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ABSTRACT
Real-world optimization problems frequently have constraints that
define feasible and infeasible combinations of decision variables.
Evolutionary algorithms do not inherently work with constraints,
so they must be modified to include a suitable constraint handling
technique (CHT) before they can be used to solve such problems.
A range of different approaches to handling constraints have been
used effectively with evolutionary algorithms, such as penalty-
based, repair, feasibility rules, and bi-objective approaches. In this
study we investigate different CHTs with an evolutionary algorithm
on the 0/1 knapsack problem. We present results to show that
performance complementarity exists between different CHTs on the
knapsack problem. Landscape analysis is then used to characterize
the search space of a large number of knapsack instances, and
decision tree induction is used to derive rules for selecting the most
appropriate CHT and switching it adaptively based on landscape
features. We finally implement a landscape-aware CHT approach
and show that it out-performs the constituent CHT approaches.

CCS CONCEPTS
• Theory of computation→ Random search heuristics; • Applied
computing → Multi-criterion optimization and decision-making.
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1 INTRODUCTION
For many years of GECCO conferences, there was a focus on bench-
marking the performance of evolutionary algorithms on numerical
problems without constraints (except for boundary constraints).
The state-of-the-art evolutionary algorithms were deemed to be the
ones that performed the best on the BBOB (Black Box Optimization
Benchmarking) test suite of that year. Recognizing the importance
of constraints, this focus has started to shift. For GECCO 2022, the
organizers of the BBOB workshop invited “in particular contribu-
tions related to constrained optimization” [2].

In the real world, optimization problems with constraints are
more common than those without. In the GECCO 2022 track on
Real World Applications, there were 13 papers accepted that had
optimization as the main component, and more than half of the
models involved complex constraints over the search space. For
example, one study addressing the optimal design of execution
plans of robots [8] described a model with two objectives and 11
constraints. With these kinds of problems, we argue that the nature
of the violation landscape [16] formed by the constraints can have
as much effect (if not more effect) on the difficulty for search as the
fitness landscape formed by the objective(s).

There are a number of established approaches to handling con-
straints with evolutionary algorithms [4, 21], including repair of so-
lutions, penalty approaches, feasibility rule approaches, and treating
the constraint(s) as additional objective(s), with feasibility rules be-
ing themost popular approachwith nature-inspired algorithms [20].
It has been shown that using an ensemble of constraint handling
techniques in parallel with an evolutionary algorithm out-performs
the individual constraint handling approaches [17]. Our proposed
approach builds on this by also including landscape information to
guide the choice of the CHT.

We argue that the choice of the most appropriate CHT depends
on the particular problem instance and the way in which the con-
straints modify the feasible space. For example, an approach that
rejects infeasible solutions (known as death penalty) will perform
poorly when the problem has a low proportion of feasible solu-
tions [21]. In these cases, an approach using feasibility rules is
more effective [15]. Penalty approaches in general are also not
suitable for problems where the best solution is located on the
boundary of the feasible region or when the feasible regions are
disjoint [18], but are suitable when the fitness and level of violation
are positively correlated [15].

Previous work has shown the effectiveness of a landscape-aware
approach to constraint handling for evolutionary algorithms in
continuous search spaces [13]. In this paper we take a similar ap-
proach applied to binary search spaces by studying the behavior of
different CHTs with an evolutionary algorithm on a wide range of
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knapsack problems with varying difficulty. More particularly, our
contributions are three-fold:

(i) We first confirm that there is indeed performance comple-
mentarity between different CHTs when used with an evo-
lutionary algorithm. We achieve this through large-scale
benchmarking, covering numerous knapsack problem in-
stances with different characteristics.

(ii) We then compute a number of features characterizing the vi-
olation and the fitness landscape induced by the constrained
search space, and we show that some features correlate with
the performance of CHTs.

(iii) We finally inject the landscape features into the evolution-
ary search process in order to adjust the CHT approach at
runtime, and we show that this adaptive landscape-aware
approach leads to an improvement in performance.

The rest of the paper is organized as follows. In Section 2, we
introduce the knapsack problem. In Section 3 we present a number
of CHTs and we report their experimental performance over a
number of instances. In Section 4, we perform a landscape analysis
for the same set of knapsack problem instances. In Section 5, we
introduce the proposed landscape-aware approach and we discuss
its performance. In the last section, we conclude the paper and
discuss further research.

