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Introduction

While mass transport processes such as diffusion and convection are ubiquitous, they remain challenging to describe quantitatively. Indeed, while simple equations can be written with strong approximations such as the mixture ideality, realistic modeling must embrace the complexity associated with multi-component and non-equilibrium systems leading to non-ideal behaviors, particularly in non-dilute solutions. Diffusion fluxes are quantified by means of a constitutive law such as the Fick law or issued from the Maxwell-Stefan theory. The former relates the diffusion flux to a concentration gradient, while the latter considers the chemical potential gradient as the driving force for diffusion based on the thermodynamics of irreversible processes. By taking into account interactions between transferring species (cross-diffusion effects), the Maxwell-Stefan formulation is generally better suited to describe diffusion in a multi-component mixture [START_REF] Taylor | Multicomponent mass transfer[END_REF][START_REF] Bothe | On the Maxwell-Stefan Approach to Multicomponent Diffusion[END_REF] .

The case of binary systems is simpler. Both Fick and Maxwell-Stefan formalisms are relevant and a single mutual diffusion coefficient is required, either D Fick or D MS . For ideal systems, they are equal and can reasonably be considered concentrationa Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Toulouse, France; E-mail: kevin.roger@cnrs.fr independent, such as in very dilute solutions. On the contrary, for non-ideal systems, these two mutual diffusion coefficients are different and it is necessary to assess their dependence on the composition of the binary mixture. This is notably important when assessing water evaporation from aerosols of physiological fluids [START_REF] Merhi | [END_REF] . In practice, this evaluation is compromised by the coupling of diffusion with the other mass transport phenomena, convection, which can be either forced or resulting from the diffusion process itself such as in the case of phase change or natural convection. For instance, any concentration gradient can lead to a density gradient and thus to gravity-induced convection 4 . Uncoupling diffusion and convection is challenging in many experimental studies [5][6][7] , as pointed out by Bouchaudy et al. 8 . Besides, obtaining the whole variation range of the diffusion coefficient with composition often requires a large number of experiments, which is time and product-consuming.

In this context, microfluidic chips have emerged as a valuable tool to control flows and thus convection, thanks to their small dimensions. Different geometries and flow controls have been successfully developed, notably by Salmon and coworkers and Squires and coworkers [8][9][10][11][12] . Yet, these methods require microfabrication tools, and either iterative solving procedures or precise pressure control to obtain steady-state gradients.

Here, we propose a simpler alternative that uses water evaporation itself to drive flows, without external pressure control, and a simple glass setup easily assembled from cheap and com-
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A mercially available parts. This setup was implemented by Roger et al. over the past years to probe surfactant self-assembly in drying surfactant solutions 13 , lung surfactant assembly 14 , peptide nanotube orientation 15 and colloidal deposition of soft microgels 16 . Indeed, this device is glass-based and thus compatible with a broad array of chemicals and characterization tools. Furthermore, we evidenced in previous work the existence of a scaling law for the time propagation of composition gradients in this setup. This leads to expressing the diffusion-advection transport equation with a single variable, thus paving the way to a possible analytical resolution. Here, we present this analytical resolution and its application to a binary polymer/water mixture as a study case. We show how this enables a simple experimental determination of the mutual diffusion coefficient of binary mixtures, while simultaneously providing self-checks to ascertain the robustness of such measurements.

