
HAL Id: hal-04169768
https://hal.science/hal-04169768

Submitted on 24 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pareto local optimal solutions networks with
compression, enhanced visualization and expressiveness

Arnaud Liefooghe, Gabriela Ochoa, Sébastien Verel, Bilel Derbel

To cite this version:
Arnaud Liefooghe, Gabriela Ochoa, Sébastien Verel, Bilel Derbel. Pareto local optimal solu-
tions networks with compression, enhanced visualization and expressiveness. GECCO 2023 -
Genetic and Evolutionary Computation Conference, Jul 2023, Lisbon, Portugal. pp.713-721,
�10.1145/3583131.3590474�. �hal-04169768�

https://hal.science/hal-04169768
https://hal.archives-ouvertes.fr


Pareto Local Optimal Solutions Networks with
Compression, Enhanced Visualization and Expressiveness

Arnaud Liefooghe
arnaud.liefooghe@univ-lille.fr

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL
F-59000 Lille, France

Gabriela Ochoa
gabriela.ochoa@stir.ac.uk
University of Stirling
Stirling, FK9 4LA, UK

Sébastien Verel
verel@univ-littoral.fr

Univ. Littoral Côte d’Opale, LISIC
F-62100 Calais, France

Bilel Derbel
bilel.derbel@univ-lille.fr

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL
F-59000 Lille, France

ABSTRACT
The structure of local optima in multi-objective combinatorial opti-
mization and their impact on algorithm performance are not yet
properly understood. In this paper, we are interested in the repre-
sentation of multi-objective landscapes and their multi-modality.
More specifically, we revise and extend the network of Pareto local
optimal solutions (PLOS-net), inspired by the well-established local
optima network from single-objective optimization. We first define
a compressed PLOS-net which allows us to enhance its perception
while preserving the important notion of connectedness between
local optima. We then study an alternative visualization of the (com-
pressed) PLOS-net that focuses on good-quality solutions, improves
the distinction between connected components in the network, and
generalizes well to landscapes with more than 2 objectives. We
finally define a number of network metrics that characterize the
PLOS-net, some of them being strongly correlated with search
performance. We visualize and experiment with small-size multi-
objective nk-landscapes, and we disclose the effect of PLOS-net
metrics against well-established multi-objective local search and
evolutionary algorithms.

CCS CONCEPTS
• Theory of computation→ Optimization with randomized search
heuristics; Design and analysis of algorithms; •Applied computing
→ Multi-criterion optimization and decision-making.
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1 INTRODUCTION
Although evolutionary and local search algorithms are often meth-
ods of choice for single- and multi-objective (black-box) optimiza-
tion, it remains difficult to recommend which algorithm to choose
from the plethora of available methods in order to solve a given
problem. Landscape analysis and visualization are becoming in-
creasingly popular to gain a better understanding of optimization
problems and of the challenges that search heuristics face while
solving them [15, 21, 22, 26]. However, compared to the rich liter-
ature on single-objective landscapes, the study of multi-objective
landscapes is more scarce. For visualization, the Pareto front or
its approximations can be visualized by means of scatter plots for
2 or 3 objectives, or by means of dimensionality reduction for 3+
objectives [32]. Meanwhile, for representing the whole landscape,
there exist some works on multi-objective continuous optimization,
such as cost landscapes [10], gradient field heatmaps [14], local
dominance landscapes [9], or the plot of landscapes with optimal
trade-offs [27]. In the combinatorial case, the well-established local
optima networks [23, 24] have been extended to multi-objective
optimization with the Pareto local optimal solutions networks
(PLOS-net) [20] and the Pareto local optima networks (PLON) [8].
These multi-objective extensions have proven to be useful tools to
better understand multi-objective landscapes [9, 28].

In this paper, we focus on the PLOS-net model [20] and we
extend its expressiveness by following three complementary axes:

(1) We introduce the compressed PLOS-net (C-PLOS-net). Our
main motivations are that (i) uncompressed PLOS-nets often
turn out to be too large to visualize, and (ii) the structure
of their connected components were found to be strongly
correlated with search performance [20], both in terms of
runtime and approximation quality.

(2) We improve the visualization of PLOS-nets and C-PLOS-nets
under the so-called rank layout, and we show that it provides
a better representation of some network’s structural proper-
ties, especially for more than 2 objectives.

(3) We propose and investigate new network metrics, some of
which are found to strongly correlate with performance.

