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Many-objective (combinatorial) optimization is easy

BACKGROUND AND MOTIVATIONS

In contrast to single-objective optimization, multi-objective optimization deals with problems where multiple, typically conflicting objectives must be optimized simultaneously. Under this scenario, optimality is often defined in terms of Pareto dominance, i.e., a solution dominates another if the former is better than the latter in all objectives and strictly better in at least one of them. A solution that is not dominated by any other feasible solution is called Pareto-optimal. The set of Pareto-optimal solutions is the Pareto set and their image in objective space is the Pareto front.

It is known than adding objectives to a single-objective optimization problem may actually help solving it [START_REF] Jensen | Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-Objective Optimisation[END_REF][START_REF] Knowles | Reducing Local Optima in Single-Objective Problems by Multi-objectivization[END_REF], and it has been proven that adding a new objective to an existing multi-objective problem may reduce the runtime required by an evolutionary algorithm to find the Pareto front [START_REF] Brockhoff | Do Additional Objectives Make a Problem Harder[END_REF]. Nevertheless, increasing the number of objectives is generally thought to make optimization problems harder to solve. In recent years, a large amount of research effort has been devoted to many-objective optimization problems, that is, problems with four or more conflicting objectives. A survey from 2015 [START_REF] Li | Many-Objective Evolutionary Algorithms: A Survey[END_REF] already listed 238 papers on this topic and this number has surely grown exponentially since then.

One of the main challenges in multi-objective optimization is that the size of the Pareto set may be exponential on the input size, even with two objectives [START_REF] Ehrgott | Multicriteria Optimization[END_REF], and the fraction of solutions that are Pareto-optimal generally increases sharply with the number of objectives [START_REF] Winkler | Random Orders[END_REF]. Therefore, most multi-objective optimization methods only aim at producing a high-quality bounded-size approximation of the Pareto front [START_REF] Knowles | Bounded Pareto Archiving: Theory and Practice[END_REF]. Even within this aim, the runtime of many steps within multi-objective optimization algorithms is at least polynomial and often exponential on the number of objectives [START_REF] Hisao Ishibuchi | Evolutionary many-objective optimization: A short review[END_REF], which obviously increases the computational requirements of the algorithms. Nevertheless, this is not due to any intrinsic difficulty of the optimization landscape, but simply to the computational complexity of the algorithms available for performing such steps. In other words, we would not say that a problem has become easier if we improve the runtime of an optimizer by using more efficient implementations or better algorithms for such steps [START_REF] Andreia | The Hypervolume Indicator: Computational Problems and Algorithms[END_REF][START_REF] Jensen | Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms[END_REF] as long as the optimizer visits exactly the same sequence of solutions during its execution. In fact, the comparison of multi-and many-objective optimizers is often performed in terms of the number of evaluated solutions, and the runtime required by other algorithmic steps is given less attention.

Therefore, we wish to set aside the runtime of individual algorithmic steps and focus instead on the landscape features of manyobjective combinatorial optimization problems [START_REF] Daolio | Problem Features versus Algorithm Performance on Rugged Multiobjective Combinatorial Fitness Landscapes[END_REF] that influence the number of solutions (or neighborhood evaluations) required to reach an approximation of the Pareto front with certain quality. High-level landscape features that makes an optimization problem harder typically include its ruggedness, the connectedness of the Pareto set, the number of local optima that are not global optima, etc. From this particular point of view, we claim here that manyobjective problems are generally easier than problems with two or three objectives, from the point of view of finding a bounded size set of Pareto-optimal solutions. As we will show empirically, for more than five objectives almost all solutions are Pareto-optimal and the Pareto set is connected, thus finding multiple Pareto-optimal solutions becomes trivial even with an uniform random sampling. The connectedness of the Pareto set persists even with highly non-linear landscapes, which would typically induce highly disconnected landscapes. Our observations here are consistent and complement the empirical observation that Pareto dominance is unable to drive the search in many-objective optimization [START_REF] Ikeda | Failure of Paretobased MOEAs: Does non-dominated really mean near to optimal?[END_REF][START_REF] Purshouse | On the Evolutionary Optimization of Many Conflicting Objectives[END_REF]. We show that the reason is that, from the point of view of Pareto dominance, the landscape is basically neutral and connected, and the difficulty lies elsewhere.

