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Abstract

With an increasing interest in hydrogen as an alternative fuel for transporta-
tion, there is a need to develop tools for the prediction of ignition events.
A cost-effective passive scalar formulation has been recently developed to
predict hydrogen auto-ignition. A single scalar advection-diffusion-reaction
equation is used to reproduce the chain-branched ignition process, where the
scalar represents the radical pool responsible of ignition (H, O, OH, HO2,
H2O2). The scalar reaction rate is analytically deduced from the Jacobian
matrix associated to hydrogen ignition chemistry. This method was found
to reproduce with good accuracy the ignition delays obtained by detailed
chemistry for temperature where the branching is the leading process. For
temperature close or below the crossover temperature, where other phe-
nomenon such as the thermal runaway are important, the scalar approach
fails to predict correctly ignition events. Thus, an extension of the scalar
source term formulation is proposed to extend its validity over the entire
temperature range. In addition, a simple way to approximate the diffusion
properties of the scalar is introduced: the radical pool composition may vary
drastically, with molecules having very different diffusion properties (e.g. H
and HO2). The complete modified framework is presented and its capability
is assessed in canonical scenarios and more complex simulations relevant to
hydrogen safety.
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1. Introduction

Hydrogen is now being seriously considered as an energy carrier for a
wide range of applications. For instance, Airbus ZERO-e program aims
at flying a 100% H2-fueled aircraft by 2035, which opens many H2 safety
questions. Hydrogen explosion limits, described in the classical Lewis &
von Elbe textbook [1] are well understood, and analytical expressions for
ignition delays are available throughout the literature (see, e.g. [2]).

In predicting hazardous ignition, two main methodologies are available
in the literature. The first one consists in analytically deriving ignition in
canonical configurations: ignition in mixing layers [3], thermal-induced (hot-
wall) ignition [4, 5], shock-induced ignition [6, 7], minimal energy required
for kernel ignition [8, 9], critical radius for hot-jet ignition [10, 11], etc. The
second method consists in simulating the configuration considered using a
reactive Navier-Stokes solver, using a H2 chemical description able to ac-
curately reproduce ignition delays. Given the small characteristic chemical
time scales associated with H2 chemistry, such simulations are expensive
because they require a large number of time steps.

The present study builds upon the observation that characteristic chem-
ical time scales associated to ignition are typically much larger than the
chemical time scales associated to flames [12]. For safety studies, where the
main question is whether there is an ignition risk, it is therefore interesting
to build reduced chemical descriptions that accurately reproduce ignition,
but that do not include whatsoever the short time scales involved in H2

flames.
In our previous work [13], we introduced a passive scalar η (with the

dimension of a mass fraction), intended to represent all intermediate species
relevant for hydrogen ignition. The evolution of η is governed by a classical
advection-diffusion-reaction equation:
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with a source term ω̇η, and diffusion coefficient Dη. Through careful
derivation of these two terms, the scalar model was shown to accurately
predict the lift-off of the H2-air lifted jet flame experimentally investigated
by Cabra et al. [14]. This was achieved for a fraction of the cost of the full
reactive simulation – also presented in [13] – because hydrogen ignition has
a characteristic time scale significantly larger than the flame characteristic
time scale, and because intermediate species become unnecessary, with only

2

https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe


H2 and O2 being required in the computation. Nonetheless, the study ben-
efited from the knowledge that ignition would occur above crossover, where
ignition overwhelmingly corresponds to an H-atom branch-chained explo-
sion. Accordingly, the η properties were chosen to match those of H-atom.

The objective of the present paper is to extend and improve the formu-
lation by modifying ω̇η and Dη, so it can predict ignition hazards for all
temperatures, including close or below crossover. The article is organized
as follows. Section 2 introduces the necessary notations, and recalls the
derivation of ω̇η used in [13]. Section 3 extends the formulation, to take into
account the thermal runaway responsible for the third explosion limit and
the ignition at low temperatures or high pressures. Section 4 investigates
the effect of the radical pool diffusion properties through Dη. The article
closes with conclusions and perspectives.

2. The ignition scalar model

2.1. Minimal hydrogen ignition description

The study starts by identifying the main steps responsible for H2 ignition
under a wide range of conditions. In light of previous analytical studies
[15–17], our starting point is the skeletal mechanism presented in Tab. 1,
which also provides the corresponding Arrhenius rates, extracted from the
up-to-date San Diego mechanism [18]. The 8 steps include the classical
branching (1-3), termination (4), and initiation steps (5) which have long
been identified as responsible for high-temperature ignition [19, 20]. The
additional steps (6-8) have been found important in the description of low-
temperature ignition events [15, 19], also corresponding to the chemistry
underlying the third-explosion limit of H2-air systems [21].

This choice of skeletal description is validated in Fig. 1, which com-
pares ignition delays of stoichiometric H2-air mixtures for a wide range of
pressure/temperature conditions, as obtained with the detailed San Diego
mechanism [18] and with the 8-step mechanism. An excellent agreement is
obtained in all presented cases. Although it is not shown here, a similar
agreement is obtained when varying the equivalence ratio and dilution.

