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Optimal importance sampling for overdamped Langevin

dynamics

M. Chak∗ T. Lelièvre† G. Stoltz‡ U. Vaes§

July 24, 2023

Abstract

Calculating averages with respect to multimodal probability distributions is often necessary in

applications. Markov chain Monte Carlo (MCMC) methods to this end, which are based on time

averages along a realization of a Markov process ergodic with respect to the target probability

distribution, are usually plagued by a large variance due to the metastability of the process. In this

work, we mathematically analyze an importance sampling approach for MCMC methods that rely on

the overdamped Langevin dynamics. Specifically, we study an estimator based on an ergodic average

along a realization of an overdamped Langevin process for a modified potential. The estimator

we consider incorporates a reweighting term in order to rectify the bias that would otherwise be

introduced by this modification of the potential. We obtain an explicit expression in dimension 1 for

the biasing potential that minimizes the asymptotic variance of the estimator for a given observable,

and propose a general numerical approach for approximating the optimal potential in the multi-

dimensional setting. We also investigate an alternative approach where, instead of the asymptotic

variance for a given observable, a weighted average of the asymptotic variances corresponding to a

class of observables is minimized. Finally, we demonstrate the capabilities of the proposed method

by means of numerical experiments.

1 Introduction

1.1 Context

In many applications ranging from Bayesian inference to statistical physics and computational biology,

it is often necessary to calculate expectations with respect to high-dimensional probability distributions

of the form

µ =
e−V

Z
, Z =

∫
Dd

e−V , (1)

where D ∈ {R,T}, with T := R/2πZ the one-dimensional torus, and V : Dd → R is a potential energy

function (confining if D = R and periodic if D = T) such that e−V is Lebesgue integrable. In the

context of Bayesian inference, the distribution µ usually describes likelihoods of the possible values of

an unknown parameter given some observed data [27, 50], while in statistical physics, the distribution µ

assigns probabilities to the possible configurations of a molecular system. In the latter setting, averages

with respect to µ give access to macroscopic properties of the system, such as the heat capacity or

equations of state relating pressure, density and temperature [17, 33, 30, 29, 4].

∗LJLL, Sorbonne Université (martin.chak@sorbonne-universite.fr)
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1

mailto:martin.chak@sorbonne-universite.fr
https://orcid.org/0000-0001-5012-0172
mailto:tony.lelievre@enpc.fr
https://orcid.org/0000-0002-3412-113X
mailto:gabriel.stoltz@enpc.fr
https://orcid.org/0000-0002-2797-5938
mailto:urbain.vaes@inria.fr
https://orcid.org/0000-0002-7629-7184


The first systematic approach to sampling probability distributions originates from the 1950s with

the seminal work of Metropolis et al. [38]. In 1970, Hastings generalized this approach and proposed a

sampling method [21] which was later recognized as a particular case of what is now known as a Markov

chain Monte Carlo (MCMC) method. The MCMC approach to sampling is based on the use of a Markov

process that admits the target probability distribution as unique invariant measure. A simple yet widely

used Markov process that is ergodic with respect to µ under appropriate conditions on the potential V

is the overdamped Langevin dynamics,

dYt = −∇V (Yt) dt+
√
2 dWt, (2)

where Wt denotes a standard d-dimensional Wiener process. Under appropriate assumptions on the

potential V , the average with respect to µ of an observable f ∈ L1(µ) can be approximated by a time

average along a realization of the solution to this equation:

µT (f) :=
1

T

∫ T

0

f(Yt) dt
a.s.−−−−→

T→∞

∫
Dd

f dµ =: µ(f) =: I, (3)

see e.g. [35, Theorem 5.1], [26], [43] and references therein, [32, Chapter 9 and proof of Theorem 1.6.2]

and [19, Proposition 2]. In practice, it is necessary to discretize the dynamics (2), and the resulting

discrete-time Markov process is generally ergodic with respect to not µ but a probability measure µ∆t

differing from µ at order ∆tα, for some exponent α larger than or equal to the weak order of convergence

of the scheme. The bias introduced by the discretization can usually be bounded from above as a function

of the time step; such estimates were first obtained by Talay and Tubaro [51] for general SDEs. They

were later made precise for implicit schemes for Langevin and overdamped Langevin dynamics in [36],

and then refined in works such as [37, 15, 1, 28]. Alternatively, it may be possible to consider the

numerical scheme as a proposal to be accepted or rejected in a Metropolis–Hastings scheme, so that

the resulting discrete-time process is also ergodic with respect to µ. This is the Metropolis-adjusted

Langevin algorithm (MALA) [46, 45, 44].

In this paper, we focus on the continuous-time dynamics (2) and show that modifying the potential V ,

in combination with importance sampling, can be used for variance reduction. Importance sampling is

widely used to make the sampling of high dimensional probability measures easier; see for instance [3]

for a review. The idea of using importance sampling in the context of MCMC methods was already

suggested in Hastings’ 1970 paper, see [21, Section 5]. If (Xt)t⩾0 is a Markov process that is ergodic

with respect to a probability measure

µU =
e−V−U

Z[U ]
, Z[U ] =

∫
Dd

e−V−U , (4)

where U : Dd → R is a smooth function such that e−V−U is Lebesgue integrable over Dd, then µ(f) may

be approximated by

µT
U (f) =

∫ T

0

(feU )(Xt) dt∫ T

0

(eU )(Xt) dt

. (5)

Like µT (f), this estimator converges to I almost surely in the limit as T → ∞, and it does not require

the knowledge of the normalization constants Z and Z[U ]. The main objective of this work is to study

the properties of µT
U (f) when (Xt)t⩾0 is the solution to the overdamped Langevin dynamics with the

potential V + U :

dXt = −∇V (Xt) dt−∇U(Xt)dt+
√
2 dWt. (6)
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In particular, we study whether it is possible to find a biasing potential U such that the asymptotic

variance of µU
T (f), which we define more precisely in Lemma 11, is minimized for either a single observ-

able (Section 3) or a class of observables (Section 4). Let us also mention here the recent work [11] where

optimal importance sampling is performed over a class of distributions.

Before considering the MCMC estimator (5), it is instructive to present background material on

importance sampling in the independent and identically distributed (i.i.d.) setting. This is the aim

of Section 2. In all the theoretical results presented in this work, we assume that the following assumptions

on V and f are satisfied, even when this is not explicitly mentioned.

Assumption 1.

• The potential V is smooth over Dd (in particular supp(e−V ) = Dd).

• The function e−V is Lebesgue integrable over Dd.

• Any observable f considered (just one in Sections 2 and 3 and set of them in Section 4) is smooth,

integrable with respect to the probability measure µ ∝ e−V , and not µ-almost everywhere constant.

1.2 Our contributions

The contributions of this paper are the following:

• In the one-dimensional setting (d = 1) either with D = T or D = R, and for a given observable f ,

we obtain an explicit expression for the biasing potential U in (5)–(6) that is optimal in terms of

asymptotic variance. We also prove that when D = R, the asymptotic variance σ2
f [U ] of µT

U (f),

viewed as a functional of U , is convex.

• In the general multi-dimensional setting, we obtain an expression for the L2(µ) functional derivative

of σ2
f [U ] with respect to U , and we propose a gradient descent approach for finding a minimizer

of σ2
f [U ]. We also prove that any minimizer of σ2

f [U ] is necessarily singular when D = T.

• We propose a method for minimizing the asymptotic variance over a class of observables. More

precisely, we present an approach for minimizing the average asymptotic variance when a simple

Gaussian probability distribution is placed on the observable. We demonstrate through theoretical

results and numerical experiments that this approach usually leads to a smooth optimizer, and

may thus be more suitable for applications.

• We present examples and numerical experiments illustrating the properties of the optimal biasing

potential and the performance of the method, both in the one-dimensional case and the multi-

dimensional setting.

Plan of the paper. The remainder of the paper is organized as follows. We begin in Section 2 by

presenting background material on importance sampling in the i.i.d. setting. In Section 3, we investigate

the problem of minimizing the asymptotic variance for a given observable, first in the one-dimensional

case and then in the multi-dimensional setting. In Section 4, we generalize the approach to the problem

of minimizing the asymptotic variance over a class of observables. Examples and numerical experiments

are presented in Section 5. Section 6 is reserved for conclusions and perspectives for future works.

This section is followed by four appendices: Appendices A and B contain proofs of auxiliary results,

Appendix C presents a derivation of the second variation of the asymptotic variance, and Appendix D

provides a detailed analysis of the numerical scheme employed for approximating the functional derivative

of the asymptotic variance.
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2 Background: the i.i.d. setting

We recall in this section the expression of the optimal importance distribution µU in the setting where I

is estimated from i.i.d. samples from µU , as opposed to the ergodic approach in (5). Specifically, we

consider the estimator

µN
U (f) :=

N∑
n=1

(feU )(Xn)

N∑
n=1

(eU )(Xn)

= I +

N∑
n=1

(
(f − I)eU

)
(Xn)

N∑
n=1

(eU )(Xn)

, (7)

where (Xn)n∈N are i.i.d. samples from µU . The right-most expression is not useful in practice because

the value of I is unknown, but this expression is convenient for the theoretical analysis. We first comment

briefly on the connection between this estimator and the estimator (5) in Subsection 2.1, then obtain an

expression for the asymptotic variance of the estimator (7) in Subsection 2.2. and finally prove bounds

on the asymptotic variance in Subsection 2.3.

2.1 Connection between the estimators (5) and (7)

The estimators (5) and (7) can be viewed as two limiting cases, corresponding to the limits τ → 0

and τ →∞ respectively, of the estimator given in the second row and right-most column of Table 1. The

latter estimator is based not on the full solution to (6) but on discrete periodic evaluations of it with a

period τ .

The analysis presented in this paper can be repeated for the estimators in the middle column of Ta-

ble 1, which can be employed when the normalization constants Z and Z[U ] are known. In this case,

different optimal potentials are obtained. However, since the normalization constants are usually un-

known in high-dimensional settings, we focus in most of this paper on the self-normalized estimators in

the right-most column of Table 1.

Z and Z[U ] are known Z and Z[U ] are unknown

Continuous (τ = 0)
1

T

(
Z[U ]

Z

)∫ T

0

(
feU

)
(Xt) dt

∫ T

0

(
feU

)
(Xt) dt∫ T

0
(eU )(Xt) dt

0 < τ <∞ 1

N

(
Z[U ]

Z

)N−1∑
n=0

(
feU

)
(Xnτ )

∑N−1
n=0

(
feU

)
(Xnτ )∑N−1

n=0 (e
U )(Xnτ )

i.i.d (τ =∞)
1

N

(
Z[U ]

Z

) N∑
n=1

(
feU

)
(Xn)

∑N
n=1

(
feU

)
(Xn)∑N

n=1(e
U )(Xn)

Table 1: Classification of importance sampling estimators according to two criteria: the correlation
between samples, and use of the normalization constants Z and Z[U ]. Here (Xt)t∈R⩾0

is a solution to (6)
and (Xn)n∈N are i.i.d. samples from µU .

2.2 Asymptotic variance

In the whole Section 2, we suppose that Assumption 1 holds, in particular that the potential V is

smooth, but we do not assume that the function U is smooth; we assume only that U : Dd → R ∪ {∞}
is measurable and such that the following minimal requirements are satisfied:

• the function e−V−U is Lebesgue integrable with Z[U ] > 0;
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• the estimator (7) converges to I almost surely, i.e. it holds that∫
Dd

(f − I)eUdµU = 0 ⇔
∫
supp(µU )

(f − I)dµ = 0. (8)

Here supp(µU ) = cl{x ∈ Dd : U(x) + V (x) < ∞} is the support of the measure µU , with cl the

closure. In this work, we adopt the usual convention in measure theory that 0 ·+∞ = +∞· 0 = 0.

• the function (f − I)eU is square-integrable with respect to µU , so that the central limit theorem

can be applied.

We denote by U the set of functions U that satisfy these conditions. The set U depends on V and f , but

since these are considered to be fixed data of the problem, we do not explicitly indicate this dependence

in the notation. If U ∈ U and (Xn)n∈N are i.i.d. samples with law µU , then it holds by (8) and the

central limit theorem that

1√
N

N∑
n=1

(
(f − I)eU

)
(Xn)

Law−−−−→
N→∞

N
(
0,

∫
Dd

∣∣(f − I)eU ∣∣2 dµU

)
, (9)

where N (m,C) denotes the Gaussian distribution with mean m and (co)variance C. On the other hand,

the law of large numbers gives that

1

N

N∑
n=1

(
eU
)
(Xn)

a.s.−−−−→
N→∞

∫
Dd

eUdµU =
1

Z[U ]

∫
supp(µU )

e−V =
Z [U ]

Z[U ]
, (10)

where we introduced

Z [U ] :=

∫
supp(µU )

e−V .

Note that Z [U ] ⩽ Z in general, with equality if and only if supp(µU ) = supp(µ). Combining (9) and (10)

and using Slutsky’s lemma, we conclude that

√
N
(
µN
U (f)− I

) Law−−−−→
N→∞

N
(
0, s2f [U ]

)
, s2f [U ] :=

Z[U ]2

Z [U ]2

∫
Dd

∣∣(f − I)eU ∣∣2 dµU . (11)

The variance s2f [U ] of the asymptotic normal distribution is the quantity we wish to minimize. In the

next section, we obtain sharp bounds from below on the asymptotic variance s2f [U ].

2.3 Explicit optimal potential

In order to prepare the proof of the main result of this section, Proposition 4, we first give a preparatory

lemma. We introduce the functional ŝ2f : U → R ∪ {∞} given by

ŝ2f [U ] =
Z[U ]

Z2

∫
Dd

|f − I|2eU−V . (12)

Given the convention that 0 · +∞ = +∞ · 0 = 0, the quantity ŝ2f [U ] is well defined as an element

of R∪{∞}. Note that ŝ2f [U ] coincides with the asymptotic variance s2f [U ] if and only if supp(µU ) = Dd.

Lemma 2. It holds that

min
U∈U

ŝ2f [U ] =
1

Z2

(∫
Dd

|f − I|dµ
)2

=: s∗f . (13)

In addition, the minimum is achieved for

U = U iid
∗ := − log|f − I| ∈ U , (14)

5



with the convention that log(0) = −∞.

Proof. We first prove that ŝ2f [U ] ⩾ s∗f for all U ∈ U . If ŝ2f [U ] = ∞, then this inequality is clear, so we

assume from now on that ŝ2f [U ] <∞. Using the Cauchy–Schwarz inequality, we have

ŝ2f [U ] =
1

Z2

∫
Dd

e−U−V

∫
Dd

|f − I|2eU−V ⩾
1

Z2

(∫
Dd

|f − I|e−V

)2

= s∗f .

The statement that the infimum is achieved for U iid
∗ in (14) follows from a substitution in (12). Note

that U idd
∗ indeed belongs to U .

Remark 3. The function U iid
∗ in (14) is not smooth, because f − I admits at least one root in Dd. △

Although ŝ2f [U ] does not coincide with s2f [U ] in general, Lemma 2 still contains useful information.

Indeed, by regularizing U iid
∗ in (14), we prove in Proposition 4 that s∗f is a sharp bound from below on the

actual asymptotic variance s2f [U ] over a class of “nice” biasing potentials. Specifically, let us introduce

U0 =
{
U ∈ U : supp(|f − I|µ) ⊂ supp(µU )

}
.