Of course, there are other characteristics that may make a manyobjective optimization problem difficult to solve. On top of the increase in computational complexity, many-objective optimization algorithms aim to find a "well-distributed" set of solutions by optimizing (directly or indirectly) unary quality metrics, such as the hypervolume, and we make no claims (yet) about whether those metrics are easier or harder to optimize with additional objectives. We also make not claims about the difficulty in optimizing scalarization functions that convert a many-objective problem into multiple single-objective ones [START_REF] Paquete | Using experimental design to analyze stochastic local search algorithms for multiobjective problems[END_REF].

The paper is organized as follows. After giving the experimental setup of our analysis in Section 2, we investigate the correlation among objectives and the dominance relations among solutions in Section 3, the connectedness of the Pareto set in Section 4, and the multimodality in terms of local optimal solutions and sets in Section 5. We finally summarize our main findings and discuss further research in Section 6.

EXPERIMENTAL SETUP

This section covers the experimental setup of our analysis, including the considered benchmark problems and their setting.

𝜌mnk-Landscapes

We consider 𝜌mnk-landscapes as a problem-independent model for generating multi-and many-objective multimodal problems [START_REF] Hernán | Working principles, behavior, and performance of MOEAs on MNK-landscapes[END_REF][START_REF] Verel | On the Structure of Multiobjective Combinatorial Search Space: MNK-landscapes with Correlated Objectives[END_REF]. Candidate solutions are binary strings of size 𝑛, and the objective function vector 𝑓 = (𝑓 1 , . . . , 𝑓 𝑖 , . . . , 𝑓 𝑚 ) is defined as 𝑓 : {0, 1} 𝑛 ↦ → [0, 1] 𝑚 such that each objective 𝑓 𝑖 is to be maximized, 𝑖 ∈ {1, . . . , 𝑚}. As in well-established single-objective nk-landscapes [START_REF] Kauffman | The Origins of Order[END_REF], the objective value 𝑓 𝑖 (𝑥) of a solution 𝑥 is an average value of the individual contributions associated with each variable 𝑥 𝑗 . Given objective 𝑓 𝑖 , 𝑖 ∈ {1, . . . , 𝑚}, and variable 𝑥 𝑗 , 𝑗 ∈ {1, . . . , 𝑛}, a component function 𝑓 𝑖 𝑗 : {0, 1} 𝑘+1 ↦ → [0, 1] assigns a real-valued contribution for every combination of 𝑥 𝑗 and its 𝑘 variable interactions 𝑥 𝑗 1 , . . . , 𝑥 𝑗 𝑘 . These 𝑓 𝑖 𝑗 -values are uniformly distributed in [0, 1]. Thus, the individual contribution of a variable 𝑥 𝑗 depends on its value and on the values of 𝑘 < 𝑛 other variables 𝑥 𝑗 1 , . . . , 𝑥 𝑗 𝑘 . The variable interactions, i.e., the 𝑘 variables that influence the contribution of 𝑥 𝑗 , are set uniformly at random among the (𝑛 -1) variables other than 𝑥 𝑗 [START_REF] Kauffman | The Origins of Order[END_REF]. By increasing the number of variable interactions 𝑘 from 0 to (𝑛 -1), problems can be gradually tuned from smooth to rugged. In 𝜌mnk-landscapes, 𝑓 𝑖 𝑗 -values follow a multivariate uniform distribution of dimension 𝑚, defined by an 𝑚 × 𝑚 positive-definite symmetric covariance matrix (𝑐 𝑝𝑞 ) such that 𝑐 𝑝𝑝 = 1 and 𝑐 𝑝𝑞 = 𝜌 for all 𝑝, 𝑞 ∈ {1, . . . , 𝑚} with 𝑝 ≠ 𝑞, where 𝜌 > -1

𝑚-1 defines the correlation among the objectives; see [START_REF] Verel | On the Structure of Multiobjective Combinatorial Search Space: MNK-landscapes with Correlated Objectives[END_REF] for details. The positive (resp. negative) objective correlation 𝜌 decreases (resp. increases) the degree of conflict between the objective function values. The correlation coefficient 𝜌 is the same for each pair of objectives, and the variable interactions are the same for all the objectives. By construction, it is very unlikely that different solutions map to the same point in the objective space. Interestingly, 𝜌mnk-landscapes exhibit different characteristics and different degrees of difficulty for multi-objective algorithms [START_REF] Daolio | Problem Features versus Algorithm Performance on Rugged Multiobjective Combinatorial Fitness Landscapes[END_REF][START_REF] Liefooghe | Landscape-Aware Performance Prediction for Evolutionary Multi-objective Optimization[END_REF]. The 𝜌mnk-landscapes generator is available at the following URL: http://mocobench.sf.net.

