Mayowa Ayodele
email: mayowa.ayodele@fujitsu.com

Richard Allmendinger
email: richard.allmendinger@manchester.ac.uk

Manuel López-Ibáñez
email: manuel.lopez-ibanez@manchester.ac.uk

Arnaud Liefooghe
email: arnaud.liefooghe@univ-lille.fr

Matthieu Parizy
email: parizy.matthieu@fujitsu.com

Applying Ising machines to multi-objective QUBOs

Keywords: CCS CONCEPTS, Computer systems organization → Quantum computing, • Mathematics of computing → Combinatorial optimization, • Applied computing → Multi-criterion optimization Multi-objective Optimisation, QUBO, UBQP, Aggregation, Scalarisation, Digital Annealer

come

INTRODUCTION

Multi-objective optimisation problems have multiple and often conflicting objectives. The goal of multi-objective optimisation is to find the Pareto front (PF). The PF is the set of solutions where no other feasible solution can improve on at least one objective without sacrificing the performance of at least one other objective.

Unconstrained Binary Quadratic Programming (UBQP) problems also known as Quadratic Unconstrained Binary Optimisation (QUBO) problems have been widely studied. QUBO is of particular interest within the context of Ising machines because combinatorial optimisation problems can be formulated as QUBO, allowing Ising machines to be applied to a wide range of practical problems. Many practical problems naturally have multiple and often conflicting objectives e.g. the Cardinality Constrained Mean-Variance Portfolio Optimisation Problem (CCMVPOP) [START_REF] Chang | Heuristics for cardinality constrained portfolio optimisation[END_REF] which entails minimising risks while maximising returns. Ising machines such as Fujitsu's Digital Annealer (DA) [START_REF] Hiroshi | Third Generation Digital Annealer Technology[END_REF] and D-wave's Quantum Annealer (QA) [START_REF] Mcgeoch | The D-Wave Advantage System: An Overview[END_REF] are however single-objective solvers. To apply Ising machines to multi-objective problems, the problem needs to be converted to a single-objective problem.

Scalarisation by means of weighted sum is a common approach for transforming multi-objective problems into single-objective ones, allowing the application of single-objective solvers. The scalarisation weights play a critical role in determining the balance between the objectives and must be chosen carefully to achieve evenly distributed solutions around the PF. We want to return solutions with varying tradeoffs between the objectives such that a decisionmaker can have a balanced variety of options to choose from. Several methods for deriving scalarisation weights have been proposed in previous work.

In previous work applying Ising machines to multi-objective problems, scalarisation weights were derived experimentally, using problem-specific knowledge, uniformly generated weights, or adaptively generated weights. For example, scalarisation weights were derived experimentally [START_REF] Elsokkary | Financial Portfolio Management using D-Wave's Quantum Optimizer: The Case of Abu Dhabi Securities Exchange[END_REF] or using problem-specific knowledge [START_REF] Phillipson | Portfolio Optimisation Using the D-Wave Quantum Annealer[END_REF] when QA was applied to multi-objective portfolio optimisation problems. Scalarisation weights were also derived experimentally when a QA-inspired algorithm was applied to the problem of designing analog and mixed-signal integrated circuits [START_REF] Martins | Shortening the gap between pre-and post-layout analog IC performance by reducing the LDE-induced variations with multi-objective simulated quantum annealing[END_REF]. In [START_REF] Ayodele | A Study of Scalarisation Techniques for Multi-Objective QUBO Solving[END_REF], an adaptive method (referred to as an iterative method) was proposed for the CCMVPOP and compared with randomly and uniformly generated weights. The adaptive method derives new weights by calculating the average of a pair of previously explored scalarisation weights. The pair of weights selected are those that lead to the solutions with the highest Manhattan distance between their objective function values. The authors showed that a higher hypervolume [START_REF] Zitzler | Multiobjective Optimization Using Evolutionary Algorithms -A Comparative Case Study[END_REF] (Section 5.3.2), a popular algorithm performance metric in multi-objective optimisation, was achieved when compared to uniformly or randomly generated weights. The improved performance of the adaptive method is consistent with previous findings based on classical algorithms. For example, a dichotomic procedure that derives new weights perpendicular to two solutions in the objective space that have the largest Euclidean distance between them was applied to the bi-objective traveling salesman problem [START_REF] Dubois-Lacoste | Improving the Anytime Behavior of Two-Phase Local Search[END_REF], bi-objective permutation flow-shop scheduling problem [START_REF] Dubois-Lacoste | Improving the Anytime Behavior of Two-Phase Local Search[END_REF] and bi-objective UBQP [START_REF] Liefooghe | Experiments on Local Search for Bi-objective Unconstrained Binary Quadratic Programming[END_REF]. This adaptive method is shown to have better anytime behaviour when compared to uniformly generated weights. This means that the adaptive approach can deliver a good performance even with a small number of weights.