Conditions of the type supp(|f − I|µ) ⊂ supp(µU ) are used in the importance sampling literature; see,

for example, equation (1.1) in [7, Section V.1]. Notice that, if this condition is satisfied, then (8) is

also satisfied, but the converse is not true; in other words, U0 is a proper subset of U . We are now

ready to state and prove the main result of this section. We discuss in Remark 6 after the proof the

existence of an optimal potential achieving the infimum over U0. Here and in the rest of this paper, the

notation C∞
c (Dd) denotes the set of smooth functions with compact support over Dd.

Proposition 4. Recall that Assumption 1 is assumed to hold throughout this paper. Then,

• It holds that infU∈U s
2
f [U ] = 0.

• If 0 ∈ U0, then infU∈U0
s2f [U ] = s∗f .

• If 0 ∈ U0, then infU∈C∞
c (Dd) s

2
f [U ] = s∗f .

Remark 5. In view of Assumption 1, the condition 0 ∈ U0 is equivalent to the condition f ∈ L2(µ).

We use the former condition in the statement of Proposition 4 in order to underline the similarity

with Proposition 21 in the MCMC setting. △

Proof. We divide the proof into three parts, corresponding to the three items in the statement.

First item. The idea here is to construct an importance distribution µU concentrated in a small ball

containing a point where f = I. Considering balls centered at such a point is usually not sufficient,

because the condition (8) may not be satisfied. Take ε > 0 and let gε : Dd → R denote the function

gε(x) =
1

|Bε(0)|

∫
Bε(x)

(
f − I

)
e−V ,

where Bε(x) ⊂ Dd is the open ball of radius ε centered at x and |Bε(0)| is the volume of this ball.

By Assumption 1, there exists (x1, x2) ∈ Dd×Dd such that f(x1) > I and f(x2) < I. Since f is smooth,

there is ϵ > 0 such that gε(x1) > 0 and gε(x2) < 0 for all ε ∈ (0, ϵ]. Therefore, by the intermediate

value theorem, there exists for all ε ∈ (0, ϵ] a point xε ∈ Dd on the segment joining x1 and x2 such

that gε(xε) = 0. We define

Uε(x) =

0 if |x− xε| ⩽ ε,

+∞ otherwise.
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By construction Uε ∈ U , and we calculate from (11) that

s2f [Uε] =

∫
Bε(xε)

|f − I|2e−V∫
Bε(xε)

e−V
.

By the mean value theorem, there is zε ∈ Bε(xε) such that s2f [Uε] = |f(zε) − I|2. Since gε(xε) = 0,

the function f − I necessarily has a zero in Bε(xε). Additionally, since (xε)ε∈(0,ϵ] is bounded, the

function f − I restricted to
⋃

ε∈(0,ϵ]Bε(xε) is Lipschitz continuous, with some constant L. From this we

obtain that s2f [Uε] ⩽ (2Lε)2, and taking the limit ε→ 0 in this equation, we deduce the first item.

Second item. By the Cauchy–Schwarz inequality, the following lower bound holds for all U ∈ U :

s2f [U ] ⩾
Z[U ]2

Z [U ]2

(∫
Dd

|f − I|eU dµU

)2

=
1

Z [U ]2

(∫
supp(µU )

|f − I|e−V

)2

. (15)

For U ∈ U0, the right-most expression in (15) equals

1

Z [U ]2

(∫
Dd

|f − I|e−V

)2

⩾ s∗f ,

where we used that Z [U ] ⩽ Z. Therefore, it holds that s2[U ] ⩾ s∗f for all U ∈ U0. That s∗f is in fact the

infimum of s2f over U0 will follow from the third item, because C∞
c ⊂ U0.

Third item. For ε > 0, let ϱε : R→ R denote the mollifier

ϱε(z) = ε−1ϱ
(
ε−1z

)
, ϱ(z) =

k exp
(
− 1

1−|z|2

)
if |z| ⩽ 1,

0 if |z| > 1,
(16)

with k > 0 such that
∫
R ϱ(z) dz = 1. Let us introduce the smooth regularization of the absolute

value function given by |z|ε = ϱε ⋆ abs(z), where abs(z) = |z| is the absolute value function. Notice

that |z|ε = |z| for |z| ⩾ ε and that

∀z ∈ R, 0 ⩽ |z|ε − |z| ⩽ |0|ε ⩽ ε.

The first inequality follows from the convexity of the absolute value function, and the second inequality

comes from an application of the reverse triangle inequality:

|z|ε − |z| =
∫
R
(|z − y| − |z|) ϱε(y) dy ⩽

∫
R
|y| ϱε(y) dy = |0|ε.

Moreover, let Uε : D→ R be the smooth biasing potential given by

Uε(x) =

χε(x)
(
− log

∣∣f − I∣∣
ε

)
if D = R,

− log
∣∣f − I∣∣

ε
if D = T,

where χε = ϱ ⋆ 1[−ε−1,ε−1]. Since |z|ε ⩾ |0|ε > 0 for all z ∈ R, the function Uε, which is a regularization

of (14), is well-defined everywhere and uniformly bounded from above. The choice of U iid
∗ as the function

we regularize is natural in view of Lemma 2 and the fact that the inequality in (15) is an equality

for U = U iid
∗ .

We now show that s2f [Uε] converges to the lower bound in (15) in the limit as ε→ 0. We focus in this

proof on the case where D = R, but the reasoning applies verbatim to the case where D = T. Using (11),

7



we have that

s2f [Uε] =
Z[Uε]

Z2

∫
Rd

(
|f − I|
|f − I|χε

ε

)2

|f − I|χε
ε e−V .

Since 0 ⩽ χε(x) ⩽ 1 for all x ∈ Dd, it holds for all ε ∈ (0, 1) that
|f − I|χε

ε ⩽ (|f − I|+ 1)
χε ⩽ |f − I|+ 1

|f − I|2

|f − I|χε
ε

⩽ |f − I|2−χε ⩽
(
|f − I|+ 1

)2−χε ⩽
(
|f − I|+ 1

)2
.

Since f ∈ L2
(
e−V

)
by assumption, the right-hand sides of these inequalities are integrable. Therefore,

using dominated convergence, we obtain that

Z[Uε] =

∫
Rd

|f − I|χε
ε e−V −−−→

ε→0

∫
Rd

|f − I|e−V

and ∫
Rd

(
|f − I|
|f − I|χε

ε

)2

|f − I|χε
ε e−V =

∫
Rd

|f − I|2

|f − I|χε
ε

e−V −−−→
ε→0

∫
Rd

|f − I|e−V .

and so s2f [Uε]→ s∗f in the limit as ε→ 0. Since s2f [U ] ⩾ s∗f for all U ∈ C∞
c (Rd) by (15), we deduce the

statement.

Remark 6. First note that U iid
∗ ∈ U0. In light of Lemma 2, one may wonder whether s2f [U

iid
∗ ] = s∗f . That

is to say, is U iid
∗ a minimizer of s2f in U0? Substitution into (11) reveals that this is not always the case:

s2f [U
iid
∗ ] =

Z2

Z [U iid
∗ ]2

(∫
Dd

|f − I|dµ
)2

⩾ s∗f . (17)

The inequality in this equation is an equality if and only if Z [U iid
∗ ] = Z or, equivalently, f−1(I) has zero

Lebesgue measure. In particular, if f−1(I) has positive Lebesgue measure, then the biasing potential U iid
∗

does not achieve the lower bound s∗f , even though a minimizing sequence that asymptotically achieves

the lower bound s∗f can be constructed by regularizing this potential. △

Example 45 in the appendix illustrates Proposition 4. We explicitly construct in this example a

potential function U ∈ U \ U0 such that s2f [U ] = 0, as well as a minimizing sequence (Uε)ε>0 in U0 such

that s2f [Uε]→ s∗f in the limit ε→ 0. The example also illustrates that U iid
∗ is not necessarily a minimizer

in U0, as mentioned in Remark 6.

This section reveals the difficulties encountered when no regularity of the biasing potential U is

assumed. Similar difficulties will be encountered in the analysis of the MCMC estimator (5).

3 Minimizing the asymptotic variance for a single observable

In this section, as in the previous one, we consider a target-oriented approach: we seek the optimal biasing

potential U for a given observable f . After presenting the mathematical framework in Subsection 3.1, we

first obtain in Subsection 3.2 an expression for the asymptotic variance associated to the estimator (5)

in terms of the solution to a Poisson equation where f appears on the right-hand side, and subsequently

address the problem of finding the optimal biasing potential U , first in the one-dimensional setting

in Subsection 3.3, and then in the multi-dimensional setting in Subsection 3.4.
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3.1 Mathematical setting

We will use the following functional spaces:

L2
0(µU ) =

{
φ ∈ L2(µU )

∣∣∣∣ ∫
Dd

φdµU = 0

}
, H1(µU ) =

{
φ ∈ L2(µU )

∣∣∣∇φ ∈ (L2(µU )
)d}

,

where µU is the probability measure defined in (4). In the i.i.d. setting, the condition (f−I)eU ∈ L2(µU )

is necessary and sufficient to guarantee that a central limit theorem holds. There does not exist such a

simple condition in the MCMC setting, and so, in most of this section, we work under conditions which

are only sufficient. Specifically, we denote by U0 = U0(V, f) the set of biasing potentials that satisfy the

following assumptions.

Assumption 7.

• The function U is smooth on Dd.

• The function e−V−U is Lebesgue integrable over Dd.

• The probability measure µU satisfies a Poincaré inequality: there exists R[U ] > 0 such that

∀φ ∈ H1(µU ) ∩ L2
0(µU ), ∥φ∥2L2(µU ) ⩽

1

R[U ]
∥∇φ∥2L2(µU ). (18)

• It holds that (f − I) eU ∈ L2(µU ).

• For any x0 ∈ Dd, there exists a unique strong solution Xt to (6) with X0 = x0.

In this section, the functions V and f are considered fixed data of the problem, so the dependence of U0

on these data is omitted in the notation. However, in Section 4 we will write U0(V, f) to emphasize this

dependence where necessary. Just like the set U0 in Section 2, the set U0 in this section contains “nice”

biasing potentials. Indeed, the asymptotic behavior of the estimator (5) can be rigorously characterized

for U ∈ U0; see Lemma 11.

Remark 8. If U ∈ U0, then the estimator (5) converges to I almost surely as T → ∞ because, by

ergodicity,

µT
U (f) =

1

T

∫ T

0

(feU )(Xt) dt

1

T

∫ T

0

(eU )(Xt) dt

a.s.−−−−→
T→∞

∫
Dd

(feU ) dµU∫
Dd

(eU ) dµU

= I.

△

Remark 9. In the case where D = T, a Poincaré inequality of the form (18) always holds provided that

V +U is smooth. When D = R, however, the potential V +U must satisfy appropriate growth conditions

to ensure that the inequality holds. For sufficient conditions, see e.g. [5, 8]. We use the Poincaré

inequality to establish the central limit theorem, but there are other ways to obtain similar conclusions

without directly using the Poincaré inequality, for example by using results of Kipnis–Varadhan or

Foster–Lyapunov (see [16] and references within). △

Remark 10. When D = T, the first item in Assumption 7 implies all the other items, and in this

setting U0 = C∞(Td) = C∞
c (Td). △

We denote by LU the infinitesimal generator on L2(µU ) of the Markov semigroup associated to (6),

which is given on C∞
c (Dd) by

LU = −∇(V + U) · ∇+∆ = eV+U∇ · (e−V−U∇ · ). (19)

9



3.2 Asymptotic variance

The following lemma gives an expression of the asymptotic variance of the estimator µT
U (f) given in (5)

in terms of the solution to a Poisson equation.

Lemma 11 (Asymptotic variance). Suppose that U ∈ U0. Then there exists a unique distributional

solution ϕU ∈ H1(µU ) ∩ L2
0(µU ) to

−LUϕU = (f − I)eU . (20)

The solution ϕU is smooth and, for Lebesgue almost all initial condition, it holds that

√
T
(
µT
U (f)− I

) Law−−−−→
T→∞

N
(
0, σ2

f [U ]
)
,

where

σ2
f [U ] :=

2Z[U ]2

Z2

∫
Dd

|∇ϕU |2dµU =
2Z[U ]2

Z2

∫
Dd

ϕU (f − I) eU dµU . (21)

Proof. By density of C∞
c (Dd) in H1(µU ), a function ϕU ∈ H1(µU ) ∩ L2

0(µU ) is a distributional solution

to (20) if and only if

∀φ ∈ H1(µU ) ∩ L2
0(µU ),

∫
Dd

∇ϕU · ∇φdµU =

∫
Dd

(f − I)eU φdµU . (22)

The validity of a Poincaré inequality for µU implies that the function space H1(µU ) ∩ L2
0(µU ) endowed

with the inner product

(φ1, φ2) 7→
∫
Dd

∇φ1 · ∇φ2 dµU

is a Hilbert space, and that the right-hand side of (22) is a bounded linear functional on this space.

Therefore, the Lax–Milgram theorem (or the Riesz representation theorem) yields the existence of a

unique solution ϕU in H1(µU ) ∩ L2
0(µU ). Elliptic regularity theory [20, 18] then implies that ϕU ∈

C∞(Dd). From the definition (5) of µT
U (f), we have

√
T
(
µT
U (f)− I

)
=

1√
T

∫ T

0

(
(f − I)eU

)
(Xt) dt

1

T

∫ T

0

(
eU
)
(Xt) dt

.

The numerator converges in law to N
(
0, 2

∫
Dd |∇ϕU |2dµU

)
, for instance by [10, Theorem 3.1] (the setting

there is Rd, but for Td, the argument using (3) and the martingale central limit theorem, that is essen-

tially [24, Theorem VIII.3.11], works in the same way), while the denominator converges almost surely

to Z/Z[U ]. The claimed convergence in law then follows from Slutsky’s lemma. The last equality in (21)

follows from the definition (22) of a weak solution.

Remark 12 (Stability estimate). From the weak formulation (22) and the Poincaré inequality (18), we

deduce the stability estimate

∥∇ϕU∥L2(µU ) ⩽
1√
R[U ]

∥∥(f − I)eU∥∥
L2(µU )

. (23)

This standard estimate will be useful in the proof of Lemma 48 in the appendix (for a Poisson equation

with a different right-hand side). △

Remark 13. It is instructive to write the counterpart of Lemma 11 for the estimator in the right-most

10



column and second row of Table 1, which is based on evaluations of the solution to (6) at discrete times:

µ̃N
U :=

N−1∑
n=0

(feU )(Xnτ )

N−1∑
n=0

(eU )(Xnτ )

. (24)

For this estimator, we prove in Lemma 46 that, under appropriate conditions including Assumption 7,

√
N
(
µ̃N
U (f)− I

) Law−−−−→
N→∞

N
(
0, σ̃2

f [U ]
)
, (25)

with now

σ̃2
f [U ] =

Z[U ]2

Z2

(
2

∫
Dd

ϕ̃U (f − I) eU dµU −
∫
Dd

∣∣(f − I) eU ∣∣2 dµU

)
, (26)

where ϕ̃U is the unique solution in L2
0(µU ) to

−L̃U ϕ̃U = (f − I)eU , L̃U := eτLU − I. (27)

Here etLU denotes the Markov semigroup corresponding to the stochastic dynamics (6):

(
etLUφ

)
(x) = E

(
φ(Xt)

∣∣X0 = x
)
.

