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Numerical simulations of Taylor flow is carried out using the unit cell approach. The hydrodynamics of two-phase flows are computed using COM-SOL Multiphysics software and a moving mesh approach to track the interface. Gas-liquid mass transfer is then solved, by varying the diffusion coefficient. Surprisingly, this work shows that the global Sherwood number Sh ∞ plateaus with the Péclet number P e when it is larger than 1000, which was not previously reported. Local Sherwood numbers for transfer through the film (Sh bf ) and the caps (Sh bs ) allow to distinguish their contributions. Sh bf evolves as given by the falling film theory, whereas Sh bs follows the penetration theory only at moderate Péclet number. A dimensionless correlation to predict Sh ∞ gathers results from contrasted configurations: Sh ∞ is mainly sensitive to both P e (before saturation) and the gas hold-up G . The benefit of working with unit cells of small G in milli-reactors is therefore highlighted.

Introduction

The use of micro or milli-reactors is an efficient strategy for process intensification, both with gas-liquid or liquid-liquid flows. Indeed, such miniaturized devices permit a good management of the flow regimes, offer high interfacial area, which promotes heat and mass transfer, and can conveniently be used as reactor and heat exchanger simultaneously. The stable flows obtained in these devices are interesting for safety issues, including in the case of high temperature-pressure operating conditions [START_REF] Hessel | Novel process windows for enabling, accelerating, and uplifting flow chemistry[END_REF][START_REF] Deleau | Determination of mass transfer coefficients in high-pressure two-phase flows in capillaries using raman spectroscopy[END_REF][START_REF] Ganguli | Hydrodynamics of liquid-liquid flows in micro channels and its influence on transport properties: A review[END_REF].

In capillary channels, different two-phase flow patterns are observed, such as bubbly flows, segmented flows (or slug flow or Taylor flow), churn flows or annular flows [START_REF] Kreutzer | Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels[END_REF][START_REF] Yao | Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models[END_REF]. The flow regimes are generally mapped as a function of dimensionless parameters involving the gas and liquid superficial velocities, even though the number of parameters which actually determines the flow pattern can be larger because the transition between different regimes is highly sensitive to disturbances, making such predictions specific to each device.

Monolith reactors are composed of a large number of millimeter-size channels in parallel. They operate generally with a Taylor flow [START_REF] Etminan | A review on the hydrodynamics of taylor flow in microchannels: Experimental and computational studies[END_REF], which involves low pressure drop while promoting mass transfer. Taylor flow is composed of a series of confined bubbles, which have a characteristic size comparable to that of the channel diameter, and which travel at a velocity of magnitude U b slightly larger than that of the total superficial velocity U tp (sum of the gas and liquid superficial velocities). This is due to the presence of a lubrication film between the bubble and the channel wall, as evidenced by Taylor [START_REF] Taylor | Deposition of a viscous fluid on the wall of a tube[END_REF]. Monolith reactors have broad applications for gas-liquid reactions, which take place either in the liquid phase or at the wall coated by a catalyst. They constitute an alternative to the use of more conventional reactors [START_REF] Peng | A review of microreactors based on slurry taylor (segmented) flow[END_REF]. Examples of applications include reactions of hydrogenation, either for the treatment of fossil oil [START_REF] Kreutzer | Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels[END_REF] or edible oil [START_REF] Boger | Monolithic catalysts as an alternative to slurry systems: hydrogenation of edible oil[END_REF][START_REF] Albrand | Accurate hydrogenated vegetable oil viscosity predictions for monolith reactor simulations[END_REF], oxidation [START_REF] Leclerc | Gas-liquid selective oxidations with oxygen under explosive conditions in a micro-structured reactor[END_REF], nitration [START_REF] Halder | Nitration of toluene in a microreactor[END_REF], the Fischer-Tropsch synthesis [START_REF] Guettel | Reactors for fischertropsch synthesis[END_REF]... In the context of energy applications or carbon capture, microfluidic platforms have also been used to investigate the behaviour of CO 2 (solubility, flow properties) in experiments which mimic its conditions of storage in deep saline formations [START_REF] Ho | Microfluidic mass transfer of co 2 at elevated pressures: implications for carbon storage in deep saline aquifers[END_REF], where Taylor flow is involved.

Several promising strategies are developed in order to intensify microreactors. Nanoparticles dispersed in the continuous phase [START_REF] Huang | Enhancement of gas-liquid mass transfer by nanofluids in a microchannel under taylor flow regime[END_REF] have been used to enhance gas-liquid mass transfer, or nanoparticles immobilized inside the millichannel to enhance the range of parameters leading to slug flow. The introduction of ultrasonic field in a microreactor, which generates surface wave oscillations, has also been proposed [START_REF] Dong | Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors[END_REF][START_REF] Zhang | Ultrasoundassisted gas-liquid mass transfer process in microreactors: the influence of surfactant, channel size and ultrasound frequency[END_REF][START_REF] Xu | Numerical investigation on the hydrodynamics of taylor flow in ultrasonically oscillating microreactors[END_REF] as a way to positively impact the mass transfer rate, due to enhanced convection between the two phases: additional vortices are formed in the slugs. Characterizing the efficiency of such developments requires to properly quantify the mass transfer rate between the gas and the liquid phase in Taylor flow.

A review of the available models to predict the mass transfer coefficient in Taylor flow (k l or k l a, or Sherwood number in dimensionless form) is given in Haase et al. [START_REF] Haase | Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid taylor flow[END_REF]. They are either empirical models (related to a variety of parameters depending on the formulation), or based on existing mass transfer theories around rising bubbles such as the Higbie penetration theory [START_REF] Higbie | The rate of absorption of a pure gas into a still liquid during short periods of exposure[END_REF].

Note that most of the existing correlations are dimensional, which leads to restricting their use to the range of validity in which they were obtained, and to not properly characterizing the impact of each physical parameter on the mass transfer rate. Indeed, despite the existence of several correlations, the discrepancy between their predictions can be significant: high deviations are observed with respect to experimental data [START_REF] Abiev | Gas-liquid and gas-liquid-solid mass transfer model for taylor flow in micro (milli) channels: A theoretical approach and experimental proof[END_REF], but also between the models themselves when comparing their predictions for the evolution of k l a as a function of a single parameter [START_REF] Haase | Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid taylor flow[END_REF] such as the two-phase flow velocity or the slug length (which is even more unclear with contrasted trends, either increasing or decreasing, depending on the prediction model used).

Besides, the roles of the bubble caps and the lubrication film in the global mass transfer rate are still unclear. Generally, the dominant contribution is admitted to be that from the bubble to the film except in the case of a long contact time where the film is close to saturation then inactive for mass transfer [START_REF] Haase | Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid taylor flow[END_REF]. However, their respective contributions are evaluated based on theoretical models and the conclusions are not always supported by local measurements. Therefore, this shows the necessity for further investigations on this fundamental problem [START_REF] Yao | The effect of liquid viscosity and modeling of mass transfer in gas-liquid slug flow in a rectangular microchannel[END_REF], thanks to local investigations, either based on numerical simulations or the measurement of concentration fields in the bulk liquid, to elucidate the different mass transfer mechanisms in Taylor flow.

In this way, visualisation of concentration fields by colorimetric techniques or LIF or P-LIF [START_REF] Dietrich | A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel[END_REF][START_REF] Yang | Visualization and characterization of gas-liquid mass transfer around a taylor bubble right after the formation stage in microreactors[END_REF][START_REF] Butler | Mass transfer in taylor flow: Transfer rate modelling from measurements at the slug and film scale[END_REF][START_REF] Mei | Gas-liquid mass transfer around taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor[END_REF][START_REF] Deleau | Determination of mass transfer coefficients in high-pressure co2-h2o flows in microcapillaries using a colorimetric method[END_REF] have contributed to analyze the spatio-temporal evolution of a dissolving gas in the liquid, and even in the lubrication film between the bubble and the wall [START_REF] Butler | Mass transfer in taylor flow: Transfer rate modelling from measurements at the slug and film scale[END_REF]. However, it is still challenging to experimentally assess to the concentration gradients at the interface in order to gain information on the local fluxes.

In contrast, numerical simulations offer this advantage. Sufficient resolution is, nonetheless, needed both in terms of hydrodynamics (in the lubrication film [START_REF] Fletcher | Cfd simulation of taylor flow: Should the liquid film be captured or not?[END_REF]) and in the thin mass boundary layer around the interface, which is demanding at high Péclet numbers at the locations where the mass flux is locally the highest [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF]. CFD simulations of mass transfer in Taylor flow have been initially performed by Van Baten and Krishna [START_REF] Van Baten | Cfd simulations of mass transfer from taylor bubbles rising in circular capillaries[END_REF] with further works by other authors, sometimes by including the effect of chemical reactions on mass transfer [START_REF] Shao | Mass transfer during taylor flow in microchannels with and without chemical reaction[END_REF][START_REF] Ganapathy | Mass transfer characteristics of gas-liquid absorption during taylor flow in mini/microchannel reactors[END_REF][START_REF] Hassanvand | Direct numerical simulation of mass transfer from taylor bubble flow through a circular capillary[END_REF][START_REF] Yang | Simulations and analysis of multiphase transport and reaction in segmented 52 flow microreactors[END_REF]. Simulations are able to predict a mass transfer coefficient of same order to that measured in experimental works or predicted by correlations, but the concordance is generally limited to obtaining a similar order of magnitude [START_REF] Silva | Mass transfer from a taylor bubble to the surrounding flowing liquid at the micro-scale: A numerical approach[END_REF] for a restricted range of operating conditions, making deeper investigations necessary. Such works are also important to permit the development of physically-based simplified models of mass transfer in Taylor flow, by allowing to identify the main contributions to account for.