Results and Discussion 3 Experimental setup

We use a simple and cheap setup designed by Roger et al. 13 , adapted to a large variety of systems and characterization techniques 13,14,16 , see Figure 1A. A glass capillary with a rectangular cross-section, readily available commercially, is connected to a reservoir made from a curt Eppendorf tube on a glass slide. The liquid of interest is poured into the reservoir and flows by capillarity to the tip of the capillary, which is exposed to air of controlled relative humidity. As water evaporates, a meniscus forms at the tip of the capillary which drives an advective flow from the reservoir to the tip of the capillary. The locus of the air/liquid interface thus remains unchanged through time, which sets a fixed boundary condition. Similarly, the reservoir is infinite and sets constant the other boundary condition. As a result, solute accumulates at the air/liquid interface, which is counteracted by diffusion. The advection/diffusion balance leads to the propagation of a concentration gradient over time from the air/liquid interface toward the reservoir. At the interface, on the gas side, the transport of water vapor is fast thanks to the forced convection achieved by blowing an air flux perpendicular to the air/liquid interface, whereas gradients develop in the liquid mixture and limit water transport within the capillary. Thus, rapidly, a constant composition in water is achieved at the interface: the thermodynamical equilibrium between water in the gas and in the liquid phase is quickly reached at z = 0. Apart from being cheap, simple to manufacture, and versatile, the setup thus displays the important advantage of operating without any external intervention once filled up, with time-independent boundary conditions. The capillary also enables a large variety of techniques to be used to characterize the concentration gradient forming over time (Figure 1B). In this work, we chose Raman confocal microscopy. By controlling both the evaporation process at the interface and the reservoir composition, a large range of variation of composition is reached along the setup, allowing for analysis of highly concentrated regions of solute in particular. An important and immediate observation is the possibility to rescale instantaneous concentration gradients to a single master curve by plotting them as a function , evidencing that all curves collapse on top of one another and that a single master curve is obtained. of x, which is the distance over the square root of time (Figure 1C). Therefore, the experiment really yields a time-independent rescaled profile f water (x) = 1 f (x), with f standing for the solute volume fraction, making it unnecessary to reach the steady-state for being measured. The necessary condition for the scaling to hold is to have reached the instant where the interface composition (f (x = 0)) is constant. Then, the f (x) profile contains the signature of the non-equilibrium transport processes taking place, advection, and mutual diffusion.

Mathematical derivation

Transport equation

Water evaporation triggers an advective flux from the reservoir to the air/liquid interface, driven by the capillary pressure that enforces the wetting of the capillary tip. This incompressible flow can reasonably be considered as unidimensional, of uniform velocity along the capillary by mass conservation. The advective flux J adv transports both water and solute toward the air/liquid interface:

J adv (z,t) = f (z,t).v(t) ( 1 
)
where t is the time, z the coordinate along the cell axis (0 at the air/liquid interface), v(t) > 0 the magnitude of the mixture advective velocity, f (z,t) the solute volume fraction field. As presented later, v(t) can be deduced based on the measured f and its derivative at the interface (z = 0). Since only water evaporates from the binary mixture, solute thus accumulates at the air/liquid interface. This drives a diffusive counter-flux of solute, J di f f , from the air/liquid interface towards the reservoir, which can be written using Fick's law:

J di f f (z,t) = D Fick (f (z,t)) ∂ f(z,t) ∂ z (2) 
Alternatively, the diffusive flux can be written using Stefan-Maxwell formalism:

J di f f (z,t) = D MS (f (z,t)) f (z,t) RT ∂ µ(f (z,t)) ∂ z (3) 
where D MS (f ) is the associated binary mutual diffusion coefficient, µ(f ) is the chemical potential of the solute. Therefore, a direct relationship exists for a binary mixture between the two formalisms:

D Fick (f ) = D MS (f ) f RT ∂ µ ∂ f = D MS (f ) f a(f ) da(f ) df . ( 4 
)
where a(f ) is the solute activity. The Fickian formalism combines thermodynamics and transport properties of the system in the diffusion coefficient, whereas the Stefan-Maxwell formalism uncouples these two contributions by writing a diffusion coefficient related to the drag force between molecules when they mix together under the effect of a chemical potential gradient, while thermodynamics information is contained in the activity terms. The choice of formalism thus depends on the final objective. When the goal is to understand mutual molecular diffusion from a structural standpoint, then the Stefan-Maxwell formalism is the adequate choice. This was for instance done in a previous study when calculating mutual diffusion in a lamellar phase from the knowledge of both species' self-diffusion coefficients and mutual solubilities 17 . In contrast, when the goal is to construct transport models, then the Fickian formalism is sufficient.

In what follows, Eq. 2 is used to describe the diffusion flux.