The asymptotic variance σ̃2
f [U ] converges to that for the i.i.d. setting given in (11) in the limit as τ →∞,

and it diverges in the limit as τ → 0. The latter is not surprising as the correlation between successive

samples increases in this limit. However, since formally τ ϕ̃U → ϕU in L2
0(µU ) in the limit as τ → 0, it

holds that τ σ̃2
f [U ] −−−→

τ→0
σ2
f [U ]. △

3.3 Explicit optimal U in dimension one

In the one-dimensional setting, it is possible to write an explicit expression for the asymptotic vari-

ance σ2
f [U ], from which an explicit lower bound on σ2

f [U ] can be obtained. Our strategy in this section

is the following:

• We first obtain an explicit expression for σ2
f [U ] for U ∈ U0 (Lemma 14), which we then rewrite in

a different form σ̂2
f [U ] given in (34).

• We then observe that σ̂2
f [U ] is defined more generally for U ∈ U ⊃ U0, where U is an appropriate

superset of U0, noting that σ̂2
f [U ] is not necessarily the asymptotic variance of µT

U (f) for U ∈ U\U0.

• Next, we show that σ̂2
f admits an explicit minimizer U∗ over U, with associated minimum σ∗

f . This

is proved in Lemma 18.

• Finally, using the expression of U∗, we prove that σ∗
f is the infimum of the actual asymptotic

variance σ2
f [U ] over U0, and that this infimum can be approached within the class of smooth

biasing potentials with compact support. This is the content of Proposition 21.

The main result of this section, Proposition 21, and preceding auxiliary result, Lemma 18, should be

viewed as the counterparts in the MCMC setting of Proposition 4 and Lemma 2 in the i.i.d. setting.

Lemma 14 (Explicit expression for the asymptotic variance in dimension 1). For U ∈ U0 and in

11



dimension d = 1, the asymptotic variance (21) writes

σ2
f [U ] =

2Z[U ]2

Z2

∫
D

∣∣(F −AD[U ]
)
eV+U

∣∣2 dµU , (28)

where F : D→ R is given by

F (x) =

∫ x

0

(
f(ξ)− I

)
e−V (ξ)dξ,

and

AD[U ] =



−
∫ 0

−∞

(
f − I

)
e−V if D = R,∫

T
F eV+U∫
T
eV+U

if D = T.
(29)

Note that AR[U ] is independent of U ; we shall henceforth drop the dependence in the notation. It

seems from (29) that AR and AT[U ] have very different expressions. In fact, the constant AR may be

obtained as a limit of AT[U ] for an increasingly large torus; see Appendix B.

Proof. In dimension one, the Poisson equation (20) reads

−eV+U
(
e−(V+U)ϕ′U

)′
= (f − I)eU . (30)

By integration of (30), it holds that

ϕ′U (x) = −
(∫ x

0

(
f(ξ)− I

)
e−V (ξ)dξ −A

)
e(V+U)(x) = −

(
F (x)−A

)
e(V+U)(x), (31)

and so

ϕU (x) = B −
∫ x

0

(
F (ξ)−A

)
e(V+U)(ξ) dξ, (32)

for some constants A ∈ R and B ∈ R. The requirement that ϕU ∈ H1(µU ) enables to determine the

constant A:

• When D = T, the embedding H1(µU ) ⊂ C(T) gives that ϕU (−π) = ϕU (π), which leads to the

equation for AT[U ] in (29).

• When D = R, the requirement that ϕU ∈ H1(µU ) implies that

A = lim
x→∞

F (x), (33)

where

lim
x→∞

F (x) =

∫ ∞

0

(
f(x)− I

)
e−V (x) dx = −

∫ 0

−∞

(
f(x)− I

)
e−V (x) dx,

because otherwise ϕ′U in (31) is not in L2(µU ). Indeed, assume for contradiction that

lim
x→∞

F (x) =: L ̸= A.

(The limit exists because (f − I)e−V ∈ L1(R) by Assumption 1.) Then there is K ∈ R such that

inf
x⩾K
|F (x)−A| ⩾ 1

2
|L−A|,

12



and so by (31), it holds that∫
R
|ϕ′U |2 e−(V+U) dx ⩾

1

4
|L−A|2

∫ ∞

K

eV+U dx.

The right-hand side of this equation is infinite because, by the Cauchy–Schwarz inequality,

+∞ =

∫ ∞

K

√
eV+U

√
e−V−U dx ⩽

∫ ∞

K

eV+U dx

∫ ∞

K

e−V−U dx.

Equation (28) is then obtained by substitution of (31) in (21).

Remark 15. Once A in (32) has been determined, the value of B can be obtained from the condition

that ϕU ∈ L2
0(µU ) is mean-zero. This constant is not required for our purposes, because it cancels out

in the formula (28) for the asymptotic variance, and so its explicit expression is omitted. △

For all U ∈ U0, the right-hand side of (28) coincides, both when D = R and when D = T, with

σ̂2
f [U ] :=

2Z[U ]

Z2
inf
A∈R

∫
D
|F −A|2eV+U . (34)

Lemma 16. For all U ∈ U0, it holds that σ2
f [U ] = σ̂2

f [U ].

Proof. When D = R, the infimum in (34) is achieved for A = AR, because the integral is infinite for

any other value of A. Likewise, when D = T the infimum in (34) is achieved for A = AT[U ], because

the mean under the probability measure proportional to eV+U is the approximation by a constant in

the L2(eV+U ) norm; see, for instance, [49, Exercise 1.4.23].

With the convention that 0 ·+∞ = +∞·0 = 0, the right-hand side of (34) makes sense as an element

of R ∪ {∞} for all U ∈ U, where U = U(V, f) is the set of measurable functions U : D → R ∪ {∞} such
that the following assumptions are satisfied:

• It holds that e−V−U ∈ L1(Dd) and Z[U ] > 0, so that µU is well defined.

• The condition (8) is satisfied.

We emphasize that U is a proper superset of U0; it contains elements which violate Assumption 7. For

biasing potentials not in U0, the quantity (34) is not in general an asymptotic variance. In particular, it is

possible to construct examples where σ2
f [U ] is zero even though σ̂2

f [U ] > 0, as we illustrate in Example 17.

Example 17. Consider the setting where V : T→ R is zero and f : [−π, π]→ R is given by

f(x) =

sgn(x) if |x| ⩾ π
2 ,

0 otherwise.
, sgn(x) :=


1 if x > 0,

0 if x = 0,

−1 if x < 0.

(35)

Here we identify [−π, π] with its image under the quotient map R → T. If U is a potential such that

(i) there exists a unique strong solution to (6) with initial condition X0 = 0 and (ii) this solution

satisfies Xt ∈ (−π/2, π/2) with probability 1 for all times, then (5) is a well defined estimator with zero

asymptotic variance. However σ̂2
f [U ] > 0, which can be viewed from (34) and is confirmed in Lemma 18

hereafter. △

Although σ̂2
f does not in general correspond to an asymptotic variance, obtaining a bound from below

on σ̂2
f over U will be useful in order to motivate the proof of Proposition 21, just like Lemma 2 proved

useful for establishing Proposition 4 in the i.i.d. setting.
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Lemma 18. It holds that

min
U∈U

σ̂2
f [U ] =

2

Z2

(∫
D

∣∣F (x)−A∗
D
∣∣dx)2

=: σ∗
f , (36)

with A∗
R := AR and

A∗
T := sup

{
A ∈ R :

∫
T
sgn(F −A) ⩾ 0

}
. (37)

In addition, the infimum is achieved for

U = U∗(x) := −V (x)− log|F (x)−A∗
D| ∈ U. (38)

In this case e−V−U∗ ∝ |F (x)−A∗
D|.

Proof. It is sufficient to show that, for all A ∈ R,

2Z[U ]

Z2

∫
D
|F −A|2eV+U ⩾

2

Z2

(∫
D

∣∣F (x)−A∗
D
∣∣dx)2

. (39)

If the left-hand side of (39) is infinite, then the inequality is trivially satisfied. On the other hand, if the

left-hand side is finite, in which case the set on which |F − A|2eV+U = ∞ is of measure zero, then we

have by the Cauchy–Schwarz inequality that

2Z[U ]

Z2

∫
D
|F −A|2eV+U =

2

Z2

∫
D
e−V−U

∫
D
|F −A|2eV+U ⩾

2

Z2

(∫
D
|F −A|

)2

.

In the case D = R, the right-hand side is finite only if A = AR, which leads to (36). In the case D = T,
the inequality (36) is obtained by noting that∫

D

∣∣F −A∣∣ = E
∣∣F (X)−A

∣∣,
where X ∼ U(T) is a random variable uniformly distributed on the torus. It is well known, see for

example [49, Exercise 1.4.23], that the expectation on the right-hand side is minimized for any A that

is a median of F (X). Here F is continuous, so the median of F (X) is unique and given by A∗
T, which

implies that (36) holds.

The fact that the lower bound is achieved for U in (38) follows from the inequality

σ̂2
f [U∗] =

2Z[U∗]

Z2
inf
A∈R

∫
D
|F −A|2 eV+U∗

⩽
2Z[U∗]

Z2

∫
D
|F −A∗

D|
2
eV+U∗ =

2

Z2

(∫
D
|F −A∗

D|
)2

,

which concludes the proof.

Remark 19. The singularities in the biasing potential U∗ coincide with zeros of the function F (x)−A∗
D.

Consider for simplicity the case where D = R. If x∗ denotes a zero of the function F (x) − A∗
R, then it

holds by definition of F (x) that

0 = F (x∗)−A∗
R =

∫ x∗

−∞

(
f(x)− I

)
e−V (x) dx.
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Rearranging this equation, we obtain ∫ x∗

−∞
f(x) e−V (x) dx∫ x∗

−∞
e−V (x) dx

= I.

In other words, the average of f with respect to the measure µ restricted to [−∞, x∗] coincides with its

average with respect to µ over the real line. When singular, the biasing potential (38) effectively divides

the domain into regions that suffice for the estimation of I. Several numerical experiments illustrating

this behavior are presented in Section 5. △

Remark 20. Equation (37) implies that A∗
T is the median associated with F (X), where X is a random

variable with uniform distribution over T. Just as AR is obtained as a limit of AT for an increasingly

large torus, so too A∗
R = AR is recovered as a limit of A∗

T; see Appendix B. △

The potential U∗ defined by (38) does not necessarily satisfy Assumption 7, and the measure µU∗

may not have full support. However, regularizing U∗ enables to show that σ∗
f is the infimum of the

asymptotic variance σ2
f [U ], not only over U0, but also over the smaller subset C∞

c ⊂ U0 of smooth and

compactly supported biasing potentials. This is the content of the following result. Table 2 after the

proof summarizes the main results obtained in this section and presents a comparison with the i.i.d.

setting.

Proposition 21. Suppose that 0 ∈ U0. Then,

• It holds that infU∈U0
σ2
f [U ] = σ∗

f .

• It holds that infU∈C∞
c (D) σ

2
f [U ] = σ∗

f .

Proof. Since σ2
f [U ] = σ̂2

f [U ] for U ∈ U0 and C∞
c (Dd) ⊂ U0, Lemma 18 and the second statement

of Proposition 21 imply the first statement. In order to prove the second statement, we use the same

notation in this proof as in Proposition 4. Let Uε : D→ R be the smooth biasing potential given by

Uε(x) =

−χε(x)
(
V (x) + log

∣∣F (x)−A∗
R
∣∣
ε

)
if D = R,

−V (x)− log
∣∣F (x)−A∗

T
∣∣
ε

if D = T,

where for ε ∈ (0, 1), χε = ϱ ⋆ 1[−ℓε,ℓε] with ℓε = ε−1/2 − 1. (This choice of ℓε enables to write the bound

in (42) below.) The probability distribution µUε , with density proportional to e−V−Uε , satisfies a Poincaré

inequality. This follows from the fact that e−V−Uε is uniformly bounded from below when D = T, and
from the classical Holley–Stroock biasing argument when D = R; see [23], as for example reviewed in [31,

Theorem 2.11]. Therefore Uε ∈ U0 and so, by Lemma 14, the associated asymptotic variance is given by

σ2
f [Uε] =

2Z[Uε]

Z2

∫
D

(
F −Aε

)2
eV+Uε , (40)

where Aε := AD[Uε] is given by (29) with U = Uε. We now prove, separately for D = T and D = R, that

lim
ε→0

Z[Uε]→
∫
D
|F −A∗

D| and lim sup
ε→0

∫
D

(
F −Aε

)2
eV+Uε ⩽

∫
D

∣∣F (x)−A∗
D
∣∣dx.

Given these results, taking the limit superior as ε→ 0 in (40) gives

lim sup
ε→0

σ2
f [Uε] ⩽

2

Z2

(∫
D

∣∣F (x)−A∗
D
∣∣ dx)2

.

15



Since the right-hand side is a lower bound on σ2
f [Uε] = σ̂2

f [Uε] by (36), the result will be proved.

Case D = T. In this setting, it holds by dominated convergence, with an argument similar to the one

used to prove the third item of Proposition 4, that

Z[Uε] =

∫
T

∣∣F −A∗
T
∣∣
ε
−−−→
ε→0

∫
T

∣∣F −A∗
T
∣∣.

In addition, since Aε is the average of F over T with respect to the probability measure with density

proportional to eV+Uε , it holds for all ε ∈ (0, 1) that∫
T

∣∣F −Aε

∣∣2 eV+Uε = inf
C∈R

∫
T

∣∣F − C∣∣2 eV+Uε

⩽
∫
T

∣∣F −A∗
T
∣∣2 eV+Uε =

∫
T

∣∣F −A∗
T
∣∣2∣∣F −A∗

T
∣∣
ε

⩽
∫
T

∣∣F −A∗
T
∣∣,

which enables to conclude.

Case D = R. The numerator of the fraction on the right-hand side of (40) can be written as

Z[Uε] =

∫
R
exp

(
− V (x) + χε(x)

(
V (x) + log

∣∣F (x)−A∗
R
∣∣
ε

) )
dx

=

∫
R
exp
(
(χε − 1)V

)
|F −A∗

R|χε
ε . (41)

By convexity of the exponential function, it holds that

exp
(
(1− χε)(−V ) + χε log|F −A∗

R|ε
)
⩽ (1− χε)e

−V + χε|F −A∗
R|ε

⩽ e−V + χε

(
|F −A∗

R|+ ε
)

⩽ e−V + |F −A∗
R|+ εχε.

Since ε = (ℓε + 1)−2, all three terms on the right-hand side are dominated by an integrable function

over R independent of ε, because

∀x ∈ R, εχε(x) ⩽
1[−ℓε−1,ℓε+1](x)

(ℓε + 1)2
⩽ min

{
1,

1

x2

}
. (42)

Therefore, by dominated convergence, we deduce from (41) that Z[Uε] →
∫
R|F − A∗

R| in the limit

as ε = (ℓε+1)−2 → 0. For the integral on the right-hand side of (40), noting that Aε = A∗
R and recalling

that this constant is independent of U , we have that∫
R
(F −Aε)

2eV+Uε =

∫
R
|F −A∗

R|2 exp
(
(1− χε)V + χε

(
− log|F −A∗

R|ε
))

⩽
∫
R
|F −A∗

R|2
(
(1− χε)e

V +
χε

|F −A∗
R|ε

)
⩽
∫
R\Bℓε−1

|F −A∗
R|2eV +

∫
R
|F −A∗

R|, (43)

where we used the convexity of the exponential function and the notation Bℓε−1 = [−ℓε + 1, ℓε − 1].