Throughout the paper, use is made of the classical crossover definition
for hydrogen ignition [2]. It is defined as the crossover temperature Tc for
which the rate of reaction O2 +H → OH+O is half that of the third-body
reaction H + O2 +M → HO2 +M. Introducing the crossover variable α as

α =
2k1
k4CM

, (2)
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Table 1: Chemical reactions responsible for hydrogen ignition and corresponding rates in
Arrhenius form k = ATn exp (−Ea/RT ). Rates numerical values are extracted from the
up-to-date San Diego mechanism [18].

Reaction Aa na Ea
a

1 H+O2 → OH+O 3.52 1016 -0.7 71.42
2 H2+O → OH+H 5.06 104 2.67 26.32
3 H2+OH → H2O+H 1.17 109 1.3 15.17
4 H+O2+M → HO2+Mb k0 5.75 1019 -1.4 0.0

k∞ 4.65 1012 0.44 0.0
5 H2+O2 → HO2+H 2.93 1012 0.356 232.21
6c 2HO2 → H2O2+O2 1.03 1014 0.0 46.22

1.94 1011 0.0 -5,89
7 HO2+H2 → H2O2+H 7.80 1010 0.61 100.14
8 H2O2+M → 2OH+Md k0 7.60 1030 -4.20 213.71

k∞ 2.63 1019 -1.27 214.74
aUnits are mol, s, cm3, kJ, and K.
bChaperon efficiencies are 2.5 for H2, 16.0 for H2O, 0.7 for Ar and He and 1.0 for all other

species; Troe falloff with Fc = 0.5
cBi-Arrhenius (the sum of the two constants).
dChaperon efficiencies are 2.0 for H2, 6.0 for H2O, 0.4 for Ar and He, and 1.0 for all other

species; Fc = 0.265 exp (−T/94K) + 0.735 exp (−T/1756K) + exp (−5182K/T )
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Figure 1: Comparison of ignition delays of a stoichiometric hydrogen-air mixture, obtained
by numerical integration for the detailed San Diego mechanism (solid black lines) and the
8-step skeletal mechanism (red dashed lines).
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we then have α > 1 for temperatures above crossover, where H, O, and OH
are the main chain-branching carriers; while HO2 and H2O2 are dominant
at low temperature (α < 1, below the crossover temperature Tc).

2.2. Recap and notations

Hydrogen chemistry includes 5 intermediate species H, O, OH, HO2, and
H2O2, but their proportion varies strongly depending on the local conditions.
Their rate of production may be written as

dC̄

dt
= AC̄ + ϵ̄, (3)

where C̄ is the radical-pool molar concentration vector:

C̄ =
[
CH CO COH CHO2

CH2O2

]T
, (4)

A is the chemical Jacobian matrix, and ϵ̄ is an initial rate vector. Neglecting
step 6, they read

A =


−(l1 + l4) l2 l3 l7 0

l1 −l2 0 0 0
l1 l2 −l3 0 2l8
l4 0 0 −l7 0
0 0 0 l7 −l8

, and ϵ̄ =


ω5

0
0
ω5

0

. (5)

Above, ωk is the reaction rate of the kth reaction (e.g. ω1 = k1CO2
CH)

as given in Tab. 1, and lk is the corresponding inverse characteristic time
(e.g. l1 = k1CO2

), which only depend on temperature, pressure, and major
species (H2, O2, and diluent). Note that Eq. (3) can be analytically solved
for a homogeneous system, by assuming temperature and main reactants
(H2, O2) are constant throughout the ignition process (i.e. A, Eq. 5, is
a constant). These approximations provided useful expressions for ignition
delays [16, 17, 19, 20], but will not be necessary hereafter.

System (3), through diagonalization of A (5), can be rewritten as

P−1dC̄

dt
= DP−1C̄ +P−1ϵ̄, (6)

With D and P−1 the diagonal and the left eigenvectors matrix such that
A = PDP−1. Upon noting that the A’s largest eigenvalue λ quickly domi-
nates the ignition history [16] (the other eigenvalues being rapidly negligible

5



or simply evanescent modes), the only equation of interest among the five
decoupled equations in Eq. (6) can be expressed as:

V̄ LdC̄

dt
= λV̄ LC̄ + V̄ Lϵ̄, (7)

with V̄ L the left eigenvector associated to λ (the row ofP−1 corresponding to
λ). We then introduce a scalar Cη (with molar concentration units) following
the same equation evolution as the scalar V̄ LC̄ such that C̄ ≈ V̄ RCη:

dCη

dt
= λCη + ϵη, (8)

with ϵη = V̄ Lϵ̄ =
(
V L
H + V L

HO2

)
ω5, where V L

H and V L
HO2

are the first and

fourth elements of V̄ L. Since the eigenvector associated with eigenvalue λ
has dimension one, a relationship between Cη and C̄ is needed, for which
details are included in Appendix A.