Based on the existing investigations, it is well understood that interfacial mass transfer between a bubble and the surrounding liquid in Taylor flow takes place in parallel (i) through the two semi-spherical bubble caps, where the dissolved gas is then captured in the circulation zone of the flow (or bulk slug) between two consecutive bubbles, and (ii) in the film adjacent to the channel wall. However, the enriched circulation zone in the slug and the film near the wall also exchange mass together, not only by diffusion since there exists a relative velocity between these two regions [START_REF] Butler | Mass transfer in taylor flow: Transfer rate modelling from measurements at the slug and film scale[END_REF][START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF]. Several experimental works have already permitted to emphasize that the global mass transfer coefficient in Taylor flow is not constant but decreases all along the channel, before reaching a constant value [START_REF] Mei | Gas-liquid mass transfer around taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor[END_REF][START_REF] Deleau | Determination of mass transfer coefficients in high-pressure co2-h2o flows in microcapillaries using a colorimetric method[END_REF]. Even by considering a slowly dissolving bubble (invariant bubble volume), the mass transfer coefficient requires time before stabilizing [START_REF] Van Baten | Cfd simulations of mass transfer from taylor bubbles rising in circular capillaries[END_REF][START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF]. The model issued from the work of Van Baten and Krishna [START_REF] Van Baten | Cfd simulations of mass transfer from taylor bubbles rising in circular capillaries[END_REF] proposes an empirical correlation to compute the long-term value of the volumetric mass transfer coefficient; it sums (i) a k l a contribution from the bubble caps, which is predicted from L s D , consistently to the solution of the advection-diffusion equation around a falling film [START_REF] Bird | Transport phenomena[END_REF][START_REF] Irandoust | Gas-liquid mass transfer in taylor flow through a capillary[END_REF]). Other sophisticated multizone models exist to describe the mass transfer dynamics in Taylor flow. The model of Abiev [START_REF] Abiev | Gas-liquid and gas-liquid-solid mass transfer model for taylor flow in micro (milli) channels: A theoretical approach and experimental proof[END_REF] considers two parallel ways of slug enrichment, first with direct transfer between the caps and the contacting liquid from the bulk slug, secondly with a first transfer process towards the film when it is in contact with the bubble which then enriches the bulk slug while it surrounds it. This model is a promising approach as it shows a better agreement to experimental data compared to previous ones, but it relies on assumptions regarding the effect of increasing bubble velocity on local transfer coefficients (for both the caps and the film region) that require to be carefully verified. Similarly, the model of Nirmal et al. [START_REF] Nirmal | Mass transfer dynamics in the dissolution of taylor bubbles[END_REF] is based on a shifting of the unit cell in between different zones (bulk slug, film around the bubble and that surrounding the bulk slug). An interesting added value of this model is that heterogeneity in concentration is taken into account within the recirculations into the bulk slug, because the time evolution of the average concentration is computed at every streamsurface, by using coordinates based on the streamfunctions. Mass transfer coefficients characterising the exchanges between the liquid film and the bulk slug, as well as the exchanges between the bubble caps and the outermost streamline are also needed as inputs in such a modelling approach, the theory of penetration being again proposed to predict them. However, the applicability of the Higbie's penetration theory for mass transfer in Taylor flow has been questioned in the recent numerical results of Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF], suggesting a different behaviour of the evolution of the mass transfer coefficient around the bubble caps with the bubble velocity as compared to the penetration model prediction. As the simulations of Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] were carried out at smaller diffusivity than realistic values, such observations require to be confirmed. Alternatively, other recent investigations have proposed simpler correlations for the global volumetric mass transfer coefficient k l a based on the circulation frequency of the liquid in the slug. A proportionality between the latter and k l a was noticed in the works of Abiev et al. [START_REF] Abiev | Mass transfer characteristics and concentration field evolution for gas-liquid taylor flow in milli channels[END_REF] and Mei et al. [START_REF] Mei | Taylor bubble formation and flowing in a straight millimetric channel with a cross-junction inlet geometry part ii: Gas-liquid mass transfer[END_REF]. In both studies, a good trend is obtained on the experimental data on which it has been evidenced. However, such a relationship of proportionality does not involve the value of the diffusion coefficient of the transferring species, whereas the latter should be included in a general mass transfer correlation to ensure its robustness as it is a crucial parameter always to account for.

Finally, the state-of-the-art shows that the impact of key parameters on the mass transfer rate in Taylor flow, such as the bubble velocity, diffusion coefficient or slug length, is still not sufficiently well-understood in order to be properly introduced into a modelling approach.

In the present work, numerical simulations of several Taylor flow configurations are carried out, and mass transfer is computed from the gas to the liquid by assuming that resistance to mass transfer lies in the liquid phase only. Compared to the numerical study from Van Baten and Krishna [START_REF] Van Baten | Cfd simulations of mass transfer from taylor bubbles rising in circular capillaries[END_REF],

the exact bubble shape (not an ideal one) is considered here thanks to a moving mesh approach which tracks the interface and computes the hydrodynamics in the two phases; the analysis of the mass transfer coefficients in this system is extended thanks to a parametric study which was carried out by making vary only one parameter to change the magnitude of convection over diffusion on different cases with fixed hydrodynamics. In particular, the present investigation allows to broaden the existing numerical results of Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] to a much wider range of Péclet numbers, the simulations, and a correlation is proposed to predict its duration. Finally, practical implications of the present findings are discussed.

Cases presentation and physical parameters

To reach the aforementioned objectives, different As presented in the following section, all simulations are carried out with the finite element method from COMSOL Multiphysics, by using the Arbitrary Lagrangian-Eulerian method to track the interface. Note that Cases A-D reproduce and extend the simulation conditions from Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF],

which were carried out in the latter article with the in-house DIVA code based on the Level-Set method; in this way, the previous simulations did not use boundary-fitted mesh grids, which resulted in a high computational cost that prevented simulating conditions with very small values of diffusion coefficient as in gas-liquid applications, whereas these cases are addressed in the present study. Case E has the same hydrodynamics as in the simulation work of Gupta et al. [START_REF] Gupta | On the cfd modelling of taylor flow in microchannels[END_REF] which was performed with the ANSYS code and the Volume Of Fluid method for interface capturing and which focused on heat transfer. Parameters of Cases F1 and F2 are issued from Albrand et al.

[3] with the COMSOL Multiphysics code and similar numerical methods as in the present investigation except than, in this previous study, the bubble shrinkage was considered thanks to a moving mesh strategy (here, the simpler case of physical absorption by neglecting the bubble volume decrease is considered, since there is no general correlation for mass transfer even by considering the bubble size as fixed). The existing results from these different previous works with other numerical methods serve as references to validate the present simulations in the following section.

Modelling strategy

The following modelling strategy is chosen for every case. The unit cell approach is retained where a single bubble surrounded by two half slugs is simulated, in the frame moving with the bubble. Axisymmetry is assumed.

First, the sole hydrodynamics of the two-phase flow is computed so as to obtain the bubble shape. Then, on the converged hydrodynamics at steady state, transient mass transfer between the gas bubble and the liquid phase is simulated (case of physical absorption) through a wide variety of Péclet numbers by means of a mass diffusion coefficient parametric sweep. It is Case d (mm ¦ Descending flow in the laboratory frame of reference.

) L uc (cm) L s (cm) U b (m/s) U tp (m/s) V b (m 3 ) G (-) S b (m 2 ) A ¦ 3 
§ Ascending flow in the laboratory frame of reference. assumed that the gas is perfectly mixed and that the mass transfer process is only limited by transport in the external liquid. At the interface, in the liquid side, the concentration C * is reached (and considered to be constant), given by the thermodynamical equilibrium with that in the gas phase. Moreover, it is assumed that the rate of mass transfer is low enough for the bubble shrinkage to be neglected (see Abiev [START_REF] Abiev | Gas-liquid and gas-liquid-solid mass transfer model for taylor flow in micro (milli) channels: A theoretical approach and experimental proof[END_REF] for a discussion on that point). Therefore, the present results will be valid provided that the characteristic time of mass transfer is long compared to the residence time of the bubble, as it is the case in the experiments of Berčič and Pintar [START_REF] Berčič | The role of gas bubbles and liquid slug lengths on mass transport in the taylor flow through capillaries[END_REF] or Butler et al. [START_REF] Butler | Mass transfer in taylor flow: Transfer rate modelling from measurements at the slug and film scale[END_REF] for instance.

In this paper, COMSOL Multiphysics v5.6 is chosen to conduct numerical simulation of the seven cases. The numerical methods and parameters are first presented, then detailed validations of hydrodynamic features of these Taylor flow cases and global Sherwood numbers for mass transfer are shown.

Numerical modelling & procedure

For each case Taylor case, numerical results were obtained following two steps. First, two-phase flow in a time dependent study is simulated, by using a moving mesh approach, to obtained the converged bubble shape. Secondly, steady-state of the hydrodynamics in the liquid phase only is computed followed by a transient simulation of mass transfer between the gas and the liquid. Indeed, a realistic shape of the bubble is first needed since it can significantly differs from an ideal Taylor bubble shape when the Capillary number is large, and may impact the mass transfer dynamics.