Since σ2
f [0] is finite, so is

∫
R|F − A

∗
R|2eV , implying that the first term on the right-hand side of (43)

converges to 0 in the limit ε→ 0.
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Minimal assumptions “Nice” biasing potentials C∞
c

i.i.d. setting (any d) inf
U∈U

s2f [U ] = 0 inf
U∈U0

s2f [U ] = s∗f inf
U∈C∞

c (Dd)
s2f [U ] = s∗f

MCMC setting (d = 1) inf
U∈U

σ2
f [U ] ⩽ σ∗

f inf
U∈U0

σ2
f [U ] = σ∗

f inf
U∈C∞

c (D)
σ2
f [U ] = σ∗

f

Table 2: Summary of the main results obtained in Subsection 3.3, and comparison with the corresponding
results in the i.i.d. setting obtained in Section 2. See (13) and (36) respectively for the definitions of s∗f
and σ∗

f . Concerning the infimum of the asymptotic variance under minimal assumptions in the MCMC
setting and d = 1, we showed in Example 17 that there are cases where σ∗

f > 0 but the minimum over U
of the asymptotic variance for the MCMC estimator is 0. It may be possible to prove, by extending
the reasoning in the proof of Proposition 4, that the infimum of the asymptotic variance of the MCMC
estimator (5) is 0 for any potential V and observable f satisfying Assumption 1, but we do not address
this question here.

Remark 22. The results in Proposition 21 parallel the second and third items in Proposition 4. We do

not aim at rigorously establishing an analogue of the first item in Proposition 4, which would require

analyzing the well-posedness of (6) and the properties of the estimator (5) when the biasing potential is

irregular and unbounded. △

Remark 23. Since U∗ ∈ U defined in (38) is a minimizer of σ̂2
f , and since the lower bound σ∗

f on σ2
f [U ]

may be approached by regularizing this potential, we often refer to U∗ as the optimal biasing potential.

This is, of course, a slight abuse of terminology given that U∗ is not in general a minimizer of the actual

asymptotic variance σ2
f [U ], neither on U (because an asymptotic variance smaller than σ∗

f can sometimes

be achieved) nor on U0 (because it does not hold that U∗ ∈ U0 in general). △

Remark 24. To conclude this section, we note that the parallel between the i.i.d. and MCMC settings

is not perfect: while σ2
f [U ] and σ̂2

f [U ] coincide for U ∈ U0 in the MCMC setting, s2f [U ] and ŝ2f [U ] do not

generally coincide for U ∈ U0 in the i.i.d. setting. △

3.4 Optimal U in the multi-dimensional setting via steepest descent

In the multi-dimensional setting, obtaining an explicit expression for the optimal biasing U is not possible.

However, analogously to [12], the functional derivative of the asymptotic variance with respect to the

biasing potential can be expressed in terms of the solution to a Poisson equation. This enables a numerical

strategy based on a steepest descent for finding a good biasing potential.

Computation of the functional derivative

In the following, the directional derivative of a functional E : C∞(Dd) → R at U ∈ C∞(Dd) in the

direction δU ∈ C∞
c (Dd) is denoted by

dE[U ] · δU = lim
ε→0

1

ε

(
E[U + εδU ]− E[U ]

)
, (44)

whenever the limit exists.
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Theorem 25 (Functional derivative of the asymptotic variance). Suppose that U ∈ U0 and let ϕU be as

in Lemma 11. Then for all δU ∈ C∞
c (Dd), it holds that

1

2
dσ2

f [U ] · δU :=
1

2
lim
ε→0

1

ε

(
σ2
f [U + εδU ]− σ2

f [U ]
)

=
Z[U ]2

Z2

∫
Dd

δU

(
|∇ϕU |2 −

∫
Dd

|∇ϕU |2 dµU

)
dµU . (45)

Proof. We first rewrite (21) as

σ2
f [U ] =

2Z[U ]2

Z2

∫
Dd

ϕU (f − I)eU dµU =
2Z[U ]

Z2

∫
Dd

ϕU (f − I)e−V ,

so that the only factors depending on U are Z[U ] and ϕU . By definition of the functional derivative,

using (22) for the first integral term on the right-hand side, we have

1

2
dσ2

f [U ] · δU =
dZ[U ] · δU

Z2

∫
Dd

|∇ϕU |2e−V−U + lim
ε→0

Z[U ]

εZ2

∫
Dd

(ϕU+εδU − ϕU )(f − I)e−V , (46)

where ϕU+εδU is the solution to the perturbed Poisson equation

−LU+εδUϕU+εδU = (f − I)eU+εδU . (47)

The function (f − I)eU+εδU has zero mean with respect to µU+εδU . By Assumption 7 and the fact that

δU ∈ C∞
c (Dd), it holds that (f − I)eU+εδU ∈ L2(e−V−U−εδU ) and that µU+εδU satisfies a Poincaré in-

equality, by the Holley–Stroock theorem. Consequently, there exists a unique solution in L2
0(e

−V−U−εδU )

to (47) by Lemma 11. A simple calculation using the fact that δU ∈ C∞
c (Dd) gives

dZ[U ] · δU = −
∫
Dd

δUe−V−U . (48)

For the second term on the right-hand side of (46), we have by Lemma 48 that

1

ε

∫
Dd

(ϕU+εδU − ϕU )(f − I)e−V = −1

ε

∫
Dd

(ϕU+εδU − ϕU )(LUϕU ) e
−V−U

=
1

ε

∫
Dd

∇(ϕU+εδU − ϕU ) · ∇ϕU e−V−U −−−→
ε→0

∫
Dd

∇ψU,δU · ∇ϕU e−V−U

=

∫
Dd

(LUψU,δU )ϕU e−V−U =

∫
Dd

(
−eU+V∇ ·

(
e−U−V δU∇ϕU

))
ϕU e−V−U

=

∫
Dd

δU |∇ϕU |2 e−V−U ,

where ψU,δU is the solution to the Poisson equation (62). The equalities before and after the limit follow

from the definitions of ϕU and ψU,δU as weak solutions to (20) and (62), respectively. The last inequality

is obtained by integration by parts, which is justified because δU is compactly supported. Combining

this equation with (46) and (48), we deduce (45).

Before presenting the numerical method for approaching the optimal biasing potential U , we mention

two corollaries of Theorem 25.

Corollary 26 (Critical points). Suppose that U ∈ U0. Then U is a critical point of the asymptotic

variance viewed as a functional of U if and only if the corresponding solution to the Poisson equation (20)

satisfies

|∇ϕU |2 =

∫
Dd

|∇ϕU |2dµU . (49)
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In other words, the norm of ∇ϕU is constant over Dd.

Corollary 27 (No smooth minimizer). Let D = T. Then there is no biasing potential U ∈ C∞(Td) that

is a critical point of the asymptotic variance σ2
f [U ].

Proof. Assume for contradiction that there is a smooth biasing potential U for which (49) holds. By

elliptic regularity, the corresponding solution ϕU to the Poisson equation (20) is also smooth and so, by

the extreme value theorem, it attains its minimum at some point in Td, where ∇ϕU vanishes. By (49),

this implies that ∇ϕU = 0 for all x ∈ Td and, therefore, −LUϕU = 0 = (f−I) eU . This is a contradiction

because, by Assumption 1, the observable f is not everywhere equal to I.

Corollary 27 highlights a limitation of the target-oriented approach taken in this section, as singular

potentials are impractical at the numerical level and unlikely to be of any use for different observables.

This motivates the approach taken in Section 4, which aims at finding a biasing potential U that leads

to a reduction in variance for not just one but a family of observables.

Steepest descent method

To conclude this section, we present an iterative approach for approximating a minimizer of σ2
f [U ]. We

focus on the case where D = T for simplicity, but the approach is easy to generalize to other settings (see

Subsection 4.2). Since an expression for the functional derivative of σ2
f [U ] is available by Theorem 25,

we employ a method based on steepest descent. Each step of the method may be decomposed into three

stages:

• First, an approximate solution to the Poisson equation (20) is computed. A number of numerical

methods can be employed to this end. Given that the optimal potential always exhibits singularities

when D = T, we opt for a finite difference approach rather than, for example, a spectral method [2,

48]. The details of the finite difference method are presented in Appendix D, together with a

convergence proof in the setting where U is regular.

• Then, from the solution to (20), an approximation of the gradient G of the asymptotic variance is

calculated based on Theorem 25.

• Finally, the potential U is updated according to U ← U − η G, where η is found by backtracking

line search following Armijo’s method [6].

These steps are repeated until the L2(T) norm of the gradient is sufficiently small. A couple of comments

are in order. First, the expression of G depends on the considered Hilbert functional space. By (45), the

functions

GL2(e−V −U ) =
Z[U ]

Z2

(
|∇ϕU |2 −

∫
|∇ϕU |2 dµU

)
,

GL2(e−V ) =
Z[U ]

Z2

(
|∇ϕU |2 −

∫
|∇ϕU |2 dµU

)
e−U , (50)

GL2(T) =
Z[U ]

Z2

(
|∇ϕU |2 −

∫
|∇ϕU |2 dµU

)
e−U−V , (51)

are all ascent directions for σ2
f [U ], corresponding to the gradients in L2(e−V−U ), in L2(e−V ) and in L2(T),

respectively. Of these three options, the latter two are better suited for use in an optimization method.

Indeed, employing the L2(e−V−U ) derivative would lead to a change of metric with each update of U ,

which precludes the use of methods that rely on information from multiple steps, such as the Barzilai–

Borwein method [9]. In the numerical experiments presented in Section 5, we use (51), but good results

can also be obtained by using (50).
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Second, the gradient needs to be discretized in practice. In order to avoid convergence issues, it

is desirable that the discretized gradient is itself the gradient of a function. Therefore, we use the

discretization given in (88), which is guaranteed to be the gradient of an appropriate discretization of

the asymptotic variance; see Proposition 63.

4 Minimizing the asymptotic variance for a class of observables

Assume that the set of observables of which we want to compute the expectation is well described by a

Gaussian random field

f =

J∑
j=1

√
λjujfj , uj ∼ N (0, 1), λj ∈ (0,∞), (52)

where (fj)1⩽j⩽J are given functions from Dd to R and the random variables (uj)1⩽j⩽J are independent.

This equation defines a probability distribution F on the space of observables as the pushforward of the

finite-dimensional Gaussian measure G = N (0, idJ) on RJ ; the probability measure F assigns a proba-

bility 1 to Span(f1, . . . , fJ). One may wonder whether it is possible to minimize the average asymptotic

variance for observables drawn from this distribution. For clarity, we denote by EF expectations with

respect to observables. Within this section, we also use the notation

U0 =

J⋂
j=1

U0(V, fj), U =

J⋂
j=1

U(V, fj),

where U0(V, fj) and U(V, fj) are the sets defined before Assumption 7 and after (34), respectively. These

sets are assumed to be non-empty in this section. Denoting by ϕ the solution in H1(µU ) ∩ L2
0(µU ) to

−LUϕ = (f − I)eU ,

and assuming that U ∈ U0, we have by Lemma 11 that

EF
[
σ2
f [U ]

]
= EF

[
2Z[U ]

Z2

∫
Dd

ϕ(f − I)e−V

]

=
2Z[U ]

Z2
EG

 J∑
j=1

J∑
k=1

ujuk
√
λjλk

∫
Dd

ϕk(fj − Ij)e−V

 ,
where, for 1 ⩽ j ⩽ J , the function ϕj is the unique solution in H1(µU ) ∩ L2

0(µU ) to the Poisson

equation −LUϕj = (fj − Ij)eU , with Ij := µ(fj). Since EG [ujuk] = δjk, we obtain by rearranging the

previous expression that

σ2[U ] := EF
[
σ2
f [U ]

]
=

2Z[U ]

Z2

J∑
j=1

λj

∫
Dd

ϕj(fj − Ij)e−V =

J∑
j=1

λjσ
2
fj [U ]. (53)

Therefore, minimizing the expectation EF [σ
2
f ] amounts to minimizing the sum on the right-hand side

of (53).

4.1 Optimal biasing potential in the one-dimensional setting with D = R

In the one-dimensional setting with D = R, an explicit expression for the infimum of the asymptotic

variance can be obtained, similar to that Lemma 18 in the case of a single observable. In order to state
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a precise result, we introduce the notation

σ̂2[U ] =

J∑
j=1

λj σ̂
2
fj [U ],

where σ̂2
g for an observable g was defined in (34). Let us recall that, by the reasoning in Subsection 3.3,

the quantity σ̂2[U ] coincides with σ2[U ] in (53) when U ∈ U0, but σ̂[U ] is well-defined more generally for

any U ∈ U. In Lemma 29 below, we give a bound from below on σ̂2[U ] in the particular case where d = 1

and D = R. Before presenting this result, we introduce the notation

Fj(x) =

∫ x

0

(
fj(ξ)− Ij

)
e−V (ξ)dξ, AR,j = −

∫ 0

−∞

(
fj(ξ)− Ij

)
e−V (ξ)dξ.

Remark 28. In the rest of this section, Fj and AR,j always appear together as Fj − AR,j , which can be

rewritten as an integral over (−∞, x] with the same integrand as in the definition of Fj , that is to say

Fj(x)−AR,j =

∫ x

−∞

(
fj(ξ)− Ij

)
e−V (ξ) dξ.

For the sake of conciseness, we could introduce a new notation to refer to Fj −AR,j , but we refrain from

doing so in order to keep the notation consistent with that used in Section 3. △

Lemma 29. Assume that d = 1 and D = R. Then, for all U ∈ U, it holds that

min
U∈U

σ̂2(U) =
2

Z2

∫
R

√√√√ J∑
j=1

λj |Fj −AR,j |2

2

. (54)

The minimum is achieved for

U = U∗ := −V − log

√√√√ J∑
j=1

λj |Fj −AR,j |2

 ∈ U. (55)

In this case e−V−U∗ is proportional to
√∑J

j=1 λj |Fj −AR,j |2.

Proof. We first show that σ̂2[U ] is bounded from below by the right-hand side of (54). This is trivial

if σ̂2[U ] is infinite, so we assume from now on that σ̂2[U ] <∞. Using the definition of σ̂2[U ], we have

σ̂2[U ] =

J∑
j=1

λj σ̂
2
fj [U ] =

2Z[U ]

Z2

∫
R

 J∑
j=1

λj |Fj −AR,j |2
 eV+U . (56)

Here, we used that the infimum in the definition (34) of σ̂2
fj

is achieved for A = AR,j , as explained

in Lemma 16. Let us introduce the notation

G =

√√√√ J∑
j=1

∫
R
λj |Fj −AR,j |2.

Since σ̂2[U ] <∞ by assumption, the set over which G2eV+U takes an infinite value is of zero Lebesgue

measure. Therefore, by the Cauchy–Schwarz inequality,

σ̂2[U ] =
2Z[U ]

Z2

∫
R
|G|2eU+V ⩾

2

Z2

(∫
R
|G|
√
eU+V

√
e−V−U

)2

=
2

Z2

(∫
R
G

)2

.
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The claim that U∗ in (55) achieves the lower bound can be verified by substitution in (56).

