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Abstract A distance based on the exponential kernel of the adjacency matrix of a

graph and representing how well two vertices connect to each other in a graph is de�ned

and studied. This communicability cosine distance (CCD) is a Euclidean spherical

distance accounting for the cosine of the angles spanned by the position vectors of

the graph vertices in this space. The Euclidean distance matrix (EDM) of CCD is

used to quantify the similarity between vertices in graphs and networks as well as

to de�ne a local vertex invariant�a closeness centrality measure, which discriminate

very well vertices in small graphs. It allows to distinguish all nonidentical vertices,

also characterizing all identity (asymmetric) graphs�those having only the identity

automorphism�among all connected graphs of up to 9 vertices. It also characterizes

several other classes of identity graphs. We also study real-world networks in term

of both the discriminating power of the new centrality on their vertices as well as in

ranking their vertices. We analyze some dictionary networks as well as the network of

copurshasing of political books, remarking some of the main advantages of the new

approaches studied here.

Keywords: communicability; matrix functions; graph automorphism; centrality mea-

sures; graph symmetry; vertex similarity
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1 Introduction

In the classic book of Wasserman and Faust [1] it is stated that �one of the primary uses

of graph theory in social network analysis is the identi�cation of the �most important�

actors in a social network�. Such identi�cation is mainly done by means of the so-

called �centrality measures�. A vertex centrality measure is a local vertex invariant,

i.e., a property of vertices that is equal for pairs of vertices interchangeable by an

automorphism [2]. Therefore, the vertex degree is a centrality measure, i.e., the more

connections a vertex has, the most important it is. Although the pioneering work of
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Bavelas [3] about centrality were based on counting walks in the graph, the in�uential

works of Freeman [4, 5] about �closeness� and �betweenness� centrality put a lot of

emphasis on counting geodesics�shortest paths�in the graphs. The shortest path (SP)

between two vertices is the shortest (in terms of number of edges) of all sequences of

distinct vertices/edges (paths) connecting the two vertices. Di�erently, a walk allows

for the repetition of both vertices and edges. The closeness centrality (CC) accounts for

how close in terms of SP a vertex is in relation to the rest of the vertices in the graph.

The betweenness centrality (BC) refers to the importance that a vertex has in the SP

communication between other pairs of vertices (see [6] for de�nitions and properties of

these and other centrality measures).

What it should mean, for instance, that the peaks of two mountains are separated

at a distance x? This information is very valuable for an eagle who can �y from one

peak to the other. For a mountaineer, this information is useless because she cannot

�y, but has to go down from the �rst peak and hike the second one. The same happens

if we say that the average SP distance in a network is y (see [7]). If �items� are not

traveling through the shortest paths�which can only be the case when the sender has

complete information about the topology of the network�the information about the SP

is useless. It is not surprising, however, that such measures like the CC based on SP

brings some information about dynamical processes which do not take place through

the SP but using di�usive patterns of spreading. These are the cases, for instance,

of epidemic spreading or synchronization of couple oscillators, which are well-known

di�usive processes. What happen is similar to the fact that the mountaineer can guess

how much e�ort it will cost to go down the �rst mountain and hike the second one by

using the distance between the two peaks. CC based on SP can �guess� how a di�usive

process takes place (see for instance [8]), but it does not provide a precise information

about such processes because it is out of its designed scope.

Nowadays centrality measures are used beyond social network analysis in a broad

spectrum of computational analysis of networked systems. They include, for instance,

use in dynamics on networks (synchronization, consensus, epidemics, information spread-

ing), pattern recognition, community detection [9, 10], dimensionality reduction [11]

and isomorphism detection [12]. The last two topics are of particular interest for the

current work. The main idea of dimensionality reduction is to �reduce� a large-scale

network to a smaller one while preserving some of its global structural characteristics.

Chen et al. [11] proposed to use centrality measures for this purpose, such that by

removing the least central vertices they were reducing the size of the networks while

observing that certain structural features were preserved. The second application is

that of determining whether two graphs are isomorphic, for which there exist no de-

terministic polynomial-time algorithm. The strategy is to rank the vertices of two test

graphs using a given centrality [12]. If they are not the same, then the two graphs are

not isomorphic. If they have the same ranked sequences, then they are declared to be

potentially isomorphic and con�rmed through additional heuristics. Both applications

of centrality measures, dimensionality reduction and graph isomorphism detection, are

heavily dependent on the discriminant power of the centrality measures used. For in-

stance consider a regular graph. In this case, the eigenvector centrality (EC)�the entries

of the eigenvector associated to the spectral radius of the adjacency matrix (see [6])�is

the same for every node. Therefore, there is no chance of ranking the nodes to start

a pruning based on the least central ones. If you are detecting whether two k-regular

graphs of degree k are isomorphic or not using the EC you will end up always by

using an additional heuristics because both graphs have the same list of EC. The dis-
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criminant power of a centrality measure in general refers to the capacity of the index

to di�erentiate pairs of vertices [13]. A better de�nition should be given in term of

the capacity of a centrality index to di�erentiate nonidentical pairs of vertices, where

identical vertices are those which can be swapped by an automorphism.

The problem of graph automorphism is intimately related to the symmetry of

graphs. This problem has been treated in the mathematical literature using several

approaches [16, 17]. More recently, the problem of analyzing the size of the automor-

phism group in large real-world networks has been explored [18�22]. The size of the

automorphism group refers to the number of symmetric operations which swap the

vertices of the graphs leaving unaltered its adjacency matrix. Then, it is clear that

a complete graph on four vertices K4 is more symmetric than a cycle graph of the

same size C4. While the �rst has |Aut (K4)| = 24�there are n! di�erent symmetries in

Kn, the second has |Aut (C4)| = 8, n rotational and n re�ection symmetries in Cn.

