tinnsten M (2014)
Comparing bioenergetic models for the optimi-
sation of pacing strategy in road cycling. Sports
engineering 17(4):207–215

Svanberg K (1987) The method of moving asymp-
totes—a new method for structural optimiza-
tion. International journal for numerical meth-
ods in engineering 24(2):359–373

Swain DP (1997) A model for optimizing cycling
performance by varying power on hills and
in wind. Medicine and science in sports and
exercise 29(8):1104–1108

Wolf S, Bertschinger R, Saupe D (2016) Road
cycling climbs made speedier by personalized
pacing strategies. In: icSPORTS, pp 109–114

Wolf S, Biral F, Saupe D (2019) Adaptive feed-
back system for optimal pacing strategies in
road cycling. Sports Engineering 22(1):1–10

Yamamoto S (2018) Optimal pacing in road
cycling using a nonlinear power constraint.

http://www.comsol.com/products/multiphysics/
http://www.comsol.com/products/multiphysics/
https://www.trainingpeaks.com/blog/what-is-normalized-power/
https://www.trainingpeaks.com/blog/what-is-normalized-power/
https://support.garmin.com/en-US/?faq=8r4llV3DFK5jc13BOHion5
https://support.garmin.com/en-US/?faq=8r4llV3DFK5jc13BOHion5
https://www.trainerroad.com/blog/normalized-power-what-it-is-and-how-to-use-it/
https://www.trainerroad.com/blog/normalized-power-what-it-is-and-how-to-use-it/
https://www.trainerroad.com/blog/normalized-power-what-it-is-and-how-to-use-it/
https://support.strava.com/hc/en-us/articles/216917147-Strava-Training-Glossary-for-Cycling
https://support.strava.com/hc/en-us/articles/216917147-Strava-Training-Glossary-for-Cycling
https://support.strava.com/hc/en-us/articles/216917147-Strava-Training-Glossary-for-Cycling


Springer Nature 2021 LATEX template

Optimal pacing strategy 13

Sports Engineering 21. https : / / doi.org /
10.1007/s12283-018-0264-3

Zignoli A, Biral F (2020) Prediction of pacing
and cornering strategies during cycling indi-
vidual time trials with optimal control. Sports
Engineering 23(1):1–12

https://doi.org/10.1007/s12283-018-0264-3
https://doi.org/10.1007/s12283-018-0264-3

	Introduction
	Overview of the literature
	The numerical methods
	The physiological constraint


	Physical model
	Method
	Finite Element formulation
	Optimization
	Adjoint sensitivity analysis

	Results
	Elementary Courses
	Real world course

	Discussion
	Physical model
	Normalized Power constraint
	Numerical method
	Application to real world courses

	Conclusion
	Replication of results