We also present and discuss the visualization of C-PLOS-nets for a
wide range of small-size multi-objective combinatorial landscapes,
and we correlate C-PLOS-net metrics with search, showing their
strong effect on algorithm performance and on algorithm recom-
mendation according to network metrics.
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Figure 1: Construction of a compressed PLOS-net (C-PLOS-net) on a toy example: full landscape in the objective space (far-left),
PLOS-net (middle-left), C-PLOS-net under the objective-space layout (middle-right), and under the rank layout (far-right).

The rest of the paper is organized as follows. In Section 2, we in-
troduce the necessary background on multi-objective optimization
and landscapes. In Section 3, we detail our contributions in terms of
compressed network, network visualization and network metrics.
In Section 4, we give the setup of our experimental analysis. In
Section 5, we present and discuss the results of our experiments. In
the last section, we conclude the paper and discuss further research.

2 BACKGROUND
This section provides definitions for multi-objective combinato-
rial optimization, multi-objective landscapes and PLOS-nets, and
presents the considered benchmark problems.

2.1 Multi-objective Optimization
We assume an𝑚-dimensional objective function vector 𝑓 : 𝑋 → 𝑍

is to be maximized, such that every solution from the (discrete)
solution space 𝑥 ∈ 𝑋 maps to a vector in the objective space 𝑧 ∈ 𝑍 ,
with 𝑧 = 𝑓 (𝑥) and 𝑍 ⊆ IR𝑚 . Given two objective vectors 𝑧, 𝑧′ ∈ 𝑍 ,
𝑧 is dominated by 𝑧′ if 𝑧𝑖 ⩽ 𝑧′

𝑖
for all 𝑖 ∈ {1, . . . ,𝑚}, and there is

a 𝑗 ∈ {1, . . . ,𝑚} such that 𝑧 𝑗 < 𝑧′
𝑗
. Likewise, a solution 𝑥 ∈ 𝑋 is

dominated by 𝑥 ′ ∈ 𝑋 if 𝑓 (𝑥) is dominated by 𝑓 (𝑥 ′). An objec-
tive vector 𝑧★ ∈ 𝑍 is non-dominated if there is no 𝑧 ∈ 𝑍 such
that 𝑧★ is dominated by 𝑧. A solution 𝑥★ ∈ 𝑋 is Pareto optimal
if 𝑓 (𝑥) is non-dominated. The set of Pareto optimal solutions is
the Pareto set, and its mapping in the objective space is the Pareto
front. Multi-objective evolutionary and local search algorithms aim
at identifying a Pareto set approximation that is to be presented to
the decision maker for further consideration [4, 6].

2.2 𝜌mnk-Landscapes
In terms of benchmark, we consider 𝜌mnk-landscapes [33] as multi-
objective multi-modal problems with objective correlation. They
extend single-objective nk-landscapes [13] and multi-objective nk-
landscapes with independent objectives [1, 16]. Candidate solu-
tions are binary strings of size 𝑛. The objective function vector
𝑓 = (𝑓1, . . . , 𝑓𝑖 , . . . , 𝑓𝑚) is defined as 𝑓 : {0, 1}𝑛 → [0, 1]𝑚 such that
each objective 𝑓𝑖 is to be maximized. The objective value 𝑓𝑖 (𝑥) of a
solution 𝑥 = (𝑥1, . . . , 𝑥 𝑗 , . . . , 𝑥𝑛) is an average value of the individ-
ual contributions associated with each variable 𝑥 𝑗 . The contribution

of 𝑥 𝑗 depends on its own value and on the values of 𝑘 < 𝑛 vari-
ables other than 𝑥 𝑗 . The variable interactions, i.e. the 𝑘 variables
that influence the contribution of 𝑥 𝑗 , are set uniformly at random
among the (𝑛 − 1) variables other than 𝑥 𝑗 [13]. By increasing 𝑘 ,
landscapes can be gradually tuned from smooth to rugged. In 𝜌mnk-
landscapes, the contribution values follow a multivariate uniform
distribution such that 𝜌 > −1

𝑚−1 defines the correlation among the
objectives [33]. The positive (resp. negative) correlation 𝜌 decreases
(resp. increases) the degree of conflict between the objective values.
Interestingly, 𝜌mnk-landscapes exhibit different characteristics and
degrees of difficulty for multi-objective algorithms; see, e.g., [5, 19].

