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Abstract— This paper deals with the stability analysis of the
interconnection between a linear system and a nonlinear oper-
ator. This operator is the combination between an asymmetric
backlash and a dead-zone. It is a memory-based operator which
is only piecewise differentiable. To handle such a nonlinearity,
which is more complex than the standard ones, we aim to
capture the closed-loop trajectories in some suitable regions of
the state space. Uniform Ultimate Boundednes (UUB) property
is addressed, using the intrinsic behavior of the operator and
a Lyapunov-based approach. Sufficient conditions are provided
in terms of Linear Matrix Inequalities (LMIs). A numerical
illustration is presented to assess our contribution.

I. INTRODUCTION

This paper is focused on the stability analysis for systems
with asymmetric input backlash and dead-zone. The mechan-
ical conception of many systems such as hydraulic cylinder
induces backlash effects [1]. This memory-based phenomena
is roughly speaking a lost motion caused by gaps between
several parts of the mechanism. In addition, these actuators
are used to set in motion a mechanical system [2]. Therefore,
for low speed, dry friction can be significant and they can be
modeled by the dead-zone. Finally the notion of asymmetry
comes from the fact that some mechanical systems may
have different behavior depending on the direction of motion
(external forces, simple effect cylinder, etc). For practical
applications such as in [3] or [4], these nonlinearities must
be considered to avoid degradation of the closed-loop per-
formance or to avoid loosing stability. The main difficulty
of such a nonlinear operator is the fact that it is not differ-
entiable and is only piecewise differentiable. Unfortunately,
in the literature, there is only a few contributions dealing
with asymmetric backlash: we can cite papers focused on
their identification [5], [6] or their compensation [7]. For its
control, we can cite [4] using a fuzzy approach or [2] using
a Linear Quadratic Regulator (LQR).

We consider here a linear dynamical system with an actu-
ator which behaves accordingly with the nonlinear operator
having aforementioned characteristics. Among the many ap-
proaches in the literature analyzing the stability, we proposed
here, inspired by [8], a Lyapunov analysis in order to provide
sufficient conditions to characterize a finite-time attractor for
the state trajectories, for all initial conditions. Our approach
considers also an asymmetric partition of the state-space,
guided by [9] for instance, allowing to consider various
and asymmetric sector conditions in each area of the state-
space partition. Once the state is inside this attracting set, we

can show that the state trajectories are uniformly ultimately
bounded. More specifically, we propose sector conditions
tailored to the nonlinear operator and the Lyapunov analysis
gives rise to Linear Matrix Inequalities (LMI) conditions to
prove the finite-time attractivity of a compact set for all initial
conditions.

In comparison to existing results such as in [8], [10], [11],
the nonlinear operator considered here is more general than
the classical backlash, due in particular to the asymmetry of
the backlash and also the presence of the dead-zone.

The paper is organized as follows. A formulation of the
problem is provided in Section II where the system and the
operator are described. After some preliminary results, Sec-
tion III presents the main result of the paper, which consists
in providing sufficient conditions for the characterization of
an attractor in terms of LMIs. A numerical illustration and
a related discussion are presented in Section IV. Section V
gathers concluding remarks and few perspectives.

Notation: We denote by C1
pw([0,+∞);Rn) the set of con-

tinuous piece-wise differentiable functions f : [0,+∞) →
Rn. In other words, this is the set of continuous functions
f being, for some unbounded sequence (tj)

∞
j=0 in [0,+∞)

with t0 = 0, continuously differentiable on (tj−1, tj) for all
j ∈ N. For a symmetric matrix M , M ≻ 0 (M ≺ 0, resp.)
means that M is positive definite (negative definite, resp.).
In matrices, the symbol ⋆ represents a symmetric block.
For a matrix M , M⊤ denotes its transpose. For a square
matrix M , we define the operator He(M) = M +M⊤. For
two square matrices M1 and M2, diag {M1,M2} means the
diagonal block matrix with M1 and M2 as blocks. In is the
Identity matrix of dimension n and 0n×m is the null matrix
of dimensions n×m.