These adaptive methods have only been applied to bi-objective problems. The higher the number of objectives, the higher the number of weights typically needed to reach a good PF representation. Therefore, it becomes important to explore better techniques for deriving scalarisation weights for problems with more than two objectives. In this work, we extend the adaptive method in [START_REF] Ayodele | A Study of Scalarisation Techniques for Multi-Objective QUBO Solving[END_REF] in the following ways:

• We extend the approach for more than 2 objectives, • We consider replacing the Manhattan distance metric with Euclidean distance,

We experiment with the proposed approach on mUBQP instances with 2, 3, and 4 objectives. To assess the performance of the proposed adaptive method, we compare it to other scalarisation techniques: uniformly generated weights based on Maximally Dispersed Set (MDS) of weights (also known as simplex lattice design) proposed in [START_REF] Steuer | Multiple Criteria Optimization: Theory, Computation and Application[END_REF], an adaptive method based on dichotomic search and Euclidean distance [START_REF] Dubois-Lacoste | Improving the Anytime Behavior of Two-Phase Local Search[END_REF] (for 2 objectives only) and an adaptive method based on average weights and Manhattan distance [START_REF] Ayodele | A Study of Scalarisation Techniques for Multi-Objective QUBO Solving[END_REF]. To be consistent with the term used in recent work, we will refer to the MDS as simplex lattice design for the rest of this work. To achieve a fair comparison, the same Ising machine is used within the scalarisation frameworks.

The rest of this work is structured as follows. We introduce the Ising machine used in this study in Section 2. The mUBQP problem formulation is presented in Section 3. The techniques of deriving scalarisation weights are presented in Section 4. Parameter settings and the considered mUBQP instances are presented in Section 5. Results and conclusions are presented in Sections 6 and 7.

ISING MACHINES

Ising machines are physical devices that aim to find the absolute or approximate ground states of an Ising model or the equivalent QUBO. Detailed descriptions of dedicated hardware solvers, particularly Ising machines, for solving combinatorial optimisation problems are presented in [START_REF] Mohseni | Ising machines as hardware solvers of combinatorial optimization problems[END_REF]. Although there are many commercial Ising machines such as D-wave's QA, Toshiba's Simulated Bifurcation Machine and Fujitsu's DA, we demonstrate the potential of the proposed scalarisation method using Fujitsu's DA.

Fujitsu's DA has evolved over the years, from the 1 st and 2 nd generation, which is capable of solving QUBO problems of up to 1,024 bits and 8,192 bits, respectively, to the 3 rd and 4 th generations, which are able to solve Binary Quadratic Problems (BQPs) with up to 100,000 bits. Although the 3 rd and 4 th generation DAs have more capabilities than previous generations such as automatic tuning of constraint coefficients, ability to handle inequality constraints, and a higher number of bits, these capabilities were not needed for the mUBQP instances used in this study. We, therefore, use the 2 nd generation DA. More details about the DA are presented in [START_REF] Hiroshi | Third Generation Digital Annealer Technology[END_REF][START_REF] Matsubara | Digital Annealer for High-Speed Solving of Combinatorial optimization Problems and Its Applications[END_REF]. In the rest of this work, DA will be used to refer to the 2 nd generation DA.

Although the DA has been used in this study as the underlying Ising machine, the scalarisation methods presented in this work can be used when applying any Ising machines to QUBO formulations of multi-objective combinatorial optimisation problems.

MULTI-OBJECTIVE UNCONSTRAINED BINARY QUADRATIC PROGRAMMING

The multi-objective UBQP (mUBQP) is formally defined as [START_REF] Liefooghe | A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming[END_REF]:

𝑐 𝑘 (𝑥) = 𝑛 ∑︁ 𝑖=1 𝑛 ∑︁ 𝑗=1 𝑄 𝑖 𝑗𝑘 𝑥 𝑖 𝑥 𝑗 𝑘 ∈ {1, 2, . . . , 𝑚} , (1)
s.t. 𝑥 ∈ {0, 1} 𝑛 , (2
)
where 𝑄 is a 3-dimensional matrix consisting of 𝑚 number of 𝑛 × 𝑛 QUBO matrices, 𝑚 is the number of objectives, 𝑐 = (𝑐 1 , . . . , 𝑐 𝑚) is an objective function vector and 𝑛 is the problem size (number of binary variables). We combine the objectives using a vector of scalarisation weights 𝜆 𝜆 𝜆 = (𝜆 1 , . . . , 𝜆 𝑚), such that, 𝑚 𝑗=1 𝜆 𝑗 = 1. The aim is to minimise the energy 𝐸 (𝑥) defined as:

Minimise 𝐸 (𝑥) = 𝜆 1 • 𝑐 1 (𝑥) + • • • + 𝜆 𝑚 • 𝑐 𝑚 (𝑥) (3)

SCALARISATION METHODS FOR QUBO SOLVING

In this section, we present the scalarisation techniques used in this work.