2.3 Multi-objective Landscape
A multi-objective landscape is a triplet (𝑋,N , 𝑓 ) such that 𝑋 is the
solution space, N : 𝑋 ↦→ 2𝑋 is a neighborhood relation, 𝑓 : 𝑋 → 𝑍

is an objective function vector. An example of a multi-objective
landscape pictured in the objective space is shown in Fig. 1 (far-
left). For 𝜌mnk-landscapes, we define the solution space𝑋 = {0, 1}𝑛
as the set of binary strings of length 𝑛. The neighborhood N is
based on the well-established 1-bit-flip operator: two solutions are
neighbors if the Hamming distance between them is equal to one.
Finally, the objective function vector 𝑓 is as described in Section 2.2.

A solution 𝑥 ∈ 𝑋 is a Pareto local optimal solution (PLOS) if it
is not dominated by any of its neighbors [25]; i.e. ∀𝑥 ′ ∈ N (𝑥), 𝑥 ′
does not dominate 𝑥 . For𝑚 = 1, we remark that this is equivalent
to the conventional definition of a single-objective local optimum.
PLOS are colored in black in Fig. 1 (far-left), whereas non-PLOS
appear as empty nodes.

2.4 PLOS-net
Given a multi-objective landscape (𝑋,N , 𝑓 ), the Pareto local opti-
mal solutions network (PLOS-net) proposed in [20] is constructed
as an unweighted graph 𝐺 = (𝑁, 𝐸), such that:

• The set of nodes 𝑁 are the PLOS,
• There is an edge 𝑒𝑖 𝑗 ∈ 𝐸 from 𝑥𝑖 to 𝑥 𝑗 if 𝑥 𝑗 ∈ N (𝑥𝑖 ).

An example of a PLOS-net is shown in Fig. 1 (middle-left). We
remark that two connected solutions (nodes) in the PLOS-net are
mutually non-dominated. In addition, the Pareto (global) optimal
solutions are particular nodes of the PLOS-net.
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3 COMPRESSION, VISUALIZATION, METRICS
In this section, we detail our contributions in terms of compressed
PLOS-nets, network visualization and network metrics.

3.1 Compressed PLOS-nets
For constructing the compressed model, we first add a numerical
attribute to the PLOS-net nodes, which gives the rank of the corre-
sponding solution in the landscape. More specifically, all solutions
from the search space are organized into different layers of mutu-
ally non-dominated solutions, following the non-dominated sorting
procedure [12] used, e.g., in NSGA-II [7]. The rank of a solution
corresponds to the layer it belongs to, such that a lower rank is
better and that a Pareto optimal solution has a rank of 1; see Fig. 1.

Based on this augmented PLOS-net, we construct the compressed
PLOS-net (C-PLOS-net for short) by compressing the nodes (1) that
are connected and (2) that have the same rank. This resembles the
compressed LON in single-objective optimization, where nodes
with the same fitness are compressed [24]. A C-PLOS-net is thus a
weighted graph 𝐺 ′ = (𝑁 ′, 𝐸 ′) such that:

• The set of nodes 𝑁 ′ are connected components of each
PLOS-net’s sub-graph induced by the nodes with the same
rank 𝑟 , with 𝑟 ∈ {1, 2, . . .}.

• There is an edge 𝑒 ′
𝑖 𝑗

∈ 𝐸 ′ if a PLOS within the compressed
node 𝑖 has a neighbor in the compressed node 𝑗 .

We finally add the following attributes to the so-constructed graph.
The width of a C-PLOS-net node is the number of uncompressed
nodes it contains. The weight of a C-PLOS-net edge is the normal-
ized number of uncompressed edges it contains. The edge distance
is simply the multiplicative inverse of its weight. An example of a
C-PLOS-net is shown in Fig. 1 (middle-right and far-right) under
two different visualization layouts that are discussed below.

3.2 Network Visualization
Visualizing networks offers an intuitive insight into their structure,
which is not easily captured with statistical metrics only. The most
familiar forms of network visualization are node-edge diagrams,
which assign nodes to points in the 2-D Euclidean space and con-
nect adjacent nodes by straight lines or curves. Relevant network
features can be highlighted with nodes and edges decorations such
as size and color. Graphs are mathematical objects, they do not
have a unique visual representation. The graph-layout accounts for
the positions of nodes in the 2-D Euclidean space, and it is key for
appreciating the network structure.

We propose using two alternative layouts as shown in Fig. 2.
For two-objective problems, the objective space offers a natural
graph layout that allows appreciating the configuration of PLOS.
This layout, however, does not scale to many objectives. Another
disadvantage of the objective-space layout is that it occludes the
presence of disconnected components in the graph. The number of
connected components, as well as the size of the largest component
were found to have a strong predictive power according to the work
proposing PLOS-nets [20].