2 THE 0/1 KNAPSACK PROBLEM
The knapsack problem is a well-known and extensively studied
NP-hard problem with application in real-world contexts such the
packing and loading of goods [19]. The basic 0/1 knapsack problem
with 𝑛 items can be formulated as follows:

maximize
𝑛∑︁
𝑖=1

𝑝𝑖𝑥𝑖 ,

subject to
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝑊,

(1)

where 𝑥𝑖 is a binary variable indicating whether or not item 𝑖 ∈
{1, . . . , 𝑛} is included in the knapsack, 𝑝𝑖 is the profit gained by
item 𝑖 ,𝑤𝑖 is the weight of item 𝑖 , and𝑊 is the capacity weight of
the knapsack.

Early work on solving the 0/1 knapsack problem using a genetic
algorithm with different CHTs was performed by Michalewicz and
Arabas [22]. They investigated three types of penalty-based ap-
proaches: logarithmic, linear and quadratic penalty with respect to
the degree of violation. On problem instances that had an average
knapsack capacity, the logarithmic penalty approach performed
better than the other two penalty-based approaches, but none of
the penalty-based approaches performed well on instances with
a restrictive knapsack capacity. Overall, they found that a repair
approach was more effective at finding optimal solutions than a
penalty-based approach — a result that was confirmed in our pre-
liminary experiments.

3 PERFORMANCE COMPLEMENTARITY
The success of any form of automated algorithm selection depends
on the existence of performance complementarity [12] between the
constituent algorithms. Performance complementarity refers to the

situation where each algorithm has a performance advantage on
different problem instances. If there is no performance complemen-
tarity between algorithms, it means that one algorithm is the best
on all problem instances under study, and this implies that there
would be no benefit to implementing automated algorithm selec-
tion. In a study of CHTs with evolutionary algorithms [15], it was
shown that there was evidence of performance complementarity
of CHTs on a combined set of 142 continuous and combinatorial
problem instances. We start this study by showing that this is also
the case on knapsack problem instances.

3.1 Problem Instances
We generate 1 080 knapsack problem instances with the following
parameters:

𝑛: The number of items that are available, 𝑛 is set to 1 000.
The search space size (number of binary strings) is thus
21 000 ≈ 10300 solutions.

𝜌 : The correlation between the profits and weights, 𝜌 , influ-
ences the difficulty of the problem [22]. Instances are gen-
erated with nine correlation values from −0.9 to +0.9: 𝜌 ∈
{−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9}.

𝑊 : The capacity of the knapsack,𝑊 , is defined as a proportion,
𝑐 , of the sum of weights of all items:

𝑊 = 𝑐 ·
𝑛∑︁
𝑖=1

𝑤𝑖 (2)

Lower 𝑐-values result in a more constrained problem, so the
optimal solution will consist of fewer items than instances
with higher values of 𝑐 . For example, 𝑐 = 0.6 implies that
adding more than 60% of the items on average would be
infeasible, while 𝑐 ≥ 1 represents the trivial case of all solu-
tions being feasible. For the instance generation, the value
of 𝑐 ranges from 0.05 to 0.6 in increments of 0.05.

𝑠: The random seed, 𝑠 . For each combination of 𝜌 and 𝑐 , 10
random seeds are used to independently generate 10 problem
instances with random weights and profits.

In total, 1 080 training problem instances are generated (9 values of
𝜌 × 12 values of 𝑐 × 10 random seeds).

3.2 Constraint Handling Techniques
This section describes the base evolutionary algorithm used in
the experiments as well as the four selected CHTs: linear penalty,
quadratic penalty, feasibility rules, and a bi-objective approach.

Although initial experimentation showed that a repair strategy
was very often more effective than the other considered CHTs on
the knapsack problem, repair was not included in the portfolio
of CHTs. The reason for excluding repair is because it relies on
problem-specific knowledge and is therefore not a general strategy
that could be applied to other problems, in particular black-box
problems. In addition, unlike the trivial repair operation of knap-
sack (removing items from the knapsack until the weight is not
exceeded), repair strategies of some problems can be more com-
plex than solving the problem itself [22], so are not always feasible
to implement. Initial experimentation also showed that a death
penalty [21] and a logarithmic penalty [22] approach performed
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badly over all instances, so these two penalty approaches were also
discarded from the portfolio of CHTs.