However, from a vertex point of view it is true that both graphs have exactly the same

number of identical pairs of vertices, which is equal to four. There are many more ways

of swapping the vertices in Kn than in Cn but what an �inspector� of these graphs

�sees� is that both are formed by four identical vertices. This is the important problem

of vertex similarity�more appropriately vertex identity [24�28]. Symmetry groups has

also been used as a proxy for the calculation of SP distance invariants in graphs [23].

Here, I will propose a distance metric between vertices in a simple graph. I will

prove that this distance, which appears naturally from the way in which di�usive

objects navigate a graph, is Euclidean and spherical, i.e., induces an embedding of the

graph in a Euclidean hypersphere. I will then propose to use the Euclidean distance

matrix (EDM) of communicability cosine distances (CCD) as a quantitative proxy

to detect similarity between vertices and show some problems arising with a popular

existing measure. Such drawbacks are corrected by the new method proposed here.

Further I will de�ned and study a measure of closeness centrality based on CCD.

This measure di�erentiates very well vertices in small graphs, allowing to distinguish

all nonidentical vertices in connected graphs of up to 9 vertices. I also study several

identity (asymmetric) graphs with this measure, all of whose vertices are di�erentiated

by the new closeness centrality. Real-world networks are also studied for both the

discriminating power of the new centrality on their vertices as well as for ranking their

vertices. Several of the advantages of the communicability closeness centrality proposed

here are analyzed along the paper.

2 Preliminaries

Here we consider simple (�nite, undirected, unweighted and connected) graphs G =
(V,E) with #V = n and #E = m. As usual, A denotes the adjacency matrix of

the graph G, which is obviously symmetric for the kind of graphs we study here. We

consider that A = UΛUT where Λ is a diagonal matrix of eigenvalues of A and U is

an orthogonal matrix of eigenvectors.

A walk of length l in a graph is a sequence of (not necessarily di�erent) vertices

v1, v2, . . . , vl, vl+1 such that for each i = 1, 2, . . . l there is an edge from vi to vi+1.

The walk is known as closed if vl+1 = v1. The number of walks of length l between

vp and vq is given by
(
Al
)
pq
. Hereafter we will designate the vertices directly by the



4 Ernesto Estrada

subindex, such as p and q. A path is a walk in which there is no repetition neither of

vertices nor of edges. We also denote by u an all-ones vector.

Let us now consider a few de�nitions related to the communicability function of

networks [29, 30].

De�nition 1 The communicability function between two nodes v, w ∈ V of G is given

by

Gvw = (exp (βA))vw , (2.1)

where exp (βA) = I + βA+
(βA)2

2!
+ · · ·+ (βA)k

k!
+ · · · is the matrix exponential of

A and β is an empirical parameter which may be set to one for the sake of simplicity.

Obviously, due to the spectral decomposition of the adjacency matrix we have

Gvw =
n∑

j=1

ψjvψjw exp (βλj) , (2.2)

where ψjv is the vth entry of the eigenvector associated with the jth eigenvalue λj of

A.

De�nition 2 The term Gvv = (exp (βA))vv is the subgraph centrality [31] of the

node v and it accounts for the importance of a node in terms of its participation in

all subgraphs of the network giving more importance to the smaller than to the larger

ones.

De�nition 3 The terms [32, 33]

ξvw := Gvv +Gww − 2Gvw, (2.3)

and

ζvw :=
Gvw√
GvvGww

, (2.4)

account for the proximity between the nodes v and w in terms of the way in which they

transmit �information� from each other. If ξvw or ζvw are small it means that most of

the information sent from v (resp. w) to w (resp. to v) arrives to its destination, in

contrast to the information which is returned to the origin.

Lemma 1 The terms ξvw and ζvw are a squared Euclidean distance between the ver-

tices v and w and cosine of the angle between the position vectors of both vertices in a

Euclidean space, respectively.

Proof First let us write
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G = eA

= UeΛUT

= UeΛ/2eΛ/2UT

=
(
eΛ/2UT

)T (
eΛ/2UT

)
= XTX.

(2.5)

Therefore,

Gvw = xv · xw, (2.6)

where xi = eΛ/2φi represents the position vector of the vertex i in the Euclidean

space induced by the communicability and φi is the ith column of UT . Thus, we have

ξvw = xv · xv + xw · xw − 2xv · xw
= ∥xv − xw∥2 ,

(2.7)

and

ζvw =
xv · xw

∥xv∥ ∥xw∥
= cos θvw. (2.8)

⊓⊔

Another known Euclidean distance between the vertices of a graph is the so-called

resistance distance, which is formally de�ned below.

De�nition 4 Let L = K − A be the Laplacian matrix of a graph, where K is the

diagonal matrix of vertex degree and A its adjacency matrix. Then,

Ωvw := L+
vv + L+

ww − 2L+
vw, (2.9)

is the resistance distance [34] between the vertices v and w in the graph, where L+ is

the Moore-Penrose pseudoinverse of the Laplacian matrix.

De�nition 5 Let dvw and Ωvw be the shortest-path and resistance distance between

the vertices v and w in a graph. Then,

CCv =

(
n∑

w=1

dvw

)−1

, (2.10)

and

RCCv =

(
n∑

w=1

Ωvw

)−1

, (2.11)

are the closeness [3] (see also [1, 6]) and resistance-closeness [35] centrality of the vertex

v, respectively.
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Other de�nitions needed in the current work are the following.

De�nition 6 Let D = (dij) be an n×n matrix. Then, D is called Euclidean distance

matrix (EDM) if there exist points p1, p2, . . . , pn in some Euclidean space Rr, such

that

dij =
∥∥∥pi − pj

∥∥∥2 , (2.12)

for all i, j = 1, . . . , n, where ∥∥ denotes Euclidean norm. An EDM D is called spherical

EDM or circum-EDM if the points p1, p2, . . . , pn that generate D lie on a hypersphere

[36, 37]. The matrix having entries given by ξvw is a spherical EDM [39].