Problems Setting

We generate 540 multi-and many-objective 𝜌mnk-landscapes under the following settings:

• The problem size is 𝑛 = 14, so that the solution space can be enumerated exhaustively. • The problem non-linearity is 𝑘 ∈ {1, 2, 4}, i.e. from relatively smooth to relatively rugged problems. • The number of objectives is 𝑚 ∈ {2, 3, 4, 5, 7, 10, 15, 20}; we also consider the single-objective case (𝑚 = 1) when relevant. • The correlation among objectives is 𝜌 ∈ 0, 0.95 • -1 𝑚-1 , i.e. from uncorrelated to highly conflicting objectives.

For each problem setting, 10 random instances are independently generated.

OBJECTIVE CORRELATION AND DOMINANCE

We start by analyzing how the number of objectives impacts their degree of conflict and the dominance relation between solutions.

Correlation among Objectives

Strongly correlated objectives do not add any difficulty to a problem, since optimizing for one objective will optimize the other. Intuitively, uncorrelated or negatively correlated objectives would be more challenging that positively correlated ones from the point of view of optimization. However, as we will show, the more we increase the number of objectives, the less conflicting they can be.

For the degree of conflict among the objectives, we consider the pairwise correlation between the objective values. More precisely, given a pair of objectives (𝑓 𝑖 , 𝑓 𝑗 ), we measure the Spearman rank correlation coefficient between 𝑓 𝑖and 𝑓 𝑗 -values, i.e. a nonparametric measure of rank correlation to account for potential non-linearities. The pairwise correlation ranges from -1.0 (highly conflicting objectives) to 1.0 (highly correlated objectives), passing through 0.0 (uncorrelated or independent objectives), and varies according to the degree of conflict between 𝑓 𝑖 and 𝑓 𝑗 . We then average the correlation coefficients over all pairs of objectives. This is reported first over the entire solution space in Figure 1. The average pairwise correlation is given with respect to the number of objectives 𝑚 (𝑥-axis) and to the problem non-linearity 𝑘 (in colors), for both uncorrelated (left) and conflicting objectives (right). As expected, the objective correlation is close to 0.0 for uncorrelated objectives, independently of 𝑚 and 𝑘. For conflicting objectives, the curve follows the setting of 0.95 • -1 𝑚-1 described in the problems setting of Section 2, and thus only depends on 𝑚. For more than two objectives, we cannot have all pairs of objectives strongly in conflict one another. Let us consider the example where two objectives have a correlation of -1.0. If we now add a third objective that conflicts with the first one, it will necessarily be positively correlated to the second one (and vice versa). More formally, for any multi-objective problem, if all pairwise correlations are the same, the correlation cannot be lower than -1 𝑚-1 , because the correlation matrix is a covariance matrix and must therefore be positive semi-definite [START_REF] Rebonato | The most general methodology to create a valid correlation matrix for risk management and option pricing purposes[END_REF]. Therefore, the correlation tends towards 0.0 as 𝑚 increases. This explains why the pairwise correlation tends to increase on average with the number of objectives. By construction, the objective correlation of 𝜌mnk-landscapes is the same for all pairs of objectives, which explains why the confidence interval is quite small.

Let us now comment on the average pairwise objective correlation for solutions from the Pareto front only, as shown in Figure 2. Because the solutions are mutually non-dominated, the objective correlation is -1.0 when 𝑚 = 2: given two Pareto-optimal solutions, when one is better for 𝑓 1 , it is necessarily worse for 𝑓 2 . However, as the number of objectives increases, the average pairwise correlation also increases, and seems to follow a logarithmic growth tending towards 0.0. Although it is consistently higher for uncorrelated objectives, where it reaches a value of 0.0 for 15 objectives, it is just slightly behind for conflicting objectives, and goes from -1.0 for 𝑚 = 2 to about -0.05 for 𝑚 = 20. Overall, whether considering all solutions or Pareto-optimal solutions only, the degree of conflict between the objectives seems to decrease with the number of objectives. For the solutions in the Pareto front, their correlation quickly converges towards zero when adding more objectives, even if the objectives are as mutually conflicting as possible.

