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Abstract
In fluid mechanics, dimensionless numbers like the Reynolds number help classify flows. We argue that such a classification is also 
relevant for crowd flows by putting forward the dimensionless Intrusion and Avoidance numbers, which quantify the intrusions into 
the pedestrians’ personal spaces and the imminency of the collisions that they face, respectively. Using an extensive dataset, we 
show that these numbers delineate regimes where distinct variables characterize the crowd’s arrangement, namely, Euclidean 
distances at low Avoidance number and times-to-collision at low Intrusion number. On the basis of these findings, a perturbative 
expansion of the individual pedestrian dynamics is carried out around the noninteracting state, in quite general terms. Simulations 
confirm that this expansion performs well in its expected regime of applicability.

Significance Statement

Pedestrian streams are ubiquitous, but very diverse. Classifying them is critical in practice for crowd management, but also for the 
validation of models. However, a robust way to do this was still missing. By introducing two dimensionless numbers, rooted in ped-
estrian psychology and rendering the ideas of preservation of personal space and anticipation of collisions, we show that different 
regimes can be delineated, corresponding to different types of arrangement of the crowd. The relevance of these quantities, demon-
strated using an extensive empirical dataset, prompts a perturbative approach to pedestrian dynamics, not contingent on any further 
assumptions.
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Introduction
Crowds often look like an ocean made of hundreds or thousands 
of heads, ruffled by ripples and waves (1), moving in synchrony 
or not; this impression struck poets (2) long before it inspired sci-
entists (3, 4). Yet, even as of now, pedestrian dynamics as a discip-
line does not stand on the same footing as fluid mechanics. In the 
latter field, the classical motion of particles at the microscale is 
governed by an exact equation, Newton’s law, whose homogen-
ization yields the universal Navier–Stokes equation. In practice, 
modelers resort to a plethora of approximate schemes (e.g. 
Stokesian dynamics, lattice Boltzmann methods, Euler equations 
for inviscid flows) but the choice among these is guided, and the-
oretically bolstered, by the calculation of dimensionless numbers, 
such as the Reynolds number and the Mach number.

On the other hand, a zoo of models for pedestrian dynamics 
coexist (see, e.g. (5–8)) and the realm of applicability of each is 
ill-defined. The crowd’s density is generally used to delineate 
different regimes, for instance the levels of service defined by 

Fruin for crowds (9, 10). Each level is marked by a dominant be-
havior: (un)avoidable contact, necessity to change gait, possibility 
to turn around, etc., and it has been argued that as the density 
changes crowd dynamics should be controlled by distinct laws 
(11). However, the watersheds between the regimes are arbitrary. 
Even from a practical standpoint, for safety assessments, crowds 
at similar densities may present contrasted characters and risk 
profiles. Consider the difference between a densely packed, but 
static audience in a concert hall and people vying for escape in 
an emergency evacuation (12). Recently, yearning for a better 
classification of these scenarios, it was proposed to gauge conges-
tion on the basis of a dimensionless number related to the vorti-
city of the velocity field, instead of the density (13). This 
quantity is practically relevant, notably for safety issues, but gives 
no insight into the determinants of pedestrian dynamics at the 
microscale.

In this paper, we argue that in common scenarios, pedestrian 
dynamics are dominated by two variables, rendering the ideas 
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of preservation of personal space (proxemics) and anticipation of 
collisions. Their averages over the crowd define dimensionless pa-
rameters that delineate regimes of crowd flows which display dis-
tinctive features. In the spirit of the Reynolds number in fluid 
mechanics, these dimensionless numbers help gauge the range 
of validity of pedestrian models and prompt specific perturbative 
expansions of the equations of motion in each regime.

Results
Psychological studies on proxemics indicate that people pay at-
tention to their personal space, defined as “the area individuals 
maintain around themselves into which others cannot intrude 
without arousing discomfort” (14), more than to global density 
(15). We are therefore led to define an intrusion variable Ini cen-
tered on each agent i, which vanishes for isolated pedestrians 
and, ideally, diverges at physical contact, so as to underscore 
the transition from no-contact dynamics to contacts and pushes. 
Here, to keep at bay ambiguities in the definition of a local density, 
we make use of the center-to-center distances rij to define Ini, viz.,

Ini =


j∈N i

rsoc − ℓmin

rij − ℓmin

 kI

����������������
Inij

. (1) 

Taking kI = 2, this represents the sum of areal encroachments of 
other agents j on i’s personal space.

For simplicity, we overlook anisotropic effects and assume uni-
form circular shapes for the pedestrian bodies and personal 
spaces, of diameter ℓmin = 0.2 m and radius rsoc = 0.8 m, respect-
ively. The sum runs over the set N i of all close neighbors j of i, 
here defined by rij⩽3 rsoc. That the intrusions of diverse neighbors 
should be added up makes sense for physical contacts (superpos-
ition of mechanical forces), but also for proxemic behavior (16, 17).

While this variable gives a sense of the level of crowding, it nei-
ther provides a full reflection of psychological experience (feeling 
of congestion) in the midst of the crowd (13, 18), nor fully controls 
the agent’s dynamics: when two people i and j run toward each 
other, they will not behave as though they were isolated, even 
though they may still be separated by several meters, hence, 
Inij → 0. This anticipatory behavior is well captured by an antici-
pated time-to-collision (TTC) τij, defined as the delay until the first 
collision if both i and j keep their current velocities (τij = ∞ if no col-
lision is expected). Humans are indeed capable of identifying the 
most imminent collision between multiple objects and estimating 
TTCs (19), notably via purely optical quantities, namely, the optic-
al angle divided by its derivative (20). Experiments showed that 
the TTC is instrumental in humans’ decisions as to “when” to 
avoid an approaching pedestrian (21). Accordingly, the TTC can 
be used to define a nondimensional avoidance variable Avi quan-
tifying the risk of an imminent collision,

Avi =


j∈N ′i

τ0

τij

 kA

������
Avij

. (2) 

Here, τ0 = 3 s is a timescale above which collisions are hardly 
dreaded. The exponent kA is simply set to 1 (see SI Appendix 
B for variations), and, in contrast with Eq. 1, the set of neigh-

bors N ′i is restricted to the agent with the shortest τij, i.e. the 

most imminent risk. Indeed, for collision avoidance, it has 
been ascertained that participants immersed in a virtual 
crowd tend to fixate a particular agent with a high risk of 

collision just before performing an avoidance maneuver 
around this person (22).