• Uniformly generated weights based on simplex lattice design [START_REF] Zhou | A multi-objective tabu search algorithm based on decomposition for multi-objective unconstrained binary quadratic programming problem[END_REF] (Section 4.1) • an adaptive method based on dichotomic search [START_REF] Dubois-Lacoste | Improving the Anytime Behavior of Two-Phase Local Search[END_REF] (Section 4.2) • proposed extension of the adaptive method based on averages proposed in [START_REF] Ayodele | A Study of Scalarisation Techniques for Multi-Objective QUBO Solving[END_REF] (Section 4.3)

Uniform Weights: Simplex Lattice Design

Algorithm 1 presents a scalarisation technique that utilises uniformly distributed scalarisation weights. Such evenly distributed weights are generated using the simplex lattice design. The required parameters are 𝑃, the list of QUBOs representing all the objectives, n_weights, number of weights, and alg_parameters, a set of parameters used by the Ising Machine of choice (DA). Parameters used in this work are presented in Table 1. Simplex lattice design is a common approach for generating evenly distributed weights when solving multi-objective problems with scalarisation techniques [START_REF] Chen | A decomposition-based many-objective evolutionary algorithm with adaptive weight vector strategy[END_REF][START_REF] Zhang | MOEA/D: A multiobjective evolutionary algorithm based on decomposition[END_REF][START_REF] Zhou | A multi-objective tabu search algorithm based on decomposition for multi-objective unconstrained binary quadratic programming problem[END_REF]. The simplex lattice design consists of two parameters 𝐻 and 𝑚 (Algorithm 1, line 1). A simplex-lattice mixture design of degree 𝐻 consists of 𝐻 + 1 points of equally spaced values between 0 and 1 for each objective, while 𝑚 is the number of objectives. The possible scalarisation weights will be taken from 0 𝐻 , 1 𝐻 , . . . , 𝐻 𝐻 . These weights are combined such that they sum to 1. The number of scalarisation weight vectors that can be generated using this approach is 𝐻 +𝑚-1

𝑚-1 = (𝐻 +𝑚-1)! 𝐻 !(𝑚-1)! ;
e.g if 𝑚 = 2 and 𝐻 = 3, the number of weights is 4 which are [(0.00, 1.00) , (0.33, 0.67) , (0.67, 0.33) , (1.00, 0.00)]. To achieve 10 weights used in this study 𝐻 = 9, 3 or 2 when 𝑚 = 2, 3 or 4, respectively (Algorithm 1, line 1).

The solver (DA) is applied to a weighted aggregate (Algorithm 1, line 5) of the QUBOs representing all objectives. DA returns a set of more promising solutions by default. All of these are added to the archive (𝐴). The final step (Algorithm 1, line 8) entails filtering 𝐴 such that only the non-dominated solutions are returned. A solution is non-dominated if there is no other solution that is better in one objective without being worse in another objective.

Adaptive Weights -Dichotomic Search

Scalarisation technique based on dichotomic search is presented in Algorithm 2. In addition to parameters (𝑃, n_weights, alg_parameters) used in Section 4.1, a parameter 𝑑𝑚, metrics, is also used. This method is initialised with a set of weights Λ that minimise each individual objective (e.g [(0.00, 1.00) , (1.00, 0.00)] for two objectives or [(0.00, 0.00, 1.00) , (0.00, 1.00, 0.00) , (1.00, 0.00, 0.00)] for three objectives). Once these weights are exhausted, new weights are derived adaptively by targeting the largest gap within the set of solutions found. The largest gap between each pair of solutions is measured in the objective space based on the selected 𝑑𝑚; i.e Euclidean distance. The differences in cost function values that correspond to the largest gap are used to derive new weights for the next iteration (Algorithm 2, lines 9-12). The difference in 𝑄 ←𝑠𝑢𝑚(𝑃 𝑗 • 𝜆 𝑗 ∀ 𝑗 ∈ {1, . . . , 𝑚})

5:

𝑌 ← Solver(𝑄, alg_parameters)