Mass transport equation is obtained by mass conservation:

∂ f(z,t) ∂t = ∂ (J adv (z,t) + J di f f (z,t)) ∂ z (5) 
This leads to an advection/diffusion transport equation governing the evolution of the solute volume fraction in the capillary, f (z,t):

∂ f(z,t) ∂t = v(t) ∂ f(z,t) ∂ z + ∂ ∂ z D Fick (f ) ∂ f(z,t) ∂ z ! (6)

Initial and boundary conditions

The assumption to be verified so as to validate the spatiotemporal scaling of the f profiles within this setup is that, after a sufficient time, water mass transport is rate-limited in the liquid rather than in the gas. Then, at the air/liquid interface, water activity is the same as in the gas and equal to the air relative humidity, a w z=0 = %RH/100. This sets a constant solute volume fraction f (z = 0,t) = f 0 at the interface. This condition can be checked experimentally.

Then, three initial or boundary conditions are associated with Eq. 6:

• Condition 1. Initially, the capillary is filled up homogeneously with an aqueous mixture at the concentration f (z, 0) = f bulk , that of the reservoir, before water evaporation occurs.

• Condition 2. There is no solute evaporation at the air/liquid interface (z = 0), J adv (0,t) + J di f f (0,t) = 0 and thus:

v(t) = D Fick (f 0 ) f 0 ∂ f(z,t) ∂ z z=0 (7) 
• Condition 3. The reservoir is considered as infinite and thus at a constant solute concentration:

f (z,t) ! z!+• f bulk and ∂ f(z,t) ∂ z ! z!+• 0. Therefore, J di f f (z,t) ! z!+• 0.

Variable transformation

Once experimental data can be rescaled by using the variable x = z/ p t 17 , the partial derivative transport equation Eq. 6 can be rewritten as an ordinary differential equation:

x 2 df dx = v 0 df dx + d dx ✓ D Fick (f ) df dx ◆ (8) with v 0 = v(t).t 1/2 = D Fick (f 0 ) f 0 df (x) dx x=0
, which is a constant. This scaling is observed experimentally: measurements of f (z,t) at different times yield a single master curve f (x) with increased statistics. It also provides an experimental check, as any deviation from this scaling law evidences a shortcoming in the application of the above equations and conditions. 

Jdi f f (x) = t 1/2 J di f f (z,t) = D Fick (x)(df /dx) (9) 
The transport equation thus rewrites as:

d Jdi f f (x) dx = 1 2 x df dx + v 0 df dx . ( 10 
)
Integration of this equation yields,

Jdi f f (x) Jdi f f (0) = 1 2 Z x 0 x df d x d x + v 0 ⇣ f (x) f 0 ⌘ (11) 
Since at the air/liquid interface (x = 0), the total solute flux is null, we obtain:

Jdi f f (0) = v 0 f 0 (12) 
So the expression of J di f f (x) reduces to :

Jdi f f (x) = 1 2 Z x 0 x df d x d x + v 0 f (x) (13) 
The boundary condition towards the reservoir sets

J di f f (x) ! x!+•
0, which yields an integral expression for v 0 :

v 0 = 1 2f bulk Z • 0 x df d x d x (14) 
Eq. 13 becomes

Jdi f f (x) = 1 2 Z x 0 x df d x d x f (x) f bulk Z • 0 x df d x d x! (15) 
In practice, experiments show a maximal value of x, x max , where f (x max ) ⇡ f bulk . Integration by parts then leads to:

Jdi f f (x) = 1 2 (x x max )f (x) Z x 0 f ( x)d x+ f (x) f bulk Z x max 0 f ( x)d x! (16) 
This equation shows that the diffusive flux can be easily obtained from experiments, with a precision that is directly related to the precision of the measured concentration profile because Eq. 16 does not involve the derivative of f but f itself, with much less noise. Note that the diffusive flux converges and does not depend on x max provided that f (x max ) is sufficiently close to f bulk . No smoothing procedure or interpolation is required and the computation of Eq. 16 can thus be performed even with a basic spreadsheet.