3.1.1.

Step 1: two-phase hydrodynamics and bubble shape Initial geometry. As initial condition, the bubble is supposed to have an ideal shape (cylindrical body and two hemispheres at both ends): the initial geometry is fully determined by knowing unit cell length (L uc ), the gas retention ( G ) and an estimated lubrication film thickness (δ) through Eq. ( 1) from Aussillous and Quéré [START_REF] Aussillous | Quick deposition of a fluid on the wall of a tube[END_REF], where Ca = µ l U b σ is the capillary number and R the channel diameter:

δ R = 1.34 Ca 2/3 1 + 1.34 × 2.5Ca 2/3
(1)

Equations. The unit cell hydrodynamics is fully resolved by considering two phase flow time-dependent simulations. A moving mesh approach is chosen since it is readily available in COMSOL and allows to precisely track the interface by the Arbitray Lagragian-Eulerian method. This method calculates the fluid velocity and pressure from an Eulerian standpoint while allowing the cells of the computed domain to move (Lagrangian description) [START_REF] Noh | CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code[END_REF][START_REF] Hirt | An arbitrary lagrangian-eulerian computing method for all flow speeds[END_REF][START_REF] Hughes | Lagrangianeulerian finite element formulation for incompressible viscous flows[END_REF].

A drawback of this method is that it can not handle major interface deformation (such as breaking of the interface) since this will eventually lead to inverted cells, but such topological changes of the interface do not occur in the present simulations.

The Navier-Stokes equations for incompressible flows are solved both in the gas and the liquid phase (see Eq. ( 2) and ( 3)) where i stands for the gas or the liquid) within their respective domain.

Continuity equation:

∇ • (ρ i u i ) = 0 (2) 
Momentum equation:

∂ρ i u i ∂t + ρ i (u i • ∇)u i = -∇P i + ∇ • [µ i (∇u i + ∇u i T )] + ρ i g (3) 
At the interface, velocity continuity is imposed (see Eq. ( 4)). Additionally, the surface tension force f st in the normal direction, given by Eq. ( 5)

where n is the normal vector at the interface (pointing outward of the bubble) and κ the interface curvature, is taken into account into the stress balance in Eq. ( 6), where τ i = -P i I + µ i (∇u i + ∇u i T ) is the total stress tensor in the phase i (with I the identity tensor). Finally, mesh displacement at the interface is deduced from Eq. [START_REF] Bird | Transport phenomena[END_REF].

u l = u g (4) 
f st = σκn (5)

τ l .n = τ g .n + f st (6) 
u mesh = (u l • n)n (7) 
Boundary conditions and U tp calculation. The Hagen-Poiseuille velocity profile is imposed at the inlet (see Eq. ( 8), written in the frame moving at the bubble velocity U b ) of the unit cell, while only a reference pressure set to zero is set at the outlet.

U z (r) = α 2U tp (1 - r R ) 2 -U b (8) 
Here, z and r designates axial and radial direction, respectively, and α characterizes the overall flow direction in the laboratory frame of reference and is either equal 1 (upward flow) or -1 (downward flow). A no-slip boundary condition is applied at the wall which moves at a velocity set to -αU b (since the unit cell travels within the channel at the bubble velocity in the laboratory frame).

It is crucial to note that the bubble shape and position within the unit cell only depend on the hydrodynamics. In order to prevent the bubble to leave the domain of calculation, which would lead to the simulation termination, boundary conditions have to be corrected during the resolution.

Subsequently, an original method is proposed here to overcome this issue: a proportional-integral (PI) controller is set to keep the axial position of the center of mass of the bubble in the middle of the unit cell. In this way, the action variable is U tp , the inlet velocity profile being therefore affected by the regulation. U tp is deduced through Eq. ( 9), where z COM,b is the axial position of center of mass of the bubble, K p and K i are the proportional and integral gains, respectively. Both gains were determined through preliminary simulations and set at 5 and 5 s -1 , respectively. U tp,0 is a first estimation of U tp , available in Tab. 1.

U tp = U tp,0 1 - α L uc /2 (K p z COM,b + K i t 0 z COM,b dt) (9) 
Meshing. Triangular mesh cells are chosen. Maximal mesh size is set at 4 10 -5 m both at the interface and the wall, whereas it is of 7 10 -5 m within the domain.

Calculation setup. Relative tolerance was set at 10 -3 . Quadratic and linear discretizations are chosen for velocities and pressure, respectively. Total simulated time is 2 s for all cases since it is noted that the position and shape of the bubble are stabilized for this duration.

Step 2: mass transfer characterization

Freshly obtained real bubble shape geometry is used. Here, only the liquid phase is simulated. Hydrodynamics is computed once again at steady state since periodic conditions and new mesh are used for this step (see sections below). Unsteady mass transfer is calculated sequentially.

Equations. Converged hydrodynamics in the liquid phase is first determined by solving again Eq. ( 2) and ( 3) at steady-state. Based on the obtained velocity field, mass transport of the solute species is computed in time-dependent simulations through the convection-diffusion equation given by Eq. ( 10),

where C is the concentration field and D the diffusion coefficient for the gas solute in the liquid phase.

∂C ∂t + ∇ • (-D ∇C) + u l • ∇C = 0 ( 10 
)
For each Taylor flow case, a parametric sweep on D of several orders of magnitude is carried out in order to make vary the Péclet number characterizing the mass transport. In this way, sixteen diffusivity coefficient values are used for each case, ranging from 2. 

Sh = φ d S (C * -C) D . ( 11 
)
Meshing strategy. Similarly to step 1, triangular mesh is used within the domain. Special care is applied to mesh the regions were sharp concentration gradients are expected: the grid is much more refined to simulate mass transfer at large Péclet number than that required to simulate only the hydrodynamics. The mesh refinement features concern two specific locations, as shown in Fig. 2 for case D which shows a superposition of the retained mesh, streamlines and concentration fields. The first location corresponds to the neighborhood of the interface, in order to accurately resolve the mass boundary layer around the bubble where it is the thinnest: in particular, simulations from Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] have revealed that the concentration gradients are the highest (i) at the film entrance close to the front stagnation point, and (ii) at the middle of the rear caps where the tangential velocity of the fluid is maximal. The second refinement region is associated to the normal direction to the dividing streamline, which is the streamline separating the vortex zone in the bulk liquid from the film near the wall (as defined by Thulasidas et al. [START_REF] Thulasidas | Flow patterns in liquid slugs during bubble-train flow inside capillaries[END_REF]): this concentration gradient is the one characterising the mass exchange flux between the film region and the bulk slug. To set such a mesh refinement, an iterative work has been carried out between the simulation of the hydrodynamics and the meshing, in order to locate the stagnation points and the dividing streamline based on the velocity fields, then to build a line constituted of seven segments supporting the mesh characteristics. Boundary layer meshing is used for these two regions, which is made of rectangles in order to refine the cells in the normal direction to the support line.

Mesh sensitivity analysis have been performed in order to verify that results are not depending on the refinement. To this purpose, Case A is considered (which is the case with the highest Reynolds number based on the bubble velocity) and five meshes M1-5 of similar features but increasing numbers of cells are used, which are described in Tab. 3. a Sizes for all cases except Case E (which has a significantly smaller UC length and for which the maximal element sizes for the domain and frontier are reduced to 3 10 -6 and 1 10 -6 m (M5), respectively). b Frontiers refer to both interface and wall. c For Case A. d Note that the total cell number includes the cells within the gas domain which are not utilized in this step 2 of the modelling strategy.

For simulations with the five different meshes, the Sherwood number evolution as a function of the average relative liquid concentration is given in Fig. 3, in case of mass transfer for two Péclet numbers. On the converged values of Sh, the presented results are not sensitive to the mesh for P e equal to 8,491, and there is only a relative difference of 2% between M1 and M5 grids for P e equal to 170,000 with a negligible evolution between M2-5. Such an analysis allows to validate the grids for the simulations performed in this study as the case at P e = 170, 000 is one of the highest value considered in the following. M5 mesh characteristic are selected for all simulations of the rest of the study. Note that since hydrodynamics and mass transfer are solved sequentially, the computational cost remains reasonable even with M5. 

Validations

First simulations (Cases A to E) are carried out in identical conditions than the ones made in previous works. Regarding the hydrodynamics, Tab.

4 compares the numerical values of U tp obtained here once equilibrium with the bubble velocity is reached (by using the PI controller method previously explained) and those found in other simulation works (taken as reference values). A very good agreement is obtained. For Cases A-D, the maximal discrepancy between the finite element and moving mesh approach used here, and the finite volume Level-set method used in Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF], is 3% (U tp was manually adjusted in Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] to find the equilibrium value).

Similarly, for case E, close results are found between this work and the finite volume coupled to Volume Of Fluid method of Gupta et al. [START_REF] Gupta | On the cfd modelling of taylor flow in microchannels[END_REF]. Finally, for F1 and F2, differences of 4% are obtained between this work and the prediction of U tp based on the model from Bretherton [START_REF] Bretherton | The motion of long bubbles in tubes[END_REF].