These limitations of the objective-space layout prompted us to
design an alternative layout based on the solutions ranks. The idea
is to use the logarithm of the ranks as the 𝑦 coordinate, so the best

solutions are at the bottom of the figure (see the bottom plots in
Fig. 2). We find the logarithm scale preferable as it more clearly
differentiates the solutions with low ranks. For the 𝑥 coordinate,
we rely on the existing graph-visualization body of knowledge.
The most popular graph layout algorithms define an energy or
cost function based on a simulated physical model of the graph.
Minimizing this function produces an optimal drawing. We used
a stress majorization layout algorithm [11], and a color gradient
to highlight the solutions ranks. In the compressed model (right
plots in Fig. 2), the size of nodes and the darkness of edges are
proportional to how many solutions and transitions they aggregate,
respectively. This rank layout can be extended to many objectives
and allows appreciating the graph disconnected components. Our
graph visualizations were produced using the igraph and ggraph
packages of the R programming language.

3.3 Network Metrics
Because of their roots in graph theory and complex networks, the
PLOS-net and C-PLOS-net models allow us to define informative
structural metrics and statistics. Looking at the network as a mathe-
matical object, we define and analyze a number of network metrics
inspired by previous studies from single-objective LONs [23, 24]
while taking into account the dominance relation when necessary,
and hence accommodating the multi-objective nature of the consid-
ered landscapes. These network metrics are presented in Table 1.

Table 1: Description of network metrics.

metric description

un
co

m
pr

es
se
d
an

d
co

m
pr

es
se
d
ne

tw
or
ks

node_n proportion of nodes
node_pareto_n proportion of Pareto nodes (nodes with rank 1)
node_adj_pareto_n proportion of nodes adjacent to a Pareto node
node_rank_worst maximum (worst) node rank
degree_avg average degree of nodes
rank_degree_cor node rank-vs-degree correlation
isolated_n proportion of isolated nodes
pareto_isolated_n proportion of Pareto nodes that are isolated
isolated_rank_avg average rank of isolated nodes
edge_density density of edges
assort_degree assortativity by degree
cc_n proportion of connected components (cc)
cc_max size of largest cc
cc_avg average size of cc
cc_max_pareto size of largest cc that contains a Pareto node
cc_pareto_max (average) size of cc with most Pareto nodes
cc_pareto_avg average number of Pareto nodes per cc
cc_rank_avg_avg mean of average rank per cc
cc_rank_best_avg mean of best rank per cc
path_length_avg average path length
path_length_max longest path length (diameter)
path_pareto_exist number of nodes connected to a Pareto node
path_pareto_avg avg. nb. of Pareto nodes a node is connected to
path_length_pareto_avg avg. (existing) path length to a Pareto node

co
m
pr

es
se
d
ne

tw
or
ks

node_width_avg average node width
node_cmpr compression rate over nodes
strength_avg average node strength
strength_pareto sum of strengths of Pareto nodes
rank_strength_cor node rank-vs-strength correlation
edge_weight_avg average edge weight
edge_cmpr compression rate over edges
dist_avg average distance
dist_max longest distance
dist_pareto_avg avg. dist. to Pareto nodes (existing paths)
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Figure 2: PLOS-net visualization for an example 𝜌mnk-landscape with 𝜌 = 0.4,𝑚 = 2, 𝑛 = 16, and 𝑘 = 1. The compressed model
(right plots) is contrasted with the standard PLOS-net model. Two alternative graph layouts are also contrasted. The top plots
use the objective values as the 𝑥 and 𝑦 coordinates. The bottom plots use the logarithm of the solution ranks as the 𝑦 coordinates,
with the 𝑥 coordinate following a force-directed graph layout. In the compressed model, the size of nodes and the darkness of
edges are proportional to how many solutions and transitions they aggregate.