3.2.1 Base Algorithm. We consider a simple steady-state (10 + 1)
evolutionary algorithm that starts with a random population of
size 10. At each iteration, two parents are independently selected
from the population by means of binary tournament. Next, an off-
spring is generated with one-point crossover followed by stochastic
mutation such that each binary variable is flipped with a rate of 1

𝑛 .
In case the offspring does not already belong to the population,
it replaces the worst solution from the population if there is an
improvement with respect to the considered CHT. This process is
iterated until the maximum budget (in number of evaluations) is
reached. The algorithm records and returns the best found solution
in terms of constraint violation first, and profit value next. That is,
a solution closer to the feasible region is always better, and among
feasible solutions the one with the highest profit is preferred.

3.2.2 CHT1: Linear penalty (LP). In the case of a linear penalty ap-
proach, the extent to which the weight of the knapsack is exceeded
is simply subtracted from the sum of the profits of the included
items:

𝑓 (x) =



𝑛∑︁
𝑖=1

𝑝𝑖𝑥𝑖 if x is feasible

𝑛∑︁
𝑖=1

𝑝𝑖𝑥𝑖 −
(
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 −𝑊

)
otherwise

(3)

3.2.3 CHT2: Quadratic penalty (QP). With the quadratic penalty
approach, the penalty term is squared:

𝑓 (x) =
𝑛∑︁
𝑖=1

𝑝𝑖𝑥𝑖 −
(
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 −𝑊

)2
if x is infeasible (4)

3.2.4 CHT3: Feasibility rules (FR). Deb [5] proposed an alterna-
tive to a penalty-based approach for evolutionary algorithms that
requires no parameter. The approach, termed feasibility rules, dis-
tinguishes between feasible and infeasible solutions using the fol-
lowing rules for pairwise comparisons:

(1) A feasible solution is preferred over an infeasible solution.
(2) If both solutions are feasible, the one with the higher fitness

is preferred.
(3) If both solutions are infeasible, the one with the lowest extent

of constraint violation is preferred.

3.2.5 CHT4: Bi-objective (BO). For the bi-objective approach, we
simply consider violation and fitness (profit) as two separate objec-
tives to be optimized simultaneously. To do so, we rely on the princi-
ples of the non-dominated sorting genetic algorithm II (NSGA-II) [6].
Selection is based on non-dominated sorting, such that dominating
solutions are better. Among mutually non-dominated solutions,
solutions that are in less crowded areas of the objective space are
preferred. As such, the bi-objective CHT is expected to maintain a
population with good and well-diversified trade-offs among profit
and violation. Here as well, the final solution is the one following
the lexicographic order of violation first, and profit next.

Table 1: Illustrative example of performance ranking of four
CHTs on a single instance of the knapsack problem.

Success rate Mean profit Mean violation Rank

LP 0.9 75263.7 0.6 3
QP 1.0 75050.5 0 2
FR 1.0 75191.6 0 1
BO 0.0 n/a 25676.1 4

3.3 Setup and Performance Ranking
We performed 10 independent runs of each CHT approach on each
of the 1 080 problem instances with a total budget of 100 000 evalu-
ations per run. For each CHT the following performance metrics
were recorded at function evaluation budget intervals of ⌈10𝑖 ⌉ for
𝑖 ∈ {1.00, 1.25, 1.50, . . . , 5.00}:

• Success rate: the proportion of runs that returned a final
solution that is feasible within the given budget.

• Violation: the mean level of violation of all runs.
• Fitness: the mean profit of the best solutions of all runs that
returned feasible solutions.

For each problem instance, at each budget interval, the CHTs were
ranked using the CEC 2010 competition rules [24]:

(1) The algorithm with a higher success rate wins.
(2) Given an equal success rate greater than zero, the algorithm

with a higher fitness value wins.
(3) Given an equal success rate = 0, the algorithm with the lower

violation wins.
To illustrate the ranking, Table 1 shows an example of the perfor-
mance metrics on a sample instance. QP and FR both found feasible
solutions in all 10 runs, resulting in a success rate of 1. Comparing
based on profit, FR wins and is given the rank of 1. Although the
mean profit value of LP is higher than those of QP and FR, it is
given the rank 3, because it did not return feasible solutions in all
runs. BO did not return feasible solutions in any of the runs, so is
given the rank of 4.