Let us now consider some de�nitions on graph automorphism which will be used in

this work (see [2]).

De�nition 7 Let G = (V,E) be a simple graph. A permutation α of V is an auto-

morphism of G if

{v, w} ∈ E ⇐⇒ {α (v) , α (w)} ∈ E,

for all v, w ∈ V .

De�nition 8 The set of all automorphisms of G, together with the operation of com-

position of functions, forms a subgroup of the symmetric group of V, which is called

the automorphism group of G, and it is denoted by Aut (G).

De�nition 9 Two vertices v and w in a graph G are identical (usually called similar

[24] in graph theory) if some automorphism of G maps v onto w. If v and w are

identical vertices in G then the graphs G−v and G−w, obtained by deleting v and w,

respectively, from G, are isomorphic. However, this is not true the other way around

because it is possible for G − v and G − w to be isomorphic even when v and w are

not similar. In this case the nodes are pseudoidentical (usually pseudosimilar [25, 26]

in graph theory).

De�nition 10 A graph in which there is no pair of identical vertices is known as

asymmetric or identity graph [27]. Let ι be the identity of any group of permutations.

Then, the graph G is asymmetric if ι is its only automorphism.

3 Communicability cosine distance

The communicability distance ξvw between two vertices v and w, previously de�ned and

studied, is an unbounded magnitude. On the contrary, the communicability angle θvw is

always bounded between 0° and 90° for unweighted graphs [33]. This boundedness may

represent an interesting characteristic for comparing properties within and between

graphs. Therefore, here I propose a transformation of the communicability angle into

a communicability cosine distance which is bounded and display a few mathematically

interesting properties. Let me start with the following.
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De�nition 11 Let cos θvw be the cosine of the communicability angle. Then

Dvw = 2− 2 cos θvw, (3.1)

is the squared communicability cosine distance (CCD) between the nodes v and w in

G.

De�nition 12 The CCD matrix D is the square, symmetric matrix whose v, w entry

is Dvw.

Now, I will prove some of the mathematical properties of the CCD.

Lemma 2 The CCD is a squared Euclidean distance between the corresponding pair

of nodes in G.

Proof Let us write

Dvw = 2− 2
xv · xw

∥xv∥ ∥xw∥
, (3.2)

which can be expressed as

Dvw =
xv · xv
∥xv∥2

+
xw · xw
∥xw∥2

− 2
xv · xw

∥xv∥ ∥xw∥

=

∥∥∥∥ xv
∥xv∥

− xw
∥xw∥

∥∥∥∥2 , (3.3)

which proves the result. ⊓⊔

Theorem 1 The CCD matrix is a spherical EDM.

Proof First, let write the matrix D as follows:

D = 2
(
uuT − S−1/2eAS−1/2

)
, (3.4)

where S is the diagonal matrix with diagonal entries Svv =
(
eA
)
vv

.

To prove that D is circum-Euclidean it is needed to prove that D−1 exists and

uTD−1u > 0. Then let me �nd D−1 using the Sherman-Morrinson formula:

1

2
D−1 = −S1/2e−AS1/2 − S1/2e−AS1/2uuTS1/2e−AS1/2

1− uTS1/2e−AS1/2u
. (3.5)

To prove that D−1 exists it is only needed to prove that uTS1/2e−AS1/2u ̸= 1.
Then, let J = uuT and write

a = uTS1/2e−AS1/2u

= Tr
(
S1/2e−AS1/2J

)
= Tr

(
e−AS1/2JS1/2

)
= Tr

(
e−AZ

)
,

(3.6)



8 Ernesto Estrada

where Z = S1/2JS1/2.

Now, I will use Ruhe's trace inequality [38] to �nd

Tr
(
e−AZ

)
≥

n∑
j=1

λj (Z)λn−j+1

(
e−A

)
= λ1 (Z)λn

(
e−A

)
,

(3.7)

where λj (Z) = {λ1 (Z) , 0, . . . , 0} are the eigenvalues of Z. It is straightforward to

realize that λ1 (Z) = EE (G) = Tr
(
eA
)
, which is known as the Estrada index of the

graph (see [40]), and λn

(
e−A

)
= e−λ1(A), where λ1 (A) is the spectral radius of A.

Therefore,

a = Tr
(
e−AZ

)
≥ e−λ1(A)Tr

(
eA
)
= e−λ1(A)

n∑
j=1

eλj(A)

=
n∑

j=1

eλj(A)−λ1(A) = 1+
n∑

j=2

eλj(A)−λ1(A) > 1,

(3.8)

with the last inequality due to the fact that the graph is not trivial.

Now, let me prove that uTD−1u > 0, for which I will start by writing

1

2
uTD−1u = −uTS1/2e−AS1/2u− uTS1/2e−AS1/2eeTS1/2e−AS1/2u

1− uTS1/2e−AS1/2u
.

= −a− a2

1− a
=

1

a− 1
> 0,

(3.9)

where the last inequality is due to the fact that a > 1 as proved before. ⊓⊔

Remark 1 The previous result indicates that the CCD induces an embedding of a graph

into a Euclidean n-dimensional sphere of radius (see [39]):

R =

√
1

2
(uTD−1u)

−1
=

√
a− 1. (3.10)

In a recent paper [41] I have proved that every circum-EDM is the e�ective resis-

tance matrix of a graph with appropriate edge weights.