For the remainder of the present study, ϵη = ω5 have been retained for
simplicity (no need to compute the full P matrix), resulting in Cη ≈ CH at
high temperature and Cη ≈ CHO2

below the cross-over temperature. As will
be discussed later, those properties will be useful in the new framework.

The ignition scalar η [mass fraction] in Eq. (1) is then related to Cη

[molar concentration] through:

Cη = ρ
η

Wη
, (9)

with Wη the molecular weight of species η. From the above, one finally
obtains the scalar production rate ω̇η missing in (1):

ω̇η = (λCη + ϵη)Wη. (10)

Hereafter, we assume Wη = WH, as in [13]. This choice has no impact
on the results, as detailed in Appendix B.

2.3. Limitations of the initial scalar model

The study by Taileb et al. [13] benefited from prior knowledge that
the configuration studied was igniting above crossover (α > 1), and in a
relatively rich region, where the radical pool overwhelmingly consists of H-
atom [16], so η ≈ YH, or Cη ≈ CH.

Figure 2.a represents the evolution of Cη compared with that of CH as

well as the normalized temperature Θ = (T−T0)/(T
8step
max −T0), in an isobaric
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homogeneous reactor, initially filled with a stoichiometric H2-air mixture at
p=1 atm and T0=1100 K, well above crossover. Cη results from the sole
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Figure 2: Normalized temperature (blue line, right axis), H and HO2 concentrations
(black lines, left axis) as functions of time, during isobaric homogeneous ignition processes
from numerical integration with the 8-step skeletal chemistry for φ=1.0, with p=1 atm,
T0=1100 K (> Tc, left) and p=50 atm, T0=1100 K (< Tc, right). Through the integration
of Eq.(8), Cη is also presented, until it reaches the limitant reactant concentration Cη =
min(CH2

, CO2
/2) (red dashed, left axis).

integration of Eq. (8) (having discarded convection and diffusion). It is clear
that Cη and CH follow the exact same trend, even though the heat release
is neglected, and that Cη = min(CH2

, CO2
/2) is an adequate condition to

indicate ignition (materialized by the Cη curve horizontal level) [22] .
Let us repeat now the exercise at p=50 atm, for the same temperature

T0=1100 K (below crossover) in Fig. 2.b, and assuming now Cη = CHO2
,

the main chain-carrier in this domain [16]. It is now clear that Cη follows
closely the evolution of CHO2

, but only in the very early stage of the ignition
process. This behaviour calls for the new formulation presented hereafter.

3. An improved scalar model

The process leading to ignition for temperature below the cross-over tem-
perature is in appearance simpler than the one at high temperature because
the radicals H, O and OH, can be assumed in a quasi-steady-state [15].
However, the chemical pathway followed by HO2 and H2O2 evidences the
importance of the non-linear branching step 6 that slows down the chain-
branching leaving place to a thermal runaway [19]. Improving the descrip-
tion of the ignition close to and below crossover (α ≲ 1) then requires (i) to
include step 6 in the rate, and (ii) take into account the thermal runaway,
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neglected here since η production does not yield any heat release. These
two points are successively discussed in the next two Sections.

3.1. The non-linearity of step 6

As previously mentioned, reaction 6 cannot be neglected in the low-
temperature regime, leading to the new concentration evolution equation:

dC̄

dt
= AC̄ + B̄

(
C̄
)
+ ϵ̄ (11)

with B̄ the vector containing the non-linear branching reactions:

B̄ =
[
0 0 0 −2k6C

2
HO2

k6C
2
HO2

]T
. (12)

Following the study by Liang et al. [23] on the role of this non-linear
step in defining the H2 explosion limits, the system is considered to have a
linear form with respect to the concentration vector by linearizing B̄ and
including it in the Jacobian :

J = A+
dB̄

dC̄
=


−(l1 + l4) l2 l3 l7 0

l1 −l2 0 0 0
l1 l2 −l3 0 2l8
l4 0 0 −l7 − 4l6 0
0 0 0 l7 + 2l6 −l8

, (13)

with l6 = k6CHO2
. Linearization of the system leads to a new Jacobian J

largest eigenvalue λ(l6). Unlike λ, λ(l6) now depends on the HO2 concentra-
tion via l6. This in practice does not lead to any additional difficulty since
the model in Taileb et al. [13] already required a local ω̇η computation at
every time step, which becomes:

ω̇η =
[
λ(l6)Cη + ϵη

]
Wη. (14)

Figure 3.a represents the same ignition test as in Fig. 2.b by solving now
Eq. (11) instead of Eq. (3). It appears clearly that the time-evolution of the
scalar now reproduces very well that of CHO2

, until the very final thermal
runaway.