Remark 30. Notice that, unless the functions (Fj−AR,j)1⩽j⩽J share a common root, the optimal biasing

potential U∗ in (55) is a smooth function. △

In the same way that we obtained Proposition 21 from Lemma 18, we deduce from Lemma 29 the

following result. The proof is a simple adaptation of that of Proposition 21, so we omit it.

Proposition 31. Assume that d = 1 and D = R, and suppose that 0 ∈ U0. Then

inf
U∈U0

σ2[U ] = inf
U∈C∞

c (R)
σ2[U ] =

2

Z2

∫
R

√√√√ J∑
j=1

λj |Fj −AR,j |2

2

.

4.2 Numerical optimization

A result similar to Lemma 29 is not easily available when d = 1 and D = T, because the constant AT

given in (29) depends on U . In this case or in the multi-dimensional setting, one can resort to a steepest

descent approach in order to find the optimal biasing potential. It is easy to prove, based on Theorem 25,

that the functional derivative of σ2[U ] is given by

1

2
dσ2[U ] · δU =

Z[U ]2

Z2

∫
Dd

(
δU −

∫
Dd

δU dµU

) J∑
j=1

λj |∇ϕj |2
 dµU . (57)

The approach presented in Subsection 3.4 can then be applied mutatis mutandis. Numerical experiments

illustrating the potential found as a result of this procedure are presented in Section 5.

4.3 Free energy biasing

In the molecular dynamics literature, variance reduction over a compact state space is often achieved by

free energy biasing, a heuristic approach which, in the absence of coarse graining via a reaction coordinate,

amounts to setting U = −V ; see [31] and the references therein. To conclude this section, we address

the following related question: is there a probability distribution F on observables such that U = −V
is a minimizer of the average asymptotic variance σ2[U ], i.e. for which energy biasing is optimal? While

we will not be able to provide a definite answer to this question, we shall prove in Proposition 32 that,

for an appropriate probability measure on observables, the biasing U = −V corresponds to a critical

point of σ2[U ]. This does not imply that U = −V is necessarily optimal, because σ2[U ] is not convex in

general; see Remark 56 in Appendix C.

Proposition 32. Suppose that D = T with d = 1 and assume, for J ∈ 2N>0, that (fj , λj)1⩽j⩽J are

the J first eigenfunctions and eigenvalues of the operator K = eV (−∆+ τ2I)−αe−V , where α ∈ (0,∞)

and τ ∈ R are parameters of the random field and K is viewed as a compact self-adjoint operator on the

following space of functions defined on T:{
f ∈ L2

(
e−2V

)
:

∫
T
fe−V = 0

}
.

Then the average asymptotic variance σ2[U ] admits a critical point for U = −V .
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Proof. The eigenfunctions of the operator K are given by

fj(x) = eV


sin

(
j + 1

2
x

)
, if j is odd,

cos

(
j

2
x

)
, if j is even.

(58)

Note that Ij = 0 for all 1 ⩽ j ⩽ J . When U = −V , the generator of the Markov semigroup associated

with (6) is just the Laplacian operator. Therefore, for a given j ∈ {1, . . . , J}, the solution to the Poisson

equation −LUϕj = (fj − Ij)eU is given by

ϕj(x) =

⌈
j

2

⌉−2

fj(x).

Since λj = λj+1 for all odd values of j and since sin2 +cos2 = 1, we deduce that the sum on the right-

hand side of (57) is constant, implying that the functional derivative of σ2[U ] is zero when evaluated at

the biasing potential U = −V .

Remark 33. The choice of the operator K is motivated by the form (48) of the desired observables, which

is itself motivated by the fact that these observables lead to Poisson equations with explicit trigonometric

solutions when U = −V . △

Remark 34. In this section, we assumed for simplicity that the random observable admitted a finite

expansion of the form (52). The results we obtained could in principle be extended to the case of a more

general Gaussian field, with an infinite Karhunen–Loève series. For background on Gaussian variables in

infinite dimension, see for example [41, Section 1.5]. The reference [13] is also useful for understanding

the regularity of infinite series of the form (52). △

5 Examples and numerical experiments

We begin in Subsection 5.1 by presenting examples and numerical experiments in dimension 1. Then,

in Subsection 5.2, we present numerical experiments for the case where the state space is T2 and the

optimal biasing potential is approximated by steepest descent. Finally, in Subsection 5.3, we illustrate

the approach proposed in Section 4.

5.1 One-dimensional examples

In this subsection, we present a few examples illustrating the optimal biasing potential U for various

observables and underlying potentials V . In all the figures, the optimal potential depicted is calculated

numerically using the steepest descent approach presented in Subsection 3.3. It is apparent in Exam-

ples 36 and 37 that this approach indeed yields the optimal biasing potential (38), an explicit expression

of which is given in these examples.

The first few examples aim at illustrating settings where the optimal biasing potential exhibits dif-

ferent levels of singularity. The optimal potential is smooth in Example 35, it exhibits two singularity

points in Example 36, and it blows up over a whole interval in Example 37. In these examples, the

reference probability measure is unimodal, and the gain in asymptotic variance obtained from using the

optimal potential is small. Finally, in example Example 38, a multi-modal reference probability measure

is considered, and it is observed that importance sampling enables a considerable decrease in asymptotic

variance in this case. Without loss of generality, we normalize in the figures the potentials U so that the

minimum value of V + U over the domain considered is 0.
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Example 35. Assume that D = R and f = V ′. Then I = 0 and F (x)− AR = e−V (x); in this case, the

optimal biasing potential (38) is U∗ = 0. △

Example 36. Assume that D = T, V = 0 and f(x) = cos(x). Then I = 0 and F (x) = sin(x). The

constant A∗
T in (37) is 0, and so the optimal biasing potential (38) is given by

U∗(x) = − log|sin(x)|.

This potential is illustrated in Figure 1 together with the corresponding measure µU∗ . Notice that the

singularities divide the domain into the two regions [−π, 0] and [0, π], but the average of f with respect

to e−V conditioned to either region is equal to I = 0, in accordance with the discussion in Remark 19.

When U = 0, the solution to the Poisson equation (20) is given by ϕ(x) = cos(x) and Z = 1, so the

asymptotic variance (28) is given by

σ2
f [U = 0] = 2

∫ π

−π

|sin(x)|2 dx

2π
= 1.

The infimum (36) of the asymptotic variance, on the other hand, is given by

2

Z2

(∫
T

∣∣F (x)−A∗
T
∣∣dx)2

= 2

(∫
T

∣∣sin(x)∣∣dx
2π

)2

=
8

π2
= 0.810 . . .

The optimal biasing potential therefore leads a reduction in variance of about 19%. △

Figure 1: Optimal potential for Example 36 (left) and Example 37 (right).

As we show above in Corollary 27, singularities in the optimal biasing potential are inevitable when

the state space is the torus in any dimension. Moreover, it is possible to construct examples where the

optimal measure µU∗ is supported on a subset of T, as shown in the following example.

Example 37. Consider the case where D = T and V (x) = 0, with the observable

f(x) =

sin(4|x|) if |x| ⩾ π
2 ,

0 otherwise.

Then I = 0 and

F (x) =

∫ x

0

f(ξ) e−V (ξ) dξ =


1
4

(
−1 + cos(4x)

)
if x ⩽ −π

2 ,

1
4

(
1− cos(4x)

)
if x ⩾ π

2 ,

0 otherwise.
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The constant A∗
T in (37) is again zero, and so the optimal biasing potential is U∗(x) = − log |F (x)|. The

optimal biasing potential and the corresponding measure µU∗ for this example are depicted in Figure 1.

As the figure illustrates, the Lebesgue density of µU∗ with respect to the Lebesgue measure is zero over

the interval [−π/2, π/2]. △

To conclude this section, we present an example where using the biasing potential U∗ leads to a

significant decrease of the variance.

Example 38. Consider again the case where D = T, with this time V (x) = 5 cos(2x) and the observ-

able f(x) = sin(x). The reference dynamics, i.e. the dynamics (6) with U = 0, is metastable in view of

the high potential barrier; the asymptotic variance when U = 0 for the observable considered, estimated

numerically from (28), is equal to 3459 after rounding to the closest integer.

The optimal total potential V + U∗ and probability distribution µU∗ are depicted in Figure 2. The

asymptotic variance associated with U∗ is about 3.64, roughly 1000 times smaller than the asymptotic

variance for the reference dynamics. △

Figure 2: Optimal potential for Example 38 (left), and asymptotic variance corresponding to the biasing
potential U = −θV over the range [0.8, 1.2] of values for θ.

The numerical values of the asymptotic variance for the examples considered in this section and

different choices of U are summarized in Table 3. We also present in this table, for each of the examples,

the value of the asymptotic variance corresponding to case where U = −θV , for the value of θ that yields

the largest variance reduction. This approach is found to yield a variance reduction close to the optimal

one in the setting of Example 38.

Test case U = 0 U = −V U = −θ∗V Optimal U
Example 36 1 1 1 0.811
Example 37 1 1 1 0.334
Example 38 1 0.00113 0.00111 (θ∗ = 1.038) 0.00105

Table 3: Ratio of the asymptotic variance of the importance sampling estimator (5) relative to its value in
the case where U = 0, for different choices of the biasing potential U and in the one-dimensional setting.
The parameter θ∗ is the minimizer of σ2

f [−θ∗V ], calculated by using the Optim.jl [40] implementation
of the LBFGS solver. The numbers are rounded to 3 significant digits.

5.2 Two-dimensional examples

By Corollary 27, the optimal potential when the domain is the two-dimensional torus T2 also exhibits

singularities. In all the examples presented hereafter, these are line singularities. In order to approximate
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the optimal potential in the numerical experiments presented in this section, we use the steepest descent

approach presented in Subsection 3.4 with 150 × 150 discretization points. We begin in Examples 39

and 40 by considering cases where the reference dynamics does not suffer from metastability. The gain in

asymptotic variance provided by importance sampling is small in these settings. Then, in Example 41,

we consider a setting where the reference measure is multi-modal, for which importance sampling leads

to a considerable decrease in asymptotic variance.

Example 39. We consider the case where the potential is V (x) = 0 and the observable is f(x) =

sin(x1) + sin(x2). This observable has average zero not only with respect to µ, but also with respect

to the restrictions of this measure to the subsets [−π/2, π/2] × [−π/2, π/2], [−π/2, π/2] × [π/2, 3π/2],

[π/2, 3π/2] × [−π/2, π/2], and [π/2, 3π/2] × [π/2, 3π/2] which together form a partition of T2. Here

we identify subsets of R2 with their image under the quotient map R2 → T2. Interestingly, the total

potential V + U corresponding to the optimal biasing potential exhibits singularities precisely at the

boundaries between these regions, effectively dividing the state space into four separate regions; see Fig-

ure 3. It appears clearly from the right panel in the same figure that, in agreement with Corollary 26,

the solution to the corresponding Poisson equation (20) is affine by parts, with discontinuities of the first

derivative at singularities of V +U . The reduction in asymptotic variance corresponding to the optimal

potential in this case is only about 19%. △
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Figure 3: Optimal potential V + U for Example 39 (left), together with the solution to the associated
Poisson equation (20) (right).

We now present an example with a non-uniform reference distribution µ.

Example 40. In this example, we consider that the potential and observable are given by

V (x) = exp

(
cos(x1) sin(x2) +

1

5
cos(3x1)

)
, f(x) = sin

(
x1 + cos(x2)

)3
.

The potential V and observable f are illustrated respectively in the top left and right panels of Figure 4.

The corresponding optimal total potential V + U , together with the associated solution to the Poisson

equation (20), are depicted in the bottom left and right panels respectively. Once again, it appears

that the optimal potential divides the domain into two separate regions where the averages of f are

the same. The reduction in asymptotic variance obtained by employing the perturbed dynamics (6) is

about 20%. △

To conclude this section, we present an example where the target probability distribution is multi-

modal, in which case a considerable reduction of the asymptotic variance can be achieved.

26



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0.5

1

1.5

2

2.5

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 4: Unperturbed potential V (top left), observable f (top right), optimal potential V +U∗ (bottom
left), and corresponding solution to the Poisson equation ϕU (bottom right) for Example 40.

Example 41. We consider the case where V (x) = 2 cos(2x1) − cos(x2) and f(x) = sin(x1). The po-

tential V (x) has two global minima located at (π/2, 0) and (−π/2, 0), and the observable f(x) takes

different values when evaluated at these points. The optimal total potential V + U is illustrated in Fig-

ure 5. We observe two line singularities which effectively divide the domain into two separate regions

where the average of f is equal to I = 0. The reduction in asymptotic variance obtained by employing

the perturbed dynamics (6) is about 86%. △

The numerical values of the asymptotic variances for the examples considered in this section and

different choices of U are collated in Table 4. The asymptotic variances corresponding to the simple

biasing with U = −θV with optimal θ are also presented. This approach is found to perform quite well

in the multimodal setting of Example 41.

Test case U = 0 U = −V U = −θ∗V Optimal U
Example 39 1 1 1 0.811
Example 40 1 0.997 0.987 (θ∗ = 0.614) 0.804
Example 41 1 0.177 0.177 (θ∗ = 0.994) 0.132

Table 4: Ratio of the asymptotic variance of the importance sampling estimator (5) relative to its value in
the case where U = 0, for different choices of the biasing potential U and in the two-dimensional setting.
The parameter θ∗ is the minimizer of σ2

f [−θ∗V ], calculated by using the Optim.jl [40] implementation
of the LBFGS solver. The numbers are rounded to 3 significant digits.

Remark 42. In all the examples presented in this subsection, the optimal biasing potential effectively

partitions the domain into several regions that suffice for the estimation of I. It is natural to wonder

whether this observation holds true in general: is it always the case that, when such partitioning of
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Figure 5: Optimal potential V + U∗ for Example 41.

the domain occurs, averages of the observable with respect to the corresponding conditioned measures

coincide with the target average I? We gave in Remark 19 a positive answer to this question in the

one-dimensional setting. Although we are not able to provide an equally rigorous answer in the multi-

dimensional setting, we motivate hereafter our belief that the answer is also positive in this case. To this

end, suppose that U∗ partitions the domain into a number of regions, corresponding to the connected

components of {U∗ < ∞}. Suppose also that there exists an ensemble (Uε)ε>0 of smooth biasing

potentials such that σ2
f [Uε] → σ2

f [U∗] and e−V−Uε → e−V−U∗ in L∞(Dd) as ε → 0. In particular, it

holds under this assumption that Uε(x) → U∗(x) for almost all x ∈ {U∗ < ∞}. It is well known, see

e.g. [41, Section 7.3], that the average escape time from a potential well for the overdamped Langevin

dynamics (6) scales exponentially with respect to the height of the potential barrier. Therefore, for

very small ε, it would take a very long time for the dynamics to visit all the regions of the state space.

In these conditions, the asymptotic variance would be very large, unless the averages of the observable

with respect to the probability measure µ conditioned to each of the regions happen to coincide. More

precisely, if σ2
f [Uε] does not diverge as ε → 0, then the conditional averages in all the regions must

necessarily coincide. △

5.3 Minimizing the asymptotic variance for a class of observables

In this section, we illustrate the approach proposed in Section 4, first for a one-dimensional example and

then for a two-dimensional example.