𝑡𝑒𝑚𝑝_𝜆 1 ←𝑐 2 (𝑦) -𝑐 2 (𝑧) 10: 𝑡𝑒𝑚𝑝_𝜆 2 ←𝑐 1 (𝑧) -𝑐 1 (𝑦) 11: 𝑠𝑢𝑚_𝜆 ← 𝑡𝑒𝑚𝑝_𝜆 1 + 𝑡𝑒𝑚𝑝_𝜆 2 12: 𝜆 𝜆 𝜆 ← 𝑡𝑒𝑚𝑝_𝜆 1 𝑠𝑢𝑚_𝜆 , 𝑡𝑒𝑚𝑝_𝜆 2 𝑠𝑢𝑚_𝜆 13: end if 14: 𝑄 ← (𝑃 1 • 𝜆 1) + (𝑃 2 • 𝜆 2) 15:
𝑌 ← Solver(𝑄, alg_parameters)

𝑊 𝑖 ← [𝑥, (𝑐 1 (𝑥), 𝑐 2 (𝑥))]
where 𝑥 = 𝑌 0 ⊲ save solution and cost function values for the best solution in 𝑌 18: end for 19: return all non-dominated solutions from archive 𝐴 the first and second cost function values are normalised such that they sum to 1, and are used as the scalarisation weights for the second and first objective respectively. This method was designed for problems with two objectives only. The best solutions returned by the DA during each scalarisation are saved to the archive 𝐴 which are then filtered for non-dominated solutions.

Adaptive Weights -Averages

The proposed extension to the adaptive method in [START_REF] Ayodele | A Study of Scalarisation Techniques for Multi-Objective QUBO Solving[END_REF] is presented in Algorithm 3. This adaptive method was originally proposed for QUBO formulations of the bi-objective Cardinality Constrained Mean-Variance Portfolio Optimisation Problem (CCMVPOP). In this work, we extend this adaptive approach for QUBO problems with more than two objectives. We also extend the distance metric 𝑑𝑚 to include Euclidean distance. We note that only Manhattan distance was used in [START_REF] Ayodele | A Study of Scalarisation Techniques for Multi-Objective QUBO Solving[END_REF]. Euclidean distance has however been used within the dichotomic framework in [START_REF] Dubois-Lacoste | Improving the Anytime Behavior of Two-Phase Local Search[END_REF].

Similar to the adaptive method based on dichtomic search, parameters (𝑃, n_weights, alg_parameters, 𝑑𝑚) are used. This method is also initialised with a set of weights that minimise each individual objective independently. Once these weights are exhausted, new weights are derived adaptively by targeting the largest gap in the objective space (measured by the selected 𝑑𝑚 ∈ {𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛, 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛}) of the set of solutions found. The two weight vectors (corresponding to all objectives) that lead to the largest gap are averaged for each objective (Alg. 3, line 9) and used in subsequent iterations until the stopping criterion is met (i.e. n_weights is reached). The best solutions returned by the DA during each scalarisation are saved to the archive 𝐴. The filtered set of non-dominated solutions is returned as the final output (Alg. 3, line [START_REF] Zitzler | Multiobjective Optimization Using Evolutionary Algorithms -A Comparative Case Study[END_REF]). Unlike the dichotomic method, this approach can be applied to any number of objectives.

Note that for all of the methods presented in this work, Solver refers to the DA while alg_parameters refers to DA parameters (Algorithm 1, line 5; Algorithm 2, line 2; Algorithm 3, line 13).

In [START_REF] Ayodele | A Study of Scalarisation Techniques for Multi-Objective QUBO Solving[END_REF], a set of top solutions (solutions with lower energies/cost function) were considered for non-dominance. We use the same approach in this work since the DA returns a set of top solutions by default. To apply the presented methods using an alternative Ising machine, Solver will refer to such Ising machine.

𝜆 𝜆 𝜆 ← 𝑈 1 +𝑉 1 2 , • • • , 𝑈 𝑚 +𝑉 𝑚

EXPERIMENTAL SETTINGS

In this section, we present the mUBQP instances, parameter settings and performance measures considered in this study.

Multi-objective Unconstrained Binary Quadratic Programming Instances

The mUBQP instances used in this study have been obtained and are available from mUBQP Library. 1 The Library consists of instances with varying 𝜌-values (objective correlation coefficient), 𝑚 (number of objective functions), 𝑛 (length of bit strings), and 𝑑 the matrix density (the frequency of non-zero numbers).