II. PROBLEM FORMULATION

Consider the following continuous-time system, consist-
ing in the interconnection between a linear system and an
isolated nonlinearity:

ẋ(t) = Ax(t) +BΦ[u](t),
u(t) = Kx(t),

(1)

where x ∈ Rn is the state, u ∈ R is the single input
of the nonlinearity Φ; A ∈ Rn×n, B ∈ Rn×1 are given
matrices. The nonlinear operator Φ is composed of an
asymmetric backslash (described in [8]) and an asymmetric
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Fig. 1. Depiction of the nonlinear operator.

dead-zone. The operator Φ is defined as follows, for all
f ∈ C1

pw([0,+∞);R), for all j ∈ N, for all (tj−1, tj):

˙︷ ︸︸ ︷
Φ[f ](t) =



l1ḟ(t) if Φ[f ](t) ≥ 0 and
((

ḟ ≥ 0 and
Φ[f ](t) = l1(f(t)− ρ1 − h)

)
or(

ḟ(t) ≤ 0 and Φ[f ](t) = l1(f(t)− ρ1)
))

l2ḟ(t) if Φ[f ](t) ≤ 0 and
((

ḟ ≤ 0 and
Φ[f ](t) = l2(f(t) + ρ2 + h)

)
or(

ḟ(t) ≥ 0 and Φ[f ](t) = l2(f(t) + ρ2)
))

0 otherwise

where 0 = t0 < t1 < . . . is a partition of [0; +∞) such
that f is continuously differentiable on each of the intervals
(tj−1, tj), j ∈ N. The parameters h, l1, l2, ρ1, ρ2 ∈ R>0

correspond to the backslash width, inclination and threshold
when f is positive and negative respectively. This operator
is represented on Figure 1.

Let us show that the nonlinearity is uniquely defined by
following [12]. To this end, we introduce the sets related to
the nonlinearity:

Σ1={(f,Φ) ∈ R2,Φ ≥ 0,Φ+ l1ρ1 ≤ l1f ≤ Φ+ l1(ρ1 + h)},
Σ2={(f,Φ) ∈ R2, 0 ≤ f ≤ ρ1, Φ = 0},
Σ3={(f,Φ) ∈ R2,−ρ2 ≤ f ≤ 0, Φ = 0},
Σ4={(f,Φ) ∈ R2,Φ ≤ 0,Φ− l2(ρ2 + h) ≤ l2f ≤ Φ− l2ρ2},
Σ=∪i∈{1,2,3,4}Σi.

For any (fk,Φk) ∈ Σ, we define two functions,
Fi(·, fk,Φk) : [fk,+∞) → [Φk,+∞) and Fd(·, fk,Φk) :
(−∞, fk] → (−∞,Φk]:

Fi(f, fk,Φk) = max(Φk, l1(f − ρ1 − h)), if (fk,Φk) ∈ Σ1,
max(l1(f − ρ1 − h),min(0,max(Φk, l2(f + ρ2)))),

if (fk,Φk) ∈ ∪i=2,3,4Σi.

Fd(f, fk,Φk) = min(Φk, l2(f + ρ2 + h)), if (fk,Φk) ∈ Σ4,
min(l2(f + ρ2 + h),max(0,min(Φk, l1(f − ρ1)))),

if (fk,Φk) ∈ ∪i=1,2,3Σi,

By decomposing the time-domain in intervals [tk, tk+1)
where f(t) is monotone, it is possible to define the value
of the nonlinear operator by Φ[f ](t) = Fi(f(t), fk,Φk)

when f is increasing (or Φ[f ](t) = Fd(f(t), fk,Φk) when
f is decreasing), with fk = f(tk) and Φk = Φ[f ](tk).
As a consequence, Σ is invariant by applying the nonlinear
operator. In other words, it means that if at t0 = 0, the
nonlinearity is active (u0,Φ[u](0)) ∈ Σ, then it remains
active (u(t),Φ[u](t)) ∈ Σ, ∀t ∈ R≥0. Throughout the paper,
we consider that the nonlinearity is active.

Hereafter we assume the following:
Assumption 1: The triple (A,B,K) is supposed to be

such that there exists a common positive definite matrix P =
P⊤ ∈ Rn×n verifying (A−BliK)⊤P +P (A−BliK) ≺ 0,
i ∈ {1, 2}.

Around the origin, the presence of the dead-zone makes
the system (1) locally uncontrollable. In this case, it behaves
as the autonomous system ẋ = Ax. Since A is not nec-
essarily Hurwitz, the origin may be unstable. Nevertheless,
far from the origin, the system is controlled by the state
feedback Kx and it behaves as the linear system ẋ =
(A−BliK)x, i ∈ {1, 2} for which the origin is stable thanks
to Assumption 1. Let us stress that Assumption 1 deals with
the closed-loop linear part and not with the whole closed-
loop dynamics. Here the stability analysis will rely on the
notion of Uniform Ultimate Boundedness (UUB). Let us first
recall its definition [13].

