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The double asymmetric probe model presented here solves the rectified rf potential and rf currents in

an asymmetric rf discharge as a function of the electrode surface ratio S1=S2, the rf potential

compared to the floating potential, and the sheath capacitances on both sides of the discharge. It is

demonstrated that this asymmetric unmagnetized model can be applied to a magnetized double probe

one in which the asymmetry arises from the anisotropy between parallel and perpendicular currents.

Asymptotic solutions for highly asymmetric discharges yield a dc saturation current on the rf

electrode equal to �Isat=2 for low sheath capacitance and �Isat for high sheath capacitance. The

transition capacitance between “low” and “high” is defined as C0. A solution of the rf averaged

current and rectified potential as a function of the surface ratio and the rf potential are also proposed

for each regime. These analytical solutions are confirmed by the full numerical model taking into

account the generator resistance and the plasma conductivity. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928417]

I. INTRODUCTION

Asymmetric discharges are driven in most experimental

rf plasma devices. They are partially treated in the frame of

capacitive coupled plasmas (CCP)1,2 for spherical electrodes3

or even cylindrical ones.4 The case of an asymmetric dis-

charge with a finite blocking capacitor as been studied by

Metze et al.5 and Chen6 considering self-consistent sheath ca-

pacitance. The problem of highly asymmetric discharges has

been extended by incorporating the ion dynamics in the sheath

using a heuristic ion model7 or the full ion fluid model.8,9

The present model is quite similar to Klick’s resistive

model10 except here an equivalent static sheath capacitance

is included. Klick’s model allows only dc currents to flow

from 1 electrode to several other ones while the present

model allows both rf and dc currents to flow from one elec-

trode to another one. Considering rf displacement currents,

the present model is more simple than the Metze’s model in

which the capacitance for the sheath is time dependent and

then much harder to solve. Second, the Metze’s model is

composed of a dc blocking capacitor between the rf genera-

tor and the rf electrode instead of a resistor for the present

model. This resistor plays the role of the internal rf generator

resistance and is totally independent of the sheath and

plasma resistance.

Here, the model has the advantage to take into account

displacement currents in the sheath and the rf generator re-

sistance with analytical solutions for asymptotical cases and

enlightens the fact that dc current can either saturate to Isat=2

or Isat as a function of a transition capacitance defined as

well in this paper.

Even if this model does not fit well for most rf dis-

charges driven with a blocking capacitor, it can apply for the

next cases.

First, it can apply to probes. In the special case of rf

compensated probes which cut off the rf current component

via inductors, a simple DC sheath model can be used. But

for a classical dc probe in a rf environment, this rf model

could help to interpret potential and current measurements

without compensation. The current shift could be deduced

and the I-V characteristics could be adjusted. Second, this

model can apply in plasma discharges that allow dc currents,

especially in hot plasma devices such as tokamak or stellara-

tor in which RF antennas20 are protected by a Faraday screen

and limiters which are biased by induction and are electri-

cally connected to the ground. For example, this model

allows to calculate the amount of current flowing between

two differential biased parts (the antenna and the wall) of a

plasma reactor. Finally, this model is well adapted to our

new linear plasma device “Aline”12 in which the RF ampli-

fier is directly connected to the RF electrode (no blocking ca-

pacitor) to simulate a low power ICRF (Ion Cyclotron

Resonant Frequency) antenna as in tokamaks.

The model works for all electrode surface ratios (sym-

metric or asymmetric discharges) but does not take into

account the shape of the electrodes (flat geometry assump-

tion). The potential and current are calculated on both elec-

trodes and at entrance of both sheaths as a function of time

during several rf periods.

