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Robustness of the detection of anomalies in
a network control in case of parsimonious

observation

Löıc Desgeorges, Jean-Philippe Georges, Thierry Divoux

Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
(e-mail: firstname.name@univ-lorraine.fr).

Abstract: Software Defined Networking (SDN) is a networking architecture within the control
is centralized through a software-based controller. Hence, the controller represents a single
point of attack which makes the controller a preferred target in case of attack. In previous
work, an observer has been introduced in order to detect any anomalies in the network control
(in particular, in the data planes which are set up). The detection method is based on the
assumption that the observer captures all the packets sent and received by the controller. This
paper introduces an extension of the detection approach to improve the robustness in case of
partial or parsimonious observation, more specifically when the complete data plane cannot
be observed. The evaluation of the consistency of the data plane is adapted by definition of
necessary condition which permits to conclude that the data plane is inconsistent. In the absence
of evidence, a function which permits to compute the level of confidence in the consistency of
the data plane is introduced. The efficiency and the limitations of such method is discussed on
a case study.
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1. INTRODUCTION

During the last decade, a huge activity in networking
has focused the Software-Defined Networking (SDN) ar-
chitecture, as presented in Farhady et al. (2015). Fun-
damentally, SDN separates the control from the network
devices, by centralization of control through a software-
based controller which takes all the decisions related to
the network Kreutz et al. (2014). However, from a security
point of view, the controller is a preferential target as
summarized in Kreutz et al. (2013) and Scott-Hayward
et al. (2013). In case of an attack of the controller, the
attacker has access to the whole network and can damage
the network (for example by flooding the tables of the
switches or by modifying the content of the commands
sent by the controller as developed in Lee et al. (2017) or
Fonseca et al. (2012)). To solve this issue, Desgeorges et al.
(2022) introduced a specific control architecture within one
controller and one observer in charge of the detection of
anomalies in the control as presented in Fig. 1.

The topic of the paper is to study the limits of the methods
to detect anomalies of the controller. Indeed, it is generally
assumed that the observer has access to all the packets
send and received by the controller. However, in a network
context, this assumption might not be verified as shown
by Petit et al. (2016) and Montanari and Aguirre (2020).
Indeed, due to a burst during the observation or in case
of a hybrid SDN architecture (as defined by Amin et al.
(2018) and Sinha et al. (2017)), the observer does not have
access to the whole decisions but only to parsimonious
data. Also, it has to be mentioned the development of
wireless southbound interface in the literature as presented
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in Dvir et al. (2019). In such a case, the capture of packets
by the observer is unreliable and the activity of the control
is not fully observed by the observer. Hence, the detection
method developed cannot be applied anymore. Some works
like Castillo et al. (2008) aim at determining the position of
the sensors to observe enough information and being able
to infer over the whole network. In this objective, they
identified which are the link flows that can be calculated
based on a subset of observed link flows. Hence, they
determine the minimum link flows needed for the capture
and the computation. However, parsimonious observation
issues may have several origins. It can be a random lack
of information (due to a miss in the capture) or it can
be a technological issue (the impossibility to capture at
some points). Depending on the source, the consequence
is totally different. Regarding a hybrid SDN architecture,
the hidden part of the data plane is fixed while in the case
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of a burst, the location, the duration and the number of
packets lost may vary.

In this work, we do not make any assumptions about the
observability issue. Classically, the aim of the detection
approach is to determine a likelihood score for each data
plane in order to determine if the data plane is abnormal
or not. The problem here is to make robust the detection
approach if the observer does not have a complete data
plane, specifically in case of parsimonious observation.

Firstly, a reminder of our detection method is presented.
Then, the observability problem is developed. A method to
solve these problems is introduced and finally the method
is applied on a case study.

2. ANOMALIES DETECTION APPROACH

The detection approach is represented in Fig. 2. Besides
the controller in charge of the control (setting up a
forwarding plane), an observer is added. It has only access
to the activity of control, Σ, which corresponds to the
messages exchanged at the southbound interface. The aim
of the observer is to detect any anomaly in the control.