3.4 Experimental Results
Figure 1 shows the average relative performance of the four CHTs
over all training instances. From left to right the graphs show: (1) the
average rank – lower is better, (2) the proportion of times that the
considered CHT was one of the best performing strategies, (3) the
proportion of times that the CHT was one of the worst performing
strategies.

From the results in Figure 1, we can see there is evidence of
performance complementarity between the four CHTs. The bi-
objective approach is the best performing strategy with a budget
below 1 000 evaluations (evident in the low rank and high propor-
tion of instances on which it is the best strategy), but then moves
to the worst performing strategy on the larger budget of 100 000
evaluations. The other three strategies performed similarly to each
other, with the linear penalty performing the worst on a larger num-
ber of instances than the other two approaches. Quadratic penalty
and feasibility rules perform quite similarly at the early stages of
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the runs, while the former eventually out-performs the latter on
average for larger budgets.

Table 2 shows the mean rank as well as the number of instances
on which each strategy was both the worst and the best performing
approach after a small and large budget of evaluations. From Table 2
we can see that QP achieved the lowest (i.e. best) mean rank at both
the low and high budget. However, we also see that QP was the
worst performing approach on 145 of the instances at a budget of
1 000, providing further evidence of performance complementarity.

4 LANDSCAPE ANALYSIS
There are many established techniques for characterizing differ-
ent features of continuous and combinatorial optimization prob-
lems [14]. However, these techniques typically assume that the
problem is unconstrained. When problems have constraints, there
are additional features that can be used to characterize the viola-
tion landscape as well as the interaction between the fitness and
violation landscapes [15]. This section defines the five landscape
metrics used in this study as well as the approach used to sample
and characterize the knapsack instances.

4.1 Constrained Landscape Features
The features described in this section were originally proposed by
Malan et al. [16].

4.1.1 Feature 1: Feasibility ratio (fsr). Given a sample of solu-
tions 𝑆 , fsr is defined as the proportion of solutions in 𝑆 that are
feasible.

4.1.2 Feature 2: Ratio of feasible boundary crossings (rfbx). The
rfbx feature provides a measure of the degree of disjointedness of
the feasible areas in the search space. Given a walk through the
search space consisting of a sequence of solutions, a step in the walk
is regarded as crossing a boundary if the feasibility status changes
from one solution to the next. rfbx is defined as the proportion of
steps in the walk that cross feasible boundaries.

4.1.3 Feature 3: Fitness violation correlation (fvc). A sample 𝑆 of
solutions to the knapsack problem defines |𝑆 | profit-vs-violation
pairs, where the violation is the extent to which the knapsack
weight is exceeded. The subset 𝑆𝑖𝑛𝑓 consists of the solutions in 𝑆

that are infeasible. The fvc feature is defined as the Spearman’s
correlation coefficient between the profit values (to be maximized)
and violation values (to be minimized) of solutions in 𝑆𝑖𝑛𝑓 . If 𝑆𝑖𝑛𝑓
is an empty set, fvc is set to 0.

4.1.4 Feature 4: Proportion of solutions in ideal zone 25 (piz25).
Given a sample of solutions 𝑆 , with associated profit and violation
values. The 25% ideal zone is defined as the solutions that have a
profit value above the median of the profit values in the sample as
well as a violation value below the median violation value of the
sample. The piz25 feature is defined as the proportion of solutions
in sample 𝑆 that fall into this 25% ideal zone.

4.1.5 Feature 5: Proportion of solutions in ideal zone 4 (piz04).
Given a sample of solutions 𝑆 , with associated profit and violation
values. The 4% ideal zone is defined as the solutions that have a
profit value above the 20𝑡ℎ percentile of the profit values in the
sample as well as a violation value below the 20𝑡ℎ percentile of the

violation values of the sample. The piz04 feature is defined as the
proportion of solutions in sample 𝑆 that fall into this 4% ideal zone.

4.2 Sampling Strategy
The sequence of solutions 𝑆 necessary to compute the above fea-
tures is simply collected by means of the considered evolutionary
algorithm. Given an algorithm run under a CHT, we add a solution
to 𝑆 each time there is an improvement, that is, when the corre-
sponding offspring is accepted into the population. As such, the
sample size does not exceed the number of solutions visited by the
algorithm. We end up with a different sequence for each run of
each CHT, and at different time steps. We first compute the feature
values for each scenario, and thus we compute the average feature
values over the runs. We expect such a sampling strategy to better
capture the dynamics of the evolutionary algorithm. Moreover, the
walk does not induce any additional cost to the training phase on
top of actually running the evolutionary algorithm with each CHT.

