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BOUNDARY NULL CONTROLLABILITY OF KDV EQUATION IN A STAR-SHAPED
NETWORK

HUGO PARADA*

Abstract. The boundary null controllability of a system of N linear KdV equations posed on a star-shaped network is studied.
The controls are located on the right Dirichlet and Neumann conditions of N — 1 edges. First, we study the well-posedness of the
system considered by using the notion of solution by transposition and interpolation arguments. Then, a Carleman inequality is
shown for the adjoint system. Finally, using a dissipation estimate and the Carleman estimate, we show an observability inequality
that is equivalent to null controllability.
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1. Introduction and presentation of our results. In this paper, we study the null controllability
problem of the linear Korteweg-de Vries equation posed in a star-shaped network. The nonlinear Korteweg-de
Vries equation is given by dyu + d,u + 93u + ud,u = 0 and was introduced in [16] to model the propagation
of long water waves in a channel. In the network case, this third-order dispersive equation, it was proposed
to model the pressure on the arterial tree [I]. The controllability of the KdV equation has been very well
addressed in recent years. We mention, for instance, the pioneer work [23] where the exact boundary con-
trollability of the linear and nonlinear KdV equation was showed. Regarding null controllability, there is the
work [24], where null controllability was achieved by using a Dirichlet control on the left, [I3] where a uniform
null controllability result was obtained and [I4] where null controllability was derived in the case of special
boundary conditions. For a good introduction to the controllability and stabilization problems for the KdV
equation, we recommend the surveys [9] and [25]. When it is posed in a network, the KdV equation has been
studied in several works, for instance [7, 211, 26]. More specifically, the exact controllability was studied in
[1, T0] and the stabilization in [19, 20} [18]. Regarding controllability problems in networks, studies such as [12]
and [I7] have addressed control of multi-structures, [8] established the null controllability of the Kuramoto
Sivashinsky equation on a star-shaped network. In [4] and [I5] Carleman inequalities were obtained for wave,
heat and Schrédinger equations in networks. Finally, we want to mention the recent work [2] where null con-
trollability properties of parabolic and hyperbolic equations in trees were studied. Although we do not study
in this work the null controllability of the nonlinear KdV equation posed in a star-shaped network, we expect
that our result can be extended to the nonlinear case.

Let K = {k;j : 1 <n < N} be the set of N edges of a network 7 described as the intervals I; = (0,¢;) for
N
j=1,...N, where {; >0for j =1,...,N. The network 7 is defined by 7 = U k;. In this work, we consider

j=1
the next evolution problem for the linear KdV equation. Let T > 0 and define Q; = (0,T) x I,

Opu;(t,x) + Opuj(t,x) + Ouj(t,x) =0, (t,x)€Qy;, j=1,...,N,

u;(t,0) = uq1(¢,0)(t), te(0,T),Vi=2,...,N,
N
> 02u;(t,0) = —Aua (t,0), te (0,7), (LKdV)
j=1
Uj(t,gj) = gj(t), 8xuj(t,€j) :pj(t), te (O,T), j = 1, .. .,N,
u; (0, 2) = uf(x), x € Ij,
N
where \ > TR The system under consideration has control inputs g = (g1, - - - ,gn)T and p=(p1,--- ,on)T €

(L2(0,7))", which act on the exterior Dirichlet and Neumann conditions respectively. The conditions of the
central node are inspired by the previous works [I 19, 20]. According to [20], we can use u; to represent
the dimensionless and scaled variable standing for the deflection from rest position. Take v; to represent the
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velocity on the branch j of long water waves. With this in mind we have

8tu]‘ —|—81u]' —|—8§’u] +uj8$uj =0, xze€ (O,fj), te (O,T), j=1...,N,
1 1.1
vj:ujféu?JrQaiuj, z€(0,4;), te(0,T), j=1,...,N. (L.1)

In central node, if we assume water level to be the same and that the sum of the flux is null, this implies:

Uj(t,O):Ul(t,O), tE(OvT)7j:27"'N7
N

> (¢, 0)v;(£,0) =0, t€(0,T).

j=1

Then, if we linearize (1.1)) around the 0, we obtain the following boundary conditions
uj(tﬂo):ul(ta0)7 te(O,T),jZQ,...,N,

al N
E 2u;(t,0) = —Eul(t,0)7 te (0,7).
j=1

In this sense, we can view the controls g;, j = 1,..., IV as our possibility to move the deflection u; with respect
to the rest position of the water wave, but only at the external vertices.

N
Following [1], we consider the following functional setting. Let L?(T) = H L?(0,¢;), endowed with the inner
j=1

product

N 45
(u, 2)L2(T) = Z/o ujzidr, Vu,z € L2(T).
j=1

Similarly, H*(7") be the cartesian product of H¥(0,¢;), for k = —2,—1,2,3,4 and HZ(T) be the cartesian
product of HZ(0,¢;). For k = 1,2 define

1—1
HE(0,67) o= {veH’“(O,@-), () =0 19@},

N
where the index r is related to the null right boundary conditions, the space HF(T) := H HF(0,¢;), with the
j=1

norm
N

||Q||]?115,(T) = Z ||Uj||%1k(0,ej)a k=1,2.
=1

Finally, define H;'(0,¢;) := (H}(0,¢;))" the dual space of H}(0,;) with respect to the pivot space L?(0, ;)
and H;-'(7) be the cartesian product of H, (0, ¢;).

The focus of this work is to study the well-posedness and null controllability of the linear KdV equation posed
in a star-shaped network without acting on all the branches. In particular, in this work we consider the case of
N —1 acted edges, i.e. 2N —2 boundary controls. It is worth mentioning that in the case of null controllability
of a single KdV equation by the right via Carleman estimates two controls are needed. In this sense in the
network case we are able to reduce the number of controls. To prove our null controllability result, we use
the classical dual characterization given by the HUM. Thus, we have to prove an appropriated observability
inequality for the adjoint system. Without loss of generality, we will consider that the uncontrolled edge is the
first one, that is p; = g1 = 0.
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Fic. 1.1. Star-shaped network of N = 4 branches

It is not difficult to see that the adjoint system is given by

—0vpj(t, ) — Dupj(t,x) — Ddj(t,z) =0, (t,x)eQy, j=1,...,N,

©;(t,0) = p1(t,0), te(0,T), Vj=2,...,N,

N

D 920;(t,0) = (A = N)eu (t,0), te(0,7), (Adj)
j=1

@;(t,€;) = Oxp;(t,0) = 0, te(0,T), j=1,...,N,

where o7 € L*(T). Note that if the controls ga,...,gn and ps,...,py steer the system (LKdV) from u® to 0

in L2(7), then, multiplying (LKdV]) by ¢ solution of (Adj) and integrating with respect to (¢,x) on Q;, we
get the next after some integrations by parts

N £ N T N T
3 / WOy, 2z =3 / 0 (0P 0; (1, )t — 3 / 3 (0)0up5 (8, £;)dt,
j=1 j=2 —2

J

which leads to the following observability inequality;

N
le(0, )2y < €3 (102050t £3) 20,2 + 19005 (8 6202 (Obs)

=2

In this sense, the subsequent is the main result of this work.

THEOREM 1.1. Let u® € L2(T), then, for every T > 0, there exist controls g = (0,92,...,958)7),p =
(0,p2,...,pn)T € (L2(0,T))N, such that the unique solution u of satisfies u;(T,-) = 0, for all
j=1,--- /N.

Regarding the well-posedness, the classical approach based on semigroup theory for the KdV equation on
networks, used in several works [11 [10, 19} [20] does not fit at all when using Dirichlet controls. For example, in
[13] 5l [14], the main strategy to prove well-posedness is to use the notion of “solutions by transposition” and
interpolation arguments. However, these ideas were not yet available in the literature for the KdV equation
on networks, particularly due to the network structure the computations generates some traces terms which
are not too easy to deal with them.

This article is organized as follows: In Section [2] we give the definition of transposition solutions and we prove
the well-posedness of (LKdV]). Section [3]is devoted to the Carleman estimates. In Section [4f we prove our null
controllability result by using the Carleman inequality and a dissipation estimates. Finally, in Section [5] we
give collect some open question related with this work.