The top part of the table lists metrics for both model types,
while the bottom part lists those for compressed networks only.
Node-related metrics include the proportional number of nodes,
their relationship with Pareto optimal solutions and dominance
ranks, their degree, and whether they are isolated (i.e. nodes with
no outgoing edges). Edge-related metrics include the density of
edges, the tendency for nodes to be connected to nodes with a
similar degree (assortativity), together with a number of statistics
accounting for the graph connectedness and connected components
(starting with cc_) and existing paths between nodes (starting with
path_). At last, metrics for compressed networks only are based on
the C-PLOS-net attributes. They include the average width of nodes
(i.e. the number of solutions in a compressed node), the compression
rate of nodes (i.e. the average ratio of solutions in a compressed
node) and of edges, the strength of nodes (i.e. the sum of weights of
edges adjacent to nodes) and of Pareto nodes, the average weight of
edges, and finally path distance metrics among nodes and to Pareto
nodes. The network metrics were computed using the igraph R
package. We remark that a subset of metrics are considered in the
PLOS-net original paper [20] as well, that is node_n, degree_avg,
cc_n, cc_max, assort_degree, path_length_avg, path_pareto_exist,
and path_length_pareto_avg.

4 EXPERIMENTAL SETUP
This section describes the experimental setup of our analysis, cov-
ering the considered problems, algorithms, and their parameters.

4.1 Benchmark Problems
In terms of benchmarks, we generate 520 𝜌mnk-landscapes (Sec-
tion 2.2) following the parameters listed in Table 2. This allows us
to investigate relatively smooth to relatively rugged landscapes,
with two and three objectives, and with conflicting, uncorrelated or
correlated objectives. We consider small landscapes so that the they
can be exhaustively enumerated, and thus avoid sampling bias.

Table 2: Benchmark parameters (10 instances are randomly
generated for each parameter combination).

description values

number of variables 𝑛 = 16
number of interactions 𝑘 ∈ {0, 1, 2, 4}
number of objectives 𝑚 ∈ {2, 3}
objective correlation 𝜌 ∈ {−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7} s.t. 𝜌 > −1

𝑚−1
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4.2 Algorithms
We consider the following multi-objective algorithms, that are often
used for 𝜌mnk-landscapes [5, 19].
4.2.1 PLS. Pareto local search (PLS) [25] is a multi-objective lo-
cal search that maintains an unbounded archive 𝐴 of mutually
non-dominated solutions. The archive is initialized with a ran-
dom solution. At each iteration, one solution is selected at random
from the archive 𝑥 ∈ 𝐴, and its neighbors are evaluated. For 𝜌mnk-
landscapes, the neighborsN(𝑥) are solutions located at a Hamming
distance 1. Dominated solutions are filtered and non-dominated
solutions from 𝐴 ∪ N(𝑥) are stored in the archive. The current
solution 𝑥 is thus tagged as visited in order to avoid re-evaluating
its neighbors in subsequent iterations. This process naturally stops
once all solutions from the archive are tagged as visited.
4.2.2 G-SEMO. The global simple evolutionary multi-objective op-
timizer (G-SEMO) is a an elitist steady-state multi-objective evolu-
tionary algorithm [17]. As PLS, it maintains an unbounded archive𝐴
and selects one solution 𝑥 ∈ 𝐴 at random at each iteration. Each
binary variable from 𝑥 is thus independently flipped with a rate of
1/𝑛 in order to produce an offspring 𝑥 ′. The archive is then updated
by keeping the non-dominated solutions from𝐴∪{𝑥 ′}. This process
is iterated until a stopping condition is satisfied. While PLS is based
on the exploration of the whole 1-bit-flip neighborhood, G-SEMO
uses a stochastic bit-flip mutation. As such, every iteration has a
non-zero probability to reach any solution from the search space.
4.2.3 NSGA-II. The non-dominated sorting genetic algorithm II
(NSGA-II) is an elitist dominance-based multi-objective evolution-
ary algorithm using dominance for selection [7]. At a given it-
eration 𝑡 , the current population 𝑃𝑡 is merged with its offspring
𝑄𝑡 , and is divided into non-dominated fronts {𝐹1, 𝐹2, . . . } based
on the non-dominated sorting procedure [12]. The front in which
a given solution belongs to gives its rank within the population.
This is precisely the ranking used as an attribute of nodes in the
considered C-PLOS-net. In NSGA-II, crowding distance is also cal-
culated within each front. Selection is based on dominance ranking,
and crowding distance is used as a tie breaker. Survival selection
consists in filling the new population 𝑃𝑡+1 with solutions having
the best ranks. In case a front 𝐹𝑖 overfills the population size, the
required number of solutions from 𝐹𝑖 are chosen based on their
crowding distance. Parent selection for reproduction consists of bi-
nary tournaments between randomly-chosen solutions. We employ
one-point crossover and stochastic bit-flip mutation for variation.
In addition, we record all non-dominated solutions found so far in
an unbounded archive.
4.2.4 Parameter Setting. We perform 30 independent runs of each
algorithm per instance. For PLS, we are interested in the total num-
ber of evaluations performed by the algorithm before it naturally
falls into a Pareto local optimum set [25]. For G-SEMO and NSGA-II,
the stopping condition is set to 10 000 evaluations (about 15% of
the search space). NSGA-II uses a population of size 100. For all
algorithms, we are interested in the quality of the final archive,
measured in terms of the Pareto resolution (reso), i.e. the proportion
of Pareto optimal solutions identified by the considered algorithm.
In addition, we report the hypervolume [34], and more particularly
the relative hypervolume (hv) covered by the final archive with
respect to the exact Pareto front. A higher hv value is thus better,