With these two variables in hand, one can hope for a finer delin-
eation of pedestrian streams than with the traditional density- 
based levels of service. To this end, the foregoing agent-centered 
variables are averaged over the N(t) agents observed in the crowd 
at time t, and then over time. This average defines the dimension-
less Avoidance number Av and Intrusion number In. As Av should 
quantify the urgency of expected collisions, we only consider data 
points with a finite TTC in the average. Especially in the sparse da-
tasets, this allows to focus on the parts where interactions occur.

Figure 1A  illustrates the regimes of crowd flow that one would 
intuitively expect to find in a diagram parametrized by Av and In, 
using exemplary cases. The bottom left corner, In, Av ≪ 1, corre-
sponds to very sparse crowds with hardly any interactions. As one 
moves up the In-axis, the setting gets more crowded, and pedes-
trians are eager to maintain a certain social distance with respect 
to others, as in a unidirectional flow. When In ≫ 1, personal space 
can no longer be preserved and physical contact may eventually 
be unavoidable, as in a tightly packed static crowd (Waiting scen-
ario). A very different way to depart from the noninteracting case 
is to consider people walking or running toward each other. This is 
well approximated by the beginning of an Antipodal experiment, in 
which participants initially positioned all along the circumference 
of a circle (with In ≪ 1) are asked to reach the antipodal position. 
This induces conflicting moves, with risks of collision in the center 
of the circle, hence Av ≫ 1. Finally, competitive evacuations 
though a bottleneck exemplify the regime of large In and Av, which 
features contacts, pushes, as well as conflicting moves.

These are of course idealized expectations. To test them, we 
have collated an extensive dataset of pedestrian trajectories, in-
cluding controlled experiments (single-file motion (23), bottleneck 
flows (24), corridor flows (25–27), antipodal scenarios (28)) and em-
pirical observations in outdoor settings (29, 30); further details 
about these scenarios and the way we have smoothed out head 
sways from the trajectories can be found in SI Appendix A. For 
each scenario and each realization, we have computed Av(t) and 
In(t) every 0.5 s, and averaged over the whole quasistationary 
state (unless otherwise stated).

Figure 1B shows that the idealized diagram worked out intui-
tively (Fig. 1A) is largely corroborated by the empirical datasets. 
Indeed, single files of amply spaced pedestrians are found in the 
bottom left corner, at small In and Av, whereas the top of the dia-
gram, at large In, is occupied by situations in which physical con-
tacts are almost inevitable. More interestingly, unidirectional 
flows and crossflows may have similar In numbers, but they are 
distinguished by Av, which takes larger values for crossflows, 
prone to more conflicts. In the same vein, antipodal maneuvers 
have intrusion numbers comparable to those of some typical out-
door scenarios, but larger avoidance numbers. The spread of 
points for a given type of scenario is expected and sensible, as a 
given geometry can give rise to flows of different natures, depend-
ing on the inflow and density, notably. Conversely, scenarios bear-
ing different names may be similar on the whole and thus have 
comparable dimensionless numbers; for instance, a bidirectional 
flow with thick lanes is mostly made of unidirectional flows, apart 
from the few interactions between the lanes. Note that the In and 
Av axes have been plotted orthogonally, whereas skewed axes 
should in principle be used if the variables exhibit some correla-
tions; this does not alter the topology of the diagram, however. 
Nor do variations of the (somewhat arbitrary) precise definitions 
of In and Av, see SI Appendix B. In particular, In is related to, 
but yet different from, the density, in that it is associated with 
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individuals and captures both psychological and biomechanical 
aspects, as further discussed in SI Appendix B.

In practice, the visual delineation of regimes on the diagram of 
Fig. 1B appears sensible. But its physical relevance will only tran-
spire if the delineated regimes exhibit constitutive differences. 
Remarkably, we find a major difference in the arrangement of 
the crowd, not in terms of static symmetry of the structure (which 
distinguishes, say, a liquid from a crystal), but in the nature of this 
self-organized “structure,” i.e. more pragmatically, in the varia-
bles that characterize it. Drawing inspiration from condensed 
matter physics and following Ref. (31), we use as structural probe 
the pdf g(x) = P(x)/PNI(x) between pedestrians, which quantifies 
the probability that two interacting pedestrians are found a given 
distance x apart, renormalized by the probability PNI of measuring 
this distance for pedestrians that do not interact. This probability 
can be approximated by randomizing the time or space informa-
tion (cf. SI Appendix C).

Starting from the origin (In, Av = 0) and moving up along the 
In-axis while keeping Av ≪ 1, the crowd gets structured in real 
space, as evidenced by its radial pdf g(r), where r is the 
Euclidean spacing between people. This is conspicuous for 1D 
configurations; indeed, the pdf of dense single files (Fig. 1C) devel-
ops a series of gradually decaying oscillations, with peaks posi-
tioned at multiples of the mean spacing, resembling the pdf of a 
liquid or a dense suspension of active colloids (32). But structural 
features are also visible in 2D settings, notably the dense static 
waiting crowd (Fig. 1D). Its pdf displays a strong dip at short dis-
tances, below 0.3–0.4 m, reflecting strong short-range repulsion, 
due to hard-core impenetrability and the reluctance for intrusion 
into the intimate space; the dip is followed by a peak at the 
nearest-neighbor distance. These features in real space are in-
sensitive to dynamic variables such as the rate of approach v 
(i.e. the rate at which the distance between two pedestrians de-
clines): the radial pdf exhibit the very same trend (Fig. 1D), quite 
independently of v.

The situation is widely different if one departs from the nonin-
teracting regime by turning up Av, i.e. considering very sparse 
crowds (In ≪ 1) with more and more conflicting moves, as in 
the antipodal scenario or sparse outdoor crowds. This is the re-
gime analyzed in Ref. (31). Strikingly, the radial pdfs do not col-
lapse onto a single curve in this case; binned by rates of 

approach v, their pdfs display different shapes (left of Fig. 1E). In 
particular, the faster pedestrians approach each other, the larger 
is the Euclidean spacing at which they begin to interact.

Instead, if the TTC τ is substituted for r as the argument of the 
pdf, then a master curve is recovered, as shown in Fig. 1E (right) for 
the Outdoor dataset. In particular, the pdf gets more and more 
strongly depleted as τ becomes shorter, signaling the risk of an im-
minent collision. Thus, crowds in this regime also have some 
structure, but this is mostly hidden in real space and only be-
comes apparent in TTC space. This major finding of (31) is here 
contextualized by ascribing it to a particular regime of crowd 
flow: it does not hold for the waiting room (finite In, small Av) 
(Fig. S3).