Finally, an approximation of l6 is required to evaluate the Jacobian J,
since CHO2

is a priori not known. Below crossover, Cη ≈ CHO2
, as evidenced

in Appendix A. Above crossover, CHO2
≪ Cη, and step 6 can be neglected,
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as was shown in numerous analytical studies [16, 19, 20]. In light of these
arguments, l6 can then be approximated as k6C

∗
HO2

using

C∗
HO2

=
Cη

1 + α
, (15)

where α is the crossover variable (2). Note that alternative forms for (15) are
possible, as long as its limits below and above crossover satisfy respectively
limα→0C

∗
HO2

= Cη and limα→∞C∗
HO2

= 0.
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Figure 3: Normalized temperature (blue line, right axis), H and HO2 concentrations (black
lines, left axis) as functions of time, during isobaric homogeneous ignition processes from
numerical integration with the 8-step skeletal chemistry for φ=1.0, with T0=1100 K < Tc

and p=50 atm. The integration of Cη is also presented (red dashed, left axis) using the
step 6 linearization of Eq. 14 (left), or step 6 linearization and thermal runaway correction
of Eq. 34 (right) with the corresponding Θ (green dashed curve) computed using the θ−Cη

relationships of Eq. 33.

3.2. Analytical solution for the eigenvalue of interest

As shown previously by Boivin et al. [16, 24], it is possible to obtain
accurate analytical predictions for the largest eigenvalue λ. Hereafter, it is
proposed to slightly improve the expressions derived in [16]. The study of
the Jacobian above crossover corresponding to the upper left 3×3 submatrix
J+ = A+, initially proposed in [24] is kept unchanged:

J+ =

−(l1 + l4) l2 l3
l1 −l2 0
l1 l2 −l3

, (16)
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the largest eigenvalue λ+ of which is obtained by neglecting the cubic term
of its characteristic polynomial [24], giving

λ+ =

√
a21 − 4a0a2 − a1

2a2
, (17)

with 
a0 = (l4 − 2l1)l2l3

a1 = l2l3 + l4(l2 + l3)

a2 = l1 + l2 + l3 + l4.

(18)

The largest eigenvalue λ of the 5× 5 system can be approximated from
an intermediate system obtained by assuming O and OH steady states, valid
around and below the cross-over:

dC̄t

dt
= JtC̄t + ϵ̄t, (19)

with C̄t = [CH, CHO2 , CH2O2 ]
T , ϵ̄t = [ω5, ω5, 0]

T and

Jt =

2l1 − l4 l7 2l8
l4 −l7 − 4l6 0
0 l7 + 2l6 −l8

. (20)

The largest eigenvalue matches the one of the 5 × 5 systems in the low-
temperature regime, where O and OH are in steady state [15]. However, it
differs in the high-temperature range, where the rate should be λ+ instead
of 2l1 − l4 [24]. By applying the methods develop in [16], the submatrix Jt

can be corrected by multiplying the first line (H-atom production rate) by
Λ+ = λ+/(2l1 − l4), yielding a new 3× 3 matrix J±:

J± =

(2l1 − l4)Λ+ l7Λ+ 2l8Λ+

l4 −l7 − 4l6 0
0 l7 + 2l6 −l8

 , Λ+ =
λ+

2l1 − l4
(21)

which now has a maximum eigenvalue λ± close to that of the full 5 × 5
system, solution of the cubic characteristic polynomial

λ3
± + b2λ

2
± + b1λ± + b0 = 0, (22)

where 
b0 = −4l4l6l8Λ+ − 3l4l7l8Λ+ − 4l6l8λ+ − l7l8λ+

b1 = −l4l7Λ+ + 4l6l8 − 4l6λ+ + l7l8 − l7λ+ − l8λ+

b2 = 4l6 + l7 + l8 − λ+.

(23)
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Unlike in [22], the cubic term λ3
± is non-negligible in (22), but the Cardan

method still provides an analytical solution for λ±, given in Appendix C.
Figure 4 compares for a wide range of conditions the exact solution for

the largest eigenvalue of the 5×5 system J (obtained numerically) and that
obtained analytically from the reduced 3 × 3 system (C.6). The curves for
the exact and analytical eigenvalues are indiscernible with relative errors
below 10−3. From now on, only the analytical approximation given (C.6)
will be used.
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Figure 4: Exact (black line) and analytical (red dashed) eigenvalues λ of the new Jacobian
(13) for a stoichiometric H2-Air mixture with an imposed HO2 concentration of 10−2

mol/m3 for the coefficient l6. The analytical eigenvalue λ± is computed using the method
developed in Appendix C applied to the matrix (21).