In a first part, a time dependent analytical solution is

proposed for rectified potential and current taking into

account each sheath capacitance, plasma conductivity, and

an imposed dc bias potential on one electrode. In a second

part, the asymmetric model is applied to a symmetric magne-

tized plasma with perpendicular polarization currents.13,14 It

has been shown in other studies that ICRF antenna in toka-

maks can drive dc currents11,15 and even deplete the bias

flux tube region.16,17 Actually, the present model is a gener-

alization of the magnetized double probe model,13 in which

the polarization current term can be included in a general

displacement current expression via an equivalent capaci-

tance. In the magnetized plasma case, this capacitance
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represents transverse displacement currents. Here, this is a

0D approach only dedicated to determine potential and cur-

rent in sheath and on the electrodes, while the previous

Faudot’s model is a 2D space model allowing the study of

rectified potential structures. In addition, the generalized

model provides analytical solutions for rectified potential

and currents, which are presented in the third part from a der-

ivation of asymptotic solutions (high/low asymmetry and

high/low sheath capacitance). The comparison of the numeri-

cal model solution with the asymptotic analytical formulas is

discussed in the fourth part. Finally the numerical solutions

are available for non-asymptotic cases and permit to deduce

current and potential for our experimental device Aline in

which the rf generator resistance is 50 X.

II. ASYMMETRIC CIRCUIT MODEL

Several assumptions are necessary to simplify typical rf

plasma discharges in which density, temperature, and geom-

etry are self-consistent so that many nonlinear couplings

make the solving very tricky. Here, are the circuit model

assumptions: Electron and ion velocity distributions are

Maxwellian in the plasma with a constant temperature Te

and Ti, respectively. The electrons have a Boltzmann density

distribution in the sheath; rf frequency is higher than ion

plasma frequency so that ions are too heavy to react to the

varying electric field in the sheath; collisions are neglected

in the sheath (valid for hot plasmas or low pressure plasma

discharges); the magnetic field is taken into account through

an equivalent displacement current term; the electric field

solver is electrostatic (Poisson’s equation). The plasma is

considered as a homogeneous resistive dipole. Sheath con-

duction currents are modeled by the diode equation. Sheath

displacement currents are modeled by a capacitance that is

constant in time. The plasma contributes an ohmic, series re-

sistance. The external circuit (including the generator) con-

tributes another series resistance.

According to physical scheme in Figure 1 and electrical

model in Figure 2, the current conservation equation on the

rf side can be written as follows:

V2 � V1

Rp
¼ jiS1 1� exp

e

kBTe
Vf l � V1 þ Vbð Þ

� �� �

þC1

d

dt
V1 � Vbð Þ; (1)

where Rp is the global plasma resistance, V1 and V2 are the

potential at the entrance of the sheath on the RF side and on

the grounded wall side, respectively, ji and je are the absolute

values of ion and electron saturation current densities, Te is

the electron temperature, Vfl is the floating potential defined

as follows:

Vf l ¼
kBTe

e
ln

je

ji

� �
; (2)

Vb is the bias potential on the antenna, C1 is the capaci-

tance of the sheath on the rf side, Vrf is the rf potential, and

S1 is the antenna area. The sheath capacitance can be eval-

uated from the flat capacitor model in vacuum considering

that the electron density is close to 0 within the sheath.18 A

good definition for C1 and C2 is

C1 ¼
�0S1

ksh1

; (3)

C2 ¼
�0S2

ksh2

: (4)

ksh1 and ksh2 are, respectively, the sheath thickness in

front of the rf electrode and the grounded electrode and can

be defined as follows:1

ksh1 ¼
4
ffiffiffiffiffiffiffi
2ð Þ

p
9

 !1=2

kDe
ehV1 � Vrf i

kBTe

� �3=4

; (5)

ksh2 ¼
4
ffiffiffiffiffiffiffi
2ð Þ

p
9

 !1=2

kDe
ehV2i
kBTe

� �3=4

: (6)

hV1 � Vrf i and hV2i are the time average potential drop

in the sheath on the rf side and grounded side. A self-

consistent capacitance has been studied by Chen6 resulting

in a nonlinear capacitive sheath distorting slightly the rf

potential as a function of time. Nevertheless, the time aver-

aged value can be reasonably considered close to the static

capacitive sheath studied here.

The current conservation equation on the grounded wall

side leads toFIG. 1. Physical sketch of an asymmetric rf plasma discharge.

