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Placement et exécution de tâches sous contraintes temporelles

Nous proposons une solution offline, analytique et algorithmique de l'exécution de tâches sur un ensemble de processeurs et sous plusieurs contraintes temporelles afin de minimiser la consommation d'énergie.

Abstract-We propose an offline, analytical and algorithmic method to minimise the energy consumption of tasks execution on multiple processors with delay constraints.

Introduction

Dans les systèmes embarqués temps réel, les approches DVFS (dynamic voltage and frequency scaling) et DPM (dynamic power management) sont deux techniques largement utilisées pour réduire la consommation d'énergie [START_REF] Bambagini | Energyaware scheduling for real-time systems: A survey[END_REF]. Schématiquement, l'approche DVFS, qui modifie la tension et la fréquence d'horloge des unités de calcul, est utilisée pour réduire la puissance dite dynamique, alors que l'approche DPM, qui bascule les unités de calcul dans un mode inactif à très basse consommation, est utilisée pour la puissance dite statique [START_REF] Bambagini | Energyaware scheduling for real-time systems: A survey[END_REF]. Les approches peuvent être online, c.-à-d. que l'optimisation des tension, fréquence et puissance est réalisée pendant l'exécution des tâches, ou offline. Nous nous intéressons à un système cyber-physique d'accès sécurisé composé d'un ensemble de noeuds hétérogènes, des capteurs-actionneurs effectuant également des calculs. L'ouverture d'un accès nécessite un ensemble de tâches séquentielles prédéfinies, initialement instanciées sur des noeuds et pouvant migrer sur n'importe quel noeud du réseau pour être effectuées. Ce cas d'étude nous permet de travailler dans un contexte offline. De nombreuses solutions algorithmes sont proposées pour réduire la consommation d'énergie [START_REF] Devadas | On the interplay of voltage/frequency scaling and device power management for frame-based real-time embedded applications[END_REF] ou adresser plusieurs objectifs [START_REF] Gadou | Multi-objective optimization on dvfs based hybrid systems[END_REF], et l'apprentissage machine est également appliqué [START_REF] Zhuo | A dvfs design and simulation framework using machine learning models[END_REF]. Nous n'utilisons pas l'apprentissage machine mais proposons une étude analytique afin de réduire l'espace d'exploration des solutions pour, au besoin, adapter des algorithmes traitant des problèmes de complexité combinatoire [START_REF] Mazyavkina | Reinforcement learning for combinatorial optimization: A survey[END_REF]. Le problème traité dans cet article est le suivant.

Problème 1. On considère la réalisation d'une application de N tâches séquentielles sur K processeurs, sous M contraintes de délais. Chaque tâche peut être exécutée avec sa propre fréquence. Quelles sont les fréquences et les affectations finales des processeurs qui minimisent la consommation d'énergie et respectent les contraintes temporelles ?

Nous commençons par définir le modèle de consommation utilisé au paragraphe 2. Le problème est résolu dans des configurations simplifiées, aux paragraphes 3, 4 et 5, avant que la solution ne soit présentée dans le cas général au paragraphe 6. L'algorithme d'optimisation, présenté au paragraphe 7, est basé sur la

Modèle de consommation

En utilisant la dépendance linéaire entre la fréquence et la tension d'alimentation, la puissance consommée par un processeur s'écrit [START_REF] Zhu | Reliability-aware energy management for periodic real-time tasks[END_REF] 

p = q +C f α (1)
où q est la puissance statique, C f α est la puissance dynamique liée à la communation des transistors avec C la capacité équivalente des transistors, f la fréquence de fonctionnement et α un exposant de puissance dynamique compris entre 2 et 3 [START_REF] Zhu | Reliability-aware energy management for periodic real-time tasks[END_REF]. Les valeurs des paramètres q, C et α dépendent du système électronique considéré. La puissance statique q est fonction du mode actif ou non du processeur mais nous supposons, en première approximation, que la différence de puissance entre les modes est négligeable. Avec ce modèle de consommation, nous avons les hypothèses suivantes.

Hypothèse 2. La consommation d'énergie de la tâche i qui s'exécute en n i ∈ N * cycle (ou coups d'horloge) et en un temps t i s'écrit

e i = n i g ( f i ) , t i = n i h( f i ) ,
avec g et h des fonctions convexes, monotones, indépendantes de i , croissantes pour g et décroissantes pour h.

Un processeur, une contrainte

Nous commençons par traiter le problème simple d'exécution de N tâches sur un unique processeur avec une seule contrainte de temps d'exécution T . Le problème d'optimisation et sa solution sont alors les suivants. 