In this study, we use eleven instances with 𝑛 = 1000, varying 𝜌 ∈ {-0.9, -0.2, 0.0, 0.2, 0.5, 0.9}, 𝑚 ∈ {2, 3}, 𝑑 ∈ {0.4, 0.8}. In order to experiment the proposed approach on instances with four objectives, we use the instance generator 2 provided as part of the mUBQP Library using parameters 𝑛 = 1000, 𝜌 ∈ {-0.2, 0.2, 0.5, 0.9},

Parameter Settings

Parameter settings used by DA are presented in Table 1. The DA is capable of executing multiple annealing methods in parallel. The number of parallel executions is controlled by the number of replicas parameter. Each replica executes for a given number of iterations, this is controlled by the number of iterations parameter. 𝑇 0 is the initial temperature used by the DA, the temperature is reduced at the rate specified by 𝛽 after every 𝐼 iteration(s). We use the exponential mode of reducing the temperature. The exponential mode calculates the temperature at each iteration based on the temperature at the previous iteration. The DA employs an escape mechanism called a dynamic offset, such that if a neighbour solution was accepted, the subsequent acceptance probabilities are artificially increased by subtracting a positive value from the difference in energy associated with a proposed move [START_REF] Matsubara | Digital Annealer for High-Speed Solving of Combinatorial optimization Problems and Its Applications[END_REF]. The number of weights (n_weights) explored by all methods is 10. Where uniformly generated weights are used 𝐻 = 9 when 𝑚 = 2, 𝐻 = 3 when 𝑚 = 3 and 𝐻 = 2 when 𝑚 = 4.

Performance Measures

Empirical Attainment Function (EAF).

The EAF of an algorithm gives the probability, estimated from multiple runs, that the non-dominated set produced by a single run of the algorithm dominates a particular point in the objective space. The visualisation of the EAF [START_REF] Grunert Da Fonseca | Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function[END_REF] has been shown as a suitable graphical interpretation of the quality of the outcomes returned by local search methods. The visualisation of the differences between the EAFs of two alternative algorithms indicates how much better one method is compared to another in a particular region of the objective space [START_REF] López-Ibáñez | Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization[END_REF]. EAF visualisations were generated using the eaf R package. 45.3.2 Hypervolume. The hypervolume [START_REF] Zitzler | Multiobjective Optimization Using Evolutionary Algorithms -A Comparative Case Study[END_REF] is one of the most frequently used quality metrics in multi-objective optimisation because it never contradicts Pareto optimality and measures both the quality and diversity of a non-dominated set. The hypervolume measures the size of the objective space (the area in 2D, the volume in 3D) that is dominated by at least one of the points of a nondominated set bounded by a reference point that is dominated by The reference points used for hypervolume calculation in this study are presented in Table 2. These values were derived experimentally: they are the highest values attained by the DA for each objective when using the uniform method of generating weights.

Number of Non-dominated Solutions.

Although the number of non-dominated solutions found by a multi-objective algorithm is not sufficient to assess its performance, it can provide valuable information when compared with other quality metrics such as hypervolume. In this study, we report both the number of non-dominated solutions and the hypervolume achieved by each method.

RESULTS AND DISCUSSION

The mean and standard deviation of hypervolume values of solutions found across 20 runs are presented in Table 3. Column Uniform presents the performance of the DA based on evenly generated weights (Algorithm 1), column Adaptive-Averages-Manhattan presents the performance of the DA based on an adaptive method (averages) of generating weights (Algorithm 3) where the distance metric is based on the Manhattan distance, column Adaptive-Averages-Euclidean presents the performance of the DA based on an adaptive method (averages) of generating weights (Algorithm 3) where the distance metric is based on the Euclidean distance and column Adaptive-Dichotomic-Euclidean presents the performance of the DA based on an adaptive method (dichotomic search) of generating weights (Algorithm 2) where the distance metric is based on the Euclidean distance.

For the problem instances with two objectives, executing the DA with the Uniform method leads to the worst performance on instances with negative or no correlation between their objectives. The Uniform method however leads to more promising performance on instances with positive correlations between their objectives.

The DA reaches the best mean hypervolume when executed with the Uniform method on an instance with a positive correlation between its objectives (0.9_2_1000_0.8_0) and the same mean hypervolume as the DA executed with Adaptive-Averages-Euclidean or Adaptive-Dichotomic-Euclidean method on two instances with positive correlations between their objectives (0.2_2_1000_0.8_0 and 0.9_2_1000_0.4_0). We show that running the DA with the Adaptive-Dichotomic-Euclidean method is consistently among the best on 6 of 7 mUBQP instances with 2 objectives. This method however cannot be applied to instances with more than 2 objectives. With the exception of instance '0.9_2_1000_0.8_0', the proposed Adaptive-Averages-Euclidean is also consistently as good as or better than Uniform on instances with 2 objectives. We also show that the hypervolume of the DA with the proposed Adaptive-Averages-Euclidean is consistently either as good as or better than the existing counterpart Adaptive-Averages-Manhattan.