Discussion
To what extent can these observations be rationalized theoretical-
ly? Formally, the dynamics of a pedestrian i (or any other entity) is 
a function of their perceived surroundings, more precisely, the set 
R(t) = (r1(t), . . . , rN(t)) of all positions of the N agents (and, if need 
be, body orientations) observed so far, the agents’ shapes S, and 
some variable ξi gathering all unobserved features, which (in the 
worst case) may vary from realization to realization. Without 
loss of generality, it is possible to recast this functional depend-
ence as a minimization, by designing a suitable mathematical 
function Ci (hereafter called cost function to follow the common 
terminology (33–35), but with no implication on its nature or prop-
erties), viz.,

v⋆
i = arg min

v∈R2

Ci[v, {R(t′), t′⩽t}, S, ξi], (3) 

where v⋆
i denotes the decision of agent i which serves as an input 

to a mechanical layer which yields the actual velocity vi(t). 
Unfortunately, neither the cost function Ci nor the hidden varia-
bles ξi are known. Nevertheless, in the physical sciences, generic 
perturbative expansions often afford ground for the study of sys-
tems near their critical states, leveraging symmetries to compen-
sate blurred microscopic insights. Here, one cannot rely on 
conventional symmetry considerations, but the empirical classi-
fication of crowd regimes performed above has confirmed 
the prominent role of the Intrusion and Avoidance number. 

Fig. 1. Delineation of crowd flow regimes with the dimensionless numbers In and Av. A) Sketch of the expected diagram, illustrated with snapshots from 
the collated datasets (described in SI Appendix A). B) Empirical diagram obtained from various pedestrian datasets. Each datapoint corresponds to one 
experimental run or observational sequence. The experimental data from SingleFile and CrossFlow were split into a sparse and a dense dataset. Colored 
gradients are visual guides, to indicate different regimes. C) Pair-distribution function (pdf) for one run of the SingleFile, dense dataset. D) Pdf for the Waiting 
dataset and E) for the Outdoor dataset. The curves are binned according to the rate of approach v = −dr/dt (given in m/s). As for D) the pdf is well 
parameterized by r and poorly by τ (see Fig. S3) and in E) vice versa.
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This justifies the assumption that the agents’ responses are most-
ly controlled by Ini and Avi, so that the second part of Eq. 3 re-
duces to

v⋆
i = arg min

v∈R2

Ci v, Ini ri(t) + vδt
( 

, Avi(v)
 

, (4) 

where Avi (i.e. the TTC) is evaluated with the test velocity v and 
Ini at the associated position ri(t) + vδt, where δt is a time step. 
In the noninteracting scenario (Ini, Avi = 0), the agent freely pur-
sues her goal at velocity vdes,i, hence, to leading order,

Ci(v) ≈ (vdes,i − v)2
. (5) 

Expanding Eq. 4 around this reference situation, as detailed in SI 
Appendix D, yields the Av∗In-model,

Ci v, Ini ri(t) + vδt
( 

, Avi(v)
 

≈ vdes,i − v + β∇Ini ri(t)
(  2+αAvi(v),

(6) 

with α, β ≥ 0. We will refer to the case α = 0 as the In-model and 
β = 0 as the Av-model. One should bear in mind that these models 
were derived as generic asymptotic expansions of Eq. 4, rather 
than designed in an ad hoc way; their purpose is not so much to 
be realistic for the widest possible range of scenarios, as it is to 
shed light on crowd dynamics in limiting cases. In Eq. 6, we 
have neglected all mechanical interactions between the agents 
and the actual velocity relaxes toward the optimum v⋆

i over a 

timescale τR.
Let us test this perturbative expansion in the corresponding 

(asymptotic) regimes. First, we simulate the Waiting scenario: In 
the In-model, the agents make use of the available space to 
keep social distances to the others, which results in comparable 
averaged In numbers (In = 16 for the experiments vs. In = 14 
with the In-model). In contrast, the Av-model fails to capture 
these features: the system remains frozen in its initial state as 
no collision is expected. The central role of In is also readily 
understood in the case of a waiting line, where people halt to pre-
serve each other’s personal space. As a consequence, in a macro-
scopic model of the crowd, the local flow will depend solely on the 
density field, echoing the finding of a density-based hydrodynam-
ic response of the crowd at the start of a marathon (1). In the op-
posite regime, the basic features of the sparse CrossFlow, notably 
successful collision avoidance, are well replicated by the 
Av-model, contrary to the In-model in which the agents bump 
into each other. They are unable to maintain reasonable spacings 
(in TTC or in real space) with respect to each other, as also testified 
by the values of the dimensionless numbers (we find Av = 
1.8/1.1/6.8 and In = 1.2/2.9/5.3 in the experiments/Av-model/ 
In-model, respectively).

The deficiency of models premised solely on In or Av is even 
more manifest in scenarios which are not confined to the vicinity 
of the axes of the (Av, In) plane. For example, let us pay attention 
to the temporal evolution of a bidirectional flow, using as input 
the experimental data of Ref. (27) and averaging over multiple 
similar realizations. The process of lane formation and then dis-
appearance of the lanes after the two groups have passed each 
other entails a loop in the phase space, as represented in Fig. 2. 
Shortly after pedestrians enter the measurement area, in panel 
A, the limited space for each crowd leads to moderate values of 
In, but Av gets relatively high as the groups are walking toward 
each other, until they form lanes in panel B, thus lowering Av, 
while In is large because space is limited; finally, in panel C, the 
crowds have passed each other (low Av) and the pedestrians 
make use of the available space by dissolving the lanes (moderate 

In), marking a return to the origin. Even though all models repro-
duce the formation of lanes, only the Av∗In -model produces a 
loop comparable to the empirical one. While the In-model is un-
able to keep in check the growth of Av prior to lane formation, the 
Av-model fails to ensure sufficient space between people when 
lanes have formed, leading to very high In values. The dynamics 
of all scenarios are shown in the Movie S1.

While the focus was here put on the asymptotic In and 
Av-models, the discussion has bearing on the broader category 
of agent-based models: their equations of motion often hinge on 
variants of either the Ini variable (36, 37) or the Avi variable (31, 
38, 39) (for instance, the interactions in the models of Refs. (31, 
38) boil down to those of the Av-model with kA = 1 or 2 in Eq. 2, re-
spectively), thereby limiting their range of applicability to the as-
sociated regime; a detailed inspection of this broader model 
category is deferred to a future publication.