FIG. 2. Equivalent electric model of the plasma and sheaths.
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I ¼ V2 � V1

Rp

¼ jiS2 1� exp
e

kBTe
Vf l � V2ð Þ

� �� �
þ C2

dV2

dt
: (7)

I is the current flowing along the circuit. Here, C2 is the

sheath capacitance on the grounded wall side, and S2 is the

area of the grounded wall.

The potential on the rf electrode is written as

Vb ¼ Vrf � Rg:I: (8)

Rg is the resistance of the rf generator and Vrf its output rf

voltage. One can notice that the nonlinear sheath conductivity

is simply represented by resistances R1 and R2 in Figure 2.

Solving such a nonlinear differential equation system is

not possible analytically. At least one can solve the same

problem considering only one unknown: V ¼ V1 ¼ V2, the

potential in a perfect conductor plasma. In such a particular

case, the 3 equations system can be reduced to one equation

with the normalized potentials / ¼ eV
kBTe

; /rf ¼
eVrf

kBTe
; /f l

¼ eVf l

kBTe
, and /b ¼ eVb

kBTe
.

ji S1 þ S2 � exp �/þ /f l

� �
S2 þ S1 exp /rf þ /b

� �	 
� �
þ kBTe

e
C1

d /� /rf

� �
dt

þ C2

d/
dt

� �
¼ 0: (9)

Here, /b does not depend on time and is considered as a

constant.

The solution of this equation can be written with the

help of the Modified Bessel function of the 1st kind In con-

sidering a cosine rf potential /rf ðtÞ ¼ /rf : cosðxtÞ, with x
as the rf pulsation

expð/Þ ¼ Sþ T þW: (10)

As it can be seen in Eq. (10), the solution is composed

of 3 terms: S is the stationary term, T is the transient term,

and W is the oscillatory term.

Considering the following constant expressions:

a ¼ eji S1 þ S2ð Þ
kBTe C1 þ C2ð Þ ; (11)

c1 ¼
C1

C1 þ C2

; (12)

c2 ¼
C2

C1 þ C2

: (13)

The analytical solution for / is

exp /ð Þ ¼ A

a
1� exp �atð Þð Þexp c1/rf

� �
þ2a

X1
n¼1

Bn a cos nxtð Þ þ nx sin nxtð Þ½ �exp c1/rf

� �
þ exp c1 /rf � 1

� �
� at

� �
; (14)

with

a ¼
ji exp /f l

� �
C1 þ C2

; (15)

A ¼ a½expð/bÞS1I0ðc2/rf Þ þ S2I0ð�c1/rf Þ�; (16)

Bn ¼
S2In �c1/rf

� �
þ exp /bð ÞS1In c2/rf

� �
a2 þ n2x2

: (17)

Separating stationary, oscillatory, and transient terms,

the expression of the analytical solution for / becomes

exp /ð Þ ¼ A

a
exp c1/rf

� �
þ 2a

X1
n¼1

Bn a cos nxtð Þ½

þ nx sin nxtð Þ�exp c1/rf

� �
þ exp �atð Þ exp c1 /rf � 1

� �� �
� A

a
exp c1/rf

� �� �
:

(18)

Still using the Modified Bessel functions to write

expðc1/rf Þ, stationary, oscillatory, and transient terms

appearing in Eq. (10) are

S ¼
exp /f l

� �
S1 þ S2

exp /bð ÞS1I0 c2/rf

� �n
þ S2I0 �c1/rf

� �o
I0 c1/rf

� �
; (19)

T ¼ exp �atð Þ exp c1 /rf � 1
� �� �

� A

a
exp c1/rf

� �� �
; (20)

W ¼ 2a
X1
n¼1

Bn½a cos ðnxtÞ þ nx sin ðnxtÞ� expðc1/rf Þ:

(21)

III. EQUIVALENT MAGNETIZED PLASMA MODEL

The same model can be applied to a magnetized plasma.

In this case, the asymmetry comes from the anisotropic me-

dium and then from the magnetic topology. The surfaces to

compare are the electrode surfaces perpendicular to the mag-

netic field and the perpendicular surface across which dis-

placement currents occur (see Figure 3). The surface of the

rf biased flux tube acts as a large capacitor.