We show this performance difference in more detail using EAF visualisations in Figure 1. Darker regions indicate regions of the front where one algorithm is better than the other. We see more evenly distributed darker regions when the DA is executed with Adaptive-Averages-Euclidean compared to Adaptive-Averages-Manhattan. We also see more evenly distributed darker regions when the DA is executed with Adaptive-Averages-Euclidean compared to Uniform, as shown in the EAF plots in Figure 2) particularly on instances where higher mean hypervolume values were recorded.

For problems with 3 or 4 objectives, we do not present results for Adaptive-Dichotomic-Euclidean because it cannot be applied to problems with more than 2 objectives. When the DA is executed with the proposed Adaptive-Averages-Euclidean, significantly higher mean hypervolume values are attained when compared to Adaptive-Averages-Manhattan or Uniform on all mUBQP instances with 3 or 4 objectives. Uniform particularly presents the worst performance on all mUBQP instances with 3 or 4 objectives.

Table 4 also shows that Uniform returns the least mean number of non-dominated solutions. There is however no one adaptive method which consistently leads within the context of the number of non-dominated solutions found.

The better performance (hypervolume) of Adaptive-Averages-Euclidean compared to Adaptive-Averages-Euclidean indicates that Euclidean distance works better than Manhattan distance on the instances used in this work. The poorer performance of Uniform is not unexpected. It should be noted that in real-world scenarios, it is often the case that we do not want any of the objectives to have their weight equal to zero as this completely disregards the objective. In the case of uniform weights generated using the simplex lattice design, a minimum of 𝐻 = 𝑚 is needed at the very least to explore weights where none of the values is equal to 0. The number of weights when 𝐻 = 𝑚 is n_weights = 2𝑚-1 𝑚-1 . This value can grow very large as the number of objectives increases; 3 weights for 2 objectives, 10 weights for 3 objectives, 35 weights for 4 objectives, . . . , and 378 weights for 10 objectives. However, the adaptive approach explores a set of weights where none of the values is equal to 0 in a minimum of 𝑚 + 1 weights. Adaptive methods will therefore, particularly in scenarios where trying scalarisation weights greater than 2𝑚-1 𝑚-1 is impractical, be more suitable.

CONCLUSIONS

This research explored various techniques for generating scalarisation weights within the context of multi-objective QUBO solving.

The findings demonstrate that adaptive methods of weight generation can enhance the performance of the DA. We also show that the proposed method, which is based on Euclidean distance, leads to competitive performance on problems with 2 objectives and the best performance on instances with 3+ objectives. Areas of further research include comparing the presented approaches on QUBO problems with more objectives, verifying whether increasing the number of weights leads to a difference in relative performance, and exploring multi-objective QUBO formulations of other combinatorial optimisation problems.

Algorithm 1

 1 Uniform Method based on Simplex Lattice Design Require: 𝑃, n_weights, alg_parameters 1: Λ ← SimplexLatticeDesign(𝐻, 𝑚) 2: 𝐴 ← ∅ ⊲ Initialise archive 3: for each 𝜆 𝜆 𝜆 = (𝜆 1 , . . . , 𝜆 𝑚) ∈ Λ do ⊲ In any arbitrary order 4:

 𝑄 ←𝑠𝑢𝑚(𝑃 𝑗 • 𝜆 𝑗 ∀ 𝑗 ∈ {1, . . . , 𝑚})12:𝑌 ← Solver(𝑄, alg_parameters)13:add all solutions in 𝑌 to 𝐴 14: 𝑊 𝑖 ← [𝜆, (𝑐 1 (𝑥), . . . , 𝑐 𝑚 (𝑥))] where 𝑥 = 𝑌 0 ⊲ save weight vector and cost function values for the best solution in 𝑌 15: end for 16: return all non-dominated solutions from archive 𝐴

Figure 1 :

 1 Figure 1: Comparing proposed Adaptive-Averages-Euclidean and Adaptive-Averages-Manhattan.

Figure 2 :

 2 Figure 2: Comparing proposed Adaptive-Averages-Euclidean and Adaptive-Averages-Manhattan.

 Adaptive Method based on Dichotomic SearchRequire: 𝑃, n_weights, 𝑑𝑚 = 'Euclidean', alg_parameters1: Λ ← SimplexLatticeDesign(1, 𝑚) ⊲ 𝐻 = 1 2: 𝐴 ← ∅, 𝑊 ← {}⊲ Initialise archive and mapping between weights and cost functions 3: for each 𝑖 ∈ {1, . . . , 𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑠} do 𝜆 𝜆 𝜆 = (𝜆 1 , 𝜆 2) ← Λ 𝑖 𝑦 and 𝑧) from 𝑊 , that lead to the largest 𝑑𝑚 distance in objective space where 𝑐 1 (𝑦) > 𝑐 1 (𝑧)