2. Well-posedness results. This section is devoted to prove the well-posedness of (LKdV]). First, we
explain what we mean by a solution of (LKdV]). This section is mainly based on the ideas presented in [I3} [14].

DEFINITION 2.1. Given T > 0, u* € H™Y(T) and (g,p) € (L*(0, T))N X (H’l/?’(O,T))N, a solution by
transposition of (LKdV)) is a function u € L?(0,T, LQ(T)) satisfying

N T t N

So [ wstdedt =308 010 Dm0y Z/ Ot )t
=170 =t 2.1
. (2.1)
Z Pj, x@] H 1/3(0,T)xH/3(0,T)> vi € L2(07T7 ]LQ(T))a
j=1
where @ is the solution of
_8t30j(t7x)_81§0j(t,$)_ag‘pj(tax) :fj(tvx)a (tax) erv ]:1, aNa
Z SOJ t 0 )\ - N)‘)Dl(ta()% te (07T)? (22)
@](tvgj)*amgoj(tao):(l tG(O,T), jil,"',N,
@;(T,x) =0, x € 1.

A first remark to be noted is that in order to be consistence, we need the solution ¢ of (2.2 to satisfy

;(0,-) € H}(0,4;), 93¢(-, ;) € L*(0,T) and d,0(-,4;) € H'/*(0,T), ¥j =1,..., N,

The following is the main result of this section, concerning the existence and uniqueness of the Cauchy problem
(LKdV]).

THEOREM 2.2. Let v’ € H™*(T) and (g,p) € (LQ(O,T))N X (H*1/3(0,T))N, Then, there exists a unique
solution by transposition of (LKdV]).

Let v’ € H™X(T) and (g,p) € (LQ(O,T))N X (H*1/3(0,T))N. Consider the map A : L*(0,T;L3(T)) — R,
defined by

N

N
A(f) = Z ug, ¢;(0 Z1(0,65) < H2(0,65) Z/ )Zp(t, £;)dt — Z<pjaax<pj(a')>H—1/3(0,T)><H1/3(0,T)7

Jj=1 Jj=1

where ¢ is the associate solution to . In virtue of Definition it suffices to show that A is linear and
continuous. The map A is clearly hnear thus we focus on the cont1nu1ty To prove it, we are going to use the
following result.

ProposITION 2.3. If f € L*(0,T;L*(T)), then there exists a unique solution ¢ € C([0,T|;HL(T)) N
L2(0, T;H2(T)) of (2.2). Moreover, there exists C > 0 such that

N
lelleqo.mm a2 o.rmey) + 3 10505 )l 2,y + 3 10205 )l s oy < Cllf L2 o,ri2(my)-

j=1 j=1

(2.3)
Once Proposition [2.3]is proved, Theorem [2.2] follows directly. We will now proceed with the proof of Proposi-
tion which is split into five steps. First, we establish the existence and uniqueness of solutions for .
Second, we consider f € L?(0,T;H_!(T)) and prove the appropriated energy estimates. Third, we consider

a more regular source term f € L?(0,T;H?(T)) and prove appropriated energy estimates. Fourth, we use



interpolation arguments to obtain the appropriated regularity framework. Finally, we estimated the remaining
terms.

Proof:
Step 1: Existence and uniqueness of (2.2)).
Inspired by [1], define the operator Av = —9d,v — v, with domain

N
D) = { v € B (T) NEE(T), 01(0) = 1;(0). = Z‘fl— 0) = ~X1(0)

The adjoint operator A*v = 9,vd3v, with domain

N
D(A*) = 3 v € BY(T) NHL(T), 0a(0) = (0, 230 =0,5 = Zfl— (A= N)i (0

From [I], Proposition 2.3|, we know that A, A* are closed and dissipative operators. Using classical results
about inhomogeneous value problems, (see for instance [22]), we can obtain that for all f € C([0,T];)D(A*)),
there exists a unique solution ¢ € C*([0,T]; )D(A*)) of (2-2). All the integration by parts in what follows can
be justified using this existence result and a density argument.

Step 2: Energy estimates for f € L2(0,T H-(T)).

We start considering f € L2(0, T;H-1(T)). Multlplymg the first line of . 2.2) by ¢; and integrate by parts
with respect to x. Using the boundary conditions of | we get

N

1d L b 2 N 2, 1 2
_th;/o (p;(t,2))2dx + (A— 2) (1(2,0)) +5Z(8xs0j(t7fj))

j=1

Mz

<fJ( ), ( ))H;l(o,zj)xH;l(o,ej)’

Il
—

J

integrating the last expression with respect to ¢ on [s, 7] for 0 < s < T we obtain that

;ﬁ:l/oej(%(s,x)ﬁdwr <)\— JQV) /T(ﬁpl(t, 0))2dt + ;i/ST(azgaj(t7ej)) dt

S

N (2.4)
= Z/ <fj(t7 ), @j(t7 ')>Hf1(0,£]~)xH}(O,Zj)dt'
j=17%
Now, let us multiply (2.2) by ¢,e~* obtaining after integration by parts
N 0. N £
1d g 71 3 I 2 N
o3& Z/o (j(t,x))%e " da + By Z/o (Duipj(t,x)) e "d + 2 <)\ - 2) (e1(t,0))?
=1 j=1
1 N 171 N
= 5 Z/O ((pj (t> -'17))26_xd1' + Z<f] (ta ')7 Pj (t, ')e_$>H:1(07gj)XH;1(07gj),
j=1 j=1
The right-hand side term can be estimated as follows, for all € > 0 we get
N N
D it ), 5t D 1 (0,,) < H (0,58 < D g 0,195t )l 11 (0,0,
j=1 j=1
(2.5)

N
<O (s g+ 2 / ZIIS@; YW oyt
j=1



Then for £ > 0 small enough we get

N []-
fmz / (0(t,2)) ’zder%Z [ @eitapeane (3 T @2 @0

1 e "
QZ/ ijtl‘ 2 dz + C. Z”f] ||H 1(0,¢5) (27)

In particular we have,

1d £ . 1 b .
Ld s [ wnrea <ty [Ceeaperae [ Zuf] W00,
j=1 j=1

by Gronwall’s lemma we deduce for 0 < t; < to < T,

N Zj N Z]' to
Z/O (0;(tr, 2))2e~%dx < Clta—t) Z/O (p;(t2, ) xdg;+/ Z||fj ][ ey | 28
j=1 Jj=1 Jj=1

1

Taking t, = T and using that 1 > e * > e~ % for x € (0,4;) we get

N £ N 45
Coin 3 [ (estina)*te < 3 [ oyt a)e=vae <o I anj DI
Jj= Jj=

where C)in = minjzl,_,qN(e*ei). Thus, taking the supremum for 0 < t; < T of the last expression we get:

lelleqomzy < ClfllLzormz () (2.9)
Now integrating (2.6) between 0 and 7' we observe

;ﬁ:/jj (10(0,2))%e™"dar + ;ﬁ:/j /Oej (Oupj(t, x))?e “dadt + 2 <>\ - Z) /OT(wl(t,O))th

1 Tl ) N .1 )
<32 / / (st @))2e " dadt + 'y / /O] AR
j=170 70 j=1"0
Using (2.9) we get

llleo,rizmnczormm) + le1( 0Lz, < Clfllp20,mm1 (7)) (2.10)
Finally, taking s = 0 in (2.4) and using (2.10)-(2.5)) we conclude

Z/ (Do, 45))%dt < CI\fll 20,11 (1) (2.11)

We recall the classical definition of H~'(0,¢;) = (Hg(0,¢;))’, with respect to the pivot space L?(0,¢;) and
that for v € H}(0,¢;) C H(0,¢;), vl a2 0,6,y = NIVl 2(0,65)- Now let f € H1(0,¢;), then f is a linear and
bounded function from H}(0,/;) to R, in particular we can consider its restriction to H{(0,¢;) (still called
by f) which is linear and bounded because for v € Hg(0,£;), [[v] g1 0.,y = [vllai(o.e;) thus f € H(0,5).
Moreover, by as and H}(0,¢;) is dense in H}(0,¢;) the norm I £l =1 0.6;) = = |Ifillz-1(0,¢;)- Using this fact and

a density argument we get from ([2.10] -

lellctomascrynze oy + lon(;0 |\L2<0T>+Z / (Dep(-+0,))%dt < Ollfl 20y (212)



Step 3: Energy estimates for f € L?(0,T;HZ(T)).
We multiply the first line of (Adj) by 020;¢;e™® and integrate with respect to z. After some integration by
parts we get

1d [% 3 (b 1
3 (Bt ) e da + 5/ (000 (t, )% e "da + - (8 Drpj(t,¢5)) e 5(3t¢1(t,0))2
0 0
1d 7
+ O1p1 (1, 01020405 (£, 0) — Buip; (t, £)020,0 (L, £5)e ™" + 1% / (02p;(t,z))’e "da

1 1d

0 4
5 [ @ete s+ / Ot 0)0uupy 1,2y~ — % / (Ouipy(t, )% da
0

— Opp;(t,£5)020p05(t, £5) / fit,x) 8 0 (t, x)e” “du.