Example 43. We consider the same potential as in Example 38, i.e. V (x) = 5 cos(2x), and a set-

up similar to that of Proposition 32. Specifically, the observables and associated weights, denoted

by (λj)1⩽j⩽J in (52), are given by the first J = 21 eigenpairs of the operator (−∆+I)−1, equipped with

periodic boundary conditions on the space of mean-zero functions with respect to the Lebesgue measure.

The associated Gaussian random field f is stationary, in the sense that the covariance cov
(
f(x1), f(x2)

)
depends only on the difference x1 − x2. The optimal potential in this case is illustrated in the left

panel of Figure 6. In contrast with the examples of Subsection 5.1, the optimal potential is smooth and,

therefore, more easily usable in an MCMC scheme. The average asymptotic variance σ2[U ] given in (53)

is reduced by a factor equal to about 900.

In the right-panel of Figure 6, we illustrate the optimal potential when the observables are instead

the eigenfunctions of eV (−∆+ I)−1e−V equipped with periodic boundary conditions, which is precisely

the setting considered in Proposition 32. In this case, the optimal potential is indeed V + U = 0, in

agreement with the latter result. The average asymptotic variance σ2[U ] is reduced by a factor equal to
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about 700. △

Figure 6: Optimal potentials for Example 43, when different probability measures are placed on the
observables.

Example 44. We consider the same potential as in Example 41, i.e. V (x) = 2 cos(2x1) − cos(x2). For

the observables and corresponding weights in (52), we take the eigenpairs of the operator (−∆ + I)−1

with periodic boundary conditions on the space of mean-zero functions with respect to the Lebesgue

measure. The eigenfunctions are of the form

cos(mx1) cos(nx2), cos(mx1) sin(nx2), sin(mx1) cos(nx2), sin(mx1) sin(nx2).

We consider all the eigenpairs withm ⩽ 4 and n ⩽ 4. The optimal potential V +U∗ in this case is depicted

in Figure 7, together with the initial potential V . We observe that the potential has been flattened in

the direction x. The resulting reduction in the average asymptotic variance is about 70%. △

Figure 7: Potential V (left) and optimal potential V + U∗ (right) corresponding to Example 44.

6 Conclusions and perspectives for future works

In this work, we considered an importance sampling method based on the overdamped Langevin dynamics

in a perturbed potential and present a novel approach for constructing the biasing potential. Under

appropriate assumptions, this potential is optimal, in the sense that it leads to the minimum asymptotic

variance when employed for calculating the average of one or a class of observables with respect to
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the target probability measure. The optimal biasing potential is explicit in dimension 1, and may be

approximated by steepest descent in higher dimensions.

We demonstrated the performance of the method by means of numerical experiments in dimensions 1

and 2. In the multimodal setting, in particular, using the optimal importance distribution enables

a considerable reduction in asymptotic variance. Finally, our numerical experiments show that, while

minimizing the asymptotic variance for just one observable leads to singularities in the potential, targeting

a number of observables simultaneously leads to smooth potentials which can more easily be employed

in numerical schemes.

A drawback of the proposed methodology is that the construction of the optimal biasing potential

relies on an iterative method which, at each step, requires the solution of a Poisson equation. While

feasible in low dimension, this approach is computationally too costly in a high-dimensional setting. A

possible approach in this case is to reduce the dimension of the problem by requiring that the biasing

potential is a function of only a few well-chosen degrees of freedom (so-called collective variables), which

ideally capture the metastable behavior of the dynamics. This corresponds to the setting of free energy

computation [30], and suggests to consider the variance as a functional of some free energy, which

particularly makes sense when the observable under investigation itself depends only on the collective

variables. Investigation of this approach will be the subject of future work. Another direction for future

work would be to investigate whether a similar approach can be employed to minimize the asymptotic

variance of estimators based on discrete-time MCMC schemes using overdamped Langevin dynamics.

We expect the resulting optimal biasing potentials in that case to be close to those considered here.

A Technical auxiliary results

In this section, we collect technical auxiliary results used in Sections 2 and 3.

Example 45. Consider the setting where D = T in dimension d = 1 and V = 0, with the observ-

able f : [−π, π]→ R given by

f(x) =

sgn(x) if |x| ⩾ π
2 ,

0 otherwise.

where the sgn function is defined in (35). Here we identify [−π, π] with its image under the quotient

map R→ T. In this case I = 0 and we have the following:

• If U is such that e−U = 1[−π/4,π/4], where 1S is the indicator function of the set S, then it holds

that f(Xn) = I and eU (Xn) with probability 1 for Xn ∼ µU , and so

s2f [U ] = 0.

This is in agreement with the first item in Proposition 4. In this particular case, 0 is not only the

infimum but also the minimum of the asymptotic variance over U .

• The variance in (13) is given by

s∗f :=

(
1

2π

∫
T
|f − I|

)2

=
1

4
.

• The potential U iid
∗ in (14) is given by U iid

∗ = − log|f |. If Xn ∼ µU iid
∗
, then the random vari-

able f(Xn) is equal to either−1 and 1, each with probability 1/2, and the random variable (eU )(Xn)
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is equal to 1 almost surely. Therefore, the associated asymptotic variance is given by

s2f [U
iid
∗ ] = 1.

This equation can also be obtained from (11). We observe that s2f [U
iid
∗ ] > s∗f , which is consistent

with the discussion in Remark 6.

• Let Uε := − log (|f |+ ε), which may be viewed as a discontinuous but bounded regularization

of U iid
∗ . Then, for Xn ∼ µUε

, using the notation w. p. to mean “with probability”, we have that

(
feUε

)
(Xn) =


1

1+ε w. p. 1+ε
2+4ε

0 w. p. 2ε
2+4ε

− 1
1+ε w. p. 1+ε

2+4ε

,
(
eUε
)
(Xn) =


1

1+ε w. p. 1+ε
2+4ε

1
ε w. p. 2ε

2+4ε

1
1+ε w. p. 1+ε

2+4ε

.

It follows that the variance of
(
feUε

)
(Xn) is given by

1 + ε

1 + 2ε

(
1

1 + ε

)2

=
1

(1 + 2ε)(1 + ε)
,

and that E
[
eUε(Xn)

]
= 2

1+2ε . Therefore, by Slutsky’s lemma, or from Equation (11), we obtain

that

s2f [Uε] =
1 + 2ε

4 + 4ε
.

We observe that s2f [Uε]→ s∗f in the limit as ε→ 0.

This example shows that the biasing potential U iid
∗ is sometimes suboptimal in U0; here we constructed a

regularized biasing potential associated with a smaller asymptotic variance than that associated with U iid
∗ .

Furthermore, this example illustrates that the quantity s∗f is not in general a lower bound on the asymp-

totic variance over the set of biasing potentials in U . △

Lemma 46 (Asymptotic variance for the estimator given in (24)). Suppose that Assumption 7 is satisfied,

that D = T and that X0 ∼ µU . Then there exists a unique solution ϕ̃U in L2
0(µU ) to (27) and it holds

that √
N
(
µ̃N
U (f)− I

) Law−−−−→
N→∞

N
(
0, σ̃2

f [U ]
)
,

where σ̃2
f [U ] is given by (26).

Remark 47. The assumptions that D = T and X0 ∼ µ should be viewed as technical; it should in

principle be possible to relax them. △

Proof. We begin by showing the existence and uniqueness of a solution in L2
0(µU ) to the Poisson equa-

tion (27). To this end, we recall that, under Assumption 7,

∥etLU ∥B(L2
0(µU )) ⩽ e−R[U ]t, (59)

where B
(
L2
0(µU )

)
is the Banach space of continuous linear operators on L2

0(µU ) and R[U ] is the Poincaré

constant in (18) associated with µU ; see e.g. [31, Proposition 2.3] and [41, Theorem 4.4]. Therefore, the

Neumann series
∑∞

n=0 e
nτLU is convergent in L2

0(µU ), which implies that I − eτLU is invertible with

inverse (I − eτLU )−1 equal to the series. Therefore, there exists a unique solution ϕ̃U ∈ L2
0(µU ) to (27).

31



The estimator (7) may be rewritten as

µ̃N
U (f) = I +

∑N−1
n=0 g(Xnτ )∑N−1

n=0 (e
U )(Xnτ )

, g := (f − I)eU . (60)

The key idea in order to understand the asymptotic behavior of the numerator in (60) is to rewrite the

sum as

N−1∑
n=0

g(Xnτ ) =

N−1∑
n=0

((
I − eτLU

)
ϕ̃U

)
(Xnτ )

=

N−1∑
n=0

(
ϕ̃U
(
X(n+1)τ

)
− eτLU ϕ̃U (Xnτ )

)
− ϕ̃U (XNτ ) + ϕ̃U (X0).

This approach dates back to the work of Kipnis and Varadhan [25]. The first term is a sum of uncorre-

lated, identically distributed random variables with mean zero and variance

γ2f [U ] := E
(∣∣∣ϕ̃U (Xτ )− eτLU ϕ̃U (X0)

∣∣∣2) =

∫
Dd

((
eτLU

∣∣∣ϕ̃U ∣∣∣2) (x)−
∣∣∣(eτLU ϕ̃U

)
(x)
∣∣∣2) µU (dx)

=

∫
Dd

(∣∣∣ϕ̃U (x)∣∣∣2 − ∣∣∣(eτLU ϕ̃U

)
(x)
∣∣∣2) µU (dx),

where we used the invariance of µU by the dynamics with generator LU for the first term in the last

integral. Since ϕ̃U is a solution to (27), it holds that eτLU ϕ̃U = ϕ̃U − g, which by substitution gives that

γ2f [U ] =

∫
Dd

2ϕ̃Ug − g2 dµU .

Using an approach similar to that in [39, Theorem 17.4.4], we can show that the conditions of the

martingale central limit theorem [22] (see also [34] for a detailed pedagogical proof) are satisfied, and so

it holds that

1√
N

N−1∑
n=0

(
ϕ̃U
(
X(n+1)τ

)
− eτLU ϕ̃U (Xnτ )

)
Law−−−−→

N→∞
N
(
0, γ2f [U ]

)
.

Hence, since it is clear in the setting where D = T that

1√
N

(
ϕ̃U (XNτ )− ϕ̃U (X0)

)
Law−−−−→

N→∞
0,

it follows from Slutsky’s lemma that

1√
N

N−1∑
n=0

g(Xnτ )
Law−−−−→

N→∞
N
(
0, γ2f [U ]

)
.

A similar approach, based on the Poisson equation

−L̃U ψ̃U =

(
eU − Z

Z[U ]

)
,

of which the right-hand side is in L2
0(µU ) by the assumption that D = T, can be employed to understand

the asymptotic behavior of the denominator in (60). Specifically, it holds that

1

N

N−1∑
n=0

(
eU(Xnτ ) − Z

Z[U ]

)
=

1

N

N−1∑
n=0

(
ψ̃U

(
X(n+1)τ

)
− eτLU ψ̃U (Xnτ )

)
− ψ̃U (XNτ ) + ψ̃U (X0)

N
.
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An explicit calculation, using that the first term on the right-hand side is a sum of uncorrelated, iden-

tically distributed random variables, gives that the variance of the right-hand side converges to 0 in the

limit as N →∞, implying the convergence

1

N

N−1∑
n=0

eU(Xnτ ) Law−−−−→
N→∞

Z

Z[U ]
.

The proof can then be concluded by using Slutsky’s lemma once more.

Lemma 48 (Solution to the perturbed Poisson equation). Suppose that Assumption 7 is satisfied and that

δU ∈ C∞
c (Dd), and let ϕU+εδU denote the solution to the Poisson equation (47) posed in L2

0(e
−V−U−εδU ).

Then
∇ϕU+εδU −∇ϕU

ε
−−−→
ε→0

∇ψU,δU in L2(µU ), (61)

where ψU,δU denotes the unique solution in H1(µU ) ∩ L2
0(µU ) to

−LUψU,δU = (f − I)eUδU −∇(δU) · ∇ϕU
= −eU+V∇ ·

(
e−U−V δU∇ϕU

)
. (62)

Remark 49. By integration by parts, which is allowed since ϕU ∈ C∞(Dd) and δU ∈ C∞
c (Dd), we can

check that the right-hand side of (62) is indeed mean zero with respect to µU :

−
∫
Dd

eU+V∇ ·
(
e−U−V δU∇ϕU

)
dµU =

1

Z[U ]

∫
Dd

∇ ·
(
e−U−V δU∇ϕU

)
dx = 0.

Therefore, there indeed exists a unique distributional solution in H1(µU ) ∩ L2
0(µU ) to (62) by the Lax–

Milgram theorem. △

Proof of Lemma 48. Between the Poisson equations (20) and (47), both the operator and the right-hand

side differ. We begin by rewriting

LU+εδU = LU − ε∇(δU) · ∇. (63)

Let ψε = ε−1(ϕU+εδU − ϕU ). It holds that

−LU+εδUψε = (f − I)e
U+εδU − eU

ε
−∇(δU) · ∇ϕU . (64)

The right-hand side is mean zero with respect to µU+εδU by construction, and so by the Lax–Milgram

theorem there exists a unique distributional solution inH1(µU+εδU )∩L2
0(µU+εδU ) to (64), which coincides

with ψε up to an additive constant. Subtracting (62) from (64), we deduce that

−LU+εδU (ψε − ψU,δU ) = −(LU − LU+εδU )ψU,δU + (f − I)
(
eU+εδU − eU

ε
− eUδU

)
=: ζε.

The second term on the right-hand side converges to 0 in L2(µU ) in the limit as ε → 0, as does the

first term in view of (63). By the Holley–Stroock theorem, the probability measure µU+εδU satisfies

the Poincaré inequality (18) with a constant R[U + εδU ] that converges to R[U ] in the limit ε → 0.

Consequently, we deduce from the standard stability estimate (23) that

∥∇(ψε − ψU,δU )∥L2(µU+εδU ) ⩽
∥ζε∥L2(µU+εδU )

R[U + εδU ]
.
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Since the right-hand side converges to 0 in the limit ε → 0, so must the left-hand side, which leads

to the convergence ∥∇(ψε − ψU,δU )∥L2(µU ) → 0 given the equivalence between the norms of L2(µU )

and L2(µU+εδU ). This concludes the proof.

Remark 50. One may wonder whether the statement (61) can be strengthened to

ϕU+εδU − ϕU
ε

−−−→
ε→0

ψU,δU in H1(µU ). (65)

The answer to this question is negative. Indeed, assume by contradiction that (65) holds. Then in

particular ϕU+εδU − ϕU → 0 in L2(µU ) in the limit as ε→ 0 and so∫
Dd

ϕU+εδU − ϕU
ε

dµU =
1

ε

∫
Dd

ϕU+εδUdµU

=
1

Z[U ]

∫
Dd

ϕU+εδU

(
e−V−U − e−V−U−εδU

ε

)
−−−→
ε→0

∫
Dd

ϕUδUdµU , (66)

where we used that ϕU and ϕU+εδU are mean-zero with respect to e−V−U and e−V−U−εδU , respectively.

This is a contradiction because (65) implies that∫
Dd

ϕU+εδU − ϕU
ε

dµU −−−→
ε→0

∫
Dd

ψU,δUdµU = 0,

and so (65) does not hold.