Definition 1 (UUB): The trajectory of system (1) is uni-
formly ultimately bounded with ultimate bound b if there
exist positive constants b and c, independent of t0 > 0, and
for every a ∈ (0, c), there is T = T (a, b) ≥ 0, independent
of t0, such that ∥x(t0)∥ ≤ a ⇒ ∥x(t)∥ ≤ b, ∀t ≥ t0 + T .

The UUB problem is stated as follows.
Problem 1 (Uniform Ultimate Boundedness analysis):

Given a gain K such that Assumption 1 holds, determine
the region of attraction of the system (1), denoted by A, as
small as possible and associated with the UUB property.

III. UNIFORM ULTIMATE BOUNDEDNESS ANALYSIS

A. Preliminary results

For readibility reasons, we will use the shortcuts Φ for

Φ[u](t) and Φ̇ for
˙︷ ︸︸ ︷

Φ[u](t) and we will avoid the time when
there is not possible confusion.

The presence of the dead-zone and the fact that the
two blacklashes are asymmetric, guide us to consider a
decomposition in four zones of the nonlinearity as depicted
on Figure 2 (where the number of the zone is on the bottom
of the scheme) and defined as follows:

• zone 1 : f(t) ≥ ρ1; Φ(t) ≥ 0;
• zone 2 : 0 ≤ f(t) ≤ ρ1; Φ(t) = 0;
• zone 3 : −ρ2 ≤ f(t) ≤ 0; Φ(t) = 0;
• zone 4 : f(t) ≤ −ρ2; Φ(t) ≤ 0.
It is worthy noticing that the decomposition between zones

2 and 3 will allow to use a suitable change of variable in
the sequel of the paper. Furthermore, the sets Σi belong
respectively to the zone i, for any i ∈ {1, · · · , 4}.

In order to take the most advantage of Assumption 1, we
propose the change of variable concerning the nonlinearity Φ,



f(t)ρ1 ρ1 + h

Φ[f ](t)

−ρ2 − h −ρ2

l1 l1

l2 l2

1234

Fig. 2. Depiction of the nonlinear operator Φ with its related zones.

by introducing an extension of the classical dual nonlinearity
Ψ (see [8]) in adequacy with the asymmetric property:

Ψ(t) = Ψ[f ](t) =

{
Φ(t)− l1f(t) if f(t) ≥ 0,
Φ(t)− l2f(t) elsewhere.

(2)

The characteristic of the dual nonlinearity Φ is depicted on
Figure 3 where the four zones are differently colored and
with the number of the zone being at the bottom of the
picture.

f(t)

Ψ[f ](t)
l2(ρ2 + h)

l2ρ2

−l1ρ1

−l1(ρ1 + h)

−l2

23 14

ρ1−ρ2

−l1

Fig. 3. Characteristic of the dual nonlinearity Ψ.

In order to simplify the expressions mentioned below, we
will consider the augmented vectors

z =
(
x⊤ Ψ Ψ̇ 1

)⊤ ∈ Rn+3,

y =
(
x⊤ Φ Φ̇ 1

)⊤ ∈ Rn+3,

that are associated with the change of variables y = Niz,
where Ni depends on the zones (Ni = N1 on the zones 1
and 2; Ni = N2 on the zones 3 and 4). Ni is given by

Ni =

 In 0 0 0
liK 1 0 0

liK (A+BliK) liKB 1 0
0 0 0 1

.

By replacing the nonlinearity Φ by its dual Ψ in the

dynamics (1), we have

ẋ(t) =


(A+Bl1K)x(t) +BΨ[Kx](t) = Γ1z(t),

if Kx(t) ≥ 0,
(A+Bl2K)x(t) +BΨ[Kx](t) = Γ2z(t),

elsewhere,

where matrices Γi ∈ Rn×(n+3), i ∈ {1, 2}, are defined by

Γi =
(
A+BliK B 0n×1 0n×1

)
.