We take now, the sum from j =1... N and we integrate from T' < t < s obtaining

Cmin al b 3077,2‘” N T t

w3 [ @i ouin + 222 S [ [ @000 o
j=1"0 j=17s JO

Cmin al T N T

23 [t pras (3= 5) [ @eore

< Z/ 0w (1, £)020,p;(t, ;) b dt — Z/ D2p;i(s,2))? — (Oppj(s,2))*] e "dz

S (2.13)
+ = Z/ / (Opp;(t, x) *Id:er/ / 020,(t,2)0.0pp;(t, x)e “da
Ts Ty
+Z/ B0 (£, 0,000 (t, £, )e +Z// £t 2)820,0,(t, x)e"d
Ts T

Claim 1. Fore > 0, there exists Cc > 0 such that

ZT <e Z/ (0020 (t,€5))*dt + ||l 0,115y + e o201 (7)) | + Ce ||f||L2(0TH2(T)) (2.14)
=1
We prove this claim in Appendix [Al Using this claim in (2.13]) with € > 0 small enough we get

N
I@lIZ: 0,77, (7)) + Il s o781 (1) + Z/O (:0upj (1, £;))2dt
j=1

N T

(A= 5) [ @ur(e002dt < CUR g
0

Now as d3p; = 0, fj — 02p; — 0:0:p;, we deduce i, € L?(0,T; L?(0,¢;)). Moreover

lllzz0,rm (7)) < Cllf 20,7827

Step 4: Interpolation arguments. Consider the linear operators ® and ¥, defined by ®(f) = ¢ and
U(f) = (Owp1(-,41) ... 0zon (-, €N)), where p is the associate solution of (2.2) with right-hand side f. From



the Steps 2 and 3 we get that

L*(0,T;H-Y(T)) — C([0,T]; L*(T)) N L*(0, T; H*(T)) is continuous,
L*(0, T;HE(T)) — C([0, T); H*(T)) N L*(0, T; H*(T)) is continuous,
L0, T;H-Y(T)) — (L2(0,T))" is continuous,

L0, T;HA(T)) — (H(0,T))" is continuous.

ESIEES IS S

By interpolation arguments as in [13] Section 2.3.2] we obtain the following estimates
lelle o, (7)) L2 0.13m2 (1)) + Z 10205 )l s o,y < Cllf 20,207 (2.15)

Remark 1. In [1J], the interpolation arguments are done dealing with the spaces H}(0,L) =:=
{ve HY(0,L), v(0) =0} and its dual H; '(0,L) = (H}(0,L))" with respect to the pivot space L*(0,L).
With this choice is not too clear for us how adapt [13, Section 2.5.2], this is why we prove tnvolving
the H=(0, ¢;)—norm and not H;*(0,¢;). o

Step 5: Estimate the L?(0,7)—norm of 82¢;(-,£;). With the estimate (2.15) we are almost ready with
)

the proof of (2.3). Only left to estimate the L?(0,7")—norm of 92, (-, ¢;). We multiply (2.2) by z8%¢; and
integrate  on (0, ;). We obtain

4 £ £ 4
—/ @(pj:z:@igojdz—/ 3xg0j173£<pjdx—/ 8§gpjm8§<pjdx:/ fix02p;dx.
0 0 0 0
By integrating by parts
¢ £ £
—/ 8tg0j$8§g0jdm:/ 5‘t8$g0jxamcpjdx+/ OrpjOppjdx
0 0 0
1 % ) ¢
=§/O 20,0 %) +/0 (=0apj = iipj = 1)Oupjla

:7/ xat(az%)Q—/ (8w<pj)2da:+/ (aicpj)de—/ fi0spjdx
2 0 0 0 0
— 000 (-, £7)0205 (-, L)),

N

Ny Ny
ZEJ 2 0; (- Zgj Z/ (202 + Oups) fide.



Integrating ¢ over (0,T)

£ 9 1L (Tl 9 Ty, 2
J
| om0, dodt + 33 | [ @en drdt + 3 | Fouee)ya

DN | =

= 1

J

0. [T 3 N /T b N T

+ ;/ (8§¢j(t,€j))2dt:52/ / (6§¢j)2d$dt—2/ Buipj(t, €:)0%05 (-, £5)dt
7 0 0o Jo = o

J Jj=1

N T
- Z/ / (202 + Oxp;) fdw,
=iJo Jo

using Young’s inequality, there exists C' > 0 such that

N T N
Z/o (020;(t,£5))2dt < C [ 1 f1 720,720y + 1@l F2(0 78207 + Z 10205 L)1 720,17
j=1

j=1
Finally by (2.15]) we conclude
N T
S [ @) < U ooz
j=1

and thus we have proved Proposition [2.3] O

3. Carleman estimate. In this section, we prove a Carleman estimate for the system (Adj)) in order to
deduce our observability inequality. Following [5, [13], let us introduce the following weights functions.

Bi(x)
a;(t ) = AT — )12 = Bj(z)p(t), (t,z) € Qj,
2 2 - (3.1)
Bi(x) = —a12® + bilix + by, x€(0,41),7=1,
! —a;z* —biljz+c;l2, w€(0,4),j=2,...,N.
where a;, bj, c; > 0, are taken such that 3; be strictly positive, and concave for j = 1,..., N. Moreover, ; is
strictly decreasing, and 3; is strictly increasing for j = 2,..., N. The objective of this section is to prove the

following Carleman estimate.
Remark 2. We use a temporal weight with power 1/2 (tY/2(T —t)1/2), which is optimal for the KdV equation

(see [13]). o
ProproOSITION 3.1. Let T' > 0, there exists C > 0 and s* > 0, such that for any QT € L3(T) and s > s*, the

solution ¢ of (Adj) satisfies

N N T
Z// €72 (s°p° ()% + $°p™(0ap;)?) davdlt < CZ/ e 208D (803 (0, (,45))% + sp(D2p; (1, 45))?) dt.
j=1 i j=270

(3.2)

Proof:

Let s > 0 and define ¢; = e *% ;. Consider the operator Ly; = dpp; + Oy¢; + O2¢; and the conjugated
operator Py; = e ** L(e* p;). After some computations, we can decompose P, as Py, = P1y; + Potp; +
R, where

Piipj = 030; + Op); + 352 (0,02 0pthj + Oty
Py = 53(3;8%)3% + 35(890%)831/)]' + s(Op); + 35(8%0@)(%% + 8(0z0)1),
Rap; = 35%(0n0j) (D20 ) + s(0a0u; ;.



Now, taking L?—norm in Q; of Py1p; + Parp; = P1p; — Rp; we get

/ /Q PuapyPotbydadt < [Pyy|220,) + IR 220,
J

From now on, we will use [ to denote fo Consider also I; , the L?—product in @; of the i—th term of P1¢);

with the k—th term of P2);. Before starting to estimate the terms, I; ;, we recall some properties of ;. Note
first that as 1); = e™**;, using the boundary conditions of ¥(t,£;) = 0and 1;(t,0) = e~ 0 (2, 0).
Thus asking to o satisfy a;(t,0) = a1(¢,0) for all j = 1,--- , N, which is equivalent to take, cjff = 102 we
deduce 9;(¢,0) = 91(¢,0).