If the main perpendicular current comes from the ion

polarization drift19 due to a time variation of the perpendicu-

lar electric field E?, this current can be written as follows:

j? ¼
nimi

B2

dE?
dt

(22)

with ni as the ion density, mi as the ion mass, and B as the mag-

netic field strength. This current is mainly carried by ions

because of their larger Larmor radius compared to electrons.

These polarization currents can be very large around the ion cy-

clotron frequency, as it is the case close to ICRF antennas in

tokamaks.20 A dedicated model has been elaborated to study

the impact of these currents onto the rectified potential along

the flux tube13 supposing a constant potential along the field

line length Lk. Using L? as the perpendicular scale for polariza-

tion currents,15,22 the electric field can be linearized:

E? ¼ V=L?. The equivalent perpendicular capacitance can

now be derived from the current I ¼ jS? ¼ C?dV=dt as it is
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done by Verplancke in his probe model,23 using S? ¼ LkL?
the perpendicular displacement current surface

C? ¼
nimiLk

B2
: (23)

Now considering the same perfect parallel conductor

plasma, V ¼ V1 ¼ V2 and S ¼ S1 ¼ S2 for a constant mag-

netic field, the electrical model in Figure 4 is simplified,

plasma resistance disappears and C? is in parallel with C2.

The equation to solve becomes

jiS 2� exp �/þ /f l

� �
1þ exp /rf þ /b

� �	 
� �
þ kBTe

e
C1

d /� /rf

� �
dt

þ C2 þ C?ð Þ d/
dt

� �
¼ 0:

(24)

The solution is then exactly the same as in Section II,

except that the former C2 is replaced by Ch, a hybrid capaci-

tance combining C2 and C?

Ch ¼ C2 þ C?: (25)

This model can then be applied either to an asymmetric

rf discharge or to a symmetric magnetized rf plasma on con-

dition to know the perpendicular capacitance of the magne-

tized flux tube.

IV. ANALYTIC STUDY OF ASYMPTOTIC REGIMES FOR
POTENTIALS AND CURRENTS

The analytic solution (10) is not straightforward in the

physical meaning. Moreover, the main physical behaviour of

the rectified potential and current can be described by as-

ymptotic solutions of Eq. (10). This is what is done in this

section, first presenting the no sheath capacitance limit case

and next an infinite sheath capacitance.

A. No sheath capacitance

Here, the displacement currents in the sheath are

neglected: C1 and C2 ! 0.

1. Rectified potential

Ignoring the transient term in Eq. (10), the solution for

the potential in the plasma / is

/ ¼ /f l þ ln
S2

S1 þ S2

� �
þ ln 1þ S1

S2

exp /rf

� �� �
: (26)

One recovers the classical rf rectified potential21 for a sym-

metric discharge S1¼ S2 with /rf > /f l

/ ¼ /f l � lnð2Þ þ ln½1þ exp ð/rf Þ�: (27)

The well known time averaged value for the rf potential is

then h/i ¼ /f l þ
/rf

p :

2. Current

Introducing the previous potential solution in the current

formula on the rf or the grounded electrode, it comes out

hI1i ¼ �hI2i ¼ jiS1

1� exp /rf

� �
1þ S1

S2
exp /rf

� �
* +

: (28)

This current is null for a symmetric discharge (S1¼ S2).

If S1=S2 � 1; hI1i saturates at jiS2=2 and for S1=S2

� 1; hI1i saturates at �jiS2=2, while the electron saturation

current is not reached, which means S2=S1 < je=ji in the case

S1=S2 � 1.

B. Infinite sheath capacitance

In this particular case, a! 0 (see Eq. (11)).

1. Rectified potential

From Eq. (18), and still ignoring the transient term, the

expression for / can be reduced as follows:

exp /ð Þ ¼ A

a
exp c1/rf

� �
; (29)

which yields the following solution for the rectified potential

in the plasma using the Bessel functions:

/ ¼ /f l þ c1/rf

þ ln
exp /bð ÞS1I0 c2/rf

� �
þ S2I0 �c1/rf

� �
S1 þ S2

0
@

1
A
:

(30)

One can see that the oscillatory terms disappear in the

logarithm. The solution is purely sinusoidal because dis-

placements currents are much higher than nonlinear

FIG. 3. Physical sketch of a magnetized flux tube exchanging rf currents.