2.1 Activity of the controller

The messages exchanged at the southbound interface are
normalized through a protocol name OpenFlow ONF
(June, 2012). According to the specification, the packets
can be classified in four types:

• I: the set of ”Packet In” messages which are requests
from the switches to the controller about what to do
with an incoming flow.

• A: the set of ”Flow Mod” messages which are the
commands send by the controller to the switches.
Such packets are used by the controller to set up a
forwarding plane.

• P: the set of ”Port Status” messages which are noti-
fications from the switches of the state of their ports.
This means that there is an evolution of the network
topology (at the data plane level).

• S: the set of ”Multi Part” messages which are statis-
tics of the switches sent to the controller. These statis-
tics are sent in response to requests from the con-
troller though ”MultiPartRequest” noted stat. Ac-
cording to ONF (June, 2012) there are several kinds
of statistics given by the switch.

The activity of the controller corresponds to the set Σ =
I∪A∪P∪S. The list of demands D for which the controller
decided to install active routes at time t is given by:

D (t) = {(s, d) | ∃σ ∈ A, tσ ∈ [t− δ, t] , sσ = s, dσ = d}
δ consists of the time to live of the actions applied by the
controller such that an action set up at t−δ−ϵ is still valid
at t. The active data plane P (the set of active routes) at
a given time t is then defined by:

P (t) =

∗⋃
∀(s,d)∈D(t)

µ (t, s, d)

The aim of the detection method is to evaluate the
likelihood score of every data plane P captured in order to
determine if there is a deviation compared to the nominal
behaviour.

2.2 Detection method

In order to evaluate if a data plane P is consistent,
the observer firstly checks that each route in the plane
satisfies three properties: no loop, no dead node and the
destination is reached. This is necessary condition but not
sufficient (the plane might not be optimal for instance).
The observer needs to compare the running behaviour
of the control to the unfaulty commands observed. We
propose then to determine the likelihood of a data plane
L (P ) according to a multi-criteria approach:

L (P) = Σn
i=1αi × pi

with:

• (αi)i∈[1,n]: the criteria weights such that Σn
i=1αi = 1

• (pi)i∈[1,n]: the likelihood of the criteria i

Hence, a data plane implemented by the controller is
assumed to be consistent if and only if its likelihood is
lower than a threshold noted TD, L (P) < TD. In this
work, the limit is assumed to be fixed but it is possible
to adapt the method and to consider a threshold which
depends on the time.

In order to simplify the explanation, only one criterion
is considered in this paper. It consists of comparing the
routes of the observed planes to the ones known as consis-
tent. It gives:

L (P) = p1
with p1 is the likelihood of the observed sequence of
decisions of the control. There are several possibilities



to determine L(P). However, there is a constant: the
decisions taken by the controller depend on its interns
variables. We are assuming that the evolution follows a
Markov Process. Thus, we propose to use the Hidden
Markov Model (HMM) formalism introduced in Baum and
Petrie (1966).

3. IMPACTS OF PARSIMONIOUS OBSERVATION

The previous approach was based on the assumption that
every packet (requests I and commands A) was observed
by the observer. However, the observability in a network
is still challenging Montanari and Aguirre (2020) and in
a classical network context this assumption is not always
verified. For example, in a SDN architecture with a wireless
southbound interface, as the one presented in Ku et al.
(2014), the observer may miss some packets. In such
architecture, the placement of the observer may lead to
the misscaputre of some packets. Hence, the activity of
the control is not fully observed by the observer. Also, in
a hybrid SDN approach like the one proposed in Amin
et al. (2018), not all traffic pass by the southbound
interface which means that the observer does not have
access to the whole data plane. Also, in case of a burst
transmission, some packets might not be captured by the
observer (the issue may be due to memory saturation
or CPU limitations). In such a case, the observer will
raise an alarm while there is no specific threat. Hence,
as it stands, detection methods are not robust to such
situation. To be general, we do not have any assumptions
about the behaviour of the observability problem and
we will consider a full random observability issue. As a
consequence, the set of packets involved in the control is
divided in two parts:

Σ = ΣO ∪ ΣNO

with:

• ΣO: the set of packets observed
• ΣNO: the set of packets unobserved. There is not
particular assumptions about the number of packets
missing and their contents.