Let us now determine several quadratic forms in z (the
weighting matrices Mi,j are defined in relations (6)–(7)) that
are nonpositive in given zones:

• In zone 1, f ≥ ρ1 ⇒ z⊤M1,1z ≤ 0 and Φ ≥ 0 ⇒
z⊤M2,1z ≤ 0;

• In zone 2, 0 ≤ f ≤ ρ1 ⇒ z⊤M1,2z ≤ 0 and Φ ≥ 0 ⇒
z⊤M2,2z ≤ 0;

• In zone 3, −ρ2 ≤ f ≤ 0 ⇒ z⊤M1,3z ≤ 0 and Φ ≤
0 ⇒ z⊤M2,3z ≤ 0;

• In zone 4, f ≤ −ρ2 ⇒ z⊤M1,4z ≤ 0 and finally Φ ≤
0 ⇒ z⊤M2,4z ≤ 0.

We are now armed to deal with sector conditions for the
nonlinearity Φ or Ψ, depending on the zones. The results are
gathered into the following lemmas. The weighting matrices
in Lemmas 1 to 4 are given in Equations (7)–(11).

Lemma 1: In zone 1, the nonlinearities Φ and Ψ satisfy
the following inequalities, for any α1 > 1, for any time t,
except the times tk of the partition presented above.

Φ̇ (Ψ + l1 (ρ1 + h/2)) ≤ 0 ⇒ z⊤M3,1z ≤ 0; (3)

Φ̇
(
Φ̇− α1l1Kẋ

)
≤ 0 ⇒ z⊤M4,1z ≤ 0; (4)

−l1(ρ1 + h) ≤ Ψ ≤ −l1ρ1 ⇒ z⊤M5,1z ≤ 0. (5)

Proof: In zone 1, let us consider several cases to
prove (3):

• If ḟ ≥ 0 and Φ = l1(f−ρ1−h), then Φ̇ = l1ḟ ≥ 0 and
Ψ = −l1(ρ1 + h) or Ψ+ l1(ρ1 + h/2) = −l1h/2 ≤ 0.
We have Φ̇ (Ψ + l1(ρ1 + h/2)) = −l21h/2ḟ ≤ 0.

• If ḟ ≤ 0 and Φ = l1(f − ρ1), then Φ̇ = l1ḟ ≤ 0 and
Ψ+ l1f = l1(f−ρ1) or Ψ+ l1(ρ1+h/2) = l1h/2 ≥ 0.
Finally, we have Φ̇ (Ψ + l1(ρ1 + h/2)) = l21h/2ḟ ≤ 0.

• In the other cases, we have Φ̇ =
Φ̇ (Ψ + l1(ρ1 + h/2)) = 0.

In zone 1, let us consider several cases to prove (4):
• If ḟ ≥ 0 and Φ = l1(f − ρ1 − h), then Φ̇ =

l1ḟ = l1Kẋ ≥ 0. We deduce that Φ̇
(
Φ̇− α1l1Kẋ

)
=

l21(Kẋ)2(1− α1) ≤ 0.
• If ḟ ≥ 0 and Φ = l1(f − ρ1), then Φ̇ = l1Kẋ ≤ 0. We

deduce Φ̇
(
Φ̇− α1l1Kẋ

)
= l21(Kẋ)2(1− α1) ≤ 0.

• In the other cases, we have Φ̇ = 0. That leads to
Φ̇
(
Φ̇− α1l1Kẋ

)
= 0.

To prove the last term (5), in zone 1, we have f ≥ ρ1 and
l1(f − ρ1 − h) ≤ Φ ≤ l1(f − ρ1). Thanks to the change of



M1,1 = −M1,2 =

0 0 0 −ρ1K
⊤

⋆ 0 0 0
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 2ρ21

, M1,3 = −M1,4 =

0 0 0 −K⊤ρ2
⋆ 0 0 0
⋆ ⋆ 0 0
⋆ ⋆ ⋆ −2ρ22

, M2,1 = M2,2 =

0 0 0 −l1K
⊤

⋆ 0 0 −1
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0

,

(6)

M2,3 = M2,4 =

0 0 0 l2K
⊤

⋆ 0 0 1
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0

, M5,2 =

0 0 0 0
⋆ 1 0 l1ρ1/2
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0

, M5,3 =

0 0 0 0
⋆ 1 0 −l2ρ2/2
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0

, (7)