Besides, the liquid film thickness δ (in the part where it is uniform), found in the present simulations, is compared to the one computed from previous numerical works or Eq. ( 1), in Tab. 4. Note that, for the case A, there is no region of uniform film thickness (see Fig. 1), therefore the comparison is based on the minimal film thickness for this case. For the remaining ones, the thickness is computed in the middle of the unit cell, which corresponds to the region where the film presents an uniform thickness. An excellent agreement is reported between results from this work and those from other direct numerical simulations [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] for all cases. The concordance is also very good with predictions from the correlation of Aussillous and Quéré [START_REF] Aussillous | Quick deposition of a fluid on the wall of a tube[END_REF] that perfectly match the numerical results for Cases E, F1, F2 (not shown in Tab.

4). Note that, for Cases B, C and D, this correlation shows a discrepancy between 20 % and 30 % with the simulations (δ is larger in the latter); indeed, this correlation, valid in the visco-capillary regime, does not include any correction due to inertial effects whereas the latter have been identified

to slightly increase the film thickness [START_REF] Aussillous | Quick deposition of a fluid on the wall of a tube[END_REF], which explains why there is this discrepancy for cases at moderate or large W e. Finally, based on both U tp and δ, the computed hydrodynamics of these Taylor flows is validated.

Then, regarding the overall mass transfer rate, global Sh are compared between this work and Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] by using the diffusivity coefficient values chosen in the former study. Note that the mesh was Cartesian and regular in Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] whereas it is more refined and boundary-fitted in the present study, allowing to improve the accuracy of the results. Out of the nine configurations presented in Tab. 5, four displayed a relative difference inferior than 5%, two between 5 and 10%, and three between 10% and 16%, leading to a good concordance of the Sherwood numbers between the two numerical studies with an average difference of about 6.5 %. In the following, the range of diffusion coefficients in the simulations is largely extended for the investigation on mass transfer.

Results and discussion

Concentration fields

Typical concentration fields of the dissolved gas in the liquid are shown in Fig. 4, for the Cases D and E at two different times. As reported in previous simulation or experimental works, in particular in Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] where the time evolution of the concentration fields in Taylor flow is described, mass transfer takes initially place in a thin mass boundary layer all around the interface, and convection rapidly transport concentration plumes in the axial direction both along the central axis (starting from the bubble front)

and along the dividing streamline (starting from the stagnation point at the bubble rear, close to the wall). Two distinct regions can be distinguished within the unit cell: the bulk slug with its circulation vortex, which enhances mass transfer at the interface, and the film region all along the channel wall where mass transfer between the bubble lateral surface and the film results from the competition between radial diffusion and axial convection. These two regions are separated by the dividing streamline displayed in Fig. 3.

In the bulk slug, by comparing the pictures at the two different times in Fig. 4, it can be seen that the solute is progressively transferred from the outermost streamline to the internal ones, knowing that the outer streamline is in contact with the bubble caps and partly corresponds to the dividing streamline where the concentration is higher than in the bulk slug (note that the model of local fluxes in the unit cell by Nirmal et al. [START_REF] Nirmal | Mass transfer dynamics in the dissolution of taylor bubbles[END_REF] is based on this observation of transport across the closed streamlines). At the dividing streamline, there is a mass flux going both to the bulk slug, and there can exist another one going to the film region, as it is the case in the examples of Fig. 4 (and also reported from the radial concentration profiles from Butler et al. [START_REF] Butler | Mass transfer in taylor flow: Transfer rate modelling from measurements at the slug and film scale[END_REF]); once the film is saturated, the mass flux at the dividing streamline position is directed only towards the bulk slug.

This description of mass transfer dynamics is valid for all conditions, but the relative importance of the mass fluxes can differ depending on the case. In this way, Fig. 4 emphasizes marked differences in the mass transfer rates in the film: the latter is much more rapidly saturated in Case E than in Case D. Thus, stronger concentration gradients at the interface (in contact with the film) exist in Case D, i.e. a much thinner mass boundary layer is present:

the film is more effective in making the solute efficiently transfer through the lateral side of the bubble, resulting in a higher contribution from the film in the overall mass flux. This is mainly due to the fact that the film is 15 times larger in Case D than in Case E; a film Péclet number, P e f will further be defined to characterize mass transport in the film (and is higher in the Case D).

Time for stabilizing mass transfer coefficient

For Case B as example, Fig. 5 plots the time evolution of the Sherwood number in simulations at different Péclet numbers. In any condition, Sh decreases in time until stabilizing at a constant value, Sh ∞ , after a given time labelled as t ∞ . The decrease in Sh(t) is small at moderate P e while, at large P e, Sh drops by more than an order of magnitude for a duration of about one hundred times the characteristic recirculation time t cir in the slug.

Such a temporal evolution corresponds to the time necessary for the different mass transfer process to establish within the unit cell, as detailed in Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF]: the transfer process across the bubble caps to enrich the bulk slug, that across the liquid film adjacent to the bubble and the wall, and the mass exchanges between the film and the bulk slug when they are in contact. In the same way, in any transient mass transfer problem, there always exists a time required for the mass transfer coefficient to be constant. The present simulations reveal that saturation of the liquid is not reached yet at t ∞ (see Fig. 3). For practical purpose and further experimental verification of Sh ∞ values, we propose here a correlation to predict t ∞ . The latter is extracted as the time where Sh has reached Sh ∞ with 1 % of accuracy, from the simulations with all Cases A-F2 at large P e. Fig. 6 shows that t ∞ /t cir is a linear function of P e with good accuracy, leading to this relationship when P e > 100:

(D) (E)
t ∞ = 0.01 t dif f = 0.01 d 2 D (12) 
Eq. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] shows that the time of stabilization of the mass transfer coefficient is directly proportional to the characteristic diffusion time over the channel diameter. Thus, when diffusion becomes slower, the different mass transfer mechanisms require more time to establish in the unit cell, which makes t ∞ increase. Eq. ( 12) offers a robust way to estimate the residence time (and thus the channel length) required before the Sherwood number is stabilized in Taylor flow, otherwise its value will still be evoluting in time, as also shown by the experiments of Mei et al. [START_REF] Mei | Gas-liquid mass transfer around taylor bubbles flowing in a long, in-plane, spiral-shaped milli-reactor[END_REF]. For instance, for a channel of d = 3 mm and considering the diffusion coefficient of oxygen in water as D = 1.77 10 -9 m 2 /s, a residence time of about 50 s is required, leading to the conclusion that, in the experimental campaign from Butler et al. [START_REF] Butler | Mass transfer in taylor flow: Transfer rate modelling from measurements at the slug and film scale[END_REF],

only the case with the smaller bubble velocity was close to such conditions.

As explained in Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF], the average concentration C in the liquid obeys an evolution as C(t)/C * = 1 -exp(-k l a t) (as given by a plug flow model) only provided that the mass transfer coefficient is constant, thus for t ≥ t ∞ .

In the following, the analysis is mainly focused on the quantification of Sh ∞ , as well as the local Sherwood numbers associated to mass transfer across the caps and the lateral side of the bubble separately. Finally, the evolution of time-averaged values of Sh over different residence times will also be assessed in the last subsection.

Transfer fluxes around the film and the caps

Two local Sherwood numbers are defined to characterize local mass transfer processes at the interface: Sh bf for transfer through the lateral part of the bubble between the two lateral stagnation points, which corresponds to the film (see Fig. 2), and Sh bs for transfer across the two bubble caps towards the bulk slug. They are defined in the following way: Sh bf =

φ bf δ f S bf (C * -Cf )D , ( 13 
)
Sh bs = φ bs d S bs (C * -Cs )D , ( 14 
)
where φ bf and φ bs are the mass flux integrated only on the lateral bubble side and on the bubble caps respectively, with S bf and S bs the associated surface areas, and Cf and Cs the average concentration integrated within the film volume and within the bulk slug, respectively. Sh bf and Sh bs are taken from the simulations once they are constant. Note that δ f is taken as the average film thickness in the region between the two lateral stagnation points at the bubble surface (note that, depending on the case, the film thickness can be non uniform).

The objective is to analyze the evolutions of Sh bf and Sh bs as a function of the relevant dimensionless parameters, and to discuss them compared to the theoretical predictions generally used to compute their values in analytical models.

Concerning mass transfer towards the lubrication film, it is controlled by (i) radial diffusion within the film and (ii) axial convection in the film of length L f since there exists a relative velocity, of intensity close to -U b , which transports the concentration gradients. In order to compare the magnitude of these two competitive transport processes, a film Péclet number is intro-

duced, P e f = δ 2 f /D L f /U b .
It is based on the average film thickness δ f computed between the two lateral stagnation points from the simulations (and not only the uniform part of the film, so as to be representative of the complete liquid film part in contact with the bubble surface, see Fig. 2). Note that the P e f is the reverse of the Fourier number, used to distinguish between the case of a short or long contact time between the liquid and the interface [START_REF] Sherwood | Mass transfer[END_REF]).

The transfer rate across the lateral part of the bubble is expected to mainly depend on P e f , as shown by the simulations of Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF].

For a wider range of parameters, Fig. 7 confirms that Sh bf is an increasing function of P e f , with a distinct behaviour for values of P e f below or larger than 1. When P e f ≥ 1, Sh bf exhibits a clear trend as P e

1/2
f , for all the cases, and over several orders of magnitude of variation for P e f (until four decades for Case D).