To simplify, we assume that the controller is pro active
(commands are installed periodically, not in response to
specific requests I). Hence, only the actions are considered
such that:

Σ = AO ∪ ANO

Consider the topology given in Fig. 3.

Let’s focus on the installation of a route between the nodes
4 and 11. In case of a burst during the observation, the
observer is not able to capture all the commands sent by
the controller and it cannot recover the full data plane. A
parsimonious observation of a nominal route (4-2-1-9-10)
may lead to the two following incomplete planes:

P1 =

(
1− 2
9− 10

)
P2 =

 4− 2
2− 1
1− 9
10− 11
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Fig. 3. Topology

They are graphically represented, respectively, on Fig. 4a
and Fig. 4b. The blue lines represent the decisions con-
tained in the Flow Mod packets observed by the observer
(AO).
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Fig. 4. The two data planes captured

A first task of the observer might be to determine what
is missing. Regarding Fig. 4b, there are not a lot of
possibilities. It seems like just the last command is missing.
However, regarding Fig. 4a, there are a lot of possible paths
from this composition. In both cases, the objective is to
find a method to determine that these captured planes (P1

and P2) are in fact an incomplete observation of the full
plane and as a consequence, to not detect here an error of
the controller. The challenge is to avoid accepting planes
that appear to be incomplete when they are the result of a
failure or an attack (like the Control Message Drop attack
presented in Lee et al. (2017)).

It has to be mentioned that the captures given in P1

and P2 (as represented in Fig. 4) correspond to two



examples of parsimonious observation which justify the
related problematic. However, the objective is not to be
exhaustive over the possible parsimonious observations.

4. METHODOLOGY

Firstly, the detection method is based on a priori knowl-
edge of the control logic. As presented in Desgeorges et al.
(2021), the observer lets a fixed time (δ) to the controller
to send all commands (A) in response to a request (I) or a
time event. Based on the commands captures, the observer
should then check the consistency of the data plane.

However, if there is observability issues, the data plane
might not fully be observed and so the verification might
lead to a non-consistent plane and the observer might raise
an alarm. There are two possibilities, the data plane is
fully captured, then a detection approach can be applied to
determine its consistency. Otherwise, what follows defined
the detection method applied.

4.1 Consistency

The first thing is to verify the consistency of the data
plane. Here, we are assuming that the data plane is not
fully captured as represented on Fig. 4 such that the paths
are not full. Indeed, the aim of this step is to check that
the data plane captured verifies a set of properties which is
sufficient to assume that the full data plane is inconsistent.
Regarding the properties introduced in Desgeorges et al.
(2021) for a routing application, we can verify that there
is no loop. However, it is not possible to conclude with the
consistency regarding the two following properties:

• No dead node: we may have dead node in the part
of the data plane observed because some packets
(commands) are missing in the capture

• The destination has to be reached: the command
in direction of the destination may not have been
captured

Since the consistency of the data plane cannot be di-
rectly evaluated, we will assume that it is verified. As
it is a strong assumption, the level of confidence in this
assumption needs to be determined. In this objective, we
introduce iConf (P) as the level of confidence of the data
plane P. We propose here to define this function as the
ratio between the number of commands P and the average
number of commands in a data plane observed PObs, as
follows:

iConf (P) =
|P|

averagePObs
(|PObs|)

A limit TD of this ratio has to be fixed such that if
iConf (P) > TD, then we made the assumption that the
data plane is consistent. Based on this assumption, the
likelihood score of the data plane has to be determined.

4.2 Likelihood

As a reminder, the likelihood score of the data plane is
determined using a HMM which analyzes the statistics of
the sequence of data plane observed. The set of all possible

unobserved actions which completes AO in order to obtain
a consistent data plane is defined by ANO,P :

∀ANO ∈ ANO,P =⇒ ANO ∪ AO = P| P is consistent

Considering the set of actions observed P1, shown in Fig.
4b, we have:

ANO,P =

{(
9− 10

)
,

(
9− 7
7− 8
8− 10

)}

The correct data plane is part of this set. Since it is not
possible to prove that the part of the data plane captured
is inconsistent, a level of reliability should be given to
the controller by tolerating more or less that information
is missing and thus potentially reinforcing the likelihood.
The most restrictive definition is to consider the worst case
such that the likelihood score is computed as follows:

L′(P) = min
ANO∈ANO,P

L(P ′ = ANO ∪ AO) (1)

It is also possible to be more flexible and considered other
functions such as the average as follows:

L′(P) = averageANO∈ANO,P
L(P ′ = ANO ∪ AO) (2)

It is clear that the length of ANO,P has an impact over
the tolerance let to the controller. As an example, let us
consider the two captures P1 and P2. In the first capture,
there are many more possibilities to obtain a consistent
data plane and so being flexible would significantly in-
crease the tolerance, and may lead to accept malicious
plane.

5. CASE STUDY

The aim of this section is to evaluate the method proposed.

5.1 Scenario

The considered topology is the one of the network GEANT
which is the European data network for research and
educational communities. It gathers 23 nodes and 37 links
as shown in Fig. 5. The network is here simulated in
Mininet 1 .

In this case study, we are focusing on the multi-objective
proactive routing strategy proposed in Casas-Velasco et al.
(2020). It is based on a reinforcement learning technique
aiming at optimizing the delay, the packet loss and the
available link bandwidth. For the traffic, we are using
the dataset TOTEM 2 which provides intra-domain traffic
matrices for the GEANT topology. The control is attacked
by setting up malicious data planes as developed in Lee
et al. (2017) such that some demands might not be served.

To simulate control packet loss, we randomly deleted from
the observed data plane some commands (A), such that
the determination of the cause of an incomplete plane
remains ambiguous (might be due to a loss or an attack).
The commands deleted are chosen here in order to retain
1 http://mininet.org/
2 https://totem.info.ucl.ac.be/dataset.html
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the choice between 10 other data planes without the
likelihood being altered. To note that the performance of
the function iConf (P) is proper to the observation issue
considered while the limit TD permits to define the scope
of the possible unknown observation tolerated. This setup
is now used to analyze the likelihood computation and,
more generally speaking, the complexity of the network
observability.

5.2 Analysis

Fig. 6 shows the evolution of the likelihood score L′(P)
computed by the HMM. The HMM is configured with a
depth of the considered sequence (the number of elements
in a sequence) fixed to 3 (comprise between accuracy
and complexity given that attacks are detected for depth
> 2). The first curve, named ”Nominal”, represents the
evolution of the likelihood score without any observation
issue. The two other curves represent the likelihood score
depending if the function used is Min or Average.

Consider first the Average operator. At the observation
number 42, it can be seen on Fig. 6 that the likelihood
score using Average is larger than the likelihood score
of the nominal data plane (the one installed by the
controller). This nominal data plane can be one of the
rarest possibilities and so considering the Average permits
to consider all the possible data planes and so increases
the likelihood score. Such operator might then overrate
the likelihood score of the observation. There is indeed a
threat of retaining an abnormal data plane and to raise
false alarms but also false negative.

Secondly, Fig. 6 shows that the likelihood score calculated
by the Minimum operator remains lower than the nomi-
nal case. Here, the worst case is considered and it means
that the likelihood of the installed data plane is equal or
upper and so we are not exposed to a false negative. It
has to be reminded some assumptions, in particular that
the packet loss is due to observability issues and that the
packets not captured by the observer corresponds to a
consistent data plane. Considering the worst case is a way
to minimize the potential to interfere with the detection
of a control anomaly and as a consequence, it improves
the robustness of the detection. To note also that such
behaviour is conservative and there might be more false
alarms considering the Minimum operator rather than
the Average.

6. CONCLUSION

In conclusion, the aim of this work is to study the limits of
the detection approach based on the assumption that the
observer has no observability issue. However, such assump-
tions are not always satisfied in a network context. This
paper introduces an extension of the detection approach
to improve the robustness in case of parsimonious obser-
vation. In particular, we showed that the evaluation of the
likelihood of a (potential) incomplete data plane needs to
be adapted and that such plane needs to be compared
to the minimal likelihood of the non-faulty complete data
planes.

The perspective of this work is to study the sensitivity of
the method proposed depending on the number of packets
missing. Also, we would like to extend the approach to the
case of encrypted communication.
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