M3,1 = N⊤
1

0 0 −K⊤l1 0
⋆ 0 1 0
⋆ ⋆ 0 l1

(
ρ1 +

h
2

)
⋆ ⋆ ⋆ 0

N1,M4,1 = N⊤
1

0 0 − (α1l1KA)⊤ 0

⋆ 0 − (α1l1KB)⊤ 0
⋆ ⋆ 2 0
⋆ ⋆ ⋆ 0

N1,M5,1=

0 0 0 0
⋆ 1 0 l1

(
ρ1 +

h
2

)
⋆ ⋆ 0 0
⋆ ⋆ ⋆ l21ρ1 (ρ1 + h)

,

(8)

M3,4 = N⊤
2

0 0 −K⊤l2 0
⋆ 0 1 0
⋆ ⋆ 0 −l2

(
ρ2 +

h
2

)
⋆ ⋆ ⋆ 0

N2,M4,4=N⊤
2

0 0 − (α2l2KA)⊤ 0

⋆ 0 − (α2l2KB)⊤ 0
⋆ ⋆ 2 0
⋆ ⋆ ⋆ 0

N2,M5,4=

0 0 0 0
⋆ 1 0 −l2

(
ρ2 +

h
2

)
⋆ ⋆ 0 0
⋆ ⋆ ⋆ l22ρ2 (ρ2 + h)

,

(9)

M3,2 = N⊤
1

0 −ϵ3,2K
⊤ 0 0

⋆ 2 0 0
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0

N1, M4,2 = N⊤
1

0 0 −(ϵ4,2KA)⊤ 0
⋆ 0 −ϵ4,2KB 0
⋆ ⋆ 2 0
⋆ ⋆ ⋆ 0

N1, (10)

M3,3 = N⊤
2

0 −ϵ6,3K
⊤ 0 0

⋆ 2 0 0
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0

N2, M4,3 = N⊤
2

0 0 −ϵ7,3(KA)⊤ 0
⋆ 0 −ϵ7,3KB 0
⋆ ⋆ 2 0
⋆ ⋆ ⋆ 0

N2. (11)

coordinates (2), the latter leads to −l1(ρ1+h) ≤ Ψ ≤ −l1ρ1
or −l1h/2 ≤ Ψ + l1(ρ1 + h/2) ≤ l1h/2. Squaring these
inequalities yields to (Ψ + l1(ρ1 + h/2))2 − (l1h/2)

2 ≤ 0,
which corresponds to the expression z⊤M5,1z ≤ 0.

The proofs of the three following lemmas follow closely
the one of Lemma 1 and are not reproduced here.

Lemma 2: In zone 2, the nonlinearities Φ and Ψ satisfy
the following inequalities, for any (small) ϵ3,2 > 0 and
ϵ4,2 > 0, for any time t, except the times tk of the partition
presented above.

0 ≤ Φ ≤ ϵ3,2Kx ⇒ z⊤M3,2z ≤ 0;

0 ≤ Φ̇ ≤ ϵ4,2Kẋ ⇒ z⊤M4,2z ≤ 0;

−l1ρ1 ≤ Ψ ≤ 0 ⇒ z⊤M5,2z ≤ 0.
Lemma 3: In zone 3, the nonlinearities Φ and Ψ satisfy

the following inequalities, for any (small) ϵ3,3 > 0 and
ϵ4,3 > 0, for any time t, except the times tk of the partition
presented above.

ϵ3,3Kx ≤ Φ ≤ 0 ⇒ z⊤M3,3z ≤ 0;

ϵ4,3Kẋ ≤ Φ̇ ≤ 0 ⇒ z⊤M4,3z ≤ 0;

0 ≤ Ψ ≤ l2ρ2 ⇒ z⊤M5,3z ≤ 0.
Lemma 4: In zone 4, the nonlinearities Φ and Ψ satisfy

the following inequalities, for any α2 > 1, for any time t,
except the times tk of the partition presented above.

Φ̇ (Ψ− l2 (ρ2 + h/2)) ≤ 0 ⇒ z⊤M3,4z ≤ 0;

Φ̇
(
Φ̇− α2l2Kẋ

)
≤ 0 ⇒ z⊤M4,4z ≤ 0;

l2ρ2 ≤ Ψ ≤ l2(ρ2 + h) ⇒ z⊤M5,4z ≤ 0.