Problème 3. min { f i } N i =1 N i =1 n i g ( f i ) t.q. ∀i ∈ [1, N ] f i ≥ 0 , N i =1 n i h( f i ) ≤ T .
L({ f i }, λ, {µ i }) = i e i + λ i t i -T - i µ i f i (2) = i n i g ( f i ) + λ i n i h( f i ) -T - i µ i f i , soit ∂L ∂ f i = n i g ( f i ) + λn i h ( f i ) -µ i . (3) 
Les conditions KKT [6, § 4.4.1] pour un problème convexe conduisent à µ i f i = 0, soit alors

I = {i | f i > 0} et ainsi ∀i ∈ I , λ = - g ( f i ) h ( f i ) . ( 4 
) Soit l (x) = g (x) h (x) l (x) = g (x)h (x) -g (x)h (x) (h (x)) 2 ≤ 0 (5) car g (x) ≥ 0, g (x) ≥ 0, h (x) ≤ 0 et h (x) ≥ 0.
La fonction l est donc décroissante monotone et l (x) + λ = 0 admet au plus une solution. Si les tâches sont réalisables, alors la fréquence optimale f * est donnée par

f * = h -1 T N i =1 n i . ( 6 
) Et si lim f →+∞ N i =1 n i h( f ) < T (7)
alors les tâches sont toutes réalisables.

En pratique les dimensions du système sont telles que l'application d'accès sécurisé s'exécute correctement, ce qui nécessite que l'ensemble des tâches sont réalisables. Ainsi, la proposition 4 précise que si un ensemble de tâches doivent s'exécuter en un temps donné sur un même processeur, alors la consommation d'énergie est minimisée si toutes les tâches sont exécutées avec la même fréquence.

Un processeur, des contraintes

Avec M contraintes temporelles T j , j ∈ [1, M ], le problème et sa solution sont les suivants.

Problème 5.

min

{ f i } N i =1 N i =1 n i g ( f i ) t.q. ∀i ∈ [1, N ] f i ≥ 0 , ∀ j ∈ [1, M ] i ∈I j n i h( f i ) ≤ T j
Proposition 6. Sous l'hypothèse 2, le nombre de fréquences différentes solution du problème 5 est donné par le nombre de sous-ensembles de tâches subissant le même sous-ensemble de contraintes.

Démonstration. C'est toujours un problème d'optimisation convexe

L({ f i }, {λ j }, {µ i }) = N i =1 n i g ( f i ) + M j =1 λ j i ∈I j n i h( f i ) -T j - N i =1 µ i f i , (8) 
soit

∂L ∂ f i = n i g ( f i ) + M j =1 λ j 1 I j (i )n i h j ( f i ) -µ i . (9) 
L'annulation du lagrangien s'écrit, pour des tâches réalisables,

M j =1 λ j 1 I j (i ) = - g ( f i ) h ( f i ) . (10) S'il existe A ⊂ [1, N ] tel que ∀i ∈ A , M j =1 λ j 1 I j (i ) = a alors ∀i ∈ A , f i = f a , d'après la proposition 4. Soit V = (v i , j ) i ∈[1,N ], j ∈[1,M
] la matrice des contraintes, avec v i , j = 1 I j (i ). Il suffit alors de compter le nombre de lignes différentes dans la matrice V pour avoir le nombre maximal de fréquences différentes.

Une tâche, des processeurs

Cette fois, la tâche peut migrer et être exécutée sur un des K processeurs. La migration a des coûts énergétique et temporel qui ne dépendent que de n i . Il n'y a pas ici d'optimisation du débit pour le transfert des tâches et on suppose un réseau de communication homogène.

Hypothèse 7. La consommation de la migration et de l'exécution d'une tâche i d'un processeur k sur le processeur k à la fréquence f i est

e i = g 0 (n i )δ kk + n i g k ( f i ) et le temps de migration et d'exécution est t i = h 0 (n i )δ kk + n i h k ( f i ) ,
où δ kk = 1 -δ kk et δ kk est le symbole de Kronecker. Les propriétés des fonctions g k et h k sont données à l'hypothèse 2, les fonctions g 0 et h 0 sont monotones, croissantes.

À noter que si k = k , alors il n'y a pas de migration et la consommation et le temps associés sont nuls. Dans ce cas

e i = n i g k ( f i ) et t i = n i h k ( f i ) . ( 11 
)
Avec l'hypothèse 7, le problème et sa solution sont alors les suivants.

Problème 8.

min k ∈[1,K ], f i ≥0 g 0 (n i )δ kk + n i g k ( f i ) t.q. ∀k ∈ [1, K ], h 0 (n i )δ kk + n i h k ( f i ) ≤ T .
Proposition 9. Sous l'hypothèse 7, la solution du problème 8 est donnée par la comparaison des meilleures fréquences sur chaque processeur.