4 Communicability cosine distance as vertex similarity

It is obvious that the EDM of communicability cosines distances represents a dissim-

ilarity matrix where the nondiagonal entries represent the dissimilarity between the

corresponding pair of nodes. Such dissimilarity accounts for how well communicated a

pair of nodes are in the network based on the ratio of the number of weighted walks

connecting them to the number of weighted walks that start and end in the correspond-

ing nodes. Here, the weight is given by the reverse of the factorial of the length of the

walk.
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The use of di�erent graph measures to account for vertex similarities is not new. In

fact, the use of the so-called structural equivalence, where two vertices sharing many of

the same network neighbors are considered structurally equivalent, dates back to the

1970's [42]. Further developments include the regular equivalence, in which vertices are

said to be similar if they are connected to other vertices that are themselves similar [43,

44]. More recent approaches include the use of algebraic methods, such as the method

proposed by Blondell et al. [45] as a generalization of Kleinberg's �hub and authority�

method [46], and the method proposed by Leicht, Holme and Newman (LHN) [47] on

the basis of the so-called Katz centrality index [48]. In this last approach two vertices

are similar if their immediate neighbors in the network are themselves similar, which

leads to a self-consistent matrix formulation of similarity that can be evaluated in an

iterative way using only a knowledge of the adjacency matrix of the network. LHN

[47] tested their measure, among other networks, for extracting sensible synonyms to

words from a network representing the structure of Roget's Thesaurus [49], similarly to

what Blondell et al. [45] have done before. In general, the authors considered that this

new measure is capable of extracting useful information about vertex similarity based

on network topology and that it displays some advantages in relation with previously

de�ned measures. Therefore, I will concentrate here in the comparison between the

CCD dissimilarity and that of LHN. More formally, the similarity matrix proposed by

LHN [47] is as follows.

De�nition 13 Let G be a graph with adjacency matrix A and let K be the diagonal

matrix of vertex degrees. The LHN similarity between two nodes v and w is given by

the v, w entry of the following matrix

N = 2mλ1K
−1

(
I − α

λ1
A

)−1

K−1, (4.1)

where m is the number of edges, λ1 is the spectral radius of A, I is the identity matrix

and 0 < α < 1 is an empirical parameter.

LHN [47] performed a brief analysis of the parameter α in their paper determining

empirically that a value of α = 0.97 was the most appropriated for the analysis of vertex

similarities in networks. Because 0 ≤ Dvw ≤ 2, I will consider here Dvw = 1
2Dvw,

which is then bounded as 0 ≤ Dvw ≤ 1 as required by any dissimilarity metric. I then

applied here the two measures Dvw and Nvw to the analysis of similarities between

words in the Roget Thesaurus network. It should be noticed from the eq. (4.1) that the

diagonal entries of N are not one, like it is common in all similarity matrices. However,

it should be not a problem if Nvv > Nvw for all w ∈ V . That is, a vertex is most

similar to itself than with any other vertex in the graph. This is indeed observed for

all the vertices in the network of the Roget Thesaurus. For the comparison of the two

approaches I have considered the same words analyzed by LHN [47] and the results are

displayed in Table 1.
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alarm hell

Nvw Dvw Nvw Dvw

warning warning heaven pain
danger omen pain dejection
omen indication discontent heaven

indication prediction adversity discontent
caution threat pleasure physical pain

mean water
Nvw Dvw Nvw Dvw

compromise imperfection plunge plunge
middle unimportance moisture insertion

generality smallness air moisture
mid-course inferiority insertion river

compensation weakness river egress

Table 1: Top �ve most similar words found by the LHN similarity measure, Mvw, and

by the cosine communicability similarity, Nvw, for the words �alarm�, �hell�, �mean�

and �water�.

As can be seen in Table 1 there are some di�erences between the ranking of words

performed by both approaches, but in general they are qualitatively very similar. For

instance, for �alarm� both methods identify �warning� as the most similar one and

then rank �omen� and �indication� in the top �ve. For �hell�, LHN identi�es �heaven�

as the top similar word while the new method identi�es �pain� as the top one, which

is then ranked as the second most similar by LHN. For �mean� the words in the top

�ve according to both methods di�er, but they are closely related words, which is

understood by the very meanings of the words �mean�. Finally, there is coincidence in

the top-ranked similar word for �water�, in which both methods coincide in �plunge�,

and then coincide in identifying �moisture�, �insertion� and �river� in the top �ve.

However, an important di�culty can be foreseen for the general use of the LHN

method [47] in real-world networks. The analysis of the formula (4.1) indicates that

if a network has a very large spectral radius of the adjacency matrix, i.e., λ1 ≫ 1,
then α/λ1 → 0, which makes that the in�uence of the whole topology of the network,

accounted for by the adjacency matrix, disappears from the similarity matrix. That is,

in a network in which λ1 is relatively large, it is expected that Nvw ∼ 2mλ1

kvkw
, where

kv is the degree of the vertex v. That is, in this case the similarity between the two

vertices will depend only on their respective degrees. The Roget Thesaurus network

has λ1 ≈ 12.027, which according to the results previously obtained, still allows for

capturing the in�uence of the topology of the network in the LHN formula. Let us then

consider another network, for which λ1 ≈ 44.303. This network is a representation of

the Online Dictionary for Library and Information Science by Joan M. Reitz [50]. That

is, a dictionary which is specialized in library and information science.

The �rst curious result obtained with the LHN for this network is the following.

Now, it is not always true that Nvv > Nvw. That is, there are some vertices for which

there are other vertices more similar to them than themselves. This is certainly weird!