Finally, the diffusion coefficient, D Fick , is directly obtained from Jdi f f as:

D Fick (x) = Jdi f f (x) df (x) dx (17) 
This simple equation yields D Fick (x) but does involve the derivative of f (x), which is very sensitive to noise and requires signal smoothing. D Fick (f ) is immediately deduced since we experimentally know f (x). D MS (f ) can then be obtained from Eq. 4 by using an experimentally determined sorption isotherm. Fig. 2 Mutual diffusion coefficient of the PNIPAM-water binary system extracted from the measured concentration gradient (Figure 1C) using equations 16 and 17. A strong decay is observed upon decreasing water content or increasing polymer content.

As an example, we apply equations 16 and 17 to the concentration gradient measured in a binary polymer/water mixture, measured with Raman microscopy and displayed in Figure 1C.

As an example, we show how this procedure can be used to obtain the concentration-dependent mutual diffusion coefficient in the PNIPAM/water binary mixture. Such a polymer/water system is a non-ideal one from a thermodynamics standpoint, as evidenced by its water activity/water fraction relationship measured from water sorption measurements 16 . A transition in this isotherm is detected around RH 75 % and corresponds to the onset of glass transition. Below this humidity, for instance, at RH = 0% we observed small deviations from the scaling presented in this article. This deviation stems from forming a rigid gel close to the air-liquid interface that does not flow and plugs the capillary. The advective flux is thus not correct anymore. Again, our procedure thus includes a self-check of its validity. At RH = 90 %, a perfect scaling is observed as shown in Figure 1 B andC, and the procedure can be applied confidently.

Combining 16 and 17 with the scaled concentration gradient measured with Raman microscopy and displayed Figure 1C, yields Figure 2. We observe a variation of D Fick of nearly two orders of magnitude when varying the polymer concentration until f = 0.7, which highlights the absolute necessity to consider the concentration dependence of mutual diffusion in such systems for realistic modeling. Besides, the value obtained at small f is close to the self-diffusion coefficient of this polymer in water, as evaluated in dilute mixtures by other methods 18 .

Conclusion

In this work, we propose a simple experimental approach that can be implemented in any lab and at no cost to form unsteady concentration gradients within a binary mixture. The time evolution of these gradients is the signature of the balance between advection, resulting from water evaporation at the interface, and diffusion within the liquid mixture. We show how the mutual diffusion coefficient evolution with composition can be deduced from the measurement of the concentration gradients at a given time: (i) from the measured f (x) profile, Eq. 16 allows for computing the diffusion flux profile, from which (ii) evaluation of Eq. 17 provides D Fick (f ). D MS (f ) can also be calculated using the mixture's sorption isotherm. This procedure contains a self-check of its validity. Indeed, calculations use the scaled concentration profile f (x), which is obtained through a change of variable, x = z/ p t, from a time set of measured concentration profiles f (z,t). The quality of the collapse of all f (z,t) curves into a master f (x) curve directly reflects the accuracy of the procedure. While this work provides an example based on a simple polymer/water system, the procedure is generic and could thus be deployed for a large variety of systems, the only limitation being concentration ranges associated with non-flowing structures that could plug the capillary. For instance, it can be used to probe more complex systems such as protein solutions, for instance, saliva as we recently demonstrated [START_REF] Merhi | [END_REF] .

Fig. 1 A

 1 Fig.1A: Schematic view of the millifluidic setup, which consists of a rectangular capillary connected on one end to a reservoir containing the polymer solution, and exposed on its other end to an air flux of controlled relative humidity (RH). Capillarity keeps the capillary filled with the solution at all times, which manifests through an advective flux from the reservoir to the interface. Non-volatile solute accumulates at the air/liquid interface and the resulting concentration gradient leads to water and solute diffusion. B: Profiles of water volume fraction, f water = 1 f (f being the solute volume fraction), over time (every hour with the first curve at 1h15min), measured by Raman microscopy. External air is at RH = 90%. C: Water volume fraction profile scaled with the mixed space/time variable x = z/t 1/2, evidencing that all curves collapse on top of one another and that a single master curve is obtained.
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 53314 Determination of the mutual diffusion coefficientThis change of variable leads to an expression of the diffusive flux function of x:
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