4.3 Characterization of Training Instances
Based on evolutionary algorithm samples, all training instances
were characterized using the five landscape features described in
Section 4.1. Figure 2 shows the distribution of values for each metric
over all of the instances for different budgets.

The values for fsr start with values close to 0 at a low bud-
get. With an increase in budget, the sampling based on feasibility
rules and quadratic penalty finds a larger portion of feasible so-
lutions, while the other two strategies sample more solutions in
infeasible regions. The values for rfbx are higher for the linear and
bi-objective strategies corresponding with the search in infeasible
regions. Overall, the low values for rfbx for the knapsack problem
indicate that the regions of feasibility are contiguous.

The values of fvc filled the full range from -1 to 1, with most
of the strategies finding samples of solutions with a positive cor-
relation between fitness and violation, except for linear penalty
that found samples with negative correlation. For the ideal zone
metrics, the medians of piz25 and piz04 for all strategies except
bi-objective were all quite high (above 0.4 for piz25 and in the
region of 0.1 and 0.2 for piz04). This indicates that the samples
included large proportions of solutions in the ideal zones, as an
even distribution of solutions in the fitness-violation space would
result in a value of 0.25 for piz25 and a value of 0.04 for piz04.

5 LANDSCAPE-AWARE CONSTRAINT
HANDLING

In this section, we present the adaptive landscape-aware constraint
handling approach proposed based on our previous observations.

5.1 Offline Training
A training set was created for each CHT strategy (LP, QP, FR, and
BO) consisting of the 1 080 problem instances with their associated
five landscape metrics calculated based on the sample generated by
the evolutionary algorithm with the CHT strategy at four budgets
(102, 103, 104, 105). Each instance and budget combination was then
allocated a binary label indicating whether the strategy was one
of the best strategies (i.e. a rank of 1) on that instance with that
budget.
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Figure 1: Performance of four constraint handling approaches on 1 080 training instances of the knapsack problem over the
budget of function evaluations. Plots from left to right: (1) average rank – lower is better, (2) proportion of instances on which
the approach is one of the best, (3) proportion of instances on which the approach is one of the worst.

Table 2: Performance of four constraint handling approaches on 1 080 training instances of the knapsack problem after a budget
of 1 000 and 100 000 evaluations.

Budget: 1 000 Budget: 100 000

Strategy Mean rank Best performing Worst performing Mean rank Best performing Worst performing

Linear penalty (LP) 3.50 15 1.4% 880 81.5% 2.55 523 48.4% 557 51.6%
Quadratic penalty (QP) 1.64 695 64.4% 145 13.4% 1.61 512 47.4% 0 0.0%
Feasibility rules (FR) 1.68 701 64.9% 193 17.9% 2.36 45 4.2% 0 0.0%
Bi-objective (BO) 2.33 353 32.7% 0 0.0% 3.48 0 0.0% 523 48.4%
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Figure 2: Box plots showing the distribution of landscape features over all training instances for each sampling strategy
(evolutionary algorithm with CHT) with increasing budgets.

From these training sets, decision tree models were induced for
each CHT strategy where the binary classification task was whether
the strategy is one of the best or not. The C4.5 algorithm [23] was
used for the training (implemented in the WEKA tool [9] as J48).
An example of such a decision tree is provided in Figure 3 for linear
penalty (LP). The LP tree model achieved an accuracy of 98.8% on

the training data. We see from the tree that the root note is rfbx,
indicating that this feature was the most important in the predic-
tion task, followed by the budget. At each node, the numbers in
brackets give the number of correctly classified instances followed
by the number of incorrectly classified instances. For the remaining
strategies, the accuracies and root nodes were as follows:
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Table 3: Illustrative example of the landscape-aware switching strategy on a single instance of the knapsack problem. For each
time step (equivalent to the budget), the five feature-values are reported, followed by the CHTs detected as the best performing
ones among which the approach selects one that is run until the next switch.