It is, however, simple to show that ϕU+εδU → ϕU in L2(µU ) in the limit as ε → 0. Additionally, it

holds by Lemma 48 and the Poincaré inequality that

ϕU+εδU − ϕU
ε

−
∫
Dd

ϕU+εδU − ϕU
ε

dµU −−−→
ε→0

ψU,δU in H1(µU ),

but these statements are not useful for our purposes in this paper. △

Remark 51. Since ψU,δU is a weak solution to (62), it holds for every δW ∈ C∞
c (Dd) that∫

Dd

∇ψU,δW · ∇ψU,δU dµU =

∫
Dd

ψU,δW

(
−eU+V∇ ·

(
e−U−V δU∇ϕU

))
dµU

=

∫
Dd

δU∇ϕU · ∇ψU,δW dµU , (67)

where integration by parts is justified because δU ∈ C∞
c (Dd). This equality, where the roles of δU and

δW can be reversed, is useful in the proof of Proposition 53 below. △

Remark 52. In dimension d = 1, it follows from (62) that

ψ′
U,δU = δUϕ′U + CD[U, δU ]eV+U , (68)

for some constant CD[U, δU ] such that ψ′
U,δU ∈ L2(µU ). Clearly CR[U, δU ] = 0. When D = T, we obtain

the value of CT[U, δU ] by requiring periodicity, that is

0 =

∫
T
ψ′
U,δU =

∫
T
δUϕ

′
U + CT[U, δU ]

∫
T
eV+U ,
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which leads to

CT[U, δU ] = −

∫
T
δUϕ′U∫

T
eV+U

.

We note that this formula may also be obtained by considering the differential of (31) viewed as a

functional of U , an approach which reveals that CD[U, δU ] = dAD[U ] · δU . △

B Connection between (AR, A
∗
R) and (AT, A

∗
T)

In this section, we discuss the links between the constants defined in (29) and (37).

Connection between AR and AT. The constant A∗
R = AR is recovered as a limit of A∗

T for an

increasingly large torus. More precisely, it holds that

AR = lim
L→∞

∫ L

−L

F eV+U

∫ L

−L

eV+U

. (69)

Indeed, for any ℓ > 0 and L > ℓ, it holds that∫ L

−L

(F −AR) e
V+U

∫ L

−L

eV+U

=

∫
[−L,−ℓ)∪(ℓ,L]

(F −AR) e
V+U∫

[−L,−ℓ)∪(ℓ,L]

eV+U

∫
[−L,−ℓ)∪(ℓ,L]

eV+U∫
[−L,L]

eV+U

+

∫
[−ℓ,ℓ]

(F −AR) e
V+U∫

[−ℓ,ℓ]

eV+U

∫
[−ℓ,ℓ]

eV+U∫
[−L,L]

eV+U
. (70)

The right-hand side is a convex combination of the averages of F −AR restricted to the sets [−L,−ℓ) ∪
(ℓ, L], for the first term, and [−ℓ, ℓ], for the second term. In the proof of Lemma 14, we proved that∫

R
eU+V =∞.

Therefore, since F is uniformly bounded, the second summand on the right-hand side of (70) converges

to 0 in the limit as L→∞, and so

lim sup
L→∞

∣∣∣∣∣∣∣∣∣
∫ L

−L

F eV+U

∫ L

−L

eV+U

−AR

∣∣∣∣∣∣∣∣∣ = lim sup
L→∞

∣∣∣∣∣∣∣∣
∫
[−L,−ℓ)∪(ℓ,L]

(F −AR) e
V+U∫

[−L,−ℓ)∪(ℓ,L]

eV+U

∣∣∣∣∣∣∣∣ ⩽ sup
|x|⩾ℓ

|F (x)−AR|.

Since lim|x|→∞ F (x) = AR by definition of AR in (33), the right-hand side of this equation can be made

arbitrarily small by taking ℓ sufficiently large, and so the limit (69) follows.

Connection between A∗
R and A∗

T. The constant A∗
R = AR coincides with

lim
ℓ→∞

sup

{
A ∈ R :

∫ ℓ

−ℓ

sgn(F −A) ⩾ 0

}
. (71)
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Indeed, since lim|x|→∞ F (x) = AR, there exists for any ε > 0 a constant ℓε > 0 such that

∀ℓ ⩾ ℓε,

∫ ℓ

−ℓ

sgn(F −AR + ε) > 0 and

∫ ℓ

−ℓ

sgn(F −AR − ε) < 0.

Therefore, for all ℓ ⩾ ℓε, the supremum in (71) is contained in the interval [AR − ε,AR + ε]. Since ε was

arbitrary, the claim is proved.

C Second variation of the asymptotic variance

Since the method we propose in Subsection 3.4 relies on a steepest descent for the asymptotic variance

viewed as a functional of U , it is natural to wonder whether this functional is convex, in order to

provide guarantees on the convergence of the method. We provide a partial answer to this question

in Proposition 53 and Remark 56 below. Specifically, we prove that the asymptotic variance is convex

when the domain is the one-dimensional real line but possibly non-convex when the domain is T. We

have not managed to prove or rule out the convexity of the asymptotic variance in the multi-dimensional

setting.

We emphasize that the convexity of the asymptotic variance in the case where the domain is R does

not imply the uniqueness (up to an additive constant) of the minimizer. The most straightforward

example is that of the constant observable, in which case the asymptotic variance is equal to 0 for any

smooth biasing potential U .

Proposition 53. Suppose that Assumption 7 is satisfied and let ϕU be the solution to the Poisson

equation as in Lemma 11. Then, for all δU, δW ∈ C∞
c (Dd), it holds that

1

2
d(dσ2

f [U ] · δU) · δW =
Z[U ]

Z2

∫
Dd

δU0δW0

(
|∇ϕU |2 +

∫
Dd

|∇ϕU |2 dµU

)
e−V−U

− 2Z[U ]

Z2

∫
Dd

(
∇ψU,δU0 − δU0∇ϕU

)
·
(
∇ψU,δW0 − δW0∇ϕU

)
e−V−U , (72)

where, for a perturbation δX ∈ {δU, δW},

δX0 := δX − µU (δX), µU (δX) :=

∫
Dd

δX dµU .

and ψU,δX0
∈ H1(µU ) ∩ L2

0(µU ) is the solution to (62) with δU = δX0. In addition, the second term

in (72) is zero in dimension 1 when D = R, and so the asymptotic variance σ2
f [U ] is a convex functional

in this case.

Proof. We begin by rewriting the expression (45) as

1

2
dσ2

f [U ] · δU =
1

Z2

∫
Dd

(
Z[U ]δU −

∫
Dd

δU e−V−U

)
|∇ϕU |2e−V−U

=
Z[U ]

Z2

∫
Dd

δU |∇ϕU |2e−V−U −
(∫

Dd

δU e−V−U

)
σ2
f [U ]

2Z[U ]
=: T1[U ; δU ] + T2[U ; δU ].

Using the chain rule, we have

dT1[U ; δU ] · δW =− 1

Z2

∫
Dd

δW e−V−U

∫
Dd

δU |∇ϕU |2e−V−U

+ lim
ε→0

Z[U ]

εZ2

∫
Dd

δU
(
|∇ϕU+εδW |2 − |∇ϕU |2

)
e−V−U − Z[U ]

Z2

∫
Dd

δUδW |∇ϕU |2e−V−U .
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Similarly, for the second term we obtain

dT2[U ; δU ] · δW =
1

Z2

∫
Dd

δUδW e−V−U

∫
Dd

|∇ϕU |2e−V−U −
∫
Dd

δUe−V−Ud

(
σ2
f [U ]

2Z[U ]

)
· δW.

The functional derivative in the last term on the right-hand side is calculated as in the proof of Theo-

rem 25; specifically,

d

(
σ2
f [U ]

2Z[U ]

)
· δW = d

(
1

Z2

∫
Dd

ϕU (f − I)e−V

)
· δW =

1

Z2

∫
Dd

δW |∇ϕU |2e−V−U .

By Lemma 48 and the fact that δU ∈ C∞
c (Dd), we have that

1

ε

∫
Dd

δU
(
|∇ϕU+εδW |2 − |∇ϕU |2

)
e−V−U

=

∫
Dd

δU

(
∇ϕU+εδW −∇ϕU

ε

)
· (∇ϕU+εδW +∇ϕU ) e−V−U

−−−→
ε→0

2

∫
Dd

δU∇ψU,δW · ∇ϕU e−V−U .

Collecting all the terms, we obtain

1

2
d(dσ2

f [U ] · δU) · δW = − 1

Z2

∫
Dd

δUe−V−U

∫
Dd

δW |∇ϕU |2e−V−U

− 1

Z2

∫
Dd

δW e−V−U

∫
Dd

δU |∇ϕU |2e−V−U

+
2Z[U ]

Z2

∫
Dd

δU∇ψU,δW · ∇ϕUe−V−U (73)

+
Z[U ]

Z2

∫
Dd

δUδW

(
−|∇ϕU |2 +

∫
Dd

|∇ϕU |2 dµU

)
e−V−U .

By rewriting the last term on the right-hand side as

Z[U ]

Z2

∫
Dd

δUδW

(
|∇ϕU |2 +

∫
Dd

|∇ϕU |2 dµU

)
e−V−U − 2Z[U ]

Z2

∫
Dd

δUδW |∇ϕU |2e−V−U ,

and substituting δUδW = δU0δW0 + δUµU (δW )+ δWµU (δU)−µU (δU)µU (δW ) in the first term of the

latter expression, the second variation may be further simplified to

1

2
d(dσ2

f [U ] · δU) · δW =
Z[U ]

Z2

∫
Dd

δU0δW0

(
|∇ϕU |2 +

∫
Dd

|∇ϕU |2 dµU

)
e−V−U

+
2Z[U ]

Z2

∫
Dd

δU∇ϕU · (∇ψU,δW − δW∇ϕU ) e−V−U . (74)

Using (67), both for ψU,δU and ψU,δW , we obtain∫
Dd

δU∇ϕU ·
(
∇ψU,δW − δW∇ϕU

)
e−V−U

= −
∫
Dd

(
∇ψU,δU − δU∇ϕU

)
·
(
∇ψU,δW − δW∇ϕU

)
e−V−U .

From (62), it is simple to see that ∇ψU,δU = ∇ψU,δU0 + ∇ψU,µU (δU) = ∇ψU,δU0 + µU (δU)∇ϕU . Simi-

larly, ∇ψU,δW = ∇ψU,δW0 + µU (δW )∇ϕU . Substituting these expressions in (74) leads to the claimed

result (72).
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One-dimensional setting. In dimension 1 when D = R, it holds that ψ′
U,δW = δWϕ′U by (68), and

so the second term in (74) cancels out, which proves the last part of the statement.

Remark 54. Since all the terms on the right-hand side of (72) depend only on δU0, the second variation

is invariant under vertical shift of δU , in the sense that, formally,

∀C ∈ R, d
(
dσ2

f [U ] · (δU + C)
)
· (δU + C) = d(dσ2

f [U ] · δU) · δU.

This property had to hold a priori because σ2
f [U ] is itself invariant under addition of constants to U , and

so we could have assumed that µU (δU) = 0 from the beginning of the proof without loss of generality. △

Remark 55. The optimal biasing potential is known explicitly by Lemma 14 in the one-dimensional

setting, so Proposition 53 is of little direct importance in this case. Nonetheless, the result provides

understanding for the numerical experiments using the formula of the directional derivative. △

Remark 56 (One-dimensional case with D = T). The asymptotic variance is not a convex functional

when D = T and d = 1. Indeed, we construct in this remark a potential V , a smooth function ϕ, and a

direction δU such that the second variation of the asymptotic variance σ2
f for the observable f = −Lϕ

(with L the generator LU given in (19) with U = 0) in the direction δU is negative when evaluated at

the biasing potential U = 0. In the setting we consider, since ϕ is the solution to (20) when U = 0, it

holds by Remark 52 that

ψ′
U=0,δU0

= δU0ϕ
′ −
(∫

T δU0ϕ
′∫

T e
V

)
eV .

Here δU0 := δU − µ(δU). Therefore, by substitution in (72) we have that

1

2
d
(
dσ2

f [0] · δU
)
· δU =

1

Z

(∫
T
δU2

0

(
|ϕ′|2 +

∫
T
|ϕ′|2dµ

)
e−V − 2

(∫
T δU0ϕ

′)2∫
T e

V

)
,

The right-hand side of this equation is not always positive. In order to show this, consider the case

where δU0 = ϕ′eV . Note that δU0 indeed has average 0 with respect to µ since
∫
T δU0e

−V =
∫
T ϕ

′ = 0.

Then, we have

Z

2
d
(
dσ2

f [0] · δU
)
· δU =

∫
T
|ϕ′|4eV +

∫
T|ϕ

′|2e−V∫
T e

−V

∫
T
|ϕ′|2eV − 2

(∫
T|ϕ

′|2eV
)2∫

T e
V

.

Assume that ϕ = ϱε ⋆ h+C is a regularization of a hat function h : T→ R given on the interval [−π, π],
which we identify with its image under the quotient map R→ T, by

h(x) :=

1− |x|, |x| < 1,

0 otherwise,

with ϱε the standard mollifier (16) and C ∈ R the constant such that ϕ has average 0 with respect to µ.

Then, letting ν denote the probability measure with Lebesgue density proportional to eV and I = [−1, 1],
we obtain that, in the limit as ε→ 0,∫

T
|ϕ′|4dν → ν(I),

∫
T
|ϕ′|2dµ→ µ(I),

∫
T
|ϕ′|2dν → ν(I).

Therefore, it holds in this limit that

Z

2
d(dσ2

f [0] · δU) · δU →
(
ν(I) + µ(I)ν(I)− 2ν(I)2

) ∫
T
eV .
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Now let V (x) = K cos(x) for all x. In the limit as K → ∞, it holds that µ(I) → 0 and ν(I) → 1. We

conclude that, for sufficiently large K and sufficiently small ε, the second variation of the asymptotic

variance in direction δU is negative. △

D Numerical discretization of the Poisson equation

We consider here the case where the domain is T2 for simplicity, noting that the method may be gener-

alized to any spatial dimension. In order to numerically solve the Poisson equation (20), we use a finite

difference approach on a grid of size N × N . For a given δ > 0, the discretization nodes are arranged

linearly according to

xℓ := (−π + iδ,−π + jδ) ∈ T2, j =

⌊
ℓ− 1

N

⌋
, i = ℓ− 1− jN, δ =

2π

N
, (75)

for ℓ ∈ {1, . . . , N2}. Note that the indices i and j each run from 0 to N − 1; the largest value of either

coordinate over the set of discretization nodes is π − δ, which is sufficient given that −π and π coincide

under the quotient map R2 → T2.

Before we present the method, we introduce additional notation. We denote by ΠN the discretization

operator which associates to a function its values at the grid points (75), and for a function h : T2 → R,
we write h = ΠNh ∈ RN2

. The notation exp .(h) refers the vector obtained by applying the exponential

function element-wise to h, and diag(h) refers to the diagonal matrix with diagonal entries given by h.

The notation 1 ∈ RN2

refers to a column vector containing only ones. We also introduce the one-

dimensional backward and forward difference operators, which act on vectors in RN :

DB =
1

δ



1 −1
−1 1

−1 1

. . .
. . .

−1 1


, DF =

1

δ



−1 1

−1 1

. . .
. . .

−1 1

1 −1


.