	4:	if 𝑖 ≤ 2 then
	5:	
	6:	else
	7:	sort 𝑊 by 𝑐 1 (𝑥)
	8: select 2 adjacent solutions (9:

6:

add all solutions in 𝑌 to 𝐴 7: end for 8: return all non-dominated solutions from archive 𝐴 Algorithm 2

 Algorithm 3 Proposed Adaptive Method based on Averages Require: 𝑃, n_weights, alg_parameters, 𝑑𝑚 ∈ ['Euclidean', 'Manhattan'] 1: Λ ← SimplexLatticeDesign(1, 𝑚) ⊲ 𝐻 is set to 1 2: 𝐴 ← ∅, 𝑊 ← {} ⊲ Initialise archive and mapping between weights and cost functions 3: for each 𝑖 ∈ {1, . . . , 𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑠} do 𝜆 𝜆 𝜆 = (𝜆 1 , . . . , 𝜆 𝑚) ← Λ 𝑖 two adjacent parent weight vectors 𝑈 and 𝑉 from 𝑊 , that lead to the largest 𝑑𝑚 distance in objective space

	4:	if 𝑖 ≤ 𝑚 then
	5:	
	6:	else
	7:	sort 𝑊 by 𝜆
	8:	

select 9:

Table 1 :

 1 𝑑 = 0.8 to generate four additional instances. All fifteen instances used in this study are made available.3 DA parameters.

	Parameters	Values
	Start Temperature (𝑇 0)	10 4
	Temperature Decay (𝛽)	0.2
	Temperature Interval (𝐼)	1
	Temperature Mode	Exponential: 𝑇 𝑛+1 = 𝑇 𝑛 • (1 -𝛽)
	Offset Increase Rate	10 3
	Number of Iterations	10 6
	Number of Replicas	128
	Number of Runs	20

1 https://mocobench.sourceforge.net/index.php?n=Problem.MUBQP#Code 2 http://svn.code.sf.net/p/mocobench/code/trunk/mubqp/generator/mubqpGenerator. R 𝑚 = 4,

Table 2 :

 2 Upper bounds for each objective (𝑐 1 , . . . , 𝑐 𝑚) used to calculate hypervolume values.

	mUBQP		Upper Bounds	
	Instances	𝑐 1 (𝑥)	𝑐 2 (𝑥)	𝑐 3 (𝑥)	𝑐 4 (𝑥)
	0.0_2_1000_0.4_0	-6252	-15028		
	-0.2_2_1000_0.8_0	129723 144311		
	0.2_2_1000_0.8_0	-92667 -105015		
	-0.9_2_1000_0.4_0	433558 445875		
	0.9_2_1000_0.4_0 -431553 -407759		
	-0.9_2_1000_0.8_0	615079 634719		
	0.9_2_1000_0.8_0 -623322 -599608		
	-0.2_3_1000_0.8_0 278097.0 272357 233905	
	0.5_3_1000_0.8_0 -318508 -304189 -323912	
	0.0_3_1000_0.8_0	36284	22530	29425	
	0.2_3_1000_0.8_0 -137236	-99275 -106184	
	0.5_4_1000_0.8_0 -282205 -303711 -281095 -302613
	0.2_4_1000_0.8_0	-83247 -106177	-83183	-71990
	0.9_4_1000_0.8_0 -565435 -565734 -561872 -554756
	-0.2_4_1000_0.8_0	72351	44347	72781	70330

all points in all non-dominated sets under comparison, for a given problem. Larger hypervolume values indicate better performance.

Table 3 :

 3 Comparing Adaptive and Uniform Methods of Generating Scalarisation Weights (10 weights): Mean and standard deviation hypervolume of the returned non-dominated set across 20 runs are presented. The best mean values as well as mean values that are not significantly worse than the best are presented in bold. Statistical significance measure using student t-test