Let us now assess the relevance of the 1D theory for mass transfer in a falling film to compute the mass transfer coefficient in the film for Taylor flows at large P e f , which has been suggested to be used by several authors [START_REF] Irandoust | Gas-liquid mass transfer in taylor flow through a capillary[END_REF][START_REF] Van Baten | Cfd simulations of mass transfer from taylor bubbles rising in circular capillaries[END_REF][START_REF] Eskin | A model of a bubble train flow accompanied with mass transfer through a long microchannel[END_REF][START_REF] Nirmal | Mass transfer dynamics in the dissolution of taylor bubbles[END_REF][START_REF] Abiev | Gas-liquid and gas-liquid-solid mass transfer model for taylor flow in micro (milli) channels: A theoretical approach and experimental proof[END_REF]. This theory assumes that the film is so thin that Cartesian coordinates can be used. Besides, it neglects the velocity gradients in the film by using a uniform convection velocity of magnitude equal to U b . It also considers that axial diffusion is negligible, and that radial diffusion is slow compared to axial convection. This is consistent with the assumption of a short contact time, i.e. P e f sufficiently high leading to a mass boundary layer which has a small thickness (compared to δ f ), preventing for the solute concentration to explore the radial velocity gradients in the film. From the analytical solution of the mass transport equation, this theory predicts that the film Sherwood number is given by 2 √ π P e f [START_REF] Bird | Transport phenomena[END_REF] at large P e f . This evolution is plotted in Fig. 7. We observe that this analytical solution is consistent with our simulations results regarding the scaling law evolution of

Sh bf as P e 1/2
f , and is already suitable for P e f ≥ 1. However, the pre-factor 2/ √ π from the theory does not match with the Sh bf values of all cases: it is fully accurate for Case A, which has the smallest ratio L f /d, whereas Sh bf values are higher than the predictions for all the other cases. It can be concluded that the underlying 1D theory contains the main transfer mechanisms driving mass exchange in the film (axial convection and radial diffusion), but that local variations exist, probably due to geometrical properties of the film which are not considered in the theory (surprisingly, the best agreement with the simulations is obtained in the case of a short film). At a given P e f , it appears that the higher the gas volume fraction in the unit cell (the bubbles of Cases C, F1 and F2 have the longest films: L f /d > 2.5), the higher Sh bf .

Therefore, an empirical correction is introduced here so as to predict Sh bf for P e f ≥ 1, in the form of:

Sh bf 4 G ≈ 2 √ π P e f . ( 15 
)
It can be seen in the insert of Fig. 7 that Eq. ( 15) permits to make the values to collapse for all cases, in the range of investigated G . Therefore, Eq. ( 15) is a functional relationship to estimate the mass transfer coefficient across the film of Taylor bubbles, by being a slightly modified version of the Comparison to the film theory prediction 2/ √ π P e f . Insert: comparison with the same analytical solution, but by using numerical Sherwwod numbers (cases with 0.24 ≤ G ≤ 0.64) with an empirical correction Sh bf /(4 G ).

falling film theory prediction. The range of validity of the short contact time assumption is also extended compared to the recommendations of Van Baten and Krishna [START_REF] Van Baten | Cfd simulations of mass transfer from taylor bubbles rising in circular capillaries[END_REF], being valid even for P e f of order 1.

In contrast, in the case of long contact time (defined by P e f ≤ 1), the simulation results of Fig. 7 prove that Sh bf is not constant to 3.41 as suggested by Van Baten and Krishna [START_REF] Van Baten | Cfd simulations of mass transfer from taylor bubbles rising in circular capillaries[END_REF], but remains an increasing function of P e f , however at a larger rate than a P e 1/2 f evolution. This condition corresponds to the case of very large diffusion coefficients, being generally below the range of variation of the parameters on practical cases.

Concerning mass transfer through the bubble caps, it is generally considered that the recirculation in the bulk slug always intensifies the mass transfer rate at the interface. Here, Sh bs is reported as a function of P e b in Fig. 8. This choice is made for a comparison with prediction from the Higbie's penetration theory, which was proposed to quantify the transfer rate across the bubble caps [START_REF] Van Baten | Cfd simulations of mass transfer from taylor bubbles rising in circular capillaries[END_REF][START_REF] Eskin | A model of a bubble train flow accompanied with mass transfer through a long microchannel[END_REF][START_REF] Nirmal | Mass transfer dynamics in the dissolution of taylor bubbles[END_REF][START_REF] Abiev | Gas-liquid and gas-liquid-solid mass transfer model for taylor flow in micro (milli) channels: A theoretical approach and experimental proof[END_REF] by making an analogy with the mass transfer around an unconfined rising spherical bubble. This theory predicts that Sh bs = 2 √ π √ P e b [START_REF] Higbie | The rate of absorption of a pure gas into a still liquid during short periods of exposure[END_REF], this evolution is also shown in Fig. 8. It is noticed that the penetration theory prediction only matches to Sh bs from the simulations at low P e b ≤ 300, even for Cases F1 and F2 where the bubble is close to an ideal one with two symmetrical caps. Above P e b = 300, Sh bs does not evolve as P e , and all the cases, it is worth noting a saturation of Sh bs . Therefore, at such large Péclet number values which correspond to realistic diffusion coefficient in the liquid phase, increasing convection (by operating with conditions where U b is larger for example) becomes inefficient so as to intensify the mass transfer rate into the bulk slug. Such a behaviour is not predicted by the penetration theory. A possible interpretation is due to the fact that the slug between two bubbles in a Taylor flow is a region with closed streamlines. When the convection rate increases over the diffusion rate, the recirculation loop in the bulk slug does not allow the thinning of the mass boundary layer around the bubble surface. Indeed, the circulation pattern cannot bring fresh fluid around the interface but rather liquid containing solute which has already transferred. This explanation is supported by the fact that a similar phenomenon happens in the case of mass transfer inside a bubble or droplet with closed streamlines (i.e. when a species present in the continuous phase transfers towards the dispersed phase): the internal Sherwood number saturates at large Péclet number [START_REF] Juncu | A numerical study of the unsteady heat/mass transfer inside a circulating sphere[END_REF][START_REF] Colombet | Mass or heat transfer inside a spherical gas bubble at low to moderate reynolds number[END_REF]. Such a behaviour has also been found for the gas-side mass transfer in Taylor flow [START_REF] Bourdon | Experimental and numerical investigation of gasside mass transfer in taylor flow[END_REF]. Thus, liquid-side mass transfer in the slug, across the caps of a confined bubble, is significantly different from the external mass transfer process around an unconfined rising bubble for which the mass boundary layer thickness can infinitely reduce when the convection rate increases (resulting in an increasing Sherwood number with the Péclet number [START_REF] Boussinesq | Calcul du pouvoir refroidissant des courants fluides[END_REF] without saturation). This conclusion was suggested in Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF], but the saturation of Sh bs with the Péclet number could not be properly established at very large P e b , and it is now supported with the present data. Finally, let us retain that the penetration theory is not suitable to characterize mass transfer around the caps when P e b ≥ 300, contrary to what is assumed in most of the existing local models of mass transfer in Taylor flow. 

Global Sherwood number Sh ∞

For all the considered cases, the global Sherwood number (computed from Eq. ( 11)) is analysed once its steady value, Sh ∞ , is reached. Fig. 5 already reveals that, for a given hydrodynamics, when P e in increased (here by decreasing D), Sh ∞ increases as well but presents a saturation effect: for this case, the Sh ∞ are very close for P e ≥ 12000, despite different values during the transient evolution of Sh(t). Fig. 9 (a) shows Sh ∞ as a function of P e for all the cases: the saturation effect at large P e is obtained for all Taylor flows. Besides, the evolution of Sh ∞ strongly differs from the conclusions of Van Baten and Krishna [START_REF] Van Baten | Cfd simulations of mass transfer from taylor bubbles rising in circular capillaries[END_REF], where a variation of the global mass transfer coefficient as U 1/2 b and D 1/2 was evidenced based on their CFD simulations: if such trends were consistent with the present results, an evolution of Sh ∞ as P e 1/2 would be observed. Based on Fig. 9 (a), it is clear that such an evolution gives the right behaviour of Sh ∞ only in a limited range of P e, between 10 and 100. In particular, it does not represent the saturation effect of Sh ∞ . To the best of our knowledge, this saturation effect of Sh ∞ at large P e has not been previously reported, and the present study which makes vary the intensity of diffusion over convection is an efficient way to emphasize this discrepancy with Van Baten and Krishna's results.

From the numerical simulations in Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF], including five of the present Cases (A-E) but in a much more moderate range of P e, a relationship between Sh ∞ and two dimensionless parameters (P e R and G ) was To this purpose, let us notice in Fig. 9 (a) that the Sh ∞ evolutions are similar in terms of P e for all cases, with same increasing trend at low P e then a change of slope which occurs at a same value of P e of about 1000 (note that the curves of Sh ∞ are less similar when plotted as a function of P e b ). Thus, the Péclet number P e, defined here as t dif f /t cir , appears to be relevant to set the evolution of Sh ∞ in Taylor flow. Then, at large P e > 1000, let us notice that the plateau values of Sh ∞ for the different cases can be rationalized because all the curves in Fig. 9 (a) are ordered depending on the gas volume fraction in the unit cell: Sh ∞ saturates at an higher value when G is smaller (see Tab. 1). In particular, it is noted that Cases F1 and F2, which have the same G , have very close values of Sh ∞ whatever P e. In order to confirm this observation, three additional simulation cases are introduced in appendix (Tab. 6 and 7). They correspond to simulations performed with the DIVA code, with same numerical methods as in Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] (finite volume, Level-Set method) for new cases and conditions of small or moderate Schmidt number. Among them, Case G has an G value close to Cases C and E, the one of Case H is nearly the same as Cases F1 and F2, and the one of Case I lies in between. In Fig. 9 (a), it is remarkable that the Sh ∞ evolution in terms of P e of these new cases fit well between those of the other cases, despite all their differences in other physical parameters.