B. Main result

The following theorem provides a solution to Problem 1.
Theorem 1: Let us consider system (1), with the gain

K ∈ Rn×1 such that Assymption 1 is verified. If there
exist a symmetric positive definite matrix P ∈ Rn×n and
positive scalars τj,i, j ∈ {0, 1, 2, 3, 4, 5} and i ∈ {1, 2, 3, 4}
satisfying the following matrix inequalities, with C =(
In 0n×3

)
, and P = diag {−P ; 0; 0; 1},

M1 = He
(
Γ⊤
1 PC

)
− τ0,1P −

∑5

j=1
τj,1Mj,1 ≺ 0, (12)

M2 = He
(
Γ⊤
1 PC

)
− τ0,2P −

∑5

j=1
τj,2Mj,2 ≺ 0, (13)

M3 = He
(
Γ⊤
2 PC

)
− τ0,3P −

∑5

j=1
τj,3Mj,3 ≺ 0, (14)

M4 = He
(
Γ⊤
2 PC

)
− τ0,4P −

∑5

j=1
τj,4Mj,4 ≺ 0, (15)

then, for any initial admissible solution (x(0),Φ(0)), with
(Kx(0),Φ(0)) ∈ Σ, the system is uniformly ultimately
bounded with respect to the set

A = {x ∈ Rn, x⊤Px ≤ 1}. (16)

Proof: Let us consider the quadratic function V (x) =
x⊤Px, as a Lyapunov function candidate for UUB property.



We would like to prove that the time derivative of this
function along the trajectory t 7→ x(t) is negative definite
outside the ellipsoid A, defined by (16), which is the unitary
level set of V . See for further details [13].

The idea of the proof is to ensure in each zone, and for the
associated sector conditions, that V̇ (x(t)) is negative definite
outside the ellipsoid A. The preliminary results will be useful
to apply a technique based on the S-procedure [14].

The time derivative of V is given by V̇ (x(t)) = 2ẋ⊤Px =
z⊤He

(
Γ⊤
i PC

)
z, with i = 1 in zones 1 and 2 and i = 2 in

zones 3 and 4. In addition, due to the definition of P , we
have that 1− V (x) = z⊤Pz.

For x ̸= 0, by multiplying the strict inequality (12) at left
by z⊤ and at right by z leads to the existence of a scalar
δ1 > 0 such that

z⊤M1z = V̇ (x(t))− τ0,1(1− V (x))− τ1,1z
⊤M1,1z

− τ2,1z
⊤M2,1z − τ3,1z

⊤M3,1z − τ4,1z
⊤M4,1z

− τ5,1z
⊤M5,1z < −δ1∥x∥2 < 0. (17)

The nonlinearities Φ and Ψ satisfying the condition of
zone 1 and the conditions in Lemma 1, we can conclude
that on zone 1, we have V̇ (x(t)) < −δ1∥x∥2, x ̸= 0 outside
the ellipsoid A.

We can reach the same conclusion in the zone i thanks
to z⊤Miz < −δi∥x∥2, x ̸= 0, i ∈ {1, 2, 3, 4}, leading
in zone i to V̇ (x(t)) ≤ −δi∥x∥2. Due to the quadratic
form of the function V , we have V (x) ≤ λmax(P )∥x∥2.
It can be deduced that V̇ (x(t)) ≤ − δ

λmax(P )V (x(t)), with
δ = mini∈{1,2,3,4} δi > 0. The uniform ultimate bound-
edness time T can be taken such that it satisfies T ≥
λmax(P )

δ lnV (x(0)). To make the link with Definition 1, we
have t0 = 0, ∥x(0)∥ ≤ a that yields to b ≤ 1√

λmin(P )

and T ≥ λmax(P )
δ ln

{
λmax(P )a2

}
. V̇ (x(t)) being negative

definite outside the set A, which is a level set of V , the set
A is positively invariant by the dynamics (1). It completes the
proof of UUB property for the trajectories of the nonlinear
system (1).

C. Optimization problem

The conditions in Theorem 1 allow to prove the existence
of an ellipsoid A, defined by the unitary level set of V
(see equation (16)), which is an attractor in finite-time
convergence. In order to have the set A as small as possible,
we need to introduce a size for an ellipsoid. We adopt
the convention that the size of the ellipsoid A is given
by Tr(P−1). In order to have an expression linear in the
variables, we introduce the auxiliary variable Q ∈n×n with
Q = Q⊤ > 0n and minimize Tr(Q), over Q and P , under
the additional condition[

Q In
In P

]
> 02n, (18)

which is equivalent to Q > P−1, thanks to a standard Schur
complement.