Although we cannot claim at this stage that zero correlation in the Pareto front makes a problem easier or harder to solve, it is well-known that some algorithms behave better than others depending on the objective correlation; see, e.g., [START_REF] Mote | A parametric approach to solving bicriterion shortest path problems[END_REF][START_REF] Paquete | A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices[END_REF]. Since the correlation seems to converge to zero regardless of the actual degree of conflict between the objectives and the value of 𝑘, this would suggest that some classes of algorithms may have an advantage over many-objective optimization problems.

Dominance Relations among Solutions

We now investigate the probability for a (random) solution to be Pareto-optimal depending on the number of objectives. We argue that a problem is intuitively easier if finding a Pareto-optimal solution by chance is more likely.

Figure 3 gives the proportional number of non-dominated solutions within the solution space. We observe that in both cases (uncorrelated and conflicting objectives), a handful of solutions are non-dominated when there are few objectives, while this increases substantially as the number of objectives grows. More specifically, for uncorrelated objectives, this proportion is below 5% for 𝑚 ≤ 5 objectives and reaches 100% for 𝑚 = 20. For conflicting objectives, it already goes above 5% for 𝑚 ≥ 3, and reaches 100% for 𝑚 = 10. This means that for 𝑚 ≥ 20 uncorrelated objectives or 𝑚 ≥ 10 conflicting objectives, all solutions are Pareto-optimal for the considered problems. Here as well, the problem non-linearity has little impact, although we note that there are slightly fewer Pareto-optimal solutions when 𝑘 is larger.

In Figure 4, we complete our analysis by calculating, for each solution, how many other solutions dominate it, and we average over the whole solution space. In fact, this matches the strategy used by Fonseca and Fleming's MOGA [START_REF] Fonseca | Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization[END_REF] to rank solutions from a population. The average proportion of dominating points per solution is about half for 1 objective, by construction of nk-landscapes [START_REF] Kauffman | The Origins of Order[END_REF]. It then follows a logarithmic decrease with respect to the number of objectives, to the point where there are almost none left for 𝑚 = 7 uncorrelated objectives (or 𝑚 = 3 conflicting objectives). This result suggests that most of non-optimal solutions are dominated by a single point in these cases, that is, almost every randomly sampled solution is either Pareto-optimal or dominated by just one solution.

Next, we follow another ranking strategy based on non-dominated sorting [START_REF] Goldberg | Genetic Algorithms in Search, Optimization and Machine Learning[END_REF], as used, e.g., in NSGA-II [START_REF] Kalyanmoy Deb | A fast and elitist multi-objective genetic algorithm: NSGA-II[END_REF]. All solutions are organized into different layers of mutually non-dominated solutions, and the rank of a solution corresponds to the layer it belongs to, such that a lower rank is better and Pareto-optimal solutions have a rank of 1. The number of non-dominated fronts (layers), or equivalently the maximum rank, is given in Figure 5 (notice the log-scale on the 𝑦-axis). As above, this significantly decreases with the number of objectives for uncorrelated objectives, and even more so for conflicting objectives. For 1 objective, there is one layer (rank) per solution. But for many objectives, all solutions have a rank very close to that of Pareto-optimal solutions, and most solutions belong to the first front (i.e., the Pareto front). Overall, as 𝑚 increases, so does the probability of being non-dominated, and the expected rank of solutions is better.

This analysis not only confirms previous results on the ineffectiveness of Pareto dominance for solving many-objective problems [START_REF] Ikeda | Failure of Paretobased MOEAs: Does non-dominated really mean near to optimal?[END_REF], it also highlights that this ineffectiveness actually means that finding Pareto-optimal solutions becomes easier (or even trivial) with increasing number of objectives. It is particularly striking how little influence the setting of 𝑘 has on this conclusion. Verel et al. [START_REF] Verel | On the Structure of Multiobjective Combinatorial Search Space: MNK-landscapes with Correlated Objectives[END_REF] showed that there are slightly fewer Pareto-optimal solutions when 𝑘 is large. Here we see this is true up to a certain number of objectives, after which all solutions are Pareto-optimal.

Finally, we argue that, if almost all solutions from the search space are Pareto-optimal, the challenge is no longer to optimize the objectives but to find a good representation of the Pareto front of tractable size, i.e., bounded archiving [START_REF] Knowles | Bounded Pareto Archiving: Theory and Practice[END_REF].