3.1. Computing the terms I; ;. We compute first the terms I x,

ol =5 //(8waj)3wj8§wjdxdt. Performing integration by parts and using ¢;(t,¢;) = 0, ¥;(t,0) =
¥1(t,0) = and 2a; = 0, we get

T
ha =35 [[ 020, it + 550 [[ @2 0u0s 2020t =%y [ 0.050.0)7@uc 0,67

g3 T T ’
+—/(@%@mﬂ@%@mﬁﬁ+%vr@%@m%@mﬁwmmwmﬂﬁWﬁ

2 0 0

T T
- 35 / (¢1 (t7 0))2810@ (ta O)(aiaj (t7 0))2dt -5 / 8%% (t7 0)¢1 (ta O) (awaj (ta 0))3dt
0 0

o [15=3s //(aggozj)%wj@gz/)jdxdt. Integrating by parts, we get

3 3 (T 3 /T
11’2 = —53//(5‘31/)J)233a]dmdt + §SA (8§¢j(t,gj))2am()éj(t,€j)dt - §SA (ag’l/h(t, 0))28xaj(t,0)dt
o [1 5= s//(@taj)agibﬂ/}jdmdt. Again, using ¢;(t, ;) = 0, 1;(t,0) = ¢1(¢,0) = and d2a; = 0, we get
3 9 s [T 9 s [T 9
11,3 255 (ax¢j) a:ctajdxdt - 5 0 (8367/}] (taej)) 8taj (tvgj)dt =+ 5 o (8xw](t7 0)) 8taj(t7 O)dt
T s (T
s / a1, 0)41 (1, 0) s (1, 0)dt — / (1 (£, 0))2Dsarcry (¢, 0) dt
0 0
T
—s | 024;(t,0)1(t,0)9a(, 0)dt.
0
o I 4=3s //(8§aj)32¢j81wjdxdt. Integrating by parts and by d3a; = 0,
T
1174 =—3s //(831&7)283(13031}6[7’5 + 38/ Oiwj (t, Ej)OIwJ (t, Ej)aiozj (t,fj)dt
0
T
*38/ 8%1/1]-(75,O)Gzz/}j(t,O)Ggaj(t,O)dt.
0
o [15= s//(@zaj)ai’z/}jwjdxdt. Using ¢;(¢,£;) =0, 9;(¢,0) = 1(¢,0) = and 8i’aj =0, we get

T T
ha=ys [ [ (@) 0tasdadt =5 [ @yt ) 0uct )it + 5 [ (@ (t,0)0105 (1,00
0 0

T T
+ S/ 811/13(@0)1/}1(@0)82%(@O)dt - S/ a:z¢j(t70)¢1(t70)azaj(tvO)dt
0 0
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Now, we follow computing the terms Is ,
o« Iy =5 //(8zaj)38twj1/)jdxdt. By performing integration by parts and using ¢, (0,-) = ¢,;(T,-) =

we get

.[2,1 - —283 //(wj)z(azaj)2aztajdxdt.

o [ro=3s //(azaj)atwjai@/}jdxdt. Using 0,%;(0, -) = 09;(T,-) = 0 and the boundary conditions, we
get the following.

T
o= gs//(azz/)j)Qamtajdmdt— 3s //(aiaj)atwjamwjdmdt— 33/ 04,000, (t,0)0 s (t, 0)dt.
0
(] .[273 = s//(@taj)atwﬂ/zjdxdt. USil’lg '@/)j(o, ) = 'I/Jj(T, ) =0
.[273 = —; //(wj)zafajdmdt

o Ih,=3s //(8§aj)8twj811/1jdxdt. Observe, that this term eliminates the second term of I3 5.

° 1275 = s//(@xaj)ﬁt%wjdxdt. Again by ’(ﬂj(o, ) = wj(T, ) =0

Ig 5= "3 //(1/)]) xt()(jd.fdt.
We study now the terms I .

o [31= 3s° //(8maj)5az¢jwjdxdt. Thus, by the boundary conditions.

I3o=— // 021)? (0?02 ozjdxdtJrfs / (000 (t,£;))* (0pcr (¢, £;))3dt
/0 (et (1.0))* (D (1,0))
o I35 =35 / / (0p0t;)?0pvjOp1hjp;dadt. Using the boundary conditions
I35 =—3s3 //(@[Jj)Qamajaiajatajdxdt - gs?’ //(wj)Q(azaj)zamajdmdt
— 58 /()T(zbl(t, 0))%(9uax; (¢, 0))*rex; (¢, 0)dt.

o =95 [ [(0u0)7(0u0,)020, dat.
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o I35 = 353 //(8maj)38zz/1jwjdxdt. Integrating by parts and by the boundary conditions

9 34 (7
.[3’5 = —583 //(wj)z(aza])2(8§a])dxdt - 583/ (¢1(t70))2(8maj(t, 0))3dt
0
We finish this part by computing I, 1.
oI, =35 //(8xaj)38m1/}j1/)jdacdt. Noticing that I4; = %13’5, we get

83 T
i = =53 [ [ W) @s0, 2@kt =5 [ 0100 @s0.0) .

o [,0=23s //(8maj)3§¢j61wjdxdt. Integrating by parts

3 3 (T 3 (T
Ia =55 [ [@us(@a)dudt + 55 [ (0.03(0,6)7@uct, )it = 55 [ (0155(1,0)? Duc0,0))
0 0
o Iy3= 5//(8tozj)6x¢j¢jdxdt. Using the boundary conditions.

S

T
Iis =3 / / (43 Ouecrgrdt — /O (1 (£, 0))2 s, (£, 0)dt.

o Iy =3s //(azwj)Qﬁiajdxdt.

o Iy5= s//(@acozj)a@ijjdxdt. Using the boundary conditions.

S

T
Iis = 75//(wj)23§ajd:rdtf g/o (¥1(t,0))20,0, (£, 0)dt.

Finally, we obtain

4 5
// PryPothjdwdt =Y > T =TI+ By, + Bo,

i=1 k=1

where

15
I=- 25 / / (1;)2 (D) 02 dadt — 357 / / (1,202 )Pdact — 35 / / (1;)2(Bpr; 2 Durcrydavdt

+ 3s //(5‘m1/)j)2amtajdxdt + 3s //(8ij)283ajdl'dt _ S//(ij)Qaztajdxdt

_ g//(z/}j)QatQajdxdt _ g//(¢j)2a§ajdxdt,
T 3 T
By, 2483/ (0205 (t,£5))* (Baes (¢, £5))dt + *8/ (020;(t,45))? O (t, £;)dt
’ 0 2 0
s (T 2 r 2 2
5 [ @it o )t 35 [ 020, 0)0,0 (1. 51080 0, )i
2 0 0

T
+ S/O (8mwj(t7£j))281aj(t7Ej)dt7

12



By = By + B + B3, (3.3)

where
3 T T
By =~ §S5A (1/)1(15,0))2(@%(&0))5&—383’A (¥1(t,0))* (9w (1,0)) (D55 (1,0))dt
3 T 2 2 T 2
- 533/0 (¥1(t,0))? (0, (t,0)) 8taj(t,0)dt—2s3/0 (1(¢,0))(0j(t,0))3dt (3.4)

T , s (T , s (T ,
-5 | 00O .0)it = [ @i 000,00 5 [ wr0.0)2050,0)a

T T
B =35 [ 0100001 (,0)020 (1, 0) Duc (1,0)) % — 45° [ (001(0,0))* (0151, 0)) P
0 0

s T T
5 [ @002 @y .0+ 5 [ 0,05(0,0)01(1,0)0um00,0)de
0 0

T T
—s / (0:95(t,0))? (0per; (£,0))dt + s / Dot (t,0)1h1(¢,0)(02e;(¢,0))dt
0 0

T
3 / Byt (£, 000,10 (£, 0) (Dpcr; (£, 0))t,
0

T T
By =~ 53/ 9315 (¢, 0)1 (¢, 0) (D (£, 0))°dt — S/ 0315 (, 0)¢h1 (t,0) (Dper; (,0))dt
0 0