3.3. Low temperature thermal-runaway

The modifications made in the two previous subsections allow to accu-
rately and efficiently predict the evolution of HO2 prior to the release of
heat for the low temperature regime. In this regime, the thermal-runaway
phenomenon, mainly due to the creation of H2O, has also to be included in
the model to predict ignition [15, 21]. In the 8 step mechanism, H2O is only
produced through reaction 3:

dCH2O

dt
= l3COH. (24)

In order to find a relationship between COH and CHO2
to inject in (24), we

first need to assume H and O in quasi-steady-state, which gives the equation:

−l4CH + l3COH + l7CHO2
= 0. (25)
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In addition, asymptotic analysis of the thermal runaway below crossover
[15, 21] showed that CHO2

may be assumed to be in a steady state, leading
to:

l4CH − l7CHO2
− 2k6C

2
HO2

= 0. (26)

By adding (25) and (26) we obtain the relationship:

l3COH = 2k6C
2
HO2

. (27)

Making use of the approximate HO2 concentration given by (15), the
water production rate can then be simplified as:

dCH2O

dt
= 2k6C

∗2
HO2

. (28)

Since H2 and O2 have zero formation enthalpy, the heat released by the
reactions mainly comes from the production of H2O, yielding

dT

dt
=

−2k6∆H0
H2O

ρcp
C∗2
HO2

, (29)

where ρ and cp denote the fresh gas density and specific heat at constant
pressure, while ∆H0

H2O
is the standard enthalpy of formation of gaseous

H2O, equal to -241.8 kJ/mol.
In order to take into account the mechanism leading to the thermal run-

away, the λ temperature dependence is required. Dimensionless activation
energy β and temperature θ are introduced

θ = β
T − T0

T0
, (30)

with β to be explicited in Eq. (35). Assuming a single activation energy for
λ in the low temperature range yields

λ(θ) = λeθ. (31)

Following [15], the thermal runaway problem can then be expressed as :
dCη

dt
= Cηλe

θ

dθ

dt
= qC2

η ,

(32)
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with q =
−2k6β∆H0

H2O

T0ρcp
. Dividing the first equation to the second yields

dθ

dCη
=

qCη

λeθ
, which upon integration leads to

θ(Cη) = ln

(
1 +

qC2
η

2λ

)
. (33)

Using (33) and (31) finally lead to the modified reaction rate ω̇η

ω̇η =
[
λ(l6)Cη +

q

2
C∗3
HO2

+ ϵη

]
Wη. (34)

Taking into account the thermal runaway can therefore be achieved by in-
cluding a correcting cubic term in the scalar production rate below crossover.
In this term, Cη has been conveniently replaced by C∗

HO2
, which is equal to

Cη below crossover, but 0 above, where there is no thermal runaway. The
above expression is therefore valid for all temperatures.

Expression (33) is fully explicit provided the dimensionless activation
energy β. Given the complexity of λ, it was chosen to fit its dependence
below crossover, where thermal runaway is important as

β =
35038

T
− 2.54, (35)

yielding values slightly over 40 at 800K, more than enough for the high
activation energy asymptotic analysis performed. In the system, reaction 8
is the most sensitive to temperature changes and 70% of the total increase
of λ with temperature is related to this reaction, with a reduced activation
energy close to 30 [15]. Figure 3.b presents the same ignition histories as
Figure 3.a, now including the thermal runaway correction. Predictions are
now excellent, showing that the present method is able to well reproduce
ignition histories with a single scalar, e.g. without heat release.

A surprising result is that the present model allows for accurate predic-
tion of the ignition histories below crossover without considering a temper-
ature equation (thermal runaway would a priori require one). The reduced
temperature can nonetheless be reconstructed accurately from Eq. (33) if
needed. Such reconstruction corresponds to the superimposed dashed green
line in Fig. 3.b, and displays an excellent agreement.

3.4. Passive scalar model validation

The overall capability of the new scalar model defined previously is as-
sessed by comparing of the predicted ignition delays in perfectly stirred
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reactors at constant pressure with those obtained by “exact” integration of
the 8-step mechanism. Ignition delays computed with the previous scalar
[13] are also reported to highlight the improvements below crossover.
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Figure 5: Comparison of ignition delays of an isobaric homogeneous ignition of an H2-air
mixture, obtained by numerical integration for the reduced 8-step chemistry (solid curves),
the previous scalar model from [13] (green dotted curves) and the new scalar model (red
dashed curve).

The ignition delays are compared in Figures 5.a and 5.b. Predicted
ignition delays with the new scalar model exhibit an outstanding agreement
with those computed with the chemistry of reference for the entire range of
conditions in terms of temperature, pressure and equivalence ratio.

4. Description of the scalar diffusivity

Now that the scalar reaction rate has been revisited to be relevant for
temperatures both below and above cross-over, a special attention needs to
be taken to its diffusion properties. Indeed the main radicals present is those
two regimes are completely different, and their diffusion properties as well.
As a reminder, the radicals pool mainly consists of H at temperature higher
that the cross-over temperature, which is 4 to 5 times more diffusive than
HO2 or H2O2 found for the low temperature regime.
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4.1. Eigenvector based properties

Once the eigenvalue λ is obtained analytically, the associated eigenvector
may also be obtained analytically:

VH = 1

VO = l1/ (l2 + λ)VH

VOH =
(
l1VH + l2VO + 2l8VH2O2

)
/ (l3 + λ)

VHO2
= l4/ (l7 + 4l6 + λ)VH

VH2O2
= (l7 + 2l6) / (l8 + λ)VHO2

.