CONNECTEDNESS OF PARETO-OPTIMAL SOLUTIONS

The previous results deal with the dominance relation among solutions based on their position in the objective space, independently of their proximity in the solution space. Let us now take a closer look at the topology of the Pareto set based on the connectedness among Pareto-optimal solutions [START_REF] Ehrgott | Connectedness of Efficient Solutions in Multiple Criteria Combinatorial Optimization[END_REF][START_REF] Gorski | Connectedness of Efficient Solutions in Multiple Objective Combinatorial Optimization[END_REF]. We define the Pareto graph such that each node is a Pareto-optimal solution, and an edge connects two nodes if the corresponding solutions are neighbors in the solution space. For the considered 𝜌mnk-landscapes, we say that two solutions are neighbors if they are separated by a Hamming distance of 1, which directly relates to the 1-bit-flip operator. If the Pareto graph is connected, i.e. there is a path between any pair of nodes, the Pareto set is connected [START_REF] Ehrgott | Connectedness of Efficient Solutions in Multiple Criteria Combinatorial Optimization[END_REF][START_REF] Gorski | Connectedness of Efficient Solutions in Multiple Objective Combinatorial Optimization[END_REF], which makes it possible for a local search to identify the whole Pareto set by starting with one Pareto-optimal solution. As shown in [START_REF] Liefooghe | What Makes an Instance Difficult for Black-box 0-1 Evolutionary Multiobjective Optimizers[END_REF][START_REF] Paquete | Clusters of non-dominated solutions in multiobjective combinatorial optimization: An experimental analysis[END_REF], the degree of connectedness impacts the performance of multi-objective algorithms such as Pareto local search [START_REF] Paquete | On Local Optima in Multiobjective Combinatorial Optimization Problems[END_REF]. Intuitively, a large number of small connected components makes the optimization more difficult as an algorithm would have to jump from one component to another in order to make progress. Figure 6 gives the number of connected components (CC) in the Pareto graph [START_REF] Paquete | Clusters of non-dominated solutions in multiobjective combinatorial optimization: An experimental analysis[END_REF]. In the case where the value is 1, all Paretooptimal solutions belong to the same CC, and therefore the Pareto set is connected. Conversely, when there are as many CC as Paretooptimal solutions, all the nodes are isolated in the Pareto graph. For 1 objective, there is a single optimum so it naturally belongs to a single CC. We observe that the number of CC starts by increasing for a relatively small number of objectives, and then suddenly drops down to 1 for 15+ uncorrelated objectives, or 7+ conflicting objectives. In fact, there are already less than 2 CC on average for 10 uncorrelated objectives and 5 conflicting objectives, which makes it even more striking. Before this sudden drop, the problem noticeably affects the number of CC. In particular, larger 𝑘-values seem to break the connectedness, which is one of the reasons why larger 𝑘-values make the problems harder, which is a known result from 2 to 5 objectives [START_REF] Verel | On the Structure of Multiobjective Combinatorial Search Space: MNK-landscapes with Correlated Objectives[END_REF]. However, after the drop, 𝑘 has no effect and cannot break the connectedness. The above results are confirmed by Figure 7 where the proportional size of the largest CC [START_REF] Liefooghe | What Makes an Instance Difficult for Black-box 0-1 Evolutionary Multiobjective Optimizers[END_REF][START_REF] Verel | On the Structure of Multiobjective Combinatorial Search Space: MNK-landscapes with Correlated Objectives[END_REF] is shown. Here we further see that for 7+ uncorrelated objectives or 4+ conflicting objectives, the largest CC contains almost all Pareto-optimal solutions. We can therefore deduce that the other CC contain only a handful of solutions. We finally report the average node degree of the Pareto graph in Figure 8; that is, for each Pareto-optimal solution, how many of its neighbors are other Pareto-optimal solutions. We normalize the values by the neighborhood size. The number of objectives seems to have a positive effect on the number of neighbors that belong to the Pareto graph. In fact, all neighbors of all nodes map to Pareto-optimal solutions for 20 uncorrelated objectives or 7+ conflicting objectives, that is, all neighbors of Pareto-optimal solutions are themselves Pareto-optimal.

Altogether, these results suggest that for many objectives, there are fewer connected components in the Pareto set, that Paretooptimal solutions tend to belong to the same connected component, and that most neighbors from Pareto-optimal solutions are also Pareto-optimal. From this section and the previous one, we can conclude that Pareto-optimal solutions can be found more easily, and that it becomes more likely to find more Pareto-optimal solutions from other Pareto-optimal solutions when there are more objectives. 