It should be noticed that when τ0,i, i ∈ {1, 2, 3, 4} are
fixed, the inequalities in Theorem 1 are LMIs with respect

to the other variables (P , Q, and τj,i, j ∈ {1, 2, 3, 4, 5} and
i ∈ {1, 2, 3, 4}). The LMIs are convex and can be solved
thanks to numerical routines.

Remark 1: A necessary condition for the feasibility of the
LMIs is that the first diagonal block is negative definite.
Otherwise stated (A−BliK + τ0,j/2)

⊤P +P (A−BliK +
τ0,j/2) ≺ 0, i ∈ {1, 2}, j ∈ {1, · · · , 4}. It is necessary to
select 0 < τ0,j < τ0,max, j ∈ {1, · · · , 4}, where τ0,max =
maxi∈{1,2}(−2Re(A−BliK)).

The optimization problem solving Problem 1 is formulated
as follows:

OP1 : min
P,Q,{τj,i}(j,i)∈{1,2,3,4,5}×{1,2,3,4}

Tr(Q),

under (12)− (15), (18).

IV. NUMERICAL ILLUSTRATION

In order to illustrate our result, we consider an example
inspired from [8, Example 1], but which is modified to take
into account the asymmetry of the backlash and also the
presence of the dead-zone. The linear system is a double
integrator and the gain K satisfies Assumption 1.

A =

(
0 1
0 0

)
, B =

(
0
1

)
, K =

(
−2 −3

)
.

l1 = 1, l2 = 1.2, ρ1 = 0.1, ρ2 = 0.2, h = 0.2.

Here, we compute τ0,max = 1.76. When fixing 0 < τ0,j <
τ0,max, we can solve OP1. It is clear on Figure 4 that the
optimal solution of Tr(Q) is reached for τ0,j = 0.8.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10-1

100

101

Fig. 4. Solution Tr(Q) in function of τ0,i.

By setting τ0,i = 0.8, i ∈ {1, 2, 3, 4}, OP1 has a solution
and delivers

P =

(
7.9111 3.1759
3.1759 7.7574

)
, Tr(P−1) = 0.3055.

For the trajectory, we impose x0 =
(
0.8 0.4

)⊤
,

which leads to the initial input u(0) = Kx0 = −2.8. An
admissible value of the nonlinearity is Φ0 = −2.52, such
that (Kx0,Φ0) ∈ Σ. To know precisely the behavior of
the nonlinear operator, we need the time-derivative of the
state-feedback: ḟ = Kẋ = KAx0 + KBΦ0 = 6.76, that
is Φ̇(0) = 0. On Figure 5, the trajectory on the nonlinear
characteristic of the nonlinear operator is drawn in blue,
while the characteristic of Figure 1 is recalled in back dashes.
It can be observed that the set Σ contains all the trajectory
(Kx(t),Φ(t)) as expected.

On Figure 6, the phase portrait of the system is depicted.
The matrix A is not Hurwitz-stable and we are faced to an
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Fig. 5. Characteristic of the nonlinear operator. The starting point
corresponds to (Kx0,Φ0) = (−2.8,−2.52), depicted with a red cross.
The trajectory (Kx(t),Φ(t)) is in blue. The characteristic of Figure 1 is
recalled in back dashes.
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Fig. 6. Phase portrait of the system for a trajectory starting from x0 =(
0.8 0.4

)⊤, depicted with a red cross. The ellipsoid is the attractor
A, depicted in black.

attractive limit cycle for the trajectory. The trajectory enters
into the set A and the limit cycle belongs also to this set.

The time trajectory of the state of the system is plotted
on Figure 7. We can notice that the trajectory tends to a
periodic behavior associated to the limit cycle. In addition
we can see on Figure 7 that the Lyapunov function V (t)
decreases below 1 and after that, V (t) remains below 1.

V. CONCLUSION AND PERSPECTIVES

The problem of the Uniform Ultimately Boundedness
of the interconnection between a linear system (possible
unstable) and a nonlinear operator, which is characterized by
asymmetric backlash and asymmetric dead-zone has been in-
vestigated. After recalling preliminary results and definitions,
an adequate partition of the state space has been proposed
leading to sufficient conditions in terms of Linear Matrix
Inequalities. A numerical example has been presented to
emphasize the relevance of our contribution. An interesting
perspective to extend our contribution is to consider the

design of a gain K to improve the set related to the UUB
property.
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Fig. 7. Time-trajectory of the state for the system starting from x0 =(
0.8 0.4

)⊤ and Lyapunov function V (t) in function of time.
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