Finally, in all regimes discussed so far, contacts between pedes-
trians were at most scarce. The situation is different in the 
high-In region, which is highlighted in red in Fig. 1B and notably 
includes competitive bottleneck flows; in that case, more realistic 
(e.g. elliptic) shapes and mechanical contacts should be 
considered.

Conclusion
In summary, we have shown that the desire to preserve one’s per-
sonal space from intrusions and the anticipation of collisions, 
quantified by the dimensionless numbers In and Av, delineate 
different regimes at the crowd’s scale. These are marked by spe-
cific dynamics and “structural” arrangements. The importance 
of taking into account these factors to model the dynamics of in-
dividual agents depends on the regime under study.

At present, only collisions between the hard cores have been 
taken into account, in the absence of which (Avi = 0), agents are 
deemed isolated and have thus been left aside in the averaged 
Av. In reality, the “softer” collisions, i.e. the anticipated intrusions 
into the private or intimate space, are also avoided. A more so-
phisticated definition of Av should be able to capture these.

Beyond In and Av, other dimensionless numbers can, and cer-
tainly should, be introduced to describe specific features of crowd 
dynamics such as an analog of the Mach number for the propaga-
tion of waves in crowds or some variant of the Péclet number (ra-
tio between diffusion and advection rates) to account for the 
variability in the outcome of nominally similar experiments, due 
to the hidden variables ξi in Eq. 3. Interestingly, such a series of di-
mensionless numbers would mark successive departures from 
the conservation laws and invariance principles traditionally en-
countered in physical systems: while in the In-regime agents do 
not differ from particles subjected to distance-based interactions, 
Av introduces a velocity-based component to the interactions and 
a marginal violation of the reciprocity of forces. Better capturing 
the asymmetry of perception between pedestrians would make 
the violation of reciprocity more acute, with all its implications 
in active systems (40). Eventually, the violation of Galilean invari-
ance in crowds would be mirrored by paying attention not only to 
TTC, but also to absolute time gaps, should the neighbors sudden-
ly come to a halt. By gradually relaxing the symmetries applicable 
in physical systems, the way is thus paved for a general theoretic-
al study of the statistical physics of pedestrian assemblies. In par-
ticular, it may be a good strategy to first focus on regimes where 
many of the aforementioned numbers are zero in order to derive 
a macroscopic flow theory starting from the Boltzmann equation 
(41, 42) (along the lines propounded by Chapman and Enskog for 
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fluids), before facing the specific challenges raised by nonzero di-
mensionless numbers (e.g. the nonlocality inherent in the Av ≠ 0 
regime).

Materials and methods
Empirical Datasets
Each dataset contains trajectories expressed in real-world coordi-
nates as a function of time. For the Waiting scenario, we extracted 
trajectories by ourselves using the semiautomatic tracking mode 
of the PeTrack software (43), from existing videos of a controlled 
experiment conducted in Germany in 2013 in the frame the 
BasiGo project.

The SingleFile and the Cross datasets were split into a dense part 
and a sparse part (comprising the 6 and 3 runs with the lowest glo-
bal densities). The initial transients were discarded in most scen-
arios, but not for the bidirectional flows, where they were used to 
probe the situation before lane formation.

Data processing
Pedestrian trajectories typically feature oscillations due to head 
sways and empirical noise, which both affect the calculation of 
In and above all Av. To smooth out the head sways, a 4th order 
Butterworth filter with critical frequency 0.5 Hz was applied to 
the trajectories. Velocities were then computed as the distance 
covered in approximately 1 s. Then, the TTC was computed by as-
suming that each pedestrian is a disk of diameter ℓ = 0.2 m. This 
may generate apparent overlaps; to mitigate these artifacts, we 
set an upper bound Inmax

ij = 400 and Avmax
ij = 60 on all variables 

for the computation of the In and Av numbers.
Some scenarios, particularly the Outdoor one, involve a large 

number of pedestrians that actually walk in isolation. To focus 
on actual interactions in the assessment of Av, pedestrians with 
Avi = 0 were excluded.

Pair-distribution functions
For some variable x (x = r or x = τ in the following), the pdf is given 
by the probability that two pedestrians are separated by x normal-
ized by the probability PNI(x) that two noninteracting pedestrians 
are separated by x, viz., g(x) = P(x)/PNI(x). This normalization is 
aimed at correcting the lack of translational invariance in crowd 
observations. In practice, P(x) is directly estimated from the fre-
quency of occurrence of “separation” x in the dataset. PNI(x) is un-
known in principle, but can be estimated by randomizing either 
the spatial or the temporal information (31), i.e. reshuffling pedes-
trians and frames. Finally, the pdf is obtained by binning the data 
into bins of size 0.1 m (for x = r) or 0.1 s (for x = τ).

Asymptotic models
The Av, In, and Av∗In -models defined in the main text were si-
mulated in Julia, by taking uniform and constant model parame-
ters: α = 1.5 m2/s2, β = 0.02 m2/s, vdes = 1.4 m/s, and τR = 0.1 s. 
Speeds were capped at vmax = 1.7 m/s. Agents are modeled as 
hard disks of diameter ℓmin = 0.2 m. Nevertheless, to account for 
the fact that people shun collisions not only between their hard 
cores but also between their private spaces, the diameter was in-
creased to ℓsoc = 0.4 m for the computation of Avi. Also note that a 
small scalar ε > 0 is subtracted from Inij in Eq. 1 to make Ini con-
tinuous across the cutoff distance.
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APPENDIX A: DESCRIPTION AND CURATION OF THE DATASETS

A large collection of mostly openly available data on pedestrian dynamics has been used in the main text. The collated
data and the methods employed to pre-process and extract average dimensionless numbers In and Av from them are
detailed in this section.