(36)

This analytically obtained eigenvector gives us information about the
molar proportion of each radical in the radical pool, which is used to express
Fig. 6. It can be used to model the diffusion coefficient of the scalar with a
simple weighted average:

Dη =
5∑

k=1

Dkvk, (37)

with vk the normalized eigenvector :

vk = Vk/
5∑

k=1

Vk. (38)
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Figure 6: Radical-pool composition obtained from the normalized eigenvector associated
with the dominant eigenvalue for p=1 atm, φ=1. The vertical line indicates the crossover.
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Note that molar proportions are used for the weighted average to ensure
consistency with the diffusion model used in Eq. (1) (as well as in most
reactive flow solvers), which relies on the gradients of molar fractions.

This expression has the advantage of giving a diffusion coefficient that
is both continuous (important for numerical stability) and representative
of the radical pool. In order to highlight the importance of the diffusion
properties of the scalar, a temporal mixing layer was simulated with the
reduced chemistry and the new model for different choices of its diffusion
coefficient. This simple configuration consists of a one-dimensional domain
of 2 cm discretized in 500 points. The first half of the domain is initially
filled with Air and the second part with a H2-N2 mixture (25% of H2 in
volume). The entire domain is initially set at a temperature of 1000 K and
a pressure of 1 atmosphere. The simulations were performed using a hybrid
Lattice Boltzmann solver, already presented in [13, 25–27].

Figure 7 reports the maximum concentrations of H, HO2 and H2O in
the temporal mixing layer, to illustrate the importance of the choice of the
diffusion coefficient. It is clear that a slowly diffusive carrier (HO2) will lead
to faster ignition (with a faster global rate), while the H-atom high diffusion
significantly slows down the process. In this specific case, the auto-ignition
time difference between the two extreme choices of diffusion coefficient is
up to 13% of the ignition time obtained with the reduced chemistry. Using
a weighted average of the main eigenvector for the scalar diffusion prop-
erty seems good enough, providing an accurate ignition growth rate (and
therefore an accurate delay).
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Finally, the time of ignition is displayed (vertical grey lines) for each case.

Figure 8 presents the passive scalar profiles in the domain at a time t =
3×10−4 s. The profiles obtained using the diffusion coefficients of H, HO2, or
using Eq. (37) are compared to the scalar concentration reconstructed from
the concentrations obtained from the reduced chemistry using the following
relationships:

Cη = V̄ LC̄/
(
V L
H + V L

HO2

)
, (39)

derived from A.1 for ϵη = ω5.

17



−4 −3 −2 −1 0 1 2 3 4
x (mm)

10−18

10−15

10−12

10−9

10−6

10−3

100

10−17

10−16

10−14

10−13

10−11

10−10

10−8

10−7

10−5

10−4

10−2

10−1

C
η

(m
ol

/m
3 )

Reconstructed

DH

DHO2

Dη

Figure 8: Comparison of the passive scalar concentration profiles for a temporally evolving
mixing layer (one-dimensional) between the scalar reconstructed from the reduced chem-
istry results (solid curve), the scalar resulting from the use of diffusion coefficient of H
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It is clear that using a diffusion coefficient based on the composition
(obtained with the eigenvectors) significantly improves the results. As ex-
pected, using the diffusion coefficient of a specific radical is only relevant in
the region where that radical dominates, for example, in Fig. 8, H in the
left part of the domain and HO2 in the right part. However, even in those
regions, the average value appears to provide a more representative diffusion
process (as indicated by the over-estimation of the scalar concentration in
the left part of the domain with DH).

4.2. Turbulent mixing layer validation

Let us now assess the performance of the scalar model on a more challeng-
ing test case. A two-dimensional turbulent double mixing layer is adapted
from [28] for high pressure. The domain is a 4.5 mm square discretized
with 500×500 grid points. To form the double mixing layer, the first and
last quarters of the domain along the x axis are initially filled with Air at
1200 K, and the remaining half of the domain is filled with a H2-N2 mixture
(50-50 in volume) at 300 K. The pressure is set at 50 atmosphere pressure
to be relevant for hydrogen storage. The velocity field is initialized to be
weakly turbulent to emphasize the influence of the chemistry modeling. The
turbulent field was generated using Rogallo’s procedure [29] with a Passot-
Pouquet spectrum [30]. A turbulent length scale of 0.45 mm and a root
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mean square of the velocity fluctuations of 0.70 m/s were used, giving a
turbulent time scale of 0.64 ms.

This configuration has been utilized to compare the growth of ignition
kernels using different chemical models, including the San Diego mechanism,
the reduced 8 step chemistry, the previous scalar model [13] (with the most
relevant diffusion properties i.e. HO2 for the present conditions) and finally
the present updated scalar model with its average diffusion coefficient (37).
The recorded time of the first ignition event is presented in Table 2, with the
time step used, the reduced time to solution and a normalized computational
cost index. The use of the updated scalar model is 43.7 times cheaper in
terms of CPU cost compared to the full chemistry integration. Note that
the four simulations have been performed using 20 cores on a dual CPU
desktop (2 × Intel Xeon(R) Silver 4214R).