These new simulations therefore strongly support the conclusion that G is a relevant parameter to scale the Sherwood number values in Taylor flow.

These conclusions lead to the proposal of a new plot for Sh ∞ as a function of P e, by introducing G as a dividing term to the Sherwood number, as well as a small correction (of second order) based on the geometrical ratio L s /d.

The following fitting function is introduced: 

Sh ∞ (1 -G )
Note that the term as (L s /d) 0.04 weakly affects Sh ∞ but is included to slightly improve the gathering of all points.

Eq. ( 16) is compared to all the numerical data from the present study (Cases A to I), in Fig. 10. A very good agreement is obtained, with predictions for Sh ∞ under the limit of ±10%. Eq. ( 16) gathers Sherwood numbers from all the contrasted Taylor flow hydrodynamics of this investigation, by covering the whole considered range of Péclet number lying over five orders of magnitude. This correlation accurately represents the quasi-saturation of Sh ∞ at large P e by including a progressive change of slope in its evolution with P e.

The proposed correlation makes possible a reliable prediction of the mass transfer coefficient in Taylor flow once it has reached a constant value. It confirms the major impacts of both P e and G in the mass transfer coefficient. In this way, it permits to understand that an increase of convection effects (through an increase of U b or a decrease of D) will be significantly efficient to increase the Sherwood number only provided that P e ≤ 1000, the gain being much more limited beyond this limit. It also emphasizes that the larger the liquid volume fraction, the larger the Sh ∞ .

Relative contributions from the film and the caps

In order to quantify the contribution of mass transfer through the lateral bubble side (film zone), and through the two caps, in the overall transfer rate, the ratio of the flux passing through the film, φ bf /φ, is analysed. For a given 16), proposed to evaluate Sh ∞ in Taylor flow, with the limit of ±10%.

case, once the steady regime has been reached, this ratio reaches a constant value, and is measured as being independent of the value of the diffusion coefficient provided that the latter is sufficiently small, i.e. for Sc ≥ 50.

The corresponding values of φ bf /φ are displayed in Fig. 11 (taken from the simulation with D = 1.77 10 -9 m 2 s -1 for each case, corresponding to a condition where P e f >> 1), as a function of the ratio of the lateral surface area of the bubble over its whole surface S bf /S. It is shown that transfer across the lateral side of the bubble is always significant, even at long times and even though the average concentration Cf of the film is larger than the average concentration of the bulk slug. Therefore, despite the fact that the driving force of mass transfer in the film region becomes smaller in time than that in the bulk slug, the film still ensures mass transfer, and with a In order to further discuss the film and caps contributions in the global Sherwood number, the following relationship is established from the definitions of Sh ∞ , Sh bf and Sh bs , simply noting that φ = φ bf + φ bs :

Sh ∞ = Sh bf 1 1 + x C * -Cf C * - C + Sh bs x 1 + x C * -Cs C * - C , (17) 
where the ratio of surface areas a crucial parameter which indicates the ratio of flux contributions from the film to that of the caps. Let us examine contrasted cases. In case of a short bubble, like in the Case A for which x ≈ 2, the contributions from the caps and the film are close (that from the caps being slightly in the majority, see Fig. 11). Indeed, simulations show, for Case A, that C ≈ Cs (but Cf > C), then it results from Eq. ( 17) that

Sh ∞ ≈ 1 3 Sh bf C * -Cf C * - C + 2 3
Sh bs : this allows to understand that, at a given P e, Case A exhibits a larger Sh ∞ than the other cases despite the fact that its Sh bf is smaller (Fig. 7), because it has the largest Sh bs . In contrast, for a very long bubble, like in the Cases F1 and F2 (for which Fig. 7 shows that more than 80 % of the mass transfers across the film), x tends towards 0, Eq. ( 17) leads to

Sh ∞ ≈ Sh bf C * -Cf C * - C .
Therefore, it does not really matter that Sh bs be larger for F1 than for F2 (Fig. 8), both cases have very close Sh ∞ (Fig. 9(a)) because the film contribution is dominant, the latter being the same for the two cases (Fig. 7).

Even though F1 and F2 have the highest Sh bf here, as the latter is smaller than the Sh bs of the other Cases A-E (which has a significant contribution for them), Sh ∞ of F1 and F2 finally have the smallest values between the different investigated cases. Note that we can not simply retain from this analysis that Sh ∞ is only determined by Sh bf in case of a very long bubble.

This can not be the case since they have contrasted behaviours: Sh bf does not saturate when increasing convection over diffusion, whereas Sh ∞ does.

Indeed, the ratio C * -Cf C * -C is also involved for weighting Sh bf in Eq. ( 17), underlying the interplay between the average concentration in the film and in the unit cell, where internal mass exchange processes take place between the film and the bulk slug through the dividing streamline.

As a conclusion for this analysis, it is highlighted that the importance of the film in the overall mass transfer rate increases with the ratio Sh bf /S of the lateral side of the Taylor bubble over its whole surface area. The film represents a crucial contribution in the case of elongated bubbles, while transfer through the caps is more significant in the case of short confined bubbles.

Time-averaged Sherwood number at different residence times

In order to assess the validity of the scaling law of Sh ∞ established by Eq. ( 16), and since Sh ∞ is reached only after t ∞ , a time-averaged Sherwood number Sh(t) is computed as

Sh(t) = 1 t t 0 Sh( t)d t. (18) 
Whereas Sh ∞ shows a saturation effect at large P e, Fig. 5 time as an additional parameter.

Conclusion

Numerical simulations of mass transfer in axisymmetric laminar Taylor flows have been performed by using the periodic unit-cell approach, in cases For each simulation case, it is observed that the global Sh decreases over time, then stabilizes at a Sh ∞ value after a time t ∞ = 0.01d 2 /D. This criterion can be used to assess the relevance of the assumption of a constant mass transfer coefficient, depending on the residence time of the bubble in the flow. Indeed, such condition is necessary for the plug flow approximation to be valid, setting that the time evolution of the average concentration of the liquid in the unit cell is C(t)/C * = 1 -exp (-k l a t) [START_REF] Abiev | Mass transfer characteristics and concentration field evolution for gas-liquid taylor flow in milli channels[END_REF][START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF][START_REF] Deleau | Determination of mass transfer coefficients in high-pressure co2-h2o flows in microcapillaries using a colorimetric method[END_REF].

During the decrease of Sh(t), the time-averaged value Sh(t) at a given instant increases as √ P e provided that the residence time is moderate (t/t cir ≤ 100). However, for longer times, Sh(t) increases with P e at a smaller rate.

As it is complex to obtain a general correlation for the global time-averaged Sherwood number Sh(t), which needs to involve an unknown function of time, this study focuses on its long-term value Sh ∞ (the plateau value) as in previous works (and as usually provided by correlations for mass transfer around rising bubbles). The present results show discrepancies with behaviours predicted by previous correlations for the mass transfer coefficient in Taylor flow:

Sh ∞ is found to evolve as √ P e only in a limited range of Péclet numbers, whereas it surprisingly tends to nearly saturate for P e ≥ 1000 at a value which is strongly sensitive to the void fraction in the unit cell. Such a trend was not previously reported, whereas it is observed for all the simulation cases from this study and confirmed by mesh convergence analysis. This surprising plateau behaviour of the global mass transfer coefficient with the Péclet number is certainly related to the fact that the mass transfer process in the bulk slug (quantified by Sh bs ) also saturates: the slug is a recirculation region which prevents thin mass boundary layer to be formed around the bubble caps when the intensity of convection increases in the slug, because of its closed streamlines, thereby mitigating the increase of the mass transfer flux.

With the objective to compare mass transfer rate predictions across both the lateral side of the bubble in the film, and across the caps, local Sherwood numbers have been defined for these two respective zones of the interface, Sh bf and Sh bs .

Regarding the caps, the penetration theory, which predicts Sh bs to be proportional to P e b , is only relevant at small P e b ≤ 300, but not for larger Péclet numbers where a saturation effect of Sh bs is also noticed. Describing mass transfer around the bubble caps is therefore very different from mass transfer around an unconfined rising bubble.

Regarding the film, Sh bf is shown to be predictable by the theoretical solution of mass transfer between a gas and a falling liquid film at uniform velocity U b : Sh bf evolves as P e f . This trend is consistent with our simulations for P e f ≥ 1, even though a correction has to be introduced, observed to be related to the gas volume fraction G in the unit cell. The assessment of the validity of such theoretical models to compute the partial mass transfer coefficients through the film or the caps is of particular interest for the development of promising multi zone mass transfer models in Taylor flows [START_REF] Nirmal | Mass transfer dynamics in the dissolution of taylor bubbles[END_REF][START_REF] Abiev | Gas-liquid and gas-liquid-solid mass transfer model for taylor flow in micro (milli) channels: A theoretical approach and experimental proof[END_REF].