and hv = 1 actually means that the exact Pareto front was found.
The hypervolume reference point is set to the origin.

5 RESULTS AND DISCUSSION
In this section, we visualize the C-PLOS-net for selected instances,
and we investigate the correlation between network metrics and
algorithm performance, together with their joint effect on perfor-
mance prediction and algorithm selection.

5.1 Network Visualization
We start by visually inspecting the C-PLOS-net structure for a set
of landscapes with different parameters, using the rank layout
introduced in Section 3.2. Fig. 3 shows the C-PLOS-net for selected
𝜌mnk-landscapes with two objectives (𝑚 = 2), while Fig. 4 does
so for instances with three objectives (𝑚 = 3). In both figures,
the sub-plots show instances with 𝑛 = 16, 𝜌 ∈ {−0.4, 0.0,−0.4}
(columns 1, 2, and 3, respectively), and 𝑘 ∈ {1, 4} (top and bottom
row, respectively).

The C-PLOS-nets in Fig. 3 show the complete set of (compressed)
nodes; this was not possible for the C-PLOS-nets in Fig. 4 with three
objectives, due to their large size. Therefore, for three objectives,
a sub-graph of the full C-PLOS-net is illustrated. The sub-graphs
contain all the nodes with rank 1 and 2, as well as a sample of
the remaining nodes selected uniformly at random. The size of the
sample is a proportion of the total number of nodes, where the
proportions used are 𝑝 ∈ {0.3, 0.6, 0.8} for 𝜌 ∈ {−0.4, 0.0,−0.4}, re-
spectively. The shape of C-PLOS-nets varies depending on problem
parameters, and the following general observations can be made
from Figs. 3 and 4:

• For both values of𝑚 and 𝑘 , the number of nodes decreases
with increasing 𝜌 (objective correlation).

• For both values of𝑚 and 𝑘 , the number of separated con-
nected components increases with increasing 𝜌 .

• For𝑚 = 2 and a fixed 𝜌 , the number of nodes increases as 𝑘
gets larger.

• For all𝑚 and 𝜌 values, isolated nodes (visualized as triangles)
appear only for 𝑘 = 4.

These observations are consistent with the properties of 𝜌mnk-
landscapes [20, 33].

5.2 Network Metrics vs. Performance
We pursue by measuring the impact of network metrics on algo-
rithm performance. Fig. 5 gives the Spearman’s rank correlation
between each metric and algorithm performance. We consider the
number of evaluations (eval) performed by PLS, and the relative
hypervolume (hv) reached by PLS, G-SEMO and NSGA-II. Hyper-
volume values are to be maximized, and thus a positive correlation
means that the metric has a positive effect on approximation qual-
ity. Due to space restriction, results for the Pareto resolution are
omitted, but the trends are similar to those of hypervolume.

Apart from a few minor exceptions, we remark that the met-
rics for uncompressed and compressed networks follow the same
trend overall. The network metrics most (negatively or positively)
correlated with algorithm performance are as follows. Firstly, the
number of evaluations of PLS increases with the number of nodes
andwith the degree of connectedness of both the uncompressed and
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Figure 3: C-PLOS-net visualization for 𝜌mnk-landscapes with two objectives (𝑚 = 2), 𝑛 = 16, 𝜌 ∈ {−0.4, 0.0,−0.4} and 𝑘 ∈ {1, 4}.
The compressed model with the rank layout is used. Node sizes and edge darkness reflect how many solutions and transitions
they aggregate.

Figure 4: C-PLOS-net visualization for 𝜌mnk-landscapes with three objectives (𝑚 = 3), 𝑛 = 16, 𝜌 ∈ {−0.4, 0.0,−0.4} and 𝑘 ∈ {1, 4}.
The compressed model with the rank layout is used. Since the fully enumerated networks are too large, they were pruned to
retain all nodes of rank 1 and 2, completed with a sample of the remaining nodes. The sample size is a proportion 𝑝 of the
complete number of nodes, with 𝑝 ∈ {0.3, 0.6, 0.9}, for 𝜌 ∈ {−0.4.0.0, 0.4}, respectively.