For instance, for �homepage�, LHN �nds that there are 22 other words more similar to

it that the proper word �homepage�. As another example, LHN �nds that the words

�data� and �queue� are more similar than �data� to itself. For the word �book� there

are 1682 words more similar to it than the word �book� itself, and for the word �work�

there are 1378 words in the same situation. Why is this happening? Simply because in
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this case λ1 is su�ciently large as for α/λ1 → 0, implying that Nvw ∼ 2mλ1

kvkw
. Then,

if the vertex v has a relatively large degree, it will have more similarity with those

vertices w displaying a very low degree, e.g., kw = 1. And this is exactly what happens

for words like �work� (k = 380), �text� (k = 246) or �homepage� (k = 150), just to
give three examples. In Table 2 I give the top seven most similar words according to

LHN and to the CCD dissimilarity.

work text

Nvw Dvw Nvw Dvw

juvenalia original bibliotaph composition
potboiler direct edition book cradle note

bibliotaph national
bibliography

bookrest reading level

book cradle series title
page

imbrication print

bookrest annotated
edition

lectionary galley proof

imbrication royalty polaire �rst edition
lectionary subtitle architectural

rendering

extent

homepage book
Nvw Mvw Nvw Mvw

DEMCO Medical
Library

Association

bibliotaph curiosa

Highsmith
Inc.

Freedom to
Read

Foundation

book cradle easel

Brodart Librarian of
Congress

bookrest demand
publishing

bibliotaph library of
science

imbrication primer

book cradle standing order lectionary book collecting
bookrest curator polaire prepub

imbrication National Film
Registry

book light remainders

Table 2: Top most similar words in ODLIS to the words �work�, �text�, �homepage�

and �book� according to LHN method and the current approach. The words in bold

correspond to unrelated words that LHN identi�es simply because they have degree

one and are connected to a hub in the ODLIS network.

As can be seen in Table 2 there are �ve words which are repeated among the top

seven found as the most similar one for �work�, �text� and �homepage�. These words,

according to their de�nitions in ODLIS, are completely unrelated to the target words

as can be seen in Table 3. What happen is that these �ve words have degree one in

the ODLIS network. Then, they are found as �most similar� simply because of the

fact that the similarity is given here by Nvw ∼ 2mλ1

kvkw
, such that low degree of vertex

w will increase its similarity with vertex v. The fact that the words �juvenalia� and

�potboiler� are among the top most similar ones with �work� is due to the fact that they

have degree one, and they are connected to �work� in the network. The same happen

for �DEMCO�, �Highsmith Inc.� and �Brodart� in relation with �homepage�. However,
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because the word �text� has no word of degree one connected to it, LHN selects any

word with degree one as the most similar to it.

word ODLIS de�nition

bibliotaph A person who hoards books and hides them from others, even to the extent
of keeping them under lock and key.

book cradle A low stand or rack, usually made of wood, metal, or plastic, designed to
display a book open at an angle, rather than �at, to minimize strain on the
spine when the volume is exhibited, mounted, studied, micro�lmed, or
scanned (see this soft-surfaced example).

bookrest A portable device similar to the music rest on a piano, designed to be placed
on a desk or table to hold a book at an angle convenient for reading.

imbrication In the book arts, a decorative pattern designed to give the impression of
overlapping scales, tiles, shingles, leaves, etc.

lectionary A liturgical book containing lessons and selections from the Bible, also
indicating the sequence in which they are to be read by the congregation in
services throughout the year.

polaire A sturdily made leather satchel or case used by monks, scribes, and other
literate persons of the medieval period for transporting manuscript books.

architectural rendering A pictorial representation of a building or other structure, usually from an
angle showing the front or main entrance, created by the architect or an
architectural �rm to give an accurate, if somewhat idealized, impression of
how the structure will appear after it is constructed.

Table 3: De�nitions given at ODLIS for the words ubiquitously found by LHN approach

as most similar to several nonrelated words.

On the contrary, all words found by the CCS approach are related to the target

ones, and indeed in all cases the target word appears in the de�nition of the word

found. For instance, original: the word �original� appear in ODLIS as: �In literature, a

work as written by the author or in the author's own words. In art, a �nished work as

completed by the artist and ready for reproduction, the phrase �direct edition� appears

as: An edition of a work for which the author provides the publisher with camera-

ready copy produced on a computer with the aid of word processing software. Used

mainly for works that cannot be produced economically from type.

5 Cosine-distance closeness centrality

Here I propose an analogous of the closeness centrality index based on the CCD between

a pair of nodes in a graph.

De�nition 14 Let Dvw be the CCD between the nodes v and w. Then,

Cv =

(
n∑

w=1

Dvw

)−1

, (5.1)

is the communicability closeness centrality (CCC) of the vertex v.

The closeness centrality measures, such as CC and RCC, are designed to account

for the importance of a vertex in a graph in terms of its proximity to the rest of the

vertices. Then, these indices are useful in comparing di�erent vertices in the same
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graph. However, I will analyze the change of the centrality of a given vertex in a graph

when the size of the graph growth. The main goal of this exercise is to show some

signi�cant di�erences between CCC and the �classical� closeness centrality measures. I

will start by the analysis of cycle graphs.

Lemma 3 Let Cn be a cycle graph with n nodes. Let Iν (z) be the modi�ed Bessel

function of the �rst kind, and let

C̃v (Cn) =
I0 (2)

2 (nI0 (2)− e2)
. (5.2)

Then,

lim
n→∞

Cv (Cn)

C̃v (Cn)
= 1. (5.3)

Proof The communicability between a pair of nodes v and w and the subgraph cen-

trality of a given node in Cn are, respectively

Gvw (Cn) =
1

n

n/2∑
j=0

exp

(
2 cos

(
2jπ

n

))
cos

(
2jπ (v − w)

n

)
, (5.4)

Gvv (Cn) =
1

n

n/2∑
j=0

cos

(
2jπ

n

)
. (5.5)

Let

G̃vw (Cn) :=
1

π

∫ π

0

exp (2 cos (ϕ)) cos (ϕ (v − w)) dϕ = Idv,w
(2) , (5.6)

G̃vv (Cn) :=
1

π

∫ π

0

2 cos (ϕ) dϕ = I0 (2) , (5.7)

where dv,w is the shortest path distance between the two nodes and ϕ = 2πj/n.
Then, we de�ne

cos θ̃vw (Cn) :=
G̃vw (Cn)√

G̃vv (Cn) G̃ww (Cn)
=
Idv,w

(2)

I0 (2)
. (5.8)

It can be easy to see that limn→∞ G̃vw (Cn) /Gvw (Cn) = 1 and limn→∞ G̃vv (Cn) /Gvv (Cn) =
1, such that limn→∞ cos θ̃vw (Cn) / cos θvw (Cn) = 1.