Regarding the global Sh ∞ , a dimensionless correlation, Eq. ( 16), has been proposed to gather all the simulation results (from ten contrasted hydrodynamic Taylor flow simulation cases) with very good accuracy, by including the quasi-saturation of Sh ∞ at large P e. This correlation mainly depends on P e (before saturation) and G (setting the plateau value): the smaller G in the unit cell, the larger the Sh ∞ , at a given P e. Such a dimensionless correlation provides the steady value of the mass transfer coefficient in Taylor flow (which is reached for t ≥ t ∞ ). It also allows to assess the impact of variation of a single parameter, such as bubble velocity or slug length, on the overall mass transfer rate. In this way, the strong influence of the gas hold-up which has been evidenced thanks to the present simulations in simplified conditions (bubble of constant volume by assuming a low transfer rate, mass transfer coefficient reaching a steady value) is consistent with conclusions suggested by the experimental results from Yao et al. [START_REF] Yao | Gas-liquid flow and mass transfer in a microchannel under elevated pressures[END_REF] on dissolving gas bubbles:

in that previous study, the dissolution rate was found to be larger in cases where the amount of liquid in the unit cell was higher (i.e. Taylor flow cases with a larger liquid slug). 

Nomenclature

  the penetration theory (corresponding to a Sherwood number evolving as the square root of the bubble Péclet number P e b = U b d D as around an unconfined bubble), and (ii) another k l a contribution from the film, which depends on the dimensionless contact time between film and slug (in case of short contact time, the corresponding Sherwood number for the film evolves as the square root of the film Péclet number P e f = U b δ 2 f

  i.e. by considering realistic values of the diffusion coefficient, and new cases with contrasted hydrodynamic features. Local coefficients for transfer through both the bubble caps and the film are evaluated, in order to assess the validity of simplified theories generally used to predict them and feed models for mass transfer in Taylor flow. Then, an analysis of the global mass transfer rate is performed in terms of Sherwood number, by investigating the main parameters which determine its variations. This leads to the proposal of a scaling law for the global Sherwood number, which is valid for a large range of parameters compared to what it was previously proposed. The transient phase before stabilization of the mass transfer coefficient is also characterized thanks to
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 1 Figure 1: Different Taylor flow cases with computed streamlines and concentration field at t = 10 t cir .

  5 10 -6 to 8.85 10 -10 m 2 /s, for an overall number of 112 mass transfer simulations.Boundary conditions. For hydrodynamics, slip boundary condition is imposed at the gas-liquid interface. No-slip boundary condition is selected at the wall, moving at velocity -αU b . For the top and bottom frontiers, periodic boundary conditions are chosen to match velocity fields at both ends of the unit cell. The simulation does not require to impose a pressure difference between those two boundaries, whereas a reference pressure point has to be given, which here is set to zero at the lower outermost corner of the unit cell. From a mass transfer standpoint, thermodynamic equilibrium is assumed at the gas-liquid interface. Hence, a Dirichlet condition for the concentration is set at the saturation concentration, C * , at the interface. No mass flux is considered at the wall (there is no surface chemical reaction).As for the hydrodynamics, periodic boundary conditions are chosen for the top and bottom frontiers of the unit cell to ensure identical concentration profiles at both ends.Numerical parameters. Simulations are carried out with a relative tolerance of 10 -3 and a stop criterion based on average solute concentration in the liquid set at 99% of C * . Discretization is quadratic, linear and cubic in regard of fluid velocity, pressure, and concentration respectively. Built-in crosswind and streamline stabilization methods have been deactivated for both hydrodynamics and mass transport, since no effect have been noticed in the results when high order discretizations are set for velocity and concentration fields. Postprocessing parameters. At each time step, several parameters are computed to quantify the mass transfer dynamics, such as the average concentration in the liquid phase of volume V l , C = 1 V l l C dV , and the mass flux integrated over the whole bubble surface S, φ = S -D ∇C • n dS. By defining a mass transfer coefficient k l such as φ = k l S(C * -C), the global Sherwood number Sh = k l d D can be computed at each time step by:

Figure 2 :

 2 Figure 2: Unit cell description, superimposed concentration field, streamlines and mesh (with focus on zones with very high mesh density) for Case D at P e = 377, 430.

Figure 3 :

 3 Figure 3: Case A, instantaneous Sherwood number as a function of the instantaneous average concentration in the liquid C/C * , for P e = 8, 491 (D = 1.77 10 -8 m 2 /s) and 170,000 (D = 8.85 10 -10 m 2 /s). For each P e value, 5 mesh grids are employed: M1-M5, M5 being the most refined mesh.

Figure 4 :

 4 Figure 4: Concentration field and streamlines, for Cases D and E at times t = 10 and 50 t cir , in the condition where D = 1.77 10 -9 m 2 /s.

Figure 5 :

 5 Figure 5: Case B, instantaneous Sherwood number evolution versus dimensionless time, for P e = 24.2 -241.9 -604.7 -2419 -12095 -24189 -60473 (corresponding to P e b = 168 -1680 -4210 -16800 -84100 -168000 -421000).

Figure 6 :

 6 Figure 6: Time t ∞ required to reach the plateau Sh ∞ where the mass transfer coefficient becomes constant, normalized by t cir , as a function of P e, for all cases at P e ≥ 100. Correlation proposed to estimate it as 0.01P e.

Figure 7 :

 7 Figure 7: Local Sherwood number Sh bf describing mass transfer across the lateral side of the bubble, in the film, as a function of the film Péclet number P e f , for all cases.Comparison to the film theory prediction 2/ √ π P e f . Insert: comparison with the same analytical solution, but by using numerical Sherwwod numbers (cases with 0.24 ≤ G ≤ 0.64) with an empirical correction Sh bf /(4 G ).
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 12 , and even does not always present a strictly monotonous evolution as a function of P e b between 10 3 and 10 4 for Cases B, C, E, F1 and F2 for instance. For very large P e b > 10 4

- 3 . 3 G

 33 proposed: Sh ∞ = 0.522 √ P e R -1.65 G , where P e R was introduced as a relative Péclet number based on the velocity difference between the bubble and the liquid in the slug P e R = (U b -U tp )d 2 L s D . Fig. 9(b) compares the present results with this correlation, shown as a line of slope 1/2 by plotting Sh ∞ as a function of P e R . It appears that the correlation of Butler et al. [12] accurately predicts the value of Sh ∞ but only in a restricted range of Péclet number: it only works for intermediate values of P e R , which is the range for which the correlation was initially established (consistently with the good agreement already noticed in Tab. 5). Indeed, a distinct behaviour is noticed both at smaller and very large abscissa values, and the range of validity is even more restricted for the Cases F1 and F2 which have significantly different unit cell geometric parameters (long bubbles, short slugs) compared to the other cases. Such a correlation does not capture the saturation effect of Sh ∞ . For Cases F1 and F2, the change of slope in the evolution of Sh ∞ (leading to its stabilization) appears sooner in terms of P e R than for the other cases, which indicates that the abscissa of Fig. 9(b) is not suitable to represent the threshold location. Therefore, an alternative is proposed in the following to develop a more general correlation.

Figure 10 :

 10 Figure 10: Global Sherwood number Sh ∞ , multiplied by (L s /d) 0.04 /[(1 -G )1.75 ], as a function of P e for all the COMSOL simulations of this study (Cases A-F2), and additional points simulated by the DIVA code (Cases G-I). Fitting function, given by Eq. (16), proposed to evaluate Sh ∞ in Taylor flow, with the limit of ±10%.

  constant and important contribution, contrary to what is generally assumed when describing mass transfer in Taylor flow. Here, the film contribution in the overall flux is even the majority for all cases -by being higher than 65 % -except for Case A for which the bubble presents a very short film (the flux passing through the film and the caps are equivalent for Case A). In addition, Fig.11reveals that the film contribution in the overall transfer rate can be related to the surface ratio S bf /S, where a single (growing) function of this parameter is obtained. In this way, two Taylor bubbles with same percentage of film surface area have almost the same film contribution to the overall interfacial mass transfer rate, such as couples of Cases (B, E), and (C, D).

Figure 11 :

 11 Figure 11: Ratio of fluxes between that across the film and the overall mass flux around the interface φ bf φ (once this ratio of fluxes has reached a constant value), for each simulation case at D = 1.77 10 -9 m 2 /s, plotted as a function of the surface ratio S bf /S. For D ≤ 10 -8m 2 /s, the ratio is found to be the same that at D = 1.77 10 -9 m 2 /s, for each case.

Figure 12 :

 12 Figure 12: Case B, Time-averaged values of the Sherwood number, Sh(t), at different instants of t = 5, 20, 100, 200, 500t cir . Filled diamonds correspond to the value of the plateau Sh ∞ .

C

  solute concentration, (mol m -3 ) d channel diameter, (m) D diffusion coefficient (solute in the liquid), (m 2 s -1 ) g acceleration of gravity vector, (m s -2 ) k l mass transfer coefficient, (m s -1 ) k l a volumetric mass transfer coefficient, (s -1 ) K p , K i PI regulation coefficients, (-), (s -1 ) L length, (m) r radial position, (m) R channel radius, (m) U b bubble velocity magnitude, (m s -1 ) u velocity field, (m s -1 ) U tp two phase flow velocity magnitude, (m s -1 ) S surface, (m 2 ) t cir characteristic circulation time, Ls Utp -1/2 U b , (s) t dif f characteristic diffusion time, d 2 D , (s) z axial position, (m) Z dimensionless axial position, (-) Greek Symbols α flow direction coefficient, (-) δ film thickness in the uniform region of the film, (m) δ f average film thickness, integrated between the two lateral interface stagnation points, (m) G gas hold-up, (-) µ dynamic viscosity, (Pa s) φ overall molar flux, (mol s -1 ) ρ density, (kg m -3 ) σ surface tension, (N m -1 )

Table 1 :

 1 Hydrodynamic parameters for the seven Taylor flows considered in this study. Acceleration of gravity is taken to g = -9.81 N/m 2 for all cases.