Pareto Local Optimal Solutions Networks with Compression, Enhanced Visualization and Expressiveness GECCO ’23, July 15–19, 2023, Lisbon, Portugal

PLS (eval) PLS (hv) G−SEMO (hv) NSGA−II (hv)

−1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5

dist_pareto_avg
dist_maxdist_avg

edge_cmpr

edge_weight_avg

rank_stre
ngth_cor

stre
ngth_pareto

stre
ngth_avg

node_cmpr

node_width_avg

path_length_pareto_avg

path_pareto_avg

path_pareto_exist

path_length_max

path_length_avg

cc_rank_best_avg

cc_rank_avg_avg

cc_pareto_avg

cc_pareto_max

cc_max_paretocc_avgcc_maxcc_n

rank_degree_cor

assort_
degree

edge_density

isolated_rank_avg

pareto_isolated_n
isolated_n

degree_avg

node_rank_worst

node_adj_pareto_n

node_pareto_nnode_n

k
m

rho

correlation with algorithm performance

uncompressed compressed

Figure 5: Spearman correlation between networkmetrics and
algorithm performance (number of evaluations for PLS, and
hypervolume for all algorithms).

compressed network models. This suggests that PLS runs longer
before getting stuck when there are more PLOS, and when those
are more clustered. This results in PLS reaching better hypervol-
ume values when the degree of connectedness of PLOS is high, and
when the rank of connected components is low. Conversely, the
higher the weight of compressed edges and the lower the distance
between compressed nodes, the lower the number of PLS evalua-
tions. Next, the higher the number of isolated nodes and the path
length between nodes, the worse the hypervolume achieved by
all algorithms. The average node strength in C-PLOS-net, that is,
the sum of adjacent edge weights for each node on average, tends
to increase the obtained hypervolume. At last, a strong reduction
of edges from the uncompressed to the compressed model (low
compression rate on the edges) positively affects the performance
of all algorithms, whereas the compression rate on the nodes seems
more impactful for PLS hypervolume.

5.3 Performance Prediction
We now study the combined effect of network metrics on algorithm
performance by building a regression model for predicting the
approximation quality of the different algorithms, and the runtime
(number of evaluations) of PLS. We rely on well-established random
forests [2, 18] with default parameters, using the network metrics as
predictors and all considered 𝜌mnk-landscapes for training. Fig. 6
gives the relative importance of predictors, as portrayed by random
forests in terms of the mean decrease of prediction accuracy [2, 18].
The higher the value, the more important the predictor.
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Figure 6: Relative importance of network metrics for predict-
ing algorithm performance (number of evaluations for PLS,
and hypervolume for all algorithms).

Once again, the PLS runtime seems mostly influenced by the
number of nodes, the number of Pareto nodes (or nodes adjacent
to them), and the connectedness of the uncompressed model. For
the compressed model, the network diameter (maximum distance
between nodes) is clearly the most important metric. Now looking
at the hypervolume, the number of compressed nodes, of isolated
nodes (for PLS), the connectedness (for PLS and G-SEMO), and the
assortativity of nodes by degree are detected as important metrics.
So are the path length (for PLS) and the distance (for G-SEMO and
NSGA-II) between Pareto nodes, as well as the average compressed
node strength (for PLS) and the density of compressed edges (for
G-SEMO and NSGA-II). Here as well, results for Pareto resolution
are omitted, but they are similar to those for hypervolume.

The above results suggest that there exists a strong connection
between the descriptors of both network models and algorithm per-
formance (runtime and approximation quality). We now assess the
prediction accuracy of the regression models using 30 replicates of
10-fold cross-validation. In particular, we compare the variance ex-
plained by random forests using (1) benchmark parameters only (𝜌 ,
m, and k), (2) uncompressed network metrics from [20] (denoted
as LDVLAT18), (3) new uncompressed network metrics, (4) com-
pressed network metrics, and finally (5) the combination of all
uncompressed and compressed network metrics. This is reported
in Fig. 7, this time also including Pareto resolution (reso).