1. Summary of the datasets

Name Type Scenario Varied Parameter Details Cit. Data

Waiting Exp. Static Density Jülich, Ger, 2013 - Supp.
Single-File Exp. Single-File Density Jülich, Ger, 2006 [1] [2]
Unidirectional I Exp. Uni-dir. Density Jülich, Ger, 2013 [3] [2]
Unidirectional II Exp. Uni-dir. - Tokyo, Jap, 2018 [4] [4]
Bidirectional, steady-state Exp. Bi-dir. Density Jülich, Ger, 2013 [3] [2]
Bidirectional, pre lane formation Exp. Bi-dir. - Tokyo, Jap, 2020 [5] [5]
Zara (Outdoor) Obs. Bi-dir. - Nicosia, Cy, 2007 [6] [7]
EWAP (Outdoor) Obs. Bi-dir. - Zürich, Swi, 2007 [8] [9]
Cross Exp. Multi-dir. Density Jülich, Ger, 2013 [3] [2]
Antipodal Exp. Multi-dir. - Beijing, PRC, 2019 [10] -
Students (Outdoor) Obs. Multi-dir. - Tel Aviv, Isr, 2007 [6] [7]
Bottleneck Exp. Bottleneck Corr. Width Jülich, Ger, 2018 [11] [2]

TABLE S1. Summary of the different datasets used in our analysis.

Tab. S1 provides a summary of the datasets that have been used, the corresponding references, and, whenever available,
download links. Further details about the experimental setups can be found in the references.

Note that, for the Waiting scenario, we had to extract trajectories by ourselves, from existing videos of a controlled
experiment conducted within the BasiGo project in 2013 in Germany. In this experiment, the (27 to 600) participants
enter a square area through four entrances. This area is delimited by crowd control barriers and the crowd is filmed

∗ j.cordes@fz-juelich.de † alexandre.nicolas@cnrs.fr
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from above. After the crowd has entered, the participants wait for approximately one minute before egressing through
the entrances. We have extracted parts of this waiting period using the semi-automatic tracking mode of the PeTrack
software [12]. The corresponding trajectory data is included as supplemental material.

2. Splitting and merging scenarios

Often, experimental scenarios display different stages and different regions in space. In some cases, specified below,
we focused only on part of these stages and regions or we split the data into distinct scenarios.

In most experiments, there is a clear start and end, where the participants start to fill, or begin to leave the measure-
ment area. We will start reporting those experiments, where we analyzed the pseudo-stationary state and overlooked
the beginning and end of each run. The Single-File trajectories were treated as purely one-dimensional by neglecting
the transverse coordinate. The dataset was split into a dense and a sparse part, where the 6 runs with the lowest
global density are considered as sparse and the rest as dense. In Unidirectional I, we have only used the runs where
the width of the entrance and exit corresponds to the total width of the corridor; the other runs rather resemble a
bottleneck. As for Unidirectional II, we have used the totally asymmetric runs where all people walk from one side
to the other. As there is only a small crowd that passes the measurement area, no steady-state can be analyzed. For
simplicity, we have merged the two unidirectional datasets into a Unidirectional scenario. In Bidirectional steady-state,
we have used variant B, where the participants are instructed to use a fixed exit, i.e. either on the left or on the
right at the end of the corridor. For the Cross scenario, we have limited our analysis to the area of the crossing itself.
In particular, we have neglected the corridors leading to the crossing area. We have used the variant A of the 90◦

crossing, where people enter from all 4 sides, without an obstacle in the centre of the crossing. Note that, the runs
6 and 8, i.e. those with the highest intrusion, where cancelled after some time as the experimenters were afraid that
participants could get hurt due to the heavy congestion. We split the Cross dataset in a sparse part consisting of the
3 runs with the lowest global density and the dense part with the rest. In Bottleneck, only the runs with a number of
participants N > 40 were used. Furthermore we have only used the runs with a high motivation. We restricted the
analysis to the area right in front of the bottleneck.

In some experiments, we were interested in transient states, i.e. a specific temporal part of the experiment. In
Bidirectional pre lane formation, we have used the runs without any distraction by cellphones, i.e. the baseline
condition. We start the measurement after people have entered the measurement area and end it before the lanes
have formed. For the Antipodal experiment, only the first ≈ 2 s of each run are considered. In particular, the part
before the pedestrians get close to each other. The runs with a radius of r = 5 m and 8 participants were used.

3. The case of the Outdoor scenario (passive observations)

The Outdoor scenario gathers real-world observations from different datasets. The complete sequences have been
used. Regarding the Zara and Students datasets, the data are published only in pixel positions and some frames are
missing. We have, therefore, used the amended data by [13], where real-world positions were estimated and enhanced
by linear interpolation between the frames. Regarding the EWAP datasets, filmed from a Hotel and at the ETH
campus, the velocities were given with the positions and frames in two-dimensional real-world units. In contrast to
the controlled experiments, many pairs are present in the Outdoor scenario. This has an effect on the structure of the
crowd, as we will show in Appendix C. In an atomic vision of the crowd, these pairs (featuring specific ‘intra-molecular’
interactions) must be excluded, for the calculation of Av and especially In. To do so, we detect pairs according to
a simple rule: Two pedestrians are assumed form a social group if their mean distance is smaller than 1 m, their
maximal distance smaller than 1.5 m, and their mutual presence in the scene lasts at least 2 s.
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4. Processing and smoothing of trajectories

Unless otherwise specified, in all datasets each pedestrian is assigned a unique ID, for which a two dimensional real-
world trajectory is obtained at a certain frame-rate. Although the trajectories were already expressed in real-world
coordinates, they featured oscillations due to head sways and empirical noise, which both affect the calculation of In
and above all Av. To smooth out the head sways, a 4-th order Butterworth filter with critical frequency 0.5 Hz was
applied to the trajectories. From these positions and times we calculated the velocities as the distance covered in
approximately 1 s.

5. Computation of the In and Av numbers and filtering out isolated agents

Subsequently the time-to-collision (TTC) was computed by assuming that each pedestrian is a disk of diameter
ℓ = 0.2 m. This size was chosen in accordance with [14], in order to limit the number of measured overlaps between
disks, which lead to ill-defined TTC and In values. Nonetheless, in the very dense experiments, some overlaps are
still observed; to mitigate this problem, we set an upper bound Inmax

ij = 400 and Avmax
ij = 60 on all computed In

and Av numbers.

Besides, despite the segmentations mentioned in Sec. 2, some scenarios (particularly the Outdoor one) remain het-
eroclite, with a large number of pedestrians that actually walk in isolation. Another example is the sparse Cross
scenario, where we want to focus on the half before solving the conflict in the centre of the crossing. Therefore, we
exclude pedestrians with Avi = 0 in the averaged Av. Excluding these values narrows the datasets down to the parts
where interactions really occur and thus yields a much finer and more robust delineation of the different regimes. This
is further related to the fact that only collisions between the hard-cores are taken into account. A more sophisticated
definition of Av could capture ’soft’ collisions with the private or intimate space, which were not captured with the
discontinuous TTC.