MULTIMODALITY

We now move on to the last part of our analysis, in which we study the multimodality of many-objective problems. By multimodality, we mean the number of Pareto local optimal solutions and of Pareto local optimal sets as found by multi-objective local search algorithms.

Local Optimal Solutions

We have previously commented on the structure induced by the neighborhood within the set of Pareto-optimal solutions. Let us now consider the landscape induced by the neighborhood within the whole solution space. Similar to single-objective optimization, a solution is a Pareto local optimal solution if it is not dominated by any of its neighbors [START_REF] Paquete | On Local Optima in Multiobjective Combinatorial Optimization Problems[END_REF]. As above, we consider the 1-bit-flip neighborhood for 𝜌mnk-landscapes. Global optima (i.e. Paretooptimal solutions) are also local optima (i.e. Pareto local optimal solutions), but not necessarily the other way around.

We report the number of local optima per global optimum, i.e., the number of Pareto local optimal solutions divided by the number of Pareto-optimal solutions, in Figure 9 for the different considered problems. If this ratio is 1, this means that all local optima are in fact global optima, in which case the multimodality is low. By contrast, the larger this ratio, the more (non-global) local optima and the higher the multimodality, which we expect to make the problem harder for local search algorithms. As expected, there are more local optima when 𝑘 is large. This is consistent with known results for single-objective nk-landscapes [START_REF] Kauffman | The Origins of Order[END_REF][START_REF] Weinberger | Local properties of Kauffman's N-k model: A tunably rugged energy landscape[END_REF] and for 𝜌mnk-landscapes with 2 to 5 objectives [START_REF] Verel | On the Structure of Multiobjective Combinatorial Search Space: MNK-landscapes with Correlated Objectives[END_REF]. That said, here again the number of objectives seems to play a more important role. Indeed, we observe that the ratio increases from 1 to 2 objectives, and then significantly decreases (notice the log-scale) as there are more objectives. For uncorrelated objectives, most local optima are global optima for 𝑚 = 15, and all of them are for 𝑚 = 20. For conflicting objectives, this is the case already for 𝑚 = 7 objectives.

A different view of the same observation is given in Figure 10, which reports the proportion of Pareto-optimal solutions (global optima), of Pareto local optima that are not Pareto-optimal (local optima) and of other (neither global nor local optimal) solutions. The green line in the plot shows how the proportion of local optima that are not global optima increases with the number of objectives, reaching a maximum at 𝑚 = 6 (for uncorrelated objectives) or 𝑚 = 3 (for conflicting objectives). However, for higher number of objectives, this value decreases until reaching zero, which means that all local optima are in fact global optima. In summary, the more the objectives, the fewer the number of Pareto local optimal solutions per Pareto-optimal solution, so that the multimodality decreases. In fact, for many objectives, most (if not all) local optima are global optima. This knowledge can simplify the search. For example, an optimization algorithm could avoid checking the Pareto-optimality of Pareto local optimal solutions, since any local optima is unlikely to be dominated by any other solution.

Local Search and Local Optimal Sets

We conclude our analysis with a study related to the basins of attraction of multi-objective local search algorithms. A typical example of such algorithms is Pareto local search (PLS) [START_REF] Paquete | On Local Optima in Multiobjective Combinatorial Optimization Problems[END_REF]. PLS maintains an unbounded archive of mutually non-dominated solutions, which is initialized with a random solution. At each step, one solution is randomly selected from the archive, and all its neighbors are evaluated and compared against the archive. The current solution is thus tagged as visited. Non-dominated neighbors are added to the archive, and dominated solutions from the archive are filtered. PLS stops once all solutions from the archive are tagged as visited.

A similar example of multi-objective local search is SEMO (simple evolutionary multi-objective optimizer) [START_REF] Laumanns | Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem[END_REF]. The only difference with PLS is that only one neighbor is evaluated at each step, randomly generated with repetition, such that SEMO does not detect when no more improvement is possible. Paquete et al. [START_REF] Paquete | On Local Optima in Multiobjective Combinatorial Optimization Problems[END_REF] define the attraction set of local search algorithms such as PLS and SEMO as follows: A Pareto local optimal set contains Pareto local optimal solutions only, such that all solutions are mutually non-dominated, and any neighbor of any solution is weakly dominated by a solution in the set [START_REF] Paquete | On Local Optima in Multiobjective Combinatorial Optimization Problems[END_REF]. Upon completion, both PLS and SEMO return such a Pareto local optimal set.