Démonstration. La meilleure fréquence f i sur le processeur k est la fréquence solution de

h k ( f i ) = T -h 0 (n i )δ kk n i (12)
et la solution au problème est la fréquence f * i sur le processeur k * telle que ∀k ∈ [1, K ],

g 0 (n i )δ kk * + n i g k * ( f * i ) ≤ g 0 (n i )δ kk + n i g k ( f i ) . ( 13 
)
Dans le cas où k * = k, la fréquence solution doit vérifier g 0 (n i )

+ n i g k * ( f * i ) ≤ n i g k ( f i )
, qui est un cas particulier de (13).

Cas général

Nous faisons les hypothèses supplémentaires suivantes pour traiter le cas général.

Hypothèse 10. Les changements de fréquence nécessitent de l'énergie et du temps supplémentaires si deux tâches successives sont exécutées sur un même processeur

∀i ∈ [1, N ] , e i = g f δ f i -1 f i δ k i -1 k i , t i = h f δ f i -1 f i δ k i -1 k i , avec f 0 = k 0 = 0.
Hypothèse 11. Un mode veille est activé lorsqu'un processeur n'a pas de tâche à exécuter. Il est coûteux en énergie et en temps au réveil

e i = g v δ k i -1 k i , t i = h v δ k i -1 k i .
Le problème général est formalisé de la façon suivante.

Problème 12. Soit N tâches i séquentielles initialement instanciées sur le processeur k

i ∈ [1, K ], le problème s'écrit min f i ,k i N i =1 N i =1 g 0 (n i )δ k i k i + n i g k i ( f i ) + g f δ f i -1 f i δ k i -1 k i + g v δ k i -1 k i , t. q. ∀ j ∈ [1, M ], i ∈I j h 0 (n i )δ k i k i + n i h k ( f i ) + h f δ f i -1 f i δ k i -1 k i + h v δ k i -1 k i ≤ T j et ∀i ∈ [1, N ] f i ≥ 0 et k i ∈ [1, K ].
La solution de ce problème est donnée par la proposition suivante.

Proposition 13. Sous les hypothèses 2, 7 et 10, le nombre de fréquences différentes solutions du problème 12 est donné par le nombre de groupes de tâches subissant des jeux de contraintes différentes sur des processeurs différents. Démonstration. Soit une répartition donnée des tâches, c.-à-d.

δ k i k i et δ k i -1 k i donnés.
S'il n'existe pas deux tâches successives {i -1, i } sur un même processeur ayant des contraintes différentes, alors la contribution de g f est toujours nulle, sinon il faut distinguer le cas où les fréquences sont différentes ou pas pour dériver le lagrangien. On obtient alors, comme pour le problème 5, un système à

N + M inconnues { f 1 , • • • , f N , λ 1 , • • • , λ M } et inéquations à résoudre.
Soit U le vecteur colonne de la configuration évaluée U = (k i ) i ∈ [1,N ] . Le nombre maximal de fréquences différentes est donné par le nombre de lignes différentes de la matrice [V U ], avec la matrice V introduite dans la preuve de la proposition 6. Par exemple, si

U T = 1 1 1 3 2 3 1 3 et V T = 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 , alors il y a 5 lignes différentes dans la matrice [V U ] et les fré- quences optimales vérifient f 1 = f 2 = f 7 et f 6 = f 8 .
Il n'y a au plus que 5 fréquences optimales à rechercher dans cet exemple.

Algorithme

Le problème à M contraintes d'inégalité est résolu en utilisant une méthode de point intérieur à l'aide d'une fonction barrière [6, § 16.1]. Dans un premier temps, ces contraintes d'inégalité sont intégrées dans la fonction objective. On note

f = [ f 1 , • • • , f N ] T le vecteur des fréquences des N tâches, G( f ) = N i =1 g 0 (n i )δ k i k i + n i g k i ( f i ) + g f δ f i -1 f i δ k i -1 k i + g v δ k i -1 k i ( 14 
)
est la fonction de coût énergétique et

H ( f ) = - M j =1 ln Φ j ( f ) (15) 
est la fonction barrière des contraintes, avec

Φ j ( f ) = T j - i ∈I j h 0 (n i )δ k i k i + n i h k i ( f i ) (16) 
+ h f δ f i -1 f i δ k i -1 k i + h v δ k i -1 k i .
On peut également ajouter dans la fonction H ( f ) les contraintes de positivité des variables. La fonction H ( f ) s'écrit alors

H ( f ) = - M j =1 ln Φ j ( f ) - N i =1 ln f i . (17) 
Le problème s'écrit 

min f βG( f ) + H ( f ) (18) 
βn i g k i ( f i ) + M j =1 1 I j (i )n i h k i ( f i ) Φ j ( f ) - 1 f i = 0 . ( 20 
)
Pour résoudre numériquement (20), ou (18) à l'aide d'une descente de gradient, nous avons besoin de calculer la matrice hessienne de βG( f ) + H ( f ) dont les composantes sont