APPENDIX B: VARIATIONS OF THE PHASE DIAGRAM

1. Variations in the definitions of In and Av

As we have conceded in the main text, there is a certain freedom in the choice of the definition of Av and In. Here,
we investigate to what extent this choice impacts the delineation of different regimes.

Let us start with the definition of the Intrusion number In. For an agent i, In was defined as the sum of all intrusions
over the set Ni of all close neighbors j of i, here delimited by rij ⩽ 3 rsoc. This additivity is similar to the superposition
of forces in Physics. However, we are not dealing with forces in the Newtonian sense and the validity superposition
is not granted. For instance, it was found to be unreasonable at least in some situations [15]. Therefore, one might
choose an alternative neighborhood where the intrusion is dominated by its maximum value as

Ĩni = max
j ̸=i

Inij . (S1)

The alternative phase diagram is shown in Fig. S1 (a). It is difficult to spot any substantial difference to the original
diagram: the delineation is robust under this change. In an analogous way, for the Avoidance number, we can replace
the sum over only the most imminent collision with a sum over all possible collisions, viz.,

Ãvi =
∑
j ̸=i

τ0
τij

. (S2)

In that case, the delineation of different regimes gets blurred to a large extent. On the other hand, if more weight is
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(a) max (In) (b)
∑

(τ0/τ)
2 (c) Density

FIG. S1. Empirical delineation of different regimes with alternative definitions of the Avoidance number Av and the Intrusion
number In (or the global density).

put on the large Avoidance numbers by defining it symmetrically to the Intrusion number, with kA = kI = 2, viz.,

˜̃Avi =
∑
j ̸=i

(
τ0
τij

)2

, (S3)

the delineation is at least partly recovered, see Fig. S1 (b).

2. Use of the density instead of In

We chose to base the Intrusion number on distances instead of using the local density. This is partly justified by the
ambiguity in the definition of a local density. However, we acknowledge that the averaged In is still closely related
to the density, which certainly is the quantity most commonly used to classify crowds.

In Fig. S1 (c), we have substituted the Intrusion number with the global density ρ, calculated as the number of
pedestrians divided by the available space.

To enable us to plot the Single-File data along with the rest, the one-dimensional density, calculated as the number
of people divided by the length of the track, was rescaled according to [16], where we assumed a width of 0.3 m. The
delineation of different regimes is still clearly visible. Only the Single-File data strongly deviates from the original
diagram. In particular, relative to the rest of the diagram, moderate intrusions seem to correspond to high densities.
In the Single-file scenario, the pedestrians do not have neighbors to the sides. Therefore, the deviation might actually
be reflected in the subjective feeling of the pedestrians. On the other hand, the deviation could also be explained by
the presence of obstacles, e.g. walls, which are very close to all of the agents in the single-file scenario and have not
been taken into account.

Besides, the Cross scenario and the Bottleneck scenario are at lower densities, but higher In, compared to the Waiting
scenario. In the latter people are distributed very homogeneously, whereas inhomogeneities are conspicuous in the
former, including regions of tight packing. The Intrusion number puts more weight on these.

One might think that, since crowd regimes are typically classified on the basis of the global density, the agent-centred
intrusion variable Ini could harmlessly be substituted by the local density ρi. However, this is dubious. There is of
course the question of the hydrodynamic limit, in which fluids are, but pedestrian crowds are not: there is no strict
separation of scales between the pedestrian size and the system size. But this is admittedly only a minor problem:
one can make use of Voronoi cells to define a local density in crowds, with the inverse area of the cell providing an
agent-centred local density. Much more annoying is the fact that such Voronoi-based density fails to blow up intrusions
into social ‘bubbles’ or, even more importantly, biophysical contacts. Indeed, consider a large room in which there are
only two individuals; even if one person significantly intrudes upon the other, the associated Voronoi density for each
pedestrian remains minimal. This seemingly artificial scenario is typically used in ’stop-distance’ experiments in the
context of proxemics, to probe people’s reactions. In these experiments, a subject approaches or is approached by an
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assistant until the subject begins to feel uncomfortable due to the proximity of the other person [17]. In contrast, the
comfort distance is directly reflected by the presence of the ‘social radius’ rsoc in Ini; furthermore, Ini also captures
the true physical size ℓmin, where the quasi-incompressibility of the human body translates into the divergence of Ini

to +∞ as this physical limit is approached.

3. Effect of correlations between the empirical values of In and Av

There may be some correlation between In and Av, so that when one of them changes, the other changes as well. The
systematic increase in Av in unidirectional flows as the crowd gets denser, even after application of the Butterworth
filter to correct head sway, supports this impression. In the main text, we have seen that In and Av are sufficiently
independent to allow for a proper distinction between the typical scenarios encountered in pedestrian streams. In any
case, even some degree of interdependence would mostly result in a skewed diagram (given that the In and Av axes
have been plotted orthogonally although they should not) with no impact on its topology.

APPENDIX C: STRUCTURE OF CROWDS

We have used the pair-distribution function (pdf) to probe the structure of crowds and, subsequently, to identify the
best descriptor of its self-organized structure. Here, we give more details on the calculation of the pdf. Then we will
investigate the structure of crowds in different scenarios in more detail.

1. Definition of the observable

The pdf is generally used to infer the atomic or molecular structure of materials. An illustration of the relation of
the pdf to the structure of a material is shown in Fig. S2; an experimental example of a pdf, measured for solid
and liquid Argon, can for example be found in [18]. In our case, we calculate the pdf of crowds according to [14].
For some variable x the pdf is given by the probability that two pedestrians are separated by x normalized by the
probability PNI(x) that two non-interacting pedestrians are separated by x, in particular g(x) = P (x)/PNI(x). This
normalization is aimed at correcting the lack of translational invariance in crowd observations.

While P (x) can be simply estimated by the relative frequencies in the dataset, PNI(x) is in principle unknown. How-
ever, it can be estimated by randomizing either the spatial or the temporal information. To estimate the distribution,
we used strict binning with bins of size 0.1 m or 0.1 s.

2. Interpretation in various scenarios

This procedure is best understood in the case of single-file motion. Here, the observational area is limited to the
x-coordinate and ranges from 0 to L. As all pedestrians enter the scene on the left and leave on the right, all positions
are equally likely. However, due to the limited size of the area, finite-size effects strongly suppress large distances.
Therefore we can estimate PNI(x) by calculating the distribution of distances between points that are randomly
positioned on the interval [0, L]. Another way to estimate PNI(x) is by randomzing the time-information, i.e. by
creating a ’time-scrambled’ version of the dataset as proposed by [14]. This ensures that the distances calculated in
the scrambled dataset correspond to non-interacting pedestrians as they have not been in the same frame originally.
Both procedures lead to the same result in the case of single-file motion.