=3 [ B0 0)0,0,(6.0) (@0 (1,0)dt 5 [ G010V (1.0) Oras (10D (36)
0 0

3

r 2 2
-5 [ @000 0

3.2. Estimation of internal terms. We begin this section by recalling some properties of the weight
functions,

Gep <ay <B(—ap+ by +c)p, 01(by — 2a1)p < Dy < l1byp, 2oy = —2aip, 37
é?(—aj —b; + Cj)P <a; < f?ij, fj(—bj — 2aj)p < O0za; < —Ljbjp, 6§aj = —2ajp, j=2,...,N, ’
where
by > 2a1, and ;03 = 13, ¢; >a;+b;, Vj=2,...,N. (3.8)

We now focus our attention on the dominant terms of Z. From now on, C > 0 will be a generic positive
constant

15 9
—355 //(wj)Q(axaj)433ajdxdt - 55//(85%)285%(11‘(116.
Using (3.7)) we can observe that there exists C' > 0

1
—?555 //(wl)Q(azal)‘lagaldmdt - gs//(8§w1)28§a1dxdt

>C (// ssps(wj)dedt—l-// sp(a§¢j)2dxdt.)

13



To deal with the terms involving J,%; in Z, note that by integrating by parts, we can write

[ #0000 2anat =~ [ [ 0020000 | 260,01, 00 (1, 0)

Moreover, by Young’s inequality,

(0p;)?dxdt < C Vdadt + [ | sp(024;)*dxdt — B |,
J] (Jf s [f )

where

T
By = / 00,0, (1, 0)un (¢, 0)dt
0

Thus, the dominating terms satisfy

——s // ;) (0p0)* 20 ;dzdt — 75/ (024;)* 02 dxdt

>c<// dxdt+// (D,17) d:cdt+83>.

We can prove that the weight functions satisfy:

|Orerj| + |0ptcrs| + |Onarars| < CTp3, |02 < CT?pP.

T
Using p~! < 2 we obtain for the remainder internal terms

—3s3 //(%) (0%a;)dadt = 24 // als®p? (v;)?dadt > 0,
35> // 1/Jj (0 aj tozjdmdt‘ < —// 5 5 dmdt
3s° // ;) )20, a;0; ajatajdacdt’ < —// )2dxdt,
653/ (wj)Q(axajFamajdxdt‘
33// gﬂﬁj wtajdmdt’ < —// wz/)j dmdt,
3 [ (aan?@iajdwdt‘ <O [[ ¢ @ pasa

T3
(wj)ZaxtOljdﬁCdt‘ < 024 // s°p° (¥;)?dadt,

s5p° () dadt,
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5/ (¢j>2agajdmt’ < ST [ et pa
_; //(¢j)28§ajdxdt = s//ajp(wj)zd:cdt > 0.

for some C1,Cs, Cs,Cy, Cs, Cg, C7, > 0. Joining all these estimates, we derive,

2 3 2
I><C_C1T_C2_03T CGT C7T>//55¢J )2dxdt

2 2

T T2
( C’4 05 ) // (0u05)*dadt + CB; .

We deduce the existence of sy > 0, such that, taken s > sy we get

I>C (/ 64 V2dxdt + // 05 5% p*(0p1p;)* dadt + BS) , (3.10)

3.3. Estimation of exterior boundary terms. For the external boundary terms, notice that for
7 =2,..., N these terms are our observations. Moreover, we can show that

By, <c<// (a5 (. 45)) dt+//sp z/;jw))dt> Vi=2,...,N. (3.11)

For j = 1, observe that we have the following dominating terms

for some C' > 0.

T T
453 / (Ouths (1, 02))2 (s (1, 02))dt > C / & 00,1 (¢, 01)) %,
0 0

3

T
> /0 (021 (£ 01))2Dncr (£, £2) .

For the remaining terms, we apply the same strategy as in the case of internal terms.

S

T
*/ (01 (L, €1))* gy (t, £1)dt
0

cr (T
: < [ #o a0z

Using ab < (a? + b%)/2,

_3 / D @O e
0

/ (9 1/)1 t él) x’l/)l(t 61)8 Oél(t él)dt

2 &al(t,ﬁl)
3 T 2 2
+ 58 (811/)1(75,31)) aral(t,ﬁl)dt
0

2 T
<5 | S
0

T
+ gS/ (8%1/}1(75,61))281a1(t,€1)dt
0

15



Note that the last term can be eliminated by the second dominating term.

T
s [ (@uty(8,0))2000 (1, 0;)dt| <
0

2

T
/ s°p%(Dpib1 (8, 1)) dt.
0

Gathering these estimates and similar to the internal estimates, we obtain for all s > s; >0

T
By, > C’/ §303 (011 (8, £1))2dt > 0. (3.12)
0

3.4. Estimation of the central node terms. Let By = By + CBg, where, By comes from Section
and B from Section @ In this section, we show that we can choose the weights «; appropnately, such that

By > 0. The main idea is re-write By in terms only of ¢, (t,0) and d2¢,(t,0). The term B} in is already
in the desired form. For the term B3 + CBf, we notice that 9,1;(t,0) = —s0,;(t, 0)11(¢,0) and

T T
35/0 8t1/1j(t,O)@ij(t,())(ﬁxaj(t,()))dt:352/0 %(wl(t,O))Q(&caj(t,0))2dt.

After an integration by parts and using, ¥,(0,-) = ¢;(T,-) = 0 we get

T T
3s / Dt (1, 0) Dty (£, 0)(Drcry (£, 0))dt = —6s> / (1 (£, 002y ; (£, 0) s, (£, 0.
0 0

Therefore

B} + CB = — 3s* /T(1/11(t,0))283aj(t,0)(8maj(t,0))3dt — 45" /T(wl(t, 0))%(0.j(t,0))°dt
0

0

53 T T
+ E / (wl(t70))2(awa](ta0))2(8ta](ta0))dt + 582 / (wl(taO))Qawaj(tvo)awtaj(tvO)dt
0 0

T T
—53/ (w1(t70))2(8m0{j(t,0))3dt_32/ (1(t,0))2050(t,0) (02 (t,0))dt
0

0

T
— st [ @020 00,0, (1. 0.
0
For the term Bj, we have the following (see Appendix :

T

s> [ (1(t,0))3(9p0(t,0))3dt + 7s* /T(wj(t,0))262%@,0)(axaj(t,0))3dt

0 0

l\D\U‘

T

= [ (¥;(t,0))%(02;(t,0))*0,;(t,0)dt — s /T(wl(uo))?(aj(t,o))?’dt
0 0

N ©

T T
31 (41(t,0))2(0p04(t,0)) 3tozj(t,0)dt—453/ e B0G205 (¢, 0)4h1 (8, 0)(Dparj (t, 0))3dt

0 0

CIJ

T T
+5% [ (¥1(t,0))%02a(t,0)0p(t,0)dt + 65> / e 51 B0G20 (¢, 0)11 (¢, 0)Dpaj(t,0)020r; (t, 0)dt
0 0
T T
—s / e (0920 (£, 0)1) (t,0)0r0 (t, 0)dt — 5 / e (00205 (t,0)¢1 (¢, 0)0,cu5 (1, 0)dt
0 0

3 T
2 /0 e 2109, a;(t,0)(92p;(t, 0))dt.
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Now, we can obtain
By = Ay + A + As,

where

T T
Ay = — 857 /O (W1 (£, 0))2(Docr; (¢, 0))dt + ds? /0 (11 (£, 00220, (£, 0) (B, (£, 0))Pdlt

15
2

T T
— 45" / (11(t,0))*(0zcxj (t,0))%dt + 55 / (1(t,0))%0,v;(t,0)yscr; (L, 0)dt
0 0