Table 2: Summary of the auto-ignition time τi, the time step ∆t, the reduced time to
solution RTTS (total CPU time in ms needed to simulate 1 ms for 1 cell) [31] and the
cost (reduced time to solution with respect to the one of the scalar) of the four cases.

case τi ∆t RTTS cost

San Diego 0.497 ms 3× 10−9 s 1048 43.7

8 step 0.472 ms 1× 10−8 s 218 9.1

Previous model with DHO2
0.826 ms 1× 10−7 s 24 1.0

New model with Dη 0.464 ms 1× 10−7 s 24 1.0

The temperature fields obtained for the reduced chemistry and the ap-
proximated one using equations (30) and (33) for the updated scalar model
are shown Fig. 9 at 4 µs after the first ignition events. This qualitative
comparison highlights the ability of the new scalar model to recover where
ignition events occur.
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Figure 9: Comparison of the temperature fields obtained with the 8 step chemistry and
with the new scalar model, taken 4 µs after the first ignition event. The four black circles
identify the ignition kernels selected for Figure 10.

The temporal evolution of HO2 concentrations are now reported at the
four ignition kernels identified in Fig. 9 for quantitative validation between
the detailed chemistry, 8-step chemistry, and the two scalar models. The
new formulation of the scalar allows to recover precisely the ignition behav-
ior of the reduced mechanism at a considerably lower cost, the difference
between the new model and the detailed chemistry being mainly due to the
slight discrepancies between the detailed and 8-step mechanisms. Expect-
ingly, the previous scalar formulation [13] yields a strong overestimation of
the ignition delays since it fails to consider the non-linearity of step 6 and
thermal runaway.
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reactive cases using the San Diego mechanism (black curve), the reduced 8 step (green
dash-dotted curve), the previous scalar model (orange dotted curve) and the new scalar
model (red dashed curve) using the averaged diffusion properties.

The scalar concentration profiles are also compared in Fig. 11. These
profiles are obtained by sampling along the x direction across the first kernel
to ignite (top right kernel) at a time of t = 4.4 × 10−4 s, which is close to
ignition. For both the detailed and reduced chemistry models, the scalar is
reconstructed using Eq. (39).

The new scalar model shows excellent agreement with the reduced chem-
istry, whereas the previous model fails to capture the correct profile in the
highly reactive zone, particularly in terms of the kernel position. This dis-
crepancy can be attributed to the incorrect reaction rate, as it misses the
non-linear branching and thermal runaway phenomena, in addition to the
oversimplified diffusion model, as previously demonstrated in Fig. 8. It
also appears that the difference in chemistry between the detailed and re-
duced mechanisms primarily affects the ignition time of the kernel, while
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the position of the kernel remains unchanged.
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Figure 11: Comparison of the passive scalar concentration profiles along the x direction
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Reconstructed scalar concentration from the San Diego mechanism (black curve), the
reduced 8-step (green dash-dotted curve), the previous scalar model (orange dotted curve)
and the new scalar model (red dashed curve) using the averaged diffusion properties.

5. Conclusion

We have presented a new passive scalar model able to predict ignition in
complex flow configurations, building upon the scalar model presented by
Taileb et al. [13], valid for temperatures above crossover.

The new formulation is still valid above crossover, but also in its vicinity,
and the low-temperature limit. This is particularly useful for high-pressure
configurations, ubiquitous in novel H2 applications: the crossover tempera-
ture is 1430K at 50 bars (vs. 940K at 1 bar), putting most relevant ignition
conditions below crossover.

Excellent accuracy is achieved by introducing three new elements to the
model: (i) an extended formulation of the branching characteristic time λ
taking into account the non-linear step HO2 +HO2 → H2O2 +O2 (step 6),
(ii) a cubic correcting term to account for the thermal runaway, and (iii)
a formulation for the scalar diffusivity which takes into account the radical
pool composition, which may consist mainly of H-atom or HO2 depending
on local conditions.
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The model is validated on homogeneous reactor configurations, 1D tem-
poral mixing layers, and a 2D DNS double mixing layer. Future works will
include safety analysis of more complex configurations.
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the calculation of the minimum ignition energy, Combust. Flame 136
(2004) 394–397.
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Appendix A. Derivation of ϵη

In order to highlight how to choose the value ϵη, let’s rewrite the diago-
nalization of the JacobianA = aPD 1

aP
−1 with a the coefficient representing

the dimension one of the eigenvectors. The scalar is then defined as

Cη =
1

a
V̄ LC̄, (A.1)

and its initial reaction rate reads:

ϵη = ω5

(
V L
H + V L

HO2

)
/a. (A.2)

Eq. (A.1) can be rewritten as (by definition of the left and right eigen-
vector, V̄ RV̄ L = 1):

C̄ = aV̄ RCη, (A.3)

this relationship can be used to enforce an expression for a that will be used
in (A.2) to define precisely ϵη. As it is discussed in Section 3.1, we intend
to set Cη = CHO2

below the cross-over, meaning that:

a = 1/V R
HO2

, (A.4)

leading the initial reaction rate to be:

ϵη = ω5

(
V L
H + V L

HO2

)
V R
HO2

. (A.5)

The difficulty lies in obtaining the left eigenvector V̄ L, and a simpler
approximation such as:

ϵη = ω5 (A.6)

has been retained, and corresponds to:

a = V L
H + V L

HO2
. (A.7)

This leads to the following relationship between the scalar and the radicals
concentration :

Ck/Cη = V R
k

(
V L
H + V L

HO2

)
. (A.8)

The ratio CHO2
/Cη obtained numerically is plotted in Figure A.12 for

a large range of temperature and pressure in the case of the simplification
(A.6). The ratio is indeed close to unity for low temperature, however the
real concentration is as much as 20 times larger that the approximate value
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Figure A.12: Evolution of the theoretical ratio between the HO2 and the scalar concen-
trations (black) in the case of the simplification (A.6), for a stoichiometric hydrogen-air
mixture. The unity ratio is highlighted with the red line.

close at the cross-over. Fortunately, the estimation of the HO2 concentration
is only needed when the non-linear reaction 6 is no more negligible below
the cross-over.

The impact of this simplification on the ignition delay is investigated
hereafter for large range of temperature and pressure. Figure A.13.a dis-
plays the ignition delays obtained by integration of Eq. 33 with the exact
expression (A.5), while Figure A.13.b shows the result obtained with the ap-
proximation (A.6). Both expressions give an excellent agreement with the
ignition delay obtained from the 8-step mechanism. The small differences
obtained close to crossover (almost imperceptible) were found irrelevant,
since errors between the 8-step and detailed description (Fig. 1) – or even
from a detailed mechanism to another – are much more pronounced.
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Figure A.13: Comparison of ignition delays of an isobaric homogeneous ignition of an
H2-air mixture, obtained by numerical integration for the reduced 8-step chemistry (solid
curves) and the new model (red dashed curve). The left figure use formula (A.5) with
C∗

HO2
= Cη while the right figure use the simplified version (A.6) along with the relation-

ship (15).

The simplified expression ϵη = ω5 has therefore been retained for sim-
plicity, throughout this study.

Appendix B. Choice of Wη

Eq. (1) make appear Wη trough Eq. (10), we choose to model it as a
constant. By doing so Cη becomes completely independent of the value uses
for Wη. Indeed, making use of the relation ρη = WηCη, Eq. (1) can be
rewritten as :

∂WηCη

∂t
+

∂uαWηCη

∂xα
=

∂

∂xα

(
ρDη

Wη

W

∂

∂xα

(
W

ρ
Cη

))
+Wη (λCη + ϵη) .

(B.1)
Since Wη is a constant, it can be taken out of the derivatives and sim-

plified to give the transport equation of Cη :

∂Cη

∂t
+

∂uαCη

∂xα
=

∂

∂xα

(
ρDη

W

∂

∂xα

(
W

ρ
Cη

))
+ (λCη + ϵη) . (B.2)

Cη and so the ignition prediction is independent of Wη, which only ap-
pears to transport the scalar with a classical mass fraction transport equa-
tion and does not impact the results.
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Appendix C. Analytical solution for the 3×3 matrix largest real
eigenvalue

Finding the eigenvalues of a matrix is equivalent to finding the zeros of
its characteristic polynomial. In the case of a 3×3 matrix, its characteristic
polynomial is of the third order and can be written as:

λ3 + a2λ
2 + a1λ+ a0 = 0 (C.1)

Using the Cardan method to find the root of the polynomial (C.1), a
new variable is defined z = λ + a2/3 and leads to finding the root of this
new polynomial:

z3 + pz + q = 0 (C.2)

with {
p = a1 − a22/3

q = a0 + 2a32/27− a1a2/3.
(C.3)

The discriminant is expressed as ∆ = −(4p3 + 27q2), the largest root
will be found with a different formula depending of the discriminant sign.

If ∆ < 0, there is only one real root, to simplify the formula, we define
δ =

√
−∆/27 to express the root as:

z0 =
3

√
−q + δ

2
+

3

√
−q − δ

2
. (C.4)

If ∆ > 0 (p < 0 necessarily then), there is three real roots and the largest
of them reads:

z0 = 2

√
−p

3
cos

arccos
(
3q
2p

√
−3
p

)
3

 . (C.5)

If ∆ = 0, there is two real roots, a single (3q/p) and a double one
(−3q/2p) (its a triple root if p = q = 0).

In the end, the largest eigenvalue of the 3× 3 matrix reads:

λ =



3

√
−q+δ

2 + 3

√
−q−δ

2 − a2
3 if ∆ < 0

max
(
3q
p ,−

3q
2p

)
− a2

3 if ∆ = 0

2
√

−p
3 cos

(
arccos

(
3q
2p

√
−3
p

)
3

)
− a2

3 if ∆ > 0

(C.6)
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