FIG. 4. Equivalent electric model of the magnetized plasma and sheaths.
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conduction currents. And the time averaged solution is of the

order of the rf potential amplitude.

2. Current

In this high capacitive regime and for S1 � S2, the fol-

lowing lines demonstrate the current saturates at Isat ¼ jiS2

while /rf is much higher than /f l

hI2i ¼ �hI1i

¼ jiS2 1�
h exp �c1/rf

� �
i

exp /bð ÞS1I0 c2/rf

� �
þ S2I0 �c1/rf

� �
0
@

1
A

¼ jiS2 1�
I0 �c1/rf

� �
exp /bð ÞS1I0 c2/rf

� �
þ S2I0 �c1/rf

� �
0
B@

1
CA

¼ jiS2 1� 1

exp /bð ÞS1I0 /rf

� �
þ S2

0
@

1
A: (31)

For /rf > /f l, then I0ð/rf Þ � 1

I2 ¼ �I1 � Isat: (32)

One finds exactly the same results than for a magnetic

plasma flux tube with perpendicular currents17 in which C?
is high. With a magnetic field, as it is shown in Eq. (24), the

main displacement currents come from perpendicular polar-

ization currents proportional to the effective perpendicular

surface around the flux tube.

C. Transition capacitance

This section is dedicated to find C0 the transition capaci-

tance under which the capacitance is considered as “low.”

The first approach consists in linearizing Eq. (1) for a small

rf potential perturbation and the second one considers a satu-

rated regime in which the current is equal to Isat=2, which is

the case for high capacitances and high rf potentials.

1. Linear regime

By linearizing Eq. (1), which means /rf < /f l, the dis-

placement current term is equivalent to the conduction term

for ji ¼ xkBTeC1=ðeS1Þ. In the same way, linearizing Eq. (7)

leads to ji ¼ xkBTeC2=ðeS2Þ. One deduces that the linear cri-

terion to minimize the displacement current is as follows:

Clin
0 ¼

jimin S1; S2ð Þ
x

e

kBTe
: (33)

To be neglected, Clin
0 depends on the smaller electrode.

The relevant capacitance to be compared to respect the crite-

rion is the highest: C ¼ maxðC1;C2Þ. Finally, for

C=Clin
0 < 1, the capacitance can be neglected and for

C=Clin
0 > 1 the capacitance is considered as “high.”

2. Saturated regime

For high rf potentials and highly asymmetric electrode

surfaces, the condition changes: ji=2� Cx~/=S2 with ~/ the

amplitude of the fundamental harmonic of the noncapacitive

solution according to Eq. (26) (¼ /rf =2).

Finally, it turns out

Csat
0 ¼

jiS2

xVrf

: (34)

This criterion is much more appropriate to a strongly asym-

metric discharge.

D. Typical asymmetric plasma discharge case

In most rf plasma discharges, the surface of the

grounded wall S2 is several times higher than S1, the RF elec-

trode surface. Consequently, C2 � C1 inducing c1 ! 0 and

c2 ! 1. Moreover, capacitive currents can be neglected at

low frequency, x� xpe. For that particular set of parame-

ters, the potential in the plasma is given by Eq. (26) and the

current by Eq. (28).

This analytical result does not take into account the

plasma resistivity and more important the RF generator typi-

cal resistance which often equals 50 X. To consider this re-

sistance, the set of equations of the first part has to be solved

numerically and yields some results which can be far from

the “ideal” analytical case.

The 3 relevant parameters conditioning the DC current

asymmetry are the surface ratio of electrode and wall S1=S2,

the RF voltage with respect to floating potential Vrf=Vf l, and

the normalized capacitance ratio C=C0. The next step con-

sists in validating the code with these 3 parametric sweeps to

approach the asymptotic analytical solutions given by Eqs.

(28) and (32).

V. NUMERICAL RESULTS

The solving of the system composed of Eqs. (1), (7),

and (8) yields the solutions for the 3 unknowns V1, V2, and

Vb from which the currents Ignd ð¼ I2Þ and Irf ð¼ I1Þ flowing

through both sheaths on the wall and RF sides, respectively,

can be derived as a function of time.