Time step fsr rfbx fvc piz25 piz04 Candidate CHTs Selected CHT

10 0.000 0.000 0.636 0.300 0.000 BO BO
18 0.000 0.000 0.709 0.176 0.000 BO BO
32 0.000 0.000 0.744 0.192 0.000 BO BO
57 0.000 0.000 0.836 0.119 0.000 BO BO
100 0.000 0.000 0.845 0.081 0.000 BO BO
178 0.000 0.000 0.849 0.090 0.000 ∅ QP
317 0.000 0.000 0.892 0.078 0.000 ∅ LP
563 0.000 0.000 0.887 0.060 0.000 ∅ BO

1 000 0.000 0.000 0.545 0.228 0.000 ∅ FR
1 779 0.000 0.000 0.892 0.061 0.000 QP QP
3 163 0.000 0.000 0.974 0.004 0.000 QP, FR FR
5 624 0.173 0.004 0.976 0.001 0.000 QP QP
10 000 0.356 0.022 0.962 0.106 0.000 LP, QP QP
17783 0.498 0.041 0.892 0.230 0.086 LP, QP, BO QP
31 623 0.592 0.052 0.765 0.320 0.172 LP, BO LP
56 235 0.345 0.031 -0.057 0.197 0.000 LP LP

Figure 3: Decision tree for predicting when a linear
penalty (LP) strategy will be one of the best strategies.

• Quadratic penalty (QP): accuracy of 94.7% with fvc as root
node.

• Feasibility rules (FR): accuracy of 95.3% with piz25 as root
node.

• Bi-objective strategy (BO): accuracy of 98.4% with budget
as root node.

It is interesting that the four decision trees have different features as
the root node, which indicates that different features are important
for different strategies.

To capture the training knowledge, rules were manually ex-
tracted from each of the trees to produce the following.

(1) LP is predicted to be one of the best when:
rfbx > 0.005 AND (budget > 1 000 AND budget ≤ 10 000
AND ((fsr ≤ 0.397 AND fsr > 0.015) OR (fsr > 0.397
AND piz04 ≤ 0.070)) OR (budget > 10 000)).

(2) QP is predicted to be one of the best when:
(fvc ≤ 0.911 AND ((rfbx ≤ 0.070 AND fvc > 0.790 AND
budget > 1 000) OR (rfbx > 0.070 AND fsr ≤ 0.776 AND
budget > 10 000 AND piz25 ≤ 0.470))) OR (fvc > 0.911
AND budget > 100 AND (rfbx ≤ 0.001 OR (rfbx > 0.001
AND ((budget ≤ 1 000 AND rfbx ≤ 0.020) OR (budget >

1 000))))).
(3) FR is predicted to be one of the best when:

piz25 ≤ 0.030 AND fsr ≤ 0.018.
(4) BO is predicted to be one of the best when:

budget ≤ 100 OR budget > 100 AND ((piz04 ≤ 0.001 AND
budget ≤ 1 000 AND fsr > 0.0001) OR (piz04 > 0.001
AND rfbx > 0.001 AND ((fsr > 0.130) OR (fsr ≤ 0.130
AND budget ≤ 1 000)))).

The rules above were coded into the landscape-aware approach
and used as the basis for choosing appropriate CHTs during the
search process, as described below.

5.2 Switching Strategy
The landscape-aware switching strategy was implemented as fol-
lows. The base algorithm starts by using a bi-objective CHT. The
CHT is switched at set intervals based on the number of function
evaluations as defined in Section 3.3. At each switch, the land-
scape features are calculated using the archive of solutions from the
search history (see Section 4.2). Using these features and the current
number of function evaluations (budget), the rules are evaluated
to determine the set of strategies that are predicted to be the best
performing ones. If more than one CHT is predicted to be the best
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Figure 4: Performance of the four constraint handling approaches, together with the random and landscape-aware switching
strategies on 216 test instances of the knapsack problem over the budget of function evaluations. Plots from left to right: (1)
average rank, (2) proportion of instances on which the approach is one of the best, (3) proportion of instances on which the
approach is one of the worst.

Table 4: Performance of six constraint handling approaches on 216 test instances of the knapsack problem after a budget of
1 000 and 100 000 evaluations.