In the case of the static crowd, the scrambling of temporal information cannot be employed, as the pedestrians are
hardly moving. Therefore, we assume that all positions within the rectangle are equally likely. As we neglect the
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FIG. S2. Exemplary figure of the pair-distribution function

(a) Corridor (b) Outdoor (c) Outdoor

FIG. S3. Evaluation of the pdf g(r) in different scenarios. In (a), i.e. the Unidirectional I dataset, the run with ρ = 2.1/m2

the position of the peaks depends on the angle ϕ. In particular, the longitudal distances (to the front) are larger than the
transversal distances (to the sides). In (b), the Outdoor dataset, the marked peak at small distances to the sides arises from
many pairs which are present in the observation. This cannot be observed in the TTC-based pdf g(τ), cf. (c).

edges of the observational area, where people lean on the crowd-control barrier, this assumption is justified.

In the Outdoor dataset, alongside finite-size effects, one has to account for different forbidden areas (like trees or cars)
in the middle of the scenes and the different areas where people tend to enter or leave the scene. This is achived by
randomizing the time-information.

3. Insight given by the pdf into the crowd’s structure in different scenarios

Probably the most confined and homogeneous pedestrian experiments were conducted by [1]: high density, periodic,
single-file experiments with soldiers as the participants. The corresponding pdf is shown in Fig. 1 (C) in the main text
for a single run at ρ = 2.1/m, where long-ranged correlations in the pdf can be seen, owing to the strong homogeneity,
combined with the spatially confined setting. The pdf displays peaks that are well separated and located at the
integral multiples of the mean spacing, i.e. correspond to the k-th neighbor.

Let us now turn to the unidirectional flow through a corridor with open boundaries at a density of ρ = 2.1/m2.
The corresponding pdf is shown in Fig. S3 (a). Multiple peaks are still visible but the correlation length is much
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FIG. S4. The pair-distribution function g(τ) for the Waiting dataset binned according to different rates of approach v.

smaller. This time the curves are binned according to the angle ϕ between the velocity vi and the vector connecting
the centers of two pedestrians rij . The two curves exhibit a difference between longitudinal (green) and transversal
(red) distances, reflecting the existence of anisotropy. In particular, pedestrians keep smaller distances to their sides
than to the front. The angular dependence may have practical implications as to whether the capacity of a corridor
increases linearly or step-wise with its width.

4. Effect of pairs and social groups on the pdf

Finally, we have calculated the pdf for the Outdoor dataset. As earlier, we have identified pairs according to a simple
classification. Very distinct curves are seen in Fig. S3 (b), depending on whether pedestrian i is part of a social
group (∈ group) or not (/∈ group). Pedestrians that form a social group want to interact (e.g. talk) and, therefore,
stay in each other’s personal space, generally walking abreast. This attractive interaction leads to a strong peak at
small (transversal) distances. Apart from this and a strong short-ranged repulsion, no spatial structure can be seen.
The pdf bears resemblance to a mixed gas consisting of single atoms and molecules. If the pdf is calculated for the
time-to-collision, cf. Fig. S3 (c), the two curves collapse onto each other, because proximity in space is not associated
with a risk of imminent collision: Pair members want to stay relatively close to each other but do not want to collide.
The main text has underlined that the finding of [14] (namely, that the TTC is a more suitable descriptor than the
spatial distances) is valid in a certain regime only (i.e. low In, moderate Av).

By turning the original argument upside down, we contend that further restrictions are necessary when it comes to
social groups: distance-based (‘proxemic’) interactions within each group are combined with TTC-based (avoidance)
interactions with other people. These two levels are reflected in their corresponding pdf: the peak at short distances in
g(r) (but not in g(τ)) is only present for members of social groups. Incidentally, this also explains the large variations
in the pdf g(r) in [14], binned by rates of approach: in [14], pairs were not excluded and the rate of approach of their
members is very small, and thus falls in one specific bin.

5. Waiting scenario

In Fig. S4 we show that for the Waiting dataset the curves of g(τ) do not collapse onto each other if binned according
to the rate of approach v. For negative rates of approach (hence, infinite TTC), no curve can be plotted in Fig. S4
even though the structure is independent of it in real space (Fig. 1 (D), in the main text).

The failure of g(τ) to describe the dynamics in the high In and low Av regime has bearing on the modeling of starting
waves, see e.g. [19, 20]. Indeed, whether the pedestrians ahead of a reference agent stand still (v ≈ 0) or move ahead
(v < 0), their TTC is infinite, so that a purely TTC (or Av)-based model will not reproduce the backward-propagating
starting wave that is observed in reality [21].
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APPENDIX D: PERTURBATIVE ANALYSIS

In this Appendix, we detail how a generic perturbative expansion of the cost function C gives rise to the proposed In,
Av and Av ∗ In-models.

1. Generic cost function

Consider N circular agents of diameter ℓ. The position of agent i is ri(t) = (xi(t), yi(t)), vi = ṙi(t) the velocity,
ai = r̈i(t) the acceleration, and vdes,i the desired velocity. Let R(t) = (r1(t), . . . , rN (t)) denote the set of all positions
at time t and V(t) = (v1(t), . . . ,vN (t)) the set of all velocities.

We have argued that, in most scenarios, the way in which pedestrians choose their velocity is strongly influenced by
the Intrusion and Avoidance variables, on top of the agent’s desire. Accordingly, it can be approximated by

v⋆
i = arg min

v∈R2

Ci [v, Ini(r),Avi (v)] , (S4)

where we recall that v denotes the test-velocity and r = ri(t) + vδt the associated test position. We have shortened
the dependencies Ini(r) = Ini (ri(t) + vδt,R(t)) and Avi (v) = Avi (v,R(t),V(t)); this means that the TTC τij
entering Avi are evaluated using the current positions and velocities of all agents, except that agent i’s velocity is
substituted by v.

Taking advantage of the simple form of Eq. S4 and without any other major assumption on the microscopic dynamics,
we will show that expanding this equation naturally gives rise to simple asymptotic models.