	Problem Category	Problem Name 𝜌_𝑚_𝑛_𝑑	Uniform Simplex Lattice Design (existing method)	Adaptive-Averages -Manhattan 𝑑𝑚 = 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 proposed 𝑚 ≥ 2	Adaptive-Averages-Euclidean proposed 𝑑𝑚 = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 proposed 𝑚 ≥ 2	Adaptive-Dichotomic-𝑑𝑚 = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 existing method
			Mean HV	Std HV Mean HV	Std HV Mean HV	Std HV Mean HV	Std HV
		0.0_2_1000_0.4_0 1.73E+11 4.01E+08 1.74E+11 2.31E+08 1.74E+11 3.52E+08 1.74E+11 2.98E+08
		-0.2_2_1000_0.8_0 5.32E+11 1.07E+09 5.34E+11 1.31E+09 5.36E+11 1.02E+09 5.36E+11 1.02E+09
	mUBQP (2 objectives)	0.2_2_1000_0.8_0 2.72E+11 5.35E+08 2.72E+11 4.59E+08 2.72E+11 4.90E+08 2.72E+11 4.03E+08 -0.9_2_1000_0.4_0 4.43E+11 3.81E+09 5.10E+11 1.72E+09 5.10E+11 1.76E+09 5.18E+11 1.31E+09 0.9_2_1000_0.4_0 3.51E+09 5.62E+06 3.50E+09 1.01E+07 3.51E+09 5.54E+06 3.51E+09 4.00E+06
		-0.9_2_1000_0.8_0 9.17E+11 4.28E+09 1.04E+12 1.77E+09 1.04E+12 2.73E+09 1.05E+12 3.00E+09
		0.9_2_1000_0.8_0 4.11E+09 4.64E+06 4.10E+09 7.48E+06 4.10E+09 7.03E+06 4.09E+09 7.47E+06
		-0.2_3_1000_0.8_0 2.46E+17 2.46E+15 2.98E+17 2.39E+15 3.02E+17 2.89E+15
	mUBQP	0.5_3_1000_0.8_0 2.29E+16 1.99E+14 2.39E+16 1.94E+14 2.40E+16 3.26E+14
	(3 objectives)	0.0_3_1000_0.8_0 1.14E+17 1.57E+15 1.33E+17 2.26E+15 1.41E+17 1.88E+15
		0.2_3_1000_0.8_0 6.68E+16 5.52E+14 7.13E+16 7.74E+14 7.52E+16 7.00E+14
		0.5_4_1000_0.8_0 2.15E+21 6.98E+19 3.69E+21 8.05E+19 3.99E+21 8.28E+19
	mUBQP	0.2_4_1000_0.8_0 5.94E+21 2.49E+20 1.70E+22 9.42E+20 1.90E+22 2.27E+20
	(4 objectives)	0.9_4_1000_0.8_0 1.23E+19 3.25E+17 1.50E+19 3.06E+17 1.51E+19 2.45E+17
		-0.2_4_1000_0.8_0 2.47E+19 1.02E+18 3.90E+20 1.30E+19 4.74E+20 1.32E+19

Table 4 :

 4 Comparing Adaptive and Uniform Methods of Generating Scalarisation Weights (10 weights): Mean and standard deviation numbers of non-dominated solutions (#ND) found across 20 runs are presented.

	Problem Category	Problem Name	Uniform Simplex Lattice Design (existing method)		Adaptive-Averages -Manhattan 𝑑𝑚 = 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 proposed 𝑚 ≥ 2	Adaptive-Averages-Euclidean proposed 𝑑𝑚 = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 proposed 𝑚 ≥ 2	Adaptive-Dichotomic-𝑑𝑚 = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 existing method	
			Mean #ND Std #ND Mean #ND Std #ND Mean #ND Std #ND Mean #ND Std #ND
		0.0_2_1000_0.4_0	92	4	92	4	96	6	93	4
		-0.2_2_1000_0.8_0	93	5	99	5	105	5	101	5
	mUBQP (2 objectives)	0.2_2_1000_0.8_0 -0.9_2_1000_0.4_0 0.9_2_1000_0.4_0	93 95 49	4 4 4	95 110 48	4 4 5	98 112 49	6 5 3	95 120 50	4 6 5
		-0.9_2_1000_0.8_0	98	4	108	8	109	4	119	5
		0.9_2_1000_0.8_0	40	2	41	3	41	4	43	3
		-0.2_3_1000_0.8_0	125	5	136	5	139	5		
	mUBQP	0.5_3_1000_0.8_0	108	7	120	6	121	6		
	(3 objectives)	0.0_3_1000_0.8_0	119	6	128	4	131	6		
		0.2_3_1000_0.8_0	121	4	126	4	129	6		
		0.5_4_1000_0.8_0	124	6	129	7	129	7		
	mUBQP	0.2_4_1000_0.8_0	133	7	143	7	143	7		
	(4 objectives)	0.9_4_1000_0.8_0	110	6	111	5	111	5		
		-0.2_4_1000_0.8_0	19	1	27	3	38			

https://github.com/mayoayodelefujitsu/mUBQP-Instances

http://lopez-ibanez.eu/eaftools