Budget: 1 000 Budget: 100 000

Strategy Mean rank Best performing Worst performing Mean rank Best performing Worst performing

Linear penalty (LP) 5.45 3 1.4% 179 82.9% 3.56 102 47.2% 110 50.9%
Quadratic penalty (QP) 3.07 16 7.4% 30 13.9% 2.73 84 38.9% 0 0.0%
Feasibility rules (FR) 3.14 15 6.9% 42 19.4% 3.48 4 1.9% 0 0.0%
Bi-objective (BO) 3.75 52 24.1% 0 0.0% 5.21 0 0.0% 106 49.1%
Random switching (RS) 2.99 13 6.0% 0 0.0% 3.18 21 9.7% 0 0.0%
Landscape aware (LA) 1.64 142 65.7% 0 0.0% 2.84 5 2.3% 0 0.0%

performing, then a random choice is made between the candidate
CHTs. If no CHT is predicted to be the best performing, then a
random choice is made between the four CHTs.

To illustrate this approach, an example run of the switching
strategy is given in Table 3 on a sample test instance. The sample
run shows that until 100 function evaluations, BO is predicted to be
the best strategy, so is selected. For the next four switching events,
none of the CHTs were predicted to be the best, so random choices
were made. After 1 779 function evaluations, QP is predicted to be
the best, and so on.

As an additional baseline, we implement a random switching
strategy that switches at the same intervals as the landscape-aware
approach, but without using the landscape features and rules.

5.3 Experimental Results
To evaluate the approach, we generate a separate set of test in-
stances following a similar setting than training instances with
a number of items of 𝑛 = 1 000, a profit-weight correlation of

𝜌 ∈ {−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9} and a proportional
capacity of 𝑐 ∈ {0.05, 0.10, . . . , 0.6} with respect to the sum of
weights. For each combination of 𝜌 and 𝑐 , 2 random instances were
generated independently of training instances. In total there are
thus 216 test instances (9 values of 𝜌 × 12 values of 𝑐 × 2 random
seeds).

The experimental results of the different CHTs and of the switch-
ing strategies on the test instances are given in Figure 4. Similar to
Section 3.4, the figure shows, from left to right: (1) the average rank,
(2) the proportion of times that the considered approach was a best
performing one, (3) the proportion of times that the approach was
a worst performing one.

Figure 4 shows that the landscape-aware (LA) switching ap-
proach has the lowest average rank for most of the budgets. It can
also be seen that LA is frequently one of the best strategies and is
never one of the worst strategies. Table 4 gives the performance
values of the six approaches at budgets of 1 000 and 100 000 function
evaluations. The table shows that the LA approach has the lowest
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Figure 5: Proportion of times each constraint handling ap-
proach is selected by the landscape-aware switching strategy
on test instances.

mean rank at budget 1 000 and the second lowest mean rank at
budget 100 000 (after QP). The LP approach is the most variable at
budget 100 000, performing the best on the most instances (102),
but also performing the worst on the most instances (110).

To illustrate how the LA approach adapts to different budget
allocations, Figure 5 gives the proportion of times each CHT is
selected by the landscape-aware switching strategy. The adaptive
strategy starts off by using BO the most and then changes to using
LP the most at the highest budget.

6 CONCLUSION
For evolutionary algorithms to be generally applicable to solving
real-world problems, effective and adaptive constraint handling ap-
proaches are needed. This study showed that there is performance
complementarity between different CHTs when used with an evo-
lutionary algorithm to solving instances of the knapsack problem.
We demonstrated how an adaptive landscape-aware approach can
be implemented using the search trajectory data as a sample for
calculating landscape features on-the-fly. By switching to strate-
gies that are predicted to perform the best, the landscape-aware
approach out-performed the constituent CHT approaches under
most budget scenarios.

Possible future work includes applying landscape-aware con-
straint handling to solving other combinatorial optimization prob-
lems to verify whether the approach is also effective for solving
other problem classes. Extensions to the classic knapsack prob-
lem would be interesting to investigate, such as the knapsack
problem with conflicts [3], where incompatible items cannot be
placed together in the knapsack, and themultidimensional knapsack
problem [7] with multiple knapsacks and associated constraints,
as well as with additional Boolean satisfiability constraints [10].
Another possible benchmark set is the Broken Hill problem [15],
which was designed as a tunable test-set for constraint handling
approaches. In addition, we are considering extending the popular
NK-landscapes [11] to include tunable constraints as a test-bed for
constrained optimizationwith inspiration from theMNK-landscapes
of Aguirre and Tanaka [1].
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