/T(qpl(t, 0))2(0-a(t,0))(9%c;(t,0))%dt — 2s® /T(wl(t, 0))2(9-a(t,0))20pc;(t,0)dt
0 0

S

T T s T
+52/0 (wl(t,0))Za§aj(t,0)ataj(t,0)dtf5/0 (Y1 (t, 0))2(amaj(t,0))dtf§/o (1(t,0))*0c; (L, 0)dt

/OT(¢1 (tv 0))28104]‘ (t7 O)dt,

[NCRVA

T T
Ay = — 45 / e 020, (¢, 0)0 (1,0) (D, (1, 0))dt + 657 / e 0920, (¢, 0)0 (1,0), 5 (£, 0)02a (£, 0)dt
0 0

T T
—s /0 e 51 B0G20 (¢, 0)11 (¢, 0)Dp (¢, 0)dt — s /0 e 1 B0G205 (¢, 0)91 (8, 0)dp(t, 0)dt,

T
As = —53/ e 21809, 0, (1, 0)(02p; (t, 0))dt.
0

The purpose of the following is to show that under suitable choice of the weights the sum for j =1,..., N of
Ay, Ap and As are positive. In order to simplify the computations, we take the weights «; such that

Dpj(t,0) = Dy (t,0), Vi, k=2,...,N (3.13)
2y (t,0) = 02a(t,0), Vj=2,...,N. (3.14)

Note that these conditions are equivalent to take
bil; =bply, Vjk=2,...,N
ay=a;, Vj=2,...,N.

We start by studying A;, in particular, the term with the greatest power, i.e:
T
—835/ (¥1(,0))?(0j(t,0))°dt. We take now, the sum for j = 1,...,N of this term, using (3.13)

0
and the explicit expression for the weights given in ([3.1)

T

N T
—2885/ (¥1(t,0))* (Decr; (,0))°dt = [(N = 1)(bal2)® — @131)5]/ p° (11 (t,0))%dt,
j=1 0

0

1
by choosing b1¢; = ?bggg, for K > 0 big enough we get
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N 5 T ) s s s T . s )
_;85 /0 (t1(£,0))* (Do (£,0))°dt = [(N = 1)(bal2)” — (bit) ]/0 5P (11 (1, 0)) 2t

= |:(N — 1) - ;5:| (bggg)s/o 85p5(¢1(t70))2dt > 0,

For the other terms of A; we can observe that

cT g 5 5 2
<[ Sz

T
45t / (45 (£, 0))202x; (£,0) (D15 (£, 0)) it
0

35 | 0100020 (1. 0)) @20 (1.0) P

/0 5% (1n (1,0)) 2t

<C
S =2

2s° / T(wl(uo»%amaj(t, 0))?8a;(t,0)dt| < C—QT / ' s°p° (41 (t,0))*dt
0 S 0

2

T
Csf /0 s°p° (¢ (t,0)) dt

<

T
458 /O (1 (£, 0))2 (B, (£, 0)) Pt

2

/ C P (a(4,0))
0

<
=73

T
552 / (1;(t,0))?0pc;(t,0)0ppc; (¢, 0)dt
0

CT2 T
< 573/ s°p° (Y1 (¢,0))%dt
0

T
& / (1 (£, 0))20%a (1, 0)ycry (1, 0) dt
0

crs (7T
< ST/ s°p° (Y1 (t,0))dt
0

S T 2
5/0 (¢1(t,0)) (6x;ctaj(t70))dt

S

/T(¢1(t70))28taj(t70)dt
0

crd (T
. < —4/ s°p° (11 (¢, 0))dt
S 0

4

T T
’ <S5 | S
0

5 /OT(wl (tv 0))289304j (t7 O)dt

Thus, similar as in the past terms, for s > so > 0 we deduce

N T
> 4> c/ s?p% (41 (¢, 0))2dt.
=1 0
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Now we take the sum of j =1,..., N of A3, to obtain

N 3 N T
S =330 [ 000,000 1.0) P
j=1 j=1

N

3 T e 1
= bt /0 pe 250 | S (02 (1,0))7 — (001 (1,0))? |

=2

By the junction conditions of the adjoint equation (Adj) we observe that 0%p;(t,0) = (A — N)gi(t,0) —

Z (thO Thus,

N
(0201(£,0))% < 2(A = N)*(¢1(£,0))% + 2> (92;(£,0))?, (3.15)
j=2
from where we can derive
T N 2
20— N
ZAg *Sbgfg[) pe 250 (t0) < ); ~0;(t,0)) %(wl(tﬁ))z dt.

Therefore, for K > 0 big enough,

N T N T
oAy = Cs [ pe S @2y (0,0)d — C [ splun(t.0))ds
j=1 0 =2 0

N
Note that the second term can be absorbed by Z Aq. We take now the sum of j =1,..., N of Ay, thus
j=1

0

N N T
> A= _453/ (D0 (t,0))* 91 (£,0) D> e * D20, (¢, 0)dt — 45° / (Bwar (t,0))3¢1 (t,0)e 1 D920, (¢, 0)dt
j=1 0 j=2

+ 652 / Oz aal(t, 0)8 a1 (t,0)Y1(¢,0) Zeibal(t 0)82 ;i (t,0)dt

j=2
+ 657 / Oponr (t,0)0201 (£, 0)1 (¢, 0)e > D920, (¢, 0)dt
N
—s/ Doy (t,0)ehy (¢, 0)e > tO)Zaj% t,0) dt—s/ Dwara(t,0)1h1 (8,0 Z —s (B0 92 (¢, 0)dt
Jj=1 j=2
s / Buon (1, 081 (£, 0)e > B0 526 (1. 0) .
0

We show, that all these terms can be absorbed by the dominating terms of A; and A3. In fact, using Young’s

inequality we observe that
T
<c [ o|r o) dt
0

T
< C/ ) (P 84 41(1111(15 0 O 81 Ze—Qsal(t 0) '(t, 0))2) dt
0

C T 5.5 2
- /O P55 (1 (¢, 0)) 2t

N
S e 0020, (1,0)

j=2

N
—433/0 (Owaa(t,0))>¥1(t,0) > e =1 (0520, (¢, 0)dt
j=2

9 T al 2 t,0 2 2
+ ﬁ/o psZe_ sa1(t, )(axtp]'(t,o)) dt

j=2
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with the same strategy as before we derive

T
E / (Do (£, 0))4hn (£, 0)e =1 (B0 9201 (£, 0}t
0

C T
< SOW/ 0555(¢1(t70))2dt
0
C g —2sa
+ 5 ) pse” 2510 (9205 (¢.0))2dt,

using (3.15) we observe

T
—4s° / (Dporr (£,0))391 (t,0)e 521 B0 G20 (1, 0)dt
0

C T
< 5w | P02
0
OT4 T
+w/ p°s” (11 (t,0))2dt
0

N

c (7 _
+ 50.19/ pSZe QSal(t’o)(ai‘Pj(t70))2dt,
0

j=2
similarly

N T
CT
65/ 0z02(t,0)02001 (£,0)¢01 (£,0) Y e 10920, (t,0)dt| < — 5 / p°s° (11 (t,0))%dt
Jj=2 0

N

T T
/0 ps Y e 092, (t,0)) dt,
Jj=2

6s / Aworr (t,0)02 a1 (£, 0)11 (t,0)e **1 0920 (¢, O)dt‘ < —/ % (1 (t,0))2dt + CTS/ 557 (41 (¢, 0))2dt
0

+7 psz —2saq (t, 0) (t 0)) d

0

T
~s( = N) [ B t,0)(0n(0,0)

T
c1” | pewora
0

g4

—s/ dpary (t,0)ap1 (¢, 0)e~ st 0)282 (t,0)d
Jj=1

IA

al crs [T
—s/ Opara(t, 0)1hy (£,0) Y e 0920, (¢, 0)dt| < ?/ p°s5 (1 (t,0))%dt
Jj=2 0