2. Reference situation: The isolated agent

The reference situation is that of the isolated pedestrian, walking at their desired velocity vdes,i. (The positional
dependence of the desired velocity is not explicitly written.) In the absence of interactions, Ini = 0 and Avi = 0, and
Eq. S4 reduces to

v⋆
i = argmin

v∈R2

Ci (v, 0, 0) , (S5)

where the minimum should be reached for v⋆
i = vdes,i. It follows that

0 = ∇v C(0)
i (v)

∣∣∣
v=vdes,i

, (S6)

where ∇v = (∂/∂vxi , ∂/∂vyi), and the Hessian matrix M = ∂2C
(0)
i (v) /∂v2|v=vdes,i

is positive definite. In the
following we will make an assumption of isotropy around the optimal velocity, in which case M is an identity matrix
multiplied by a positive scalar γi. Since the cost function can be arbitrarily rescaled, one can set γi to unity without
loss of generality. Then, up to second order, the cost-function for an isolated pedestrian is

C(0)
i (v) = (vdes,i − v)

2
. (S7)

The cost increases as the squared Euclidean distance between the test velocity and the desired velocity. In particular,
deviations in the magnitude and the direction of the desired velocity are similarly penalized. While a common
assumption the literature, this need not be exact in reality.
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3. The Av-model

Let us now perturb the non-interacting system by letting Avi ̸= 0, while maintaining Ini = 0 for the time being,
considering for example two joggers that are still well separated but face an anticipated collision. In this case, the
cost function can be expanded into

Ci [v, 0,Avi (v)] ≈ (vdes,i − v)
2
+ αiAvi (v) , (S8)

Here, we introduced αi := (∂Ci/∂Avi)Avi=0, which is non-negative because pedestrians shun collisions. Complemented
with relaxation process, where the actual velocity relaxes towards v⋆

i as v̇i = (v⋆
i − vi(t)) /τR, we recover the proposed

Av-model.

At this stage, it is worth underlining that this expansion holds for any dependence of Avi on the TTC τij ; in particular,
no obvious symmetry prescribes the value of the exponent kA entering the definition of Avi. Should one take kA = 1,
as we did for the simulations, the resulting Av-model shares the same dependence on the TTC as the RVO model [22],
whereas setting kA = 2 is more consistent with the empirical analysis of [14]. Qualitatively, the Av-models obtained
for different kA will display comparably, but the degree to which the agents will anticipate collisions and swerve from
their straight paths will vary.

4. The In-model

Now, we assume Ini ̸= 0 while Avi = 0, for example in a moderately dense, static crowd. Perturbatively,

Ci [v, Ini (r)] ≈ (vdes,i − v)
2
+ β̃i Ini (r) , (S9)

where β̃i := (∂Ci/∂Ini)Ini=0. This function is extremal for v = v⋆
i , which implies that

0 = ∇v (vdes,i − v)
2 ∣∣

v=v⋆
i

+ β̃i ∇vIni (r)
∣∣
r=ri(t)+v⋆

i δt
. (S10)

Therefore, by substitution,

0 = −2 (vdes,i − v⋆
i ) + βiδt∇rIni (r)

∣∣
r=ri(t)+v⋆

i δt
, (S11)

where ∇r = (∂/∂x, ∂/∂y), if r = (x, y). For sufficiently small δt, one can assume r ≈ ri(t) and subsequently obtain

v⋆
i = vdes,i − βi ∇rIni (ri(t)) , (S12)

where βi := β̃iδt/2. Combined with a relaxation time-scale, Eq. S12 is the proposed In-model.

5. The Av ∗ In-model

Let us now turn to the general case Avi ̸= 0 and Ini ̸= 0. Combining the expansions of Eqs. S8 and S9, and expressing
the extremal condition for v⋆

i (Eq. S4), we arrive at

Ci [v, Ini (r) ,Avi (v)] = (vdes,i − v)
2
+ β̃i Ini (r)︸ ︷︷ ︸

C(In)
i

+ αi Avi (v) . (S13)

Given that Avi ̸= 0, the solution v
(In)
i := vdes,i−βi ∇rIni (ri(t)) minimizes C(In)

i (or, in other words, the In-model),

to leading order, C(In)
i is well approximated by the parabola

C(In)
i ≈ [vdes,i − βi ∇rIni (ri(t))− v]

2
(S14)



10

It follows that

Ci [v, Ini (r) ,Avi (v)] ≈ [vdes,i − βi ∇rIni (ri(t))− v]
2
+ αi Avi (v) , (S15)

which is the cost function of the Av ∗ In-model.

APPENDIX E: CONNECTION BETWEEN THE DYNAMICS AND THE STRUCTURE

In the main text, we have delineated asymptotic regimes (Av → 0 or In → 0) in the dynamics of crowd flows, in which
the microscopic dynamics of each agent are governed by only the intrusion variable Ini or the avoidance variable Avi.
Empirical evidence has revealed distinct types of crowd arrangement in these two regimes, characterised by the pdf
g(r) and g(τ), respectively.

Theoretically, it is thus tempting to prove that, if, say, the dynamics hinge on the distance-based variable Ini,
independently of the TTC, then the crowd’s structure will be characterised by a pdf g(r) that is independent of other
variables such as the rate of approach v. While this is of course true if an equilibrium state is reached in which the
separations between particles are a function of a potential that only depends on the intrusion variable (hence r), it
so happens that it does not hold systematically, because r and v are not independent variables.

Let us illustrate this with a minimal example. Consider two ‘sticky’ agents moving on a periodic line and interacting
with a distance (i.e., In)-based criterion. More precisely, at each time step, they randomly select a velocity vi = ±1,
unless they are separated by less than a short distance r0, in which case they come to a halt (vi = 0). As time moves
on and random encounters occur, more and more particles will stick together in configurations r < r0 and v = 0. Thus,
even if initially the separations were independent of the rate of approach v (binned into two bins, v = 0 or v ̸= 0),
configurations with v = 0 will be more and more biased towards short separations, compared to a non-interacting
situation. It follows that the pdf g(r) may depend on the rate of approach, even if the dynamics are governed by a
purely distance-based criterion.

APPENDIX F: DESCRIPTION OF THE MOVIE PROVIDED AS SUPPLEMENTAL MATERIAL

The supplementary movie compares the dynamics of pedestrians observed in controlled experiments with the predic-
tions of the asymptotic ”Av”, ”In”, and ”Av*In” models introduced in the main text. The scenarios under study are:
a static crowd in a waiting room; an intersection with flows crossing at 90° at low density; a bidirectional flow.
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