	Concerning the physical properties of the air-liquid system, the following values have been
	used: for Cases A-C, ρ l = 998 kg/m 3 , µ l = 0.00104 Pa.s, σ = 0.0728 N/m, for Case
	D, ρ l = 1006 kg/m 3 , µ l = 0.0042Pa.s, σ = 0.0522 N/m, for Case E, ρ l = 997 kg/m 3 ,
	µ l = 0.00089 Pa.s, σ = 0.072 N/m, and for Cases F1-F2, ρ l = 826 kg/m 3 , µ l = 0.00279
	Pa.s, σ = 0.0196 N/m.

Table 2 :

 2 

	, 000

Dimensionless parameters for each case, both for hydrodynamics and the range of investigated parameters for mass transfer (Sc =

µ l ρ l D , P e = d 2 (U tp -1/2U b ) D L s ).

Cases Re b Ca W e Range of Sc Range of P e A 688.0 0.0034 2.3 0.4 ≤ Sc ≤ 1, 177.5 60 ≤ P e ≤ 170, 000 B 403.6 0.0020 0.8 0.4 ≤ Sc ≤ 1, 177.5 24 ≤ P e ≤ 68, 000 C 265.7 0.0013 0.4 0.4 ≤ Sc ≤ 1, 177.5 19 ≤ P e ≤ 54, 000 D 268.0 0.03 8.0 1.7 ≤ Sc ≤ 4, 717.5 134 ≤ P e ≤ 380, 000 E 308.1 0.0068 2.1 0.4 ≤ Sc ≤ 1, 008.7 35 ≤ P e ≤ 100

Table 3 :

 3 Mesh characteristics

		Maximal element size Maximal element size Number of elements Total cell
		in domain (m) a	at the frontiers (m) a,b in boundary layers	number c,d
	M1	9.9 10 -5	4.0 10 -5	11	4,916
	M2	4.7 10 -5	2.0 10 -5	11	15,325
	M3	2.7 10 -5	1.2 10 -5	11	37,716
	M4	1.7 10 -5	8.0 10 -6	11	79,332
	M5	8.4 10 -6	4.0 10 -6	11	292,634

Table 4 :

 4 Validation of U tp and δ values found in the present simulations.

	Case	U tp (m/s)			δ (µm)	
		This work a Ref. value Discrepancy This work Ref. value Discrepancy
	A	0.2281 0.2290 [12]	-0.4%	26.0 b 24.6 b [12]	5.7%
	B	0.1329 0.1330 [12]	-0.1%	38.7	38.6[12]	0.3%
	C	0.0886 0.0860 [12]	3.0%	29.2	30.1[12]	-3.0%
	D	0.2990 0.2920 [12]	2.3%	174.8	176.7[12]	-1.1%
	E	0.5035 0.5000 [25]	0.7%	10.8	11.1[12]	-2.7%
	F1	0.0660 0.0631 [3]	4.5%	54.6	54.7[5]	-0.2%
	F2	0.0660 0.0631 [3]	4.4%	54.6	54.7[5]	-0.2%

a Values found to obtain the U b prescribed for each case and given in Tab. 1 (PI controller). b No flat zone for this case A, hence the shortest distance between the bubble and the wall is retained.

Table 5 :

 5 Comparison of the Sherwood numbers Sh ∞ from the present study to the ones obtained by Butler et al.[START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] with another numerical method. D (m 2 /s) Sh ∞ , present study Sh ∞ , from Butler et al.[START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF] Discrepancy A 2.5 10 -6 
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  Figure 8: Local Sherwood number Sh bs describing mass transfer across the bubble caps, as a function of the bubble Péclet number P e b , for all cases. Comparison to the Higbie's Figure 9: For all cases, global Sherwood number Sh ∞ as a function of (a) P e (additional simulation points from Cases G, H, I are introduced, presented in table 6), (b) P e R /( 3.3G ) as proposed by Butler et al.[START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF].
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  illustrates that the time-averaged Sh(t) is still an increasing function of P e. Indeed, during the transient regime, while Sh(t) is still decreasing, its values are larger at higher P e up to the time corresponding to a very large number of circulation loops -this number increasing with P e -for the liquid in the bulk slug.By considering different instants of 5, 20, 100, 200 and 500 t cir during the transient stage, Fig.12shows Sh(t) for the Case B as a function of P e, as well as the Sh ∞ values. Note that Sh(t) is computed at t only sufficiently far from the liquid saturation, i.e. provided that C(t)/C This conclusion is of interest when analysing experimental results of global mass transfer coefficient in Taylor flow, for which the residence time required to reach t ∞ may not be reached. If the latter condition is not fulfilled, the Sherwood number values will not match to Sh ∞ . A complete correlation allowing to predict Sh(t) is interesting to establish in future works; however, it is a complex task as it should involve

* ≤ 0.95 at the considered time t. In this way, cases with large diffusion coefficient (i.e. low P e) do not give time-average Sherwood number values over long times. Fig. 12 interestingly reveals that an evolution of Sh(t) as a function of √ P e is preserved when considering a short or moderate residence time, until t/t cir = 100 for Case B, contrary to what happens for Sh ∞ . For very long times such as t/t cir ≥ 200, the growth rate of Sh(t) eventually becomes less than that predicted by an evolution with a power law of 1/2 of P e. Therefore, this observation qualifies the previous conclusion on the saturation of Sh ∞ : when increasing convection, there is no saturation of the time-averaged mass transfer coefficient. A larger P e condition will still give rise to a significant increase of the time-averaged Sherwood number Sh(t), even though the saturation of the instantaneous Sherwood number with P e impacts the averaged Sh(t) at long time and finally mitigates its increase compared to a √ P e evolution.
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A deeper analysis of the contributions in the global mass transfer rate from the film and the bubble caps separately has revealed that the contribution of the film is never negligible (for P e f ≥ 1), despite its fast enrichment. The present results highlight that the higher the surface of the film (therefore the longer the bubble) over the total bubble surface, the higher its contribution in the mass flux. However, in such segmented flows, the most efficient to optimize the overall mass transfer rate remains to form bubbles of small volume in their unit cell (with the objective to obtain a small G , as shown by Eq. ( 16)).

Verification of the proposed correlation in other Taylor flow geometries would be interesting as a prospect for the present study. A full comparison of numerical and experimental data is still challenging on this problem. Indeed, experimentally, it requires a milli-reactor allowing for large residence time, which can be estimated thanks to Eq. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF], in order to reach the point where the mass transfer coefficient becomes independent of time. In particular, such condition is required to validate the fact that Sh ∞ -not the time-averaged Sherwood number but the constant value reached at long time -plateaus with the Péclet number, for a Taylor flow case at given gas hold-up.

Other effects complicate a precise comparison between experimental and numerical results, by impacting the global Sherwood number. Mass transfer taking place right after the bubble formation in an experimental device [START_REF] Yang | Visualization and characterization of gas-liquid mass transfer around a taylor bubble right after the formation stage in microreactors[END_REF][START_REF] Liu | Effect of mixing on mass transfer characterization in continuous slugs and dispersed droplets in biphasic slug flow microreactors[END_REF][START_REF] Sheng | Surfactant effect on mass transfer characteristics in the generation and flow stages of gas-liquid taylor flow in a microchannel[END_REF], not including in the present simulations, affects the mass transfer coefficient close to the inlet, even though it should not impact the steady values of the Sh ∞ based on the simulation results from Butler et al. [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF]. Besides, contamination of the gas-liquid interfaces by impurities, tracer particles or surfactants in an experimental device can also affect the mass transfer rate [START_REF] Hori | Mass transfer from single carbon-dioxide bubbles in surfactant-electrolyte mixed aqueous solutions in vertical pipes[END_REF][START_REF] Weiner | Experimental and numerical investigation of reactive species transport around a small rising bubble[END_REF][START_REF] Kentheswaran | Direct numerical simulation of gas-liquid mass transfer around a spherical contaminated bubble in the stagnant-cap 50 regime[END_REF].

The correlation proposed here for Sh ∞ in case of physical absorption in Taylor flow is a first step in the characterization of the effect of a chemical reaction, either taking place in the bulk or at the catalytic wall, which can enhance the interfacial gas-liquid mass transfer. Such an effect would deserve to be carefully addressed in future works, for a direct application of the correlations in milli-reactor engineering.

Appendix

Tab. 6 and 7 give the parameters for the three additional simulation cases (G, H, I) of mass transfer in Taylor flows, carried out with the DIVA code (same numerical method and procedure as in [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF]).

Table 6: Hydrodynamic parameters for the three additional Taylor flows used in the plot of Fig. 10. Concerning the physical properties of the air-liquid system, the following values have been used: for Case G, ρ l = 998 kg/m 3 , µ l = 0.00104 Pa.s, σ = 0.0728 N/m; for Cases H and I, ρ l = 1044 kg/m 3 , µ l = 0.00092 Pa.s, σ = 0.0736 N/m. Acceleration of gravity is taken to g = -9.81 N/m 2 for all cases.