A. Surface ratio analysis

First, we want to check the formula (28) for parameters

close to most RF plasma discharges. The internal impedance

of the RF amplifier is set to 5 X and the frequency to 1.356

MHz to check the model. The classical value is 50 X for im-

pedance and 13.56 MHz for frequency but this needs to

increase the rf voltage to reach the good conditions to match

formula (28). Sheath capacitances are input according to for-

mula (3) and (4) depending on the surface ratio S1=S2 swept

from 0.01 to 100. The plasma resistivity is calculated from a

plasma density of 1015 m�3, the typical cross section for a

cold Argon gas at a pressure of 2 � 10�2 mbar, and an elec-

tron temperature of 2 eV. And the plasma resistance is

deduced from the resistivity for a 1 m long plasma with an

average cross section of ðS1 þ S2Þ=2. The typical plasma re-

sistance is here 4.4 X.

We are interested in the time average value of the cur-

rent in each sheath over one rf period, so each dataset is

averaged to plot the DC current normalized to the saturation
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current ji:S2 as a function of the surfaces ratio S1=S2 of the rf

electrode and the grounded wall.

First of all, the current conservation shown in Figure 5

is clearly verified because the total current collected on the

RF electrode is exactly the opposite of the current collected

by the grounded wall. Second, the DC current equals 0 for a

symmetric discharge (S1¼ S2). This DC current is negative

on the RF electrode for S1=S2 < 1 (most of rf discharges).

And the same DC current is positive for S1=S2 > 1. The ana-

lytical formula (28) matches very well the solution of the

code for a small capacitance and a small resistance, while for

the typical capacitance in Eqs. (3) and (4), the current can

overpass half the saturation current.

B. RF voltage analysis

Here, the discharge parameters are exactly the same as

before except the rf potential is now swept from 1 V to

1000 V and the electrode surface ratio is fixed at 0.01. For

RF potential lower than the floating potential (9.35 V), no

net dc current is driven. If sheaths are not capacitive, then

the dc current saturates at half the ion saturation current

Isat=2. Figure 6 confirms the validity of the code for low ca-

pacitance (C! 0) and low resistance (R¼ 5 X) because the

corresponding curve matches the analytic equation (28). For

typical parameters of a plasma discharge, the saturation limit

for the current can overpass Isat=2, while for a much higher

capacitance, the current behavior approaches the analytical

solution (31) corresponding to an infinite capacitance limit.

In this case and for a low generator resistance (R¼ 0.1 X),

the current saturation limit is Isat.

The typical case for our plasma discharge is plotted in

Figure 6(c) for which the generator impedance of 5 and 50 X
and the typical capacitance C1 and C2 for each sheath are

input in the code according to their definition in Eqs. (3) and

(4). The capacitance values depends on the rf potential applied

because the sheath thickness is proportional to V
3=4
rf . Thus,

according to simulation parameters given at the beginning of

Section V A, the ratio maxðC1;C2Þ=C0, C0 being defined in

Eq. (34), varies from 0.48 to 2.7 with respect to the rf potential

variations from 1 V to 1000 V. One can see that the current

saturation is not reached but this saturation tends to Isat. The

effect of the generator resistance is to shift the current charac-

teristic to the high potential side or simply to decrease the cur-

rent flowing through the circuit. The finite capacitance of

order C0 constrains the current between the low and high ca-

pacitance cases. Finally, for high rf potential values (over

200 V here), the 5 and 50 X curves join each other because

the relative generator impedance becomes small compared to

the global impedance including the sheath and the saturation

is not reached even for a 1000 V rf potential.

C. Capacitance analysis

We have seen that Eq. (28) expresses the dc current so-

lution for a low sheath capacitance, and for high sheath

FIG. 5. Comparison of the numerical current solution and the analytical cur-

rent considering Vrf � Vf l as a function of the cathode to anode surface ra-

tio S1=S2 for R¼ 5 X.

FIG. 6. Normalized current as a function of the rf potential on the rf electrode.