+7 pSZ ~2sea(b0)(920,(8,0))d,
0

5 T

crs ("
SST/ p°s° (¢ (t,0)) dt

T
‘—s / D1 (t,0)11(t,0)e (M0 920, (¢, 0)dt p°s°(11(t,0))%dt
0

0

+ — ps Z e~ 25 (t0) (920, 0))2dt.
0
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We gather all these estimates for to obtain for s > s3

T
By > C / s°p°(¥1(t,0)) dt+/ spZe 2500 (t0) (925, (t,0))2dt | . (3.16)
0 0

3.5. Coming back to ¢;. First, note that

1R Bay < & [ %6702t

Thus, for all s > s4 > 0, this term can be absorbed by (3.10). Therefore, joining the estimates (3.10)), (3.12),
and (3.16) and noticing that Pi; = 0 we get that for all s > s* = max(so, 51, 52, 53, 54)

// dmdt+// (921;) dxdt<C’Z<// (901(t, £5)) dt+//sp %tf))dt)

Now, as ¥ = e™*Yp;, and O, = sa;e*Yp; + e 0,15, we get

e 2% (9;)% = ()%, €% (0uipj) < C (5707 (1)) + (0215)?) -

In the same way, we have

Duthj(t,0;) = e G oi(t, 45)
D2 (t,0;) = —280p00;(t, 0;)e 1B ot 0;) + eI B G20 (¢, 15),

and thus

(Duthy (8, £)))* = e 20 B8 (D,05(t, 45))
(02051, £))* < C (2220050 (D05 (8, )% + €7 2505 ) (D205 (1, £))?)

Gathering all these computations, we derive the following Carleman estimate.

N N T

S [ (00?5 O dadt < CF [ (3500, 0))F + 3902 1. 4,)))
j=1 j=2

From where we obtain ((3.2)). O

Remark 3. Note that our Carleman estimate (3.2)) is optimal in the sense of s and p powers, s°p® for ¢,
303 for dpp and sp for O2¢p. o

4. Proof of the null controllability result. With all the tools developed in the past sections, we are
in position to prove our null controllability result. By the structure of the temporal weight (3.1) and the
Carleman inequality (3.2)) we get as in [I4] [I3] that there exists C' > 0 such that

N o pE N T
S [ [erdnar <Y [ et (5001 6)F + 5ot ) b (@)
j=17% j=2

The next step is to obtain a dissipation estimate. We use (2.8) with f = 0, obtaining for all 0 <t; <ty < T,
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N . N 45
Z/ (pj(t1, 7)) %e “dx < ec(tg_tl)Z/ (pj(ta, ) e “dz.
=1 j=170

Taking 1 = 0 and t; € (%, 2F), we see that

3T

N 3Tt N 7
Z/ / (¢;(0,2))%e "dxdt < C Z/
j=1 % 0 %

Jj=1

45
/ () (t2, z))2e " dxdt
0

Finally, taking account that e=% < e™* <1 for all x € (0, ¢;), the above inequality and (4.1)), we conclude the
existence of C' > 0 such that

N 45 N T
Z/O (0(0,2))ddt < CZ/O e 200 (533 (D00, (1,45))% + 5p(Dop; (1, 45))?) dt
Jj=1 j=2

Thus, with the observability inequality, we have proved the null controllability result stated in Theorem [T.1}
Remark 4. At the end, with respect to the spatial part of the Carleman weight (3.1), we only ask for a;, b;,
c; > 0 satisfying for K > 0 big enough:

by > 2a1,
aj; = ay, C]f? = Cléi cj > a;+ bj, bjgj =Kbht, j=2,...,N.
Given {, 5 =1,...,N, it is not difficult to build weights satisfying these conditions. o

5. Conclusion and final remarks. In this work, the well-posedness and null controllability problem of
the linear KdV equation in a star-shaped network was addressed using 2N — 2 controls acting on N — 1 edges.
For the controllability, an observability inequality equivalent to the null controllability was proved by using an
appropriate Carleman estimate and a dissipation estimate. This is the first work, to the best of our knowledge,
dealing with Carleman estimates for the KdV equation in networks. The main challenge was to estimate the
traces terms in the central node, that were possible to manage using appropriate choice of Carleman weights.
For the well-posedness, the notion of transposition solution was utilized. Energy estimates were obtained for
different regularity framework, and the desired well-posedness result was derived by interpolation arguments.
Some interesting research directions for the future include:

¢ Reduce the number of controls: The possibility to reduce the numbers of controls or acted edges
remains an open question. In [I], the exact boundary controllability of the KAV in a star-shaped
network was proved by acting with N + 1 controls, N controls in the Neumann right conditions and 1
control in the junction (acting on the flux condition). However, in [I0], the exact controllability was
proved without the control in the central node but for a large time and small lengths. In our case, due
to the Carleman inequality we are not able to eliminate acted edges. An idea could be to study the
null controllability of the KdV equation on a tree network as in [II] and use the sense of propagation
of the KdV equation to eliminate some controls.

e Internal controls: For systems of KAV equations with internal couplings, the problem of null con-
trollability was studied in [6] for a Hirota-Satsuma system and in [3] for a Gear-Grimshaw system.
In these two works, the controllability was proved by using Carleman estimates, and the controls act
internally and locally. Due to the internal couplings term, they were able to use fewer controls than
equations. An interesting question is if the internal null controllability holds for the KdV equation in
a star-shaped network and if the central node conditions transmit enough information to reduce the
number of controls.

e Dispersive limit: In [2], the null controllability problem of a parabolic system on networks was
studied with a diffusive parameter ¢ — 0. In this setting, a possible future research line could be
to consider a dispersive parameter v in the KdV equation on networks and to study the uniform
null controllability, as in [I3]. However, some complications arise, such as how to adapt the junction
conditions in the hyperbolic limit problem on the network.
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e Inverse Problems: In [I], a KdV system on networks was proposed to model blood pressure. In this
context, an interesting inverse problem arises concerning the determination of cardiac outflow pressure
through noninvasive measurements. Also, considering different principal coefficients in each edge of
the KdV equation and studying the inverse problem of recovering them through measurements at the
ends of the network could be considered. The main tool proposed to solve these kinds of problems are
the Carleman inequalities, as developed here.
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Appendix A. Proof of Claim 1. In this part we derive the estimate (2.14]) of Claim For 6 > 0, Cs
denotes a generic constant (mostly big) depending on §. Let ¢ > 0. Now, we estimate the right-hand side
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terms T; for i = 1...6. We start with T, note that

S

T T T
/ 8xg0j(t, Ej)ﬁﬁﬁtgpj (t,fj)eigj dt = — / 8t89690j(t, Ej)aﬁgoj (t, éj)eizjdt + 5‘T<p] (t, g])aﬁﬁp] (t, gj)eiej
T
<C </0 10:0005(t, 4)||07; (1, £;)|dt

+ sup |awsoj<t7zj>|azmt,ej>em).
te[0,T

Using Young’s inequality we get for € > 0 and 5 > 0 small enough

T T T
/ 8xgpj(t,Ej)ﬁiﬁtgaj(t,ﬁj)e*@fdt Sé'/ (8t8x<pj(t,€j))2dt —+ CE / (65%0](15763))26&
s 0 0

+C sup |[|0z¢p;(t, ')||L°°(o,£j) ||3§<Pj(t7 ')||L°°(o,ej)
t€[0,T)

T
SE/o (010005 (t,45))%dt + Cc o5 ||i2(0,T;H5/2+”(074j))

+C sup |[[0x5(t, )l 10,65 [02¢;(t,) lE1 0,0,
+€[0,T)

Using interpolation between H>(0,¢;) and H'(0,¢;) we get for ¢ > 0

T T
/ Ouipj(t,£;) 020005 (t, £;)e ™" dt SE/O (0020 (t,€))*dt + e1Cell@jl 2 0,1;13(0,0,)) + Cer Cellsllizo.rom 0,0,

+C sup |[p;(t, ) 20,65 1905 (E: ) 30,6,
t€[0,T]