We investigate the performance of PLS and SEMO for 𝑚 ∈ {2, 3, 4, 5} objectives. For comparison, we also consider a simple random search, and a simple enumerative search where solutions are generated following a random order, but without repetition.

We report the proportional number of identified Pareto-optimal solutions and the hypervolume [START_REF] Zitzler | Performance Assessment of Multiobjective Optimizers: an Analysis and Review[END_REF] relative deviation with respect to the number of evaluated solutions (denoted as iterations). The algorithms were implemented in C++ using Paradiseo [START_REF] Dréo | Paradiseo: from a modular framework for evolutionary computation to the automated design of metaheuristics[END_REF], and the hypervolume computation was performed using the implementation from [START_REF] Fonseca | An improved dimension-sweep algorithm for the hypervolume indicator[END_REF] as provided within the mco R package [START_REF] Mersmann | mco: Multiple Criteria Optimization Algorithms and Related Functions[END_REF]. We could not run the algorithms for larger values of 𝑚 because the archiving and hypervolume tasks are too CPU-intensive. We stress that these sub-procedures are not directly related to the search process and do not impact the number of evaluations they perform. That said, the results reported below are sufficient to support our observations and findings for the considered problem size.

The results of all algorithms for uncorrelated objectives are reported in Figure 11. Notice the log-scale on the 𝑥-axis (iterations) for both the proportion of identified Pareto-optimal solutions (left) and the hypervolume relative deviation (right), and on the 𝑦-axis for hypervolume. As expected, the convergence profile of PLS and SEMO is very similar. Although SEMO is slightly outperformed at some intermediate stages of the search, it eventually catches up to PLS and finishes with the same level of approximation quality (except for 𝑘 = 4 and 𝑚 = 5). Correspondingly, random search and enumerative search are almost indistinguishable until about 5 000 iterations, and then the latter takes over by taking advantage of not evaluating the same solution twice. Since the maximum number of iterations is set as the solution space size (2 𝑛 = 2 14 = 16 384 evaluations), enumerative search always results in the Pareto set. We observe that PLS and SEMO are able to reach the Pareto set for 𝑘 = 1 and 𝑚 ≥ 4 objectives, and are very close to it for 𝑘 = 2 and 𝑚 = 5 objectives. This suggests that there is only one Pareto local optimal set in this case: the Pareto set.

Looking in more detail at the results of PLS (left) and SEMO (right) in Figs. 12-13, this time for both uncorrelated and conflicting objectives, we see more clearly the impact of the number of objectives. In particular, for a given problem non-linearity, both algorithms are more quickly stuck into a lower-quality Pareto local optimal set when there are fewer objectives. This suggests that there are fewer Pareto local optimal sets for many-objective problems. Of course, the problem non-linearity also increases the landscape multimodality, but for a given 𝑘-value this decreases with 𝑚.

At last, we report in Figure 14 the number of iterations performed by PLS until it does not improve anymore (up to 2 𝑛 iterations), this time for 2 to 10 objectives. For uncorrelated objectives, PLS evaluates less than 5% of the solution space before getting stuck for 2 objectives, about 25% for 4 objectives, 50-75% for 5 objectives, and 100% for 7+ objectives. For conflicting objectives, this goes from 10% for 2 objectives, to 90% for 3 objectives, and 100% for 4+ objectives. These trends are almost independent of the problem non-linearity (𝑘). Once again, this observation corroborates that the number of Pareto local optimal sets decreases with the number of objectives, such that multi-objective landscapes appear to be more multimodal than many-objective landscapes.

CONCLUSIONS

In this paper, we questioned the assumption that multi-objective combinatorial optimization problems (with 2 or 3 objectives) are easier to optimize than many-objective ones (with 4+ objectives). Experiments were conducted on a broad range of small-size 𝜌mnklandscapes with 2 to 20 objectives, and varying degrees of ruggedness and of conflict between the objectives. Our main findings can be summarized as follows. When there are more objectives:

(1) The conflict between (anti-correlated) objectives decreases, i.e., the more the objectives, the less conflicting they can be. (2) The probability for a randomly-sampled solution to be Paretooptimal increases, which implies that finding at least one Pareto-optimal solution becomes easier. (3) The number of dominating points per solution decreases. As such, the small fraction of non-optimal solutions are in fact dominated by very few solutions. (4) The number of non-dominated fronts decreases, which means that if we find a dominated solution, any solution that dominates it is likely to be Pareto-optimal. (5) The connectedness of the Pareto set increases, in which case finding more Pareto-optimal solutions with local search becomes trivial, and finding the complete Pareto set is limited only by the intractability of its size, and not by any difficultly induced by its landscape. [START_REF] Ehrgott | Multicriteria Optimization[END_REF] The number of local optima per Pareto-optimal solution decreases, which means that any solution identified as a local optima is likely to be Pareto-optimal. (7) The proportion of Pareto-optimal solutions identified by local search increases, i.e., with more objectives, a local search identifies a larger fraction of the Pareto front. [START_REF] Fonseca | Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization[END_REF] The relative hypervolume covered by local search increases.

If run until completion, local search will therefore be more effective for many-objective problems than multi-objective ones. [START_REF] Fonseca | An improved dimension-sweep algorithm for the hypervolume indicator[END_REF] The number of solutions explored by local search before converging to a local optimal sets increases, which means that the search does not easily get stuck into local optima and no mechanism is needed for escaping them. [START_REF] Garnier | Efficiency of Local Search with Multiple Local Optima[END_REF] The number of local optimal sets, which is a measure of multimodality, decreases. High multimodality is known to make a problem harder to solve [START_REF] Garnier | Efficiency of Local Search with Multiple Local Optima[END_REF][START_REF] Malan | A survey of techniques for characterising fitness landscapes and some possible ways forward[END_REF]. In other words, our empirical results reveal that multi-objective problems are in fact more multimodal than many-objective problems. The above observations suggest that, after 4 or 5 objectives, adding more objectives to an optimization problem typically makes the goal of finding a Pareto set approximation easier, almost independently from the ruggedness of the landscape. Unlike the single-and multi-objective case, many-objective local search is rarely trapped into local optima and converges to better approximations. From the optimization point of view, the challenge of many-objective approaches is not to accelerate the convergence towards the Pareto front, nor to identify which solutions are Pareto-optimal, and neither to escape from attraction points. It is rather to avoid revisiting solutions or regions of the Pareto front already explored, and to identify a subset of the Pareto front that maximizes some quality metric or the decision-maker's preferences.

Nevertheless, beyond the number of solutions explored, manyobjective optimization presents other challenges, such as the computational effort to handle additional objectives or the difficulty of processing and maintaining numerous solutions mapping to highdimensional objective spaces. Many-objective algorithms would obviously benefit from any progress on CPU-intensive procedures such as solution ranking, online archiving or the computation of set quality indicators. Such progress would additionally allow us to validate our results on broader benchmarks, and to experiment with bounded-size local optimal sets (i.e., approximations) [START_REF] Liefooghe | Dominance, Epsilon, and Hypervolume Local Optimal Sets in Multi-objective Optimization, and How to Tell the Difference[END_REF] and representations of the Pareto set [START_REF] Vaz | Representation of the non-dominated set in biobjective discrete optimization[END_REF] relative to the best subset of a given size. Furthermore, we plan to investigate different problem classes, including continuous multi-and many-objective functions, and to consider additional landscape features such as the solution space dimension or other types of dominance relations. Lastly, many-objective optimizers often consider scalarization functions, and it remains an open question whether the landscape of such functions becomes harder or easier to optimize when adding more objectives.

Reproducibility. Relevant data is available at the following URL: https://doi.org/10.5281/zenodo.7625398.
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 1 Figure 1: Average correlation among pairs of objectives (full space).
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 2 Figure 2: Average correlation among pairs of objectives (Pareto-optimal solutions only).
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 3 Figure 3: Proportion of solutions being Pareto-optimal.
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 4 Figure 4: Average number of solutions dominating each solution.
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 5 Figure 5: Number of non-dominated fronts.
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 6 Figure 6: Number of connected components in the Pareto graph.
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 78 Figure 7: Proportional size of largest connected component.
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 9 Figure 9: Ratio of Pareto local optima to Pareto-optimal solutions.
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 10 Figure 10: Proportion of Pareto-optimal solutions, of Pareto local optima (not Pareto), and of other solutions.

Figure 11 :Figure 12 :

 1112 Figure 11: Proportion of identified Pareto-optimal solutions (left) and hypervolume relative deviation (right) for uncorrelated objectives.
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 13 Figure 13: Hypervolume relative deviation for PLS (left) and SEMO (right).
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 14 Figure 14: Number of solutions explored by PLS before reaching its natural stopping condition.