We first observe that the prediction models using solely bench-
mark parameters as predictors are consistently outperformed by
their counterparts using network metrics. This confirms that the



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Arnaud Liefooghe, Gabriela Ochoa, Sébastien Verel, and Bilel Derbel

PLS (eval) PLS (reso) PLS (hv) G−SEMO (reso) G−SEMO (hv) NSGA−II (reso) NSGA−II (hv)

0.625

0.650

0.675

0.700

0.725

0.78

0.80

0.82

0.84

0.86

0.675

0.700

0.725

0.750

0.750

0.775

0.800

0.825

0.850

0.78

0.80

0.82

0.84

0.86

0.775

0.800

0.825

0.850

0.875

0.85

0.90

0.95

%
 v

a
r 

e
x
p
la

in
e
d

benchmark parameters metrics from LDVLAT18 new metrics (uncompressed) new metrics (compressed) new metrics (uncompressed + compressed)

Figure 7: Prediction accuracy of regression models trained by algorithm performance (10-fold cross-validation, 30 replicates).

network models do indeed provide additional information that is
not captured by the problem descriptors. Now comparing the net-
work metrics from [20] to those considered in this paper, the latter
typically outperform the former except for the Pareto resolution of
PLS, where they surpass the uncompressed model’s new metrics by
a slight margin. In fact, the network models and metrics proposed
in this paper lead to an accuracy higher than 0.8 for PLS and for
the Pareto resolution of G-SEMO and NSGA-II (slightly less for
hypervolume). This suggests that more than 80% of the variance
of predicted values across all problems is explained by the predic-
tion model, and thus by network metrics. Finally, the compressed
model’s metrics, whether considered by themselves or in addition
to others, consistently lead to a better accuracy with two exceptions:
(i) the PLS runtime, where the uncompressed model’s new metrics
are above, and (ii) the G-SEMO hypervolume, where there is no
significant difference.

5.4 Algorithm Selection
We finish our study with a simple CART decision tree [3, 29] aiming
to recommendwhich algorithm to select for a given landscape using
network metrics as predictors. This is a classification task whose
classes are the three considered algorithms, and the correct class for
a given instance is the algorithmwith the best average hypervolume.
Out of the 520 initial instances, 128 were discarded because there
was no best algorithm. The dataset thus consists of 392 instances.
The decision tree is given in Fig. 8 for compressed network metrics.
The numbers below each tree node indicate on how many instances
G-SEMO, NSGA-II, and PLS is the best, respectively, followed by
the proportion of instances covered by the node.

The cross-validated classification accuracy is 84%. This is sub-
stantially better than always selecting NSGA-II, which is better on
61% of instances from this dataset. As such, although the regression
is not extremely accurate for hypervolume, the network metrics
provide insightful enough information to make an informed deci-
sion on which approach to select from the portfolio of algorithms.
The decision tree for the Pareto resolution is not reported due to
space restriction, but the accuracy is on similar ranges (87%). We
observe that the classifier recommends PLS over NSGA-II when
the assortativity per degree is low, that is when nodes with similar
degree are not often connected.

6 CONCLUSION
We revisited the concept of Pareto local optimal solutions network,
an extension of the well-established single-objective local optima
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Figure 8: Hypervolume-based algorithm selection for com-
pressed network metrics.

network for multi-objective landscapes. First, we introduced a com-
pressed model that reduces the number of nodes while maintaining
a satisfying level of information, especially regarding the network’s
connected components. This allowed us to enhance the network
visualization under a rank layout, which is particularly relevant for
3+ objectives. However, for landscapes with many local optima, we
still had to prune some network nodes in order to visualize it. In
the future, we plan to consider rank bins (instead of separate ranks)
in order to further compress nodes with close ranks, following a
logarithmic scale in order to put more emphasis on good solutions.
Second, we proposed a new set of network metrics providing in-
sights from an optimization perspective. Some of them were found
to strongly correlate with search performance. Interestingly, the
compressed model, in addition to providing a clearer visualization,
achieves a prediction accuracy as high as the original model, and
even surpasses it for some prediction tasks. We consider to extend
the notion of funnels, known to impact the performance of single-
objective local search [30], by investigating possible definitions
for rank-based sinks. Finally, we confronted the network metrics
for algorithm selection, showing that even a simple decision tree
recommends the right algorithm in nearly 85% of the cases. In order
to address larger landscapes , we plan to adapt sampling techniques
from single-objective local optima networks [31]. We believe the
proposed metrics could be smoothly adapted to sampled networks,
although it remains open whether they will achieve a satisfactory
prediction accuracy. This would allow us to validate our findings
on other, larger and more practical multi-objective problems.
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