T
SE/O (0020 (t,45))*dt + e1Cell@jl|22 0,113 0.0,)) F Cer CellillTzo.r,m 0,0,
+ Cllejlleo.m;zs 0,0 €5 L (0,75 52 (0,6, )) -
Again by Young’s inequality for eo > 0
T T
/S Ouipj(t,£;) 020005 (L, £;)e ™ dt SE/O (0020 (t,4))*dt + e1Cell@jl 2 0,113 (0.0,)) + Cer Cellillizo.r,m 0.0,

+C sup ||w;(t, ) m2(0,e,) 1905t ) 3 (0,¢,)
t€[0,T)

T
S€/O (0005 (t,£7))2dt + (€1Cc + e2)ll@ |1 Z 10,13, 12.0.0,)
+ C&‘lCE”(pj ||%2(0,T;H1(0,€j)) + 052 H‘pj ||L°°(O,T;H2(O,Zj))a
By interpolating between H3(0,¢;) and L?(0,¢;) we get for e3 > 0

Ce, Il Loe (0,1:m2(0,,)) < Ceresll@jllLos 0,158 0,6;)) + CeaCes |0l Lo (0,7:22(0,,)) -

Thus we get,

T T
/ Outpj (1, £;) 020005 (L, £5)e ™ dt SE/O (0000 (t,£5))*dt + (£1C< + e283C,) 103 |1 E 0,77, 13 0,8, ))
+ Ce, Cell@jllT20.m,m1 0,0,y + CoaCos il cio,11:220,8))

Given € > 0 we can choose £1, €2 and e3 (in that order) such that ;Cc 4 €3 + £3C:, < € using ([2.10]) we get
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N T
Ty < EZ/O (010t (. £5))*dt + €| 2lIE o, 1185 (7)) + Cel 720 1 (7
=1

N T
< 52/0 (0:0up5 (1, £3))2dt + el |1 Z o, 1y:m5 (7)) + CE”iH%Q(O,T;Hg(T))'
=1

We pass now to the term T5. Observe that

£
| 1@y 00) = @y (0] €72 < Ol e oo
interpolating between H3(0,¢;) and L?(0,¢;) we get
£
/0 [(33903‘(8793))2 - (azéﬁj(sax))z] e Pdr < 5H90j||Qc*([o,T];H3(o,zj)) + Cs||<Pj||2c([o,T];L2(o,ej)),

using (2.10) we get

Ty < elloll2: o mms () + CE”ﬁ”i%o,:r;m#(ﬂ)
< ellellZ o, rme () + CEHiH%Z(O,T;]HIg(T))'

We study now the term Tj;.

/ / (Oups (1)) < Clls 2 0miaz 00,

interpolating between H'(0,¢;) and H~2(0,¢;) we get

/ /0 (Oep;(t,2))e™"dx < elljllin om0, + Cell il o,rsm—2(0,8))- (A.1)
As f € L2(0, T; HY(T), we get by (2.10) ¢; € C([0,T]; L?(0,¢;)) N L?(0,T; H*(0,¢;)), thus Oxp = —0pp —

d3p+ fj € HY(0,T; H2(0,¢;)). Moreover ”‘Pj”%{l(o,T;H%(o,ej)) < Cllfll 20,751 (7> using this in (A.1)) we
get

15 < EHEH?F(O,T;HWT)) + Ce”i”%Z(O,T;Hg(T))-

We follow with T}, note that by for € > 0 by Young’s inequality we get

|| it 000,00 do < elloslin o oay + Coleiltao o
s 0
< 5‘|(pj||%11(0,T;H1(O,Zj)) + Ce”‘Pj||2L°o(0,T;H2(o,ej))a

the term |[|¢; H%m(O,T;Hz(NJ_)) can be estimated as in T5, we finally get

Ty < 5||£||§11(0,T;H1(7’)) + 5||£||%([0,T];H3(T)) + CﬁHiHQL?(O,T;HS(T))'

We continue with 75, by Young’s inequality and n > 0 small enough

T T T
/ Daip; (1, £7)00ri0 (1, L)Y <e / (DaBuip; (t,£,))%dt + C. / (Doip; (£, ;))dt
s 0 0

T
E/O (8zat‘»0j(t’€j))2dt + CE”SOJ'||%2(0,T;H3/2+n(07[j))7
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interpolating between H3(0,¢;) and H'(0,¢;)

||<Pj||2L2(0,T;H3/2+n(o,zj)) < 51H<Pj||%2(o,T;H3(o,e]-)) +Ce, ||@j||%2(O}T;H1(O,Zj))

taking €7 such that ¢1C. < ¢ and using (2.10)) we deduce

N T
15 < EZ/O (020105 (t, £5))dt + €l @l o 7m0 (7)) + C'z-:Hi||2L2(o7T;Hg(T))'
We conclude by studying Ty, we see that
T T T
/ / fi(t, m)@i@tgoj (t,z)e *dx = — / / 0. f;(t, a:)agatcpj(t, x)e Tdr + / / fi(t, x)aﬁatgaj (t,z)e “dx
s 0 s 0 s 0
T Ej T éj
:/ / 8§fj (t,2)0.0:p;(t, x)e” “dax — 2/ / O fj(t, )00, (t, x)e "da
s 0 s 0

T L
+/ / fi(t,)0,0:p;(t, x)e "dx
s 0
T 4
:/‘/(%ﬁ@@‘aiﬂ@@+ﬂﬁmwmwﬂwk*m.
S 0

By Young’s inequality we get

Ts < ellellFr o, rm (7)) + Ca”i”%Z(o,T;Hg(T))-

Appendix B. Computation on Bj. In this part we derive (3.6). First note that using ¢; = e **p,;, we
derive that

D24h;(t,0) = [—802a;(t,0) + s2(Dpavj(t, 0)) )11 (t,0) + e 51 EDG204(2,0).
Thus,

/ 024, (1, 0)4b1 (1, 0) (Do (1, 0)) %t = — s / (1t 0))2(5 (£, 0))alt

T
(1(t,0))202a;(t,0) (0 (t,0))>dt

T

3 e 0920 (,0)¢(t,0) (9 (t, 0))3dt,

— S

c\o

T
—s/ O2;(t,0)1b1(¢,0) s (t,0)dt = — s ) (11(t,0))% (0 (t,0))*0pa; (8, 0)dt
T

+5% [ (¥1(t,0))202a;(t,0)0pvj (t,0)dt

N o

8/‘fmwmy%@mwum@%@®d
0

T T
—35/0 O2;(t,0)0,10;(t, 0)02c;(t,0) =3s4/0 (¥1(t,0))?(0xa;(t,0))3 02 (t, 0)dt

T
=353 [ (¥1(t,0))20,0;(t,0)(02a;(t,0))*dt

0
T

+ 35> / e 0920 (¢, 0)91 (8, 0)dpaj (t, 0)D2a (t, 0)dt,
0



T T T
s / 0245 (1, 0)0n (£, 0)0y y (1, 0)dt = — ° / (1 (£, 0)) (s (1, 0))dt + &2 / (1 (£, 0082, (£, 0)Dacr; (1, 0)lt
0 0 0

T
—s / e B0G20 (¢, 0)1h1 (8, 0)Dpar (t, 0)dt,
0

T

T
—55/ (0240, 0)) 20001 (£, 0)dt = — 257 [ (11 (£, 0))2(wer; (1, 0)) dt
2 0

N |

0

T

+3s4/ (1;(t,0))%0%a;(t,0)(9pc;(t,0))dt
0

T

2 (;(¢,0))3(9%a;(t,0))* 05 (t, 0)dt
0

T
33/ e~ 501 (t,0) 82g0j(t,O)wl(t,O)(amaj(t,O))3dt

w\w
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(=)

_l_
w

T
52 / e (40 920 (4, 0)y (¢, 0)0201; (£, 0)Dpcr; (£, 0)dt
0

M\w

T
S/ e~ 25000 g i (t,0)(82¢;(t, 0))2dL.
0
Finally, we get

5 T T
By == 55° [ (0,002 (0ua(0,0))%a + 75 [ (01,0002 (1,0)(Duc (t.0)
2 0 0

9 / 0y (4,0))2 (0204 (£,0)) 26502, (1, 0)dt — ° / L (8,0))2 0 (1, 0)at
0 0
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