∂ 2 G( f ) ∂ f i ∂ f j = n i g k i ( f i )δ i j , (21) 
∂ 2 H ( f ) ∂ f 2 i = M j =1 1 I j (i ) n i h k i ( f i )Φ j ( f ) -n 2 i h 2 k i ( f i ) Φ 2 j ( f ) + 1 f 2 i (22) et, ∀i = l , ∂ 2 H ( f ) ∂ f i ∂ f l = - M j =1 1 I j (i )n i h k i ( f i )1 I j (l )n l h k l ( f l ) Φ 2 j ( f ) . ( 23 
)
On note e U ( f ) l'énergie totale de la réalisation des tâches aux fré-

quences f d'une configuration U = [k 1 , • • • , k N ] T . L'algorithme 1 résout le problème 12.
Algorithme 1.

1: Initialiser f (0) réalisable, β (0) < 1, µ > 1, f * = +∞ 2: for chaque configuration U ∈ [1, K ] N do 3: ∀i ∈ [1, N ], calculer δ k i k i , δ k i -1 k i , δ f i -1 , f i 4: j ← 0 5:
while conditions de convergence pas atteintes do 6:

f ( j +1) ← solution de (20), ou (18) par descente de gradient, initialisée avec f ( j ) 7:

β ( j +1) ← µβ ( j ) 8:

j ← j + 1 9:
end while 10:

f * ← min e U f ( j ) , f * 11: end for À noter que les fonctions barrières ln f i (17) ne sont pas nécessaires car la recherche de zéro est initialisée avec un point réalisable f (0) > 0 et les fonctions barrières ln Φ j permettent de garder les points f (i ) dans le cadrant positif si le pas µ n'est pas trop grand. Par ailleur, l'espace des configurations explorées [1, K ] N est réduit en utilisant la proposition 13. 

Simulations

Conclusion

Nous proposons une stratégie offline d'allocation optimale des fréquences et processeurs pour minimiser la consommation d'énergie. Elle peut avantageusement être appliquée dans un système cyber-physique d'accès contrôlé où la même application est répétée de nombreuse fois. 

Proposition 4 .

 4 Sous l'hypothèse 2, la solution du problème 3 est ∀i ∈ [1, N ], f i = f * où f * satisfait la contrainte de temps d'exécution. Démonstration. C'est un problème d'optimisation convexe. Le lagrangien s'écrit, sous forme canonique, i ∈ [1, N ],

  avec β ∈ R * + et lim β→∞ f * (β) = f * . La solution est recherchée en itérant β avec un pas µ > 1 :β (i +1) = µβ (i ) .Trouver f * (β) revient à résoudre β∇G( f ) + ∇H ( f ) = 0 (19) où les dérivées sont calculées en considérant une configuration donnée, incluant des fréquences différentes si nécessaire. Ainsi, ∀i ∈ [1, N ], (19) s'écrit

  On considère deux processeurs K = 2, deux contraintes M = 2 et quatre tâches N = 4, avec n i une v.a. discrète uniforme sur [10 5 , 10 7 ], k i une v.a. discrète uniforme sur [1, K ], b i une v.a. discrète uniforme sur [100, 1000], représentant les tailles des paquets transmis pour la migration des tâches, g 0 (b i ) = b i 6•10 -3 115000 , g j ( f i ) = 10 -2 a j f 2 i et {a 1 , a 2 } = {10 -27 , 10 -24 }, g f = 10 -8 , g v = 5 • 10 -3 , h 0 (b i ) = b i 115000 . Les processeurs ont un certain taux d'occupation x j , h j ( f i ) = 1 f i (1-x j ) , avec x 1 ∈ [0, 1[ et x 2 = 0, h f = 10 -8 , h v = 10 -3. un exemple de consommation totale avec et sans optimisation, les 4 fréquences optimales et l'affectation finale optimale des 4 tâches sur les processeurs 1 ou 2 en fonction du taux d'occupation x 1 du processeur 1. Le vecteur d'affectation initiale est U T = [2 11 1]. Le processeur 1 consommant beaucoup moins que le processeur 2 à fréquence égale, pour un faible taux d'occupation l'optimum est alors d'effectuer les tâches sur ce processeur 1. À plus de 96 % de taux d'occupation, il est préférable de ne plus transférer la tâche 1, puis les autres tâches à plus de 97 % et 98 %.

FIGURE 1 -

 1 FIGURE 1 -Consommation en fonction du taux d'occupation.

Univ Rennes, INSA Rennes, CNRS, IETR-UMR 6164, 35000 Rennes 1. FDI, 49300 Cholet méthode du point intérieur avec fonction barrière[START_REF] Gilbert | Fragments d'optimisation différentiable : théories et algorithmes[END_REF]. Un exemple numérique est donné au paragraphe 8. Le paragraphe 9 conclut l'article.