In figure (a) C! 0: the solid line curves are plotted from the theoretical

model (Eq. (28)) and the dashed curve from the code for Rg ¼ 5 X. In figure

(b) C ¼ 100C0: the solid line curves are plotted from the theoretical model

(Eq. (31)) and the dashed curve from the code for Rg ¼ 0:1 X. In figure (c)

C ¼ maxðC1;C2Þ � C0: the solid and dashed curves are plotted from the

code for Rg ¼ 5 X and Rg ¼ 50 X, respectively, and the typical value of C.
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capacitance the solutions obeys Eq. (31). The transition

between these 2 regimes can be seen in Figure 7 for C=C0

close to 1 with the transition capacitance C0 ¼ Csat
0 as

defined in Eq. (34). These results are summarized in Table I.

One can check as well the validity of the transition capaci-

tance C0 at which the current saturation is suddenly doubled

for two values of the rf frequency (1.356 and 13.56 MHz)

because the transition capacitance is inversely proportional

to the rf frequency. Here, simulations are performed with

R¼ 0.1 X. For R ¼ 5 X and R ¼ 50 X, the current curve

remains exactly the same and are not plotted here. In that

range of parameters, the resistance of the generator is much

lower than the sheath resistance so that it does not disturb

the saturation transition which mainly depends on the sheath

capacitance. Regimes with high generator resistance or low

sheath resistance are not described in this paper but can be

exactly calculated by the code.

VI. CONCLUSION

The asymmetric electric double probe model presented

here is directly connected to RF generator via the generator

resistance instead of the usual blocking capacitor used in

most plasma discharges. Consequently, this model allows

DC current to flow through the circuit. The analytical for-

mula deduced from the model describe how dc current are

influenced by sheath capacitance, electrode surface ratio,

plasma and generator resistances, and the applied rf

potential.

The main results of this model are (1) dc currents satu-

rate at þIsat=2 or �Isat=2 while jS1=S2j � 1; /rf � /f l, and

for a low sheath capacitance (C < C0). The linear and satu-

rated transition capacitances Clin
0 and Csat

0 are defined as well.

(2) In the same conditions but for a high sheath capacitance

(C > C0), currents saturate at þIsat or �Isat. (3) The current

direction is controlled by the surface ratio, if S1=S2 is smaller

than 1 the current collected on S1 (the rf electrode surface) is

negative, and in the other case the current is positive. (4) An

analytic solution of the rf averaged rectified potential and

current in a perfect conductor plasma is also given as a func-

tion of the electrode surface ratio, the rf potential, and sheath

capacitance. (5) The same analytical solution can be used as

well for a symmetric rf magnetized plasma considering per-

pendicular polarization currents that can be evaluated

through an effective perpendicular capacitance. (6) A simpli-

fied analytical solution is given for the dc current on each

side of the discharge for 2 asymptotic regimes (low capaci-

tance and infinite capacitance). (7) And the full circuit model

is solved numerically and yields the exact solution of the

time dependent rf potential and current at both sheath edges

and on the rf antenna. The numerical model takes into

account the generator resistance, constant plasma conductiv-

ity, sheath capacitances, rf potential applied on the antenna,

and all other plasma parameters. The code is validated by as-

ymptotic current formulas.

These results could help to better understand probe

measurements in rf environment and without rf compensa-

tion. In addition, this model is useful in tokamaks in which

different parts of the structure can be biased (e.g., antenna

structure) relative to the grounded wall, inducing dc current

between these points and modifying the average potential

along the connected field lines. In other plasma devices, this

model could be used to generate and control the dc current

on a rf biased surface and could be applied to a magnetized

plasma as well. One of the weakness of this model is the

assumption concerning the flat geometry. To exactly take

into account of the real electrode geometry and plasma

shape, 3D models are necessary.

Now one have to validate experimentally the crude

assumptions made in this circuit model, by measuring the

potential at the entrance of the rf and grounded wall sheaths

and the current flowing through the antenna. Finally, the

plasma is supposed only resistive while in typical discharges

one should take into account the plasma inductance and ca-

pacitance. This property could be added in future works.
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