Therefore, let

C̃v (Cn) =
1∑

w ̸=v 2− 2 cos θ̃vw (Cn)
=

1

2 (n− 1)− 2
∑

w ̸=v cos θ̃vw (Cn)
. (5.9)

Let us consider again that the cycle if of even length, such that

∑
w ̸=v

cos θ̃vw (Cn) =
2

I0 (2)

n/2∑
k=1

Ik (2) . (5.10)
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Then, because ez = I0 (z) + 2
∑∞

r=1 Ir (z), we have that

lim
n→∞

C̃v (Cn) =
I0 (2)

2 (nI0 (2)− e2)
, (5.11)

which �nally proves the result. ⊓⊔

Example 1 Let us consider the cycles Cn for 4 ≤ n ≤ 12 and obtain the value of

C̃v (Cn) using the previous result as well as Cv (Cn) using the function expm(A) im-

plemented in Matlab. The results are given in Table 4. First, it is observed that the

values of C̃v (Cn) converge to those of Cv (Cn) when the sized of the graph is still

relatively small.

In this case the three closeness centralities, CC, RCC and CCC, drop with the

increment of the graph size. The fastest drawing is observed for CC where CCv (Cn) =
4

n2
if n is even, or CCv (Cn) =

4

n2 − 1
if it is odd. It is followed by RCC where

RCv (Cn) =
6

n2 − 1
and �nally by CCC where C̃v (Cn) ≈

2.2796

4.5592n− 14.7781
.

n Cv (Cn) C̃v (Cn) CCv (Cn) RC (Cn)

4 0.5575465980 0.6591120482 1/4 0.4000
5 0.2799080062 0.2843176590 1/6 0.2500
6 0.1809535106 0.1812515986 1/9 0.1714
7 0.1330057818 0.1330283840 1/12 0.1250
8 0.1050712617 0.1050730010 1/16 0.0952
9 0.0868265836 0.0868267141 1/25 0.0750
10 0.0739798487 0.0739798581 1/30 0.0606
11 0.0644446458 0.0644446465 1/36 0.0500
12 0.0570867727 0.0570867727 1/42 0.0419

Table 4: Values of the cosine distance closeness centrality obtained using Matlab func-

tion �expm(A)�, Cv (Cn), as well as using the results of Lemma 3, C̃v (Cn). The values
of the CC and RCC are also shown for comparison.

Let us now consider the complete graphs with n vertices.

Lemma 4 Let Kn be the complete graph with n nodes. Then,

Cv (Kn) =
en + n− 1

2n (n− 1)
. (5.12)

Proof The eigenvalues of the adjacency matrix of Kn are n−1 with multiplicity 1 and

−1 with multiplicity n− 1. We thereby have

Gvv =
1

ne
(en + n− 1) , (5.13)

Gvw =
1

ne
(en − 1) , (5.14)

therefore, the cosine of the communicability angle between any pair of vertices is

cos θvw =
en − 1

en + n− 1
. (5.15)

Then the result follows by substitution in the formula for the CCC. ⊓⊔
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Example 2 Let us now consider all the complete graphs with 3 ≤ n ≤ 12. In Fig.

5.1 we illustrate the values of CCC for a vertex of Kn as well as the values of CC

and RCC. The classical closeness centrality takes values CCv (Kn) = (n− 1)−1
which

clearly decays to zero when n→ ∞. The shortest path distance between two nodes in

Kn is always one. In the case of the RCC there are two competing factors. When the

size of the graph increases the number of vertices that can be reached in one step from

a given node also increases. However, due to the increase in the number of walks, the

length of these edges drops as Ωij (Kn) = 2/n. The resulting e�ect is a domination of

the �rst of the two mentioned factors, which means that RCC drops with the increase

of size, RCCv (Kn) = n/ (2 (n− 1)), reaching the asymptotic value of 1/2 as the size

growth. As a result of the second factor, RCC drops more slowly than CC as can be

seen in Fig. 5.1. Finally, in the case of CCC the competition between the two previously

mentioned factors is won by the drop of the edge length, which decays exponentially

in this case, Duv =
2n

en + n− 1
. As a result, CCC increases monotonically with the

size of the complete graphs. From an application point of view it means that a node

in Kn becomes more central as n growth because it can reach more neighbors with

relatively little e�ort due to the contraction of the edge length separating them. Such

contraction of edge lengths is due to the fact that more walks exists to go from one

vertex to another, which can be used as ways of communication between such pair

of vertices. Geometrically this means that the radius of the hypersphere in which

Kn is embedded decays exponentially as n increases. Empirically we have found that

R ≈ 2.167 exp (−0.3856n) with a correlation coe�cient of 0.9981 for 4 ≤ n ≤ 12.
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Finally, I will illustrate the behavior of CCC on star graphs of di�erent sizes.

Lemma 5 Let S1,n−1 be the star graph with n nodes and central node labeled by 1.
Then,

C1 (K1,n−1) =
Υ 1/2Σ1/2

(n− 1)
(
2Σ1/2Υ 1/2 − 2Φ

) , (5.16)

Cj (K1,n−1) =
Υ 1/2Σ1/2

2n2Σ1/2 − 4nΣ1/2 + 2Σ3/2 − ΦΥ 1/2
, (5.17)

where

Υ = cosh
(√

n− 1
)
+ n− 2, (5.18)

Φ = sinh
(√

n− 1
)
, (5.19)

Σ = cosh
(√

n− 1
)
. (5.20)

Proof The communicability between the di�erent pairs of nodes in K1,n−1 are

G1w (K1,n−1) =
1√
n− 1

sinh
(√

n− 1
)
, (5.21)

Gvw (K1,n−1) =
1

n− 1

(
cosh

(√
n− 1

)
− 1
)
, (5.22)

and the subgraph centrality of these vertices are

G11 (K1,n−1) = cosh
(√

n− 1
)
, (5.23)

Gww (K1,n−1) =
1

n− 1

(
cosh

(√
n− 1

)
+ n− 2

)
. (5.24)

Therefore, we have

cos θ1w =
sinh

(√
n− 1

)√
cosh

(√
n− 1

)√
cosh

(√
n− 1

)
+ n− 2

=
Φ

Σ1/2Υ 1/2
, (5.25)

cos θvw =
cosh

(√
n− 1

)
− 1

cosh
(√

n− 1
)
+ n− 2

=
Σ − 1

Υ
, (5.26)

from which the results follow by substitution into the de�nition of CCC. ⊓⊔



Communicability cosine distance: similarity and symmetry in graphs/networks 17

Example 3 Here I consider star graphs with 4 ≤ n ≤ 100 for which I calculate

C1 (K1,n−1) and C2 (K1,n−1). The comparison with the analogous of CC (notice

that RCC is identical to CC because the graph is a tree) is straightforward because

CC1

(
K1,n/1

)
= (n− 1)−1

, and CCj

(
K1,n/1

)
= (2n− 3)−1

. That is, for CC the

centrality of both nodes decays with the number of vertices. Here the edge length is

always equal to one, such that the only e�ect observed is the fact that a walker at a

vertex in a star encounters more vertices to visit as n increases. However, when we

consider CCC we �nd again two competing factors: (i) the increase in the number of

�rst and/or second neighbors, and (ii) the change of the edge length due to the increase

in the number of walks connecting pairs of vertices. The resulting e�ect of both factor

is nonmonotonic on the number of vertices as can be seen in Fig. 5.2(a), where CCC

�rst drop with the number of vertices and then growth for n ≥ 23. The di�erence in the

CCC of the central and pendant vertices also increases with the growth of the graph

size. The reason for the nonmonotonic behavior observed resides in the fact that here

the communicability distance between pairs of vertices decays still exponentially, but

not so fast as for the case of complete graphs. Without loss of generality let me focus

on the central node labeled as 1. Instead of using the more di�cult to interpret ex-

pression for cos θ1w that we have found before, let us proceed as follow. We can obtain

an empirical relation between between the communicability distance and n by �nding

the best nonlinear regression model. It results to be of the form: D1,j ≈ aebn + cedn,

where I have found that a ≈ 0.8896, b ≈ −0.0472, c ≈ −0.5259, and d ≈ −0.2606.
Similar results are also obtained for Di,j when i ̸= j ̸= 1. The result of the �exact�

values of these distances and that of the best �tting are given in Fig. 5.2(b). Thus,

what happens in star graphs is that for relatively small number of vertices the con-

traction in the communicability distance is not enough to overcome the e�ect of the

increase in the number of paths of length one and two. That is, the centrality of the

vertex 1, for instance, decays when n increases in this region because the vertex has

to make a greater �e�ort� to �contact� a larger number of nearest neighbors. However,

after certain size, due to the contraction of the edge lengths between this vertex and

its neighbors, the number of nearest neighbors that can be visited from this vertex is

bigger and bigger without increasing too much the �e�ort� that it takes to visit them.
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Fig. 5.2: (a) Plot of the communicability closeness centrality for the central node (con-

tinuous line) and the pendant node (broken line) of star graphs with n vertices. (b)

Plot of the cosine communicability distance from the vertex 1 to a nearest neighbor

(left) and between a pair of adjacent vertices i ̸= j ̸= 1 (right).

In closing, we have seen that CCC has very di�erent behavior for di�erent types of

graphs and that they di�er signi�cantly from those observed for CC and RCC.

6 Discriminant power of CCC

Bao and Zhang [13] have recently analyzed the discriminant power of several centrality

measures, including the CC one. They quantify the number of pairs of vertices that

are di�erentiated by a given centrality measure relative to the total number of pairs as

the discriminant power of the centrality. Here I analyze the discriminant power of the

CCC and the analogous closeness centrality CC and RCC, based on their capacity to

discriminate the nonidentical vertices in a graph. Let me start with the following.

Example 4 Let us consider the labeled graph illustrated in Fig. 6.1. As the graph

has 7 vertices it has 21 pairs of vertices. Let us check for every of these 21 pairs of

vertices if there is a permutation matrix P that interchange these two vertices, such

that: PAPT = A. We have found that there is only one of such permutations vertices,

which interchanges the vertices labeled as 3 and 6, which are colored in black in Fig.

6.1. Therefore, there is at least one nontrivial automorphism of the graph that swap

these two vertices. These vertices are name �similar� in graph theory, but here I propose

to call them �identical� in order to avoid confusion with the quantitative concept of

vertex similarity used before.
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Fig. 6.1: Illustration of a labeled graph used in the Example.

Let us now consider the values of three closeness centrality measures studied here for

the vertices in the graph represented in Fig. 6.1. The classical CC does not di�erentiate

among the vertices labeled by numbers 3, 4 and 6 (see Table 5). That is, there are three

pairs of indistinguishable vertices according to this centrality. The resistance closeness

centrality identi�es the pair 3, 6 as having the same centrality but it also identi�es

another pair of vertices as indistinguishable, which corresponds to the pair 4, 5. As we

have seen these vertices are not identical because there is not a permutation matrix that

interchange them leaving unchanged the adjacency matrix. As can be seen in the third

column of see Table 5 the CCC only identi�es one pair of vertices as indistinguishable

and they coincide with the identical vertices previously found.

No. CCv RCv Cv

1 0.0769 0.0991 0.1397
2 0.1250 0.1967 0.2789
3 0.1000 0.1702 0.2395

4 0.1000 0.1739 0.2375
5 0.1111 0.1739 0.2311
6 0.1000 0.1702 0.2395

7 0.0714 0.0930 0.1244

Table 5: Values of the communicability closeness centrality (CCC) as well as of the

standard closeness centrality and of the resistance closeness centrality for the nodes in

the graph illustrated in Fig. 6.1.

Let us �rst designate x̂j =
xj∥∥xj∥∥ , such that Dvw = ∥x̂v − x̂w∥2 and let us call com-

municability cosine farness to

Fv =
n∑

w=1

Dvw. (6.1)

Then, we have the following.

Lemma 6 Let v and w be two di�erent vertices of a graph G. Then, if Fv (G) =
Fw (G),

(x̂v − x̂w) · (x̂1 + · · ·+ x̂n) = 0, (6.2)
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meaning that either x̂v = x̂w or that x̂v ·R = x̂w ·R, where R = x̂1+ · · ·+ x̂n and

a · b indicates inner product.

Proof We can write

Fv (G) = Fw (G)

∥x̂v − x̂1∥2 + · · ·+ ∥x̂v − x̂n∥2 = ∥x̂w − x̂1∥2 + · · ·+ ∥x̂w − x̂n∥2

x̂v · x̂1 + x̂v · x̂2 + · · ·+ x̂v · x̂n = x̂w · x̂1 + x̂w · x̂2 + · · ·+ x̂w · x̂n.
(6.3)

Because the vectors x̂v and x̂w are respectively in the LHS and RHS of the sums

and recalling that x̂v · x̂v = 1 we have Fv (G)− Fw (G) = 0 implies that

(x̂v − x̂w) · (x̂1 + · · ·+ x̂n) = 0. (6.4)

Because 0 ≤ Mvw ≤ 1, the angle between every pair of position vectors is not

larger than 90°, which implies that x̂1 + · · ·+ x̂n > 0, which �nally proves the result.

⊓⊔

Remark 2 If CCC discriminate vertices up to automorphism it should be the case that

Cv = Cw implies that AP = PA for a permutation matrix P that swap the vertices

v and w. This last condition is ful�lled if φv = φw. The fact that x̂v · R = x̂w · R,
does not imply mathematically that x̂v = x̂w and consequently does not imply that

φv = φw. Therefore, this condition does not imply that if Fv (G) = Fw (G) there is a
permutation that swap the two vertices v and w while preserving the adjacency matrix.

Let us then consider the second case, that is when x̂v = x̂w. First, let us consider that

xv = xw which means that eΛ/2 (φv − φw) = 0. Therefore, it implies that φv = φw.

Also because Gvv = xv · xv, the fact that xv = xw also implies that Gvv = Gww. In

closing, if x̂v = x̂w we have that

eΛ/2
(
φv

Gvv
− φw

Gww

)
= 0, (6.5)

which necessarily implies that φv = φw.

Because it is not always necessarily true that Cv = Cw implies that the two vertices

are identical we then studied all 11,117 connected graphs with 8 vertices and identi�ed

the number of graphs with a given number of pairs of identical vertices. For instance,

there are 3552 graphs with 8 vertices which have no pair of identical vertices (see next

section). There are 2825 graphs with only one pair of identical vertices, 1913 with

two pairs, and so on. In Table 6 I give the number of graphs with a given number

of distinguishable pairs of vertices for the three closeness centralities studied here.

For instance, there are only 12 graphs for which CC give di�erent values for all their

vertices, this number increases up to 2823 for RCC, but only CCC identi�es all graphs

having no pair of identical vertices. As can be seen in Table 6 the CCC identi�es all

graphs with any number of pairs of identical vertices among the graphs with 8 vertices.

This performance is not observed even for other indices based on the exponential of the

adjacency matrix, such as the subgraph centrality (SC), for which I shown the number

of identical pairs of vertices identi�ed by this centrality in Table 6. Both CC and RCC

are far from discriminate all the pairs of nonidentical vertices in these graphs.



Communicability cosine distance: similarity and symmetry in graphs/networks 21

#pairs CC RCC CCC SC real

0 12 2823 3552 3494 3552
1 72 2042 2825 2813 2825
2 194 1387 1913 1888 1913
3 279 1206 1449 1440 1449
4 207 489 586 586 586
5 79 148 167 167 167
6 41 75 91 91 91
7 123 201 218 216 218
8 129 180 185 185 185
9 15 19 20 20 20
10 7 8 8 8 8
11 12 14 14 14 14
12 38 39 39 39 39
13 4 5 5 5 5
15 7 7 7 7 7
16 25 25 25 25 25
21 3 3 3 3 3
28 10 10 10 10 10

Table 6: Number of connected graphs with 8 vertices which are identi�ed by the three

closeness centrality studied here, plus the subgraph centrality, as having a given number

of equivalent vertices. The last column (real) indicates the number of graphs having a

given number of identical vertices. For instance, there are 3552 graphs with 8 vertices

that have 0 pair of identical vertices, i.e., they are identity graphs. From those, CC

identi�es 12, RCC 2823, SC 3494, and CCC identi�es all of them.

6.1 Graphs with no pair of identical vertices

Let me recall that a graph is called asymmetric or identity if it does not contain any pair

of identical vertices [27]. That is, if there is no nontrivial automorphism for the graph.

Asymmetric graphs are of relevance for the study of graph controllability [51�54]. For

instance, it was proved that the class of essentially controllable graphs form a strict

subset of asymmetric graphs [51]. Additionally, identity graphs have been proposed as

�the mathematical structure of the World� in the �World as a graph� proposal of Dipert

[55] (see