From these operators, we construct difference operators along the x and y directions by taking Kronecker

products with the RN×N identity matrix idN :

Dx
B = idN ⊗DB, Dy

B = DB ⊗ idN , Dx
F = idN ⊗DF, Dy

F = DF ⊗ idN .

We recall that, for two matrices A,B ∈ RN×N , the Kronecker product A⊗B is defined as

A⊗ B =


a11B · · · a1NB
...

. . .
...

aN1B · · · aNNB

 .

We denote by ∇Fh the N2 × 2 matrix ∇Fh =
(
Dx

Fh Dy
Fh
)
. For a weight function w : T2 → R, we

introduce the weighted inner product ⟨ · , · ⟩w : RN2 × RN2 → R given for g,h ∈ RN2

by

⟨g,h⟩w = δ2 gT diag
(
w
)
h = δ2

N2∑
ℓ=1

gℓhℓ w(xℓ), (76)

with corresponding norm ∥ · ∥w. We include the factor δ2 in this definition so that, if g and h contain
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the values taken by continuous functions g and h when evaluated at the discretization points and w is

continuous, then

⟨g,h⟩w −−−−→
N→∞

∫
T2

g(x)h(x)w(x) dx.

Finally, let ∥∇Fh∥2w = ∥Dx
Fh∥2w + ∥Dy

Fh∥2w and let |∇Fh|2 denote the N2 × 1 column vector obtained by

taking the squared Euclidean norm of each row of∇Fh. In the remainder of this section, the notation (76)

and corresponding norm are usually employed with the weight function w = e−V−U and so, in order to

simplify notation, we omit the subscript in this case. We are now ready to write the discrete formulation

of the Poisson equation (20).

Proposition 57. For V,U, f : T2 → R, there exists a unique solution (ϕN , IN ) ∈ RN2 × R to

−L̃

(
ϕN

IN

)
:=

(
−L exp .(U)

δ2 exp .(−V −U)T 0

)(
ϕN

IN

)
=

(
diag

(
exp .(U)

)
f

0

)
, (77)

where

L = diag
(
exp .(V +U)

)
Dx

B diag
(
exp .(−V −U)

)
Dx

F

+ diag
(
exp .(V +U)

)
Dy

B diag
(
exp .(−V −U)

)
Dy

F. (78)

Remark 58. The first rows in (77) may be rewritten as

−LϕN = diag
(
exp .(U)

)
(f − IN1),

which resembles the Poisson equation (20). The last row in (77) may be rewritten as

δ2 exp .(−V −U)TϕN = ⟨1,ϕN ⟩ = 0.

It expresses the requirement that the vector ϕN should be mean-zero with respect to the discrete measure

exp .(−V −U). △

Remark 59. We use the notation IN for the scalar unknown in (77) because solving (77) yields both an

approximate solution to the Poisson equation and an approximation of I = µ(f). △

Proof. In order to prove the statement, it is sufficient to show that the homogeneous equation(
−L exp .(U)

δ2 exp .(−V −U)T 0

)(
γ

σ

)
=

(
0

0

)
(79)

admits only the trivial solution = (0, 0). We assume by contradiction that (γ, σ) is a nonzero solution.

Then

−Lγ + σ exp .(U) = 0,

implying that

−⟨Lγ,1⟩ + σ⟨exp .(U),1⟩ = 0. (80)

The linear operator on RN2×N2

induced by L is self-adjoint for the inner product ⟨ · , · ⟩, because

−⟨g,Lh⟩ = −δ2gT
(
Dx

B diag
(
exp .(−V −U)

)
Dx

F +Dy
B diag

(
exp .(−V −U)

)
Dy

F

)
h

= ⟨Dx
Fg,D

x
Fh⟩ + ⟨D

y
Fg,D

y
Fh⟩, (81)
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where we used the relation DT
B = −DF. Therefore, going back to (80), we deduce that

0 = −⟨γ,L1⟩ + σ⟨exp .(U),1⟩ = σ⟨exp .(U),1⟩ = δ2σ1T exp .(−V).

Therefore σ = 0, but then Lγ = 0 by (79) and so ⟨γ,Lγ⟩ = 0. By the relation (81), this implies

that Dx
Fγ = Dy

Fγ = 0, so the vector γ is constant. The last equation in (79) then implies that γ = 0.

Note that (81) implies that Ker(LT) = Span
{
exp .(−V − U)

}
, which will be useful in the proof of

Lemma 61.

It is possible to prove the convergence of the solution to (77) to the exact solution of the Poisson

equation (20) in the limit as N → ∞. To this end, we begin by showing the following Poincaré-like

inequality.

Lemma 60 (Discrete Poincaré inequality). Assume that V + U : T2 → R is uniformly bounded. Then

there exists a constant Rdisc[U ] > 0 independent of N such that

∀g ∈
{
h ∈ RN2

: hT exp .(−V −U) = 0
}
, ∥∇Fg∥2 ⩾ Rdisc[U ]∥g∥2. (82)

Proof. It is sufficient to show (82) for V + U = 0. Indeed, assuming that the inequality holds in this

particular case and denoting by C a constant which depends only on V + U and is allowed to change

from line to line, we have that

∀g ∈ RN2

, ⟨Dx
Fg,D

x
Fg⟩ + ⟨D

y
Fg,D

y
Fg⟩

⩾ C
(
⟨Dx

Fg,D
x
Fg⟩1 + ⟨D

y
Fg,D

y
Fg⟩1

)
⩾ C⟨g − g̃,g − g̃⟩1, g̃ =

⟨g,1⟩1
⟨1,1⟩1

1,

where we employed the equivalence between ⟨ · , · ⟩1, which is given by (76) in the particular case

where V + U = 0, and ⟨ · , · ⟩e−V −U , noting that both constants in this equivalence can be fixed in-

dependently of N . Using this equivalence in the other direction, we obtain

⟨g − g̃,g − g̃⟩1 ⩾ C⟨g − g̃,g − g̃⟩ ⩾ C inf
s∈R
⟨g − s1,g − s1⟩

= C⟨g − g,g − g⟩, g =
⟨g,1⟩
⟨1,1⟩

1.

Finally, equation (82) when V +U = 0 follows from its one-dimensional counterpart by using a standard

tensorization argument (as for the proof of [31, Proposition 2.6] for instance). It only remains to show

the one-dimensional inequality

∀g ∈ RN , ⟨DFg,DFg⟩1 ⩾ Rdisc[U ]⟨g − g̃,g − g̃⟩1, g̃ =
⟨g,1⟩1
⟨1,1⟩1

1, (83)

for a constant Rdisc[U ] independent of N for sufficiently large N . To this end, we notice that

〈
DFg,DFg

〉
1
=
〈
DBDF(g − g̃),g − g̃

〉
1
.
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The matrix DBDF is given by

DBDF =
1

δ2



2 −1 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1

−1 −1 2


.

This is a circulant matrix [14] with explicit eigenvalues given by

λk =
4

δ2
sin2

(
πk

N

)
=
N2

π2
sin2

(
πk

N

)
, k = 0, 1, . . . , N − 1.

The minimum eigenvalue of this matrix is λ0 = 0, and the associated eigenvector is 1, to which g− g̃ is

orthogonal. Therefore, equation (83) implies that

∀g ∈ RN ,
〈
DFg,DFg

〉
1
⩾ λ1

〈
g − g̃,g − g̃

〉
1
,

which implies that, for fixed N , equation (83) holds with constant Rdisc(N) = (N/π)2 sin2(π/N), which

converges to 1 in the limit N → ∞. See also [42, Lemma 12.2] for a Poincaré inequality for discrete

functions on a bounded interval that are zero at the endpoints.

Proposition 57 implies that L̃ is invertible. Using Lemma 60, we show that L̃−1 does not diverge in

the limit as N →∞, in an appropriate norm.

Lemma 61. Assume that V,U : T2 → R are continuous. Then the matrix L̃−1 is bounded uniformly

in N ∈ N, for the operator norm induced by the following norm on RN2 × R:

(γ, σ) 7→ ∥γ∥e−U−V + |σ|. (84)

Proof. The strategy of proof is similar to that used in [47, Section 2.2]. Since by the Fredholm alternative

Ran(L) = Ker(LT)⊥, the range of L is given by
{
h ∈ RN2

: hT exp .(−V −U) = 0
}
. It then follows

by Lemma 60 that the following inequality holds for all g ∈ Ran(L):

∥Lg∥∥g∥ ⩾ −⟨Lg,g⟩ = ∥Dx
Fg∥2 + ∥D

y
Fg∥

2 ⩾ Rdisc[U ]∥g∥2,

and so we deduce that that ∥L−1∥ ⩽ 1
Rdisc[U ] over Ran(L). Denote by (γ, σ) the solution to

(
−L exp .(U)

δ2 exp .(−V −U)T 0

)(
γ

σ

)
=

(
g

s

)
. (85)

This solution satisfies

−⟨Lγ,1⟩+ σ⟨exp .(U),1⟩ = ⟨g,1⟩, (86)

and since ⟨Lγ,1⟩ = ⟨γ,L1⟩ = 0, this implies

|σ| =
∣∣∣∣ ⟨g,1⟩
⟨exp .(U),1⟩

∣∣∣∣ ⩽ ∥g∥∥1∥
⟨exp .(U),1⟩

.

We then deduce that

γ − γ = −L−1
(
g − σ exp .(U)

)
, γ =

⟨γ,1⟩
⟨1,1⟩

1,
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and then the last equation in (85) gives γ = s1/∥1∥2. This leads to the bound

∥γ∥ ⩽ ∥γ − γ∥+ ∥γ∥

⩽
1

Rdisc[U ]

(
∥g∥+ |σ|∥exp .(U)∥

)
+ |s| ∥1∥

∥1∥2
⩽

∥g∥
Rdisc[U ]

(
1 +
∥exp .(U)∥∥1∥
⟨exp .(U),1⟩

)
+ |s| ∥1∥

∥1∥2
.

In the limit N →∞, it holds that

∥1∥ →

√∫
T2

e−V−U , ∥exp .(U)∥ →

√∫
T2

e−V+U , ⟨exp .(U),1⟩ →
∫
T2

e−V ,

which enables to conclude the proof.

We are now ready to prove the convergence of the solution of the discretized Poisson equation (77)

in the limit N →∞.

Proposition 62. Suppose that Assumption 7 is satisfied. Let ϕ denote the exact solution to (20) and

let I = µ(f). Let also (ϕN , IN ) denote the solution to the discretized equation (77). Then it holds that

∥ϕN −ΠNϕ∥ −−−−→
N→∞

0, IN −−−−→
N→∞

I.

Proof. The proof is an application of the standard Lax equivalence theorem. We denote the matrix of

the linear system (77) by L̃N to emphasize its dependence on N . Convergence follows from the usual

argument:∥∥∥∥∥
(
ΠNϕ− ϕN

I − IN

)∥∥∥∥∥ ⩽ C

∥∥∥∥∥L̃N

(
ΠNϕ− ϕN

I − IN

)∥∥∥∥∥ =

∥∥∥∥∥L̃N

(
ΠNϕ

I

)
−

(
ΠN

(
feU

)
0

)∥∥∥∥∥ −−−−→N→∞
0,

where the norm in this equation is that defined in (84). The first inequality follows from the stability

statement of Lemma 61, while the limit follows from the consistency of the discretization, which is

simple to check given that ϕ is a smooth function under Assumption 7, and relying on the presence of

the factor δ2 in the definition (76).

The main interest of the discretization (77) lies in the following statement, which may be viewed as

a result on the commutation of the discretization and derivative operators. In order to be more precise,

we denote by (ϕN , IN ) the solution to (77) and let

σ2
f,N [U] =

2ZN [U]

Z2
N

∥∇FϕN∥2, where

{
ZN := δ21T exp .(−V),

ZN [U] := δ21T exp .(−V −U).
(87)

The following statement shows that the functional derivative of σ̂2
f [U] has a structure similar to that

of σ2
f [U ] given in (21); it may be viewed as a discretization thereof.

Proposition 63 (Functional derivative of σ2
f,N ). Suppose that V,U : T2 → R are uniformly bounded.

The functional derivative with respect to U of σ2
f,N is given by

1

2
dσ2

f,N [U] · δU =
ZN [U]

Z2
N

〈
δU , |∇FϕN |2 − |∇FϕN |2

〉
, |∇FϕN |2 :=

∥∇FϕN∥2

ZN [U]
. (88)

Notice that (88) is very similar to the formula (45) for the functional derivative of σ2
f [U ].
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Proof. The proof mirrors that of Theorem 25. In view of (81), we first rewrite

σ2
f,N [U] =

2ZN [U]

Z2
N

∥∇FϕN∥2 = −2ZN [U]

Z2
N

⟨ϕN ,LϕN ⟩

=
2ZN [U]

Z2
N

⟨ϕN ,diag
(
exp .(U)

)
(f − IN1)⟩ = 2ZN [U]

Z2
N

⟨ϕN , f − IN1⟩e−V .

Let (ϕε
N , I

ε
N ) denote the solution to (77) withU+εδU in place ofU everywhere and Lε the corresponding

matrix (78). It is simple to check, using a reasoning similar to (86) as well as the equation ⟨Lεϕε
N ,1⟩ = 0,

that the scalar term IεN = IN is fact independent of the potential U. Therefore, we obtain that

−Lεϕε
N = diag

(
exp .(U+ εδU)

)
(f − IN1).

By definition of the functional derivative, we then have

1

2
dσ2

f,N [U] · δU =
dZN [U] · δU

Z2
N

∥∇FϕN∥2 + lim
ε→0

ZN [U]

εZ2
N

⟨ϕε
N − ϕN , f − IN1⟩e−V . (89)

The functional derivative in the first term is given by

dZN [U] · δU = −⟨δU ,1⟩. (90)

For the second term in (89), we obtain

⟨ϕε
N − ϕN , f − IN1⟩e−V =

〈
ϕε

N − ϕN ,diag
(
exp .(U)

)
(f − IN1)

〉
e−V −U

= −⟨ϕε
N − ϕN ,LϕN ⟩e−V −U

= −⟨L(ϕε
N − ϕN ),ϕN ⟩e−V −U

= −⟨Lεϕε
N ,ϕN ⟩e−V −U−εδU + ⟨LϕN ,ϕN ⟩e−V −U

− ⟨Lϕε
N ,ϕN ⟩e−V −U + ⟨Lεϕε

N ,ϕN ⟩e−V −U−εδU .

The first two terms in the last expression cancel out, and after substituting the expressions of L and Lε

given in (78) in the other two terms, we obtain

⟨ϕε
N − ϕN , f − IN1⟩e−V = −⟨Dx

B(M −M ε)Dx
Fϕ

ε
N ,ϕN ⟩1 − ⟨D

y
B(M −M ε)Dy

Fϕ
ε
N ,ϕN ⟩1,

where

M −M ε := diag
(
exp .(−V −U)

)
− diag

(
exp .(−V −U− εδU)

)
.

Noting that

lim
ε→0

M −M ε

ε
= diag

(
exp .(−V −U)

)
diag(δU),

we deduce that

lim
ε→0

ZN [U]

εZ2
N

⟨ϕε
N − ϕN , f − IN1⟩e−V =

ZN [U]

Z2
N

〈
δU , |∇FϕN |2

〉
e−V −U .

Combining this equation with (89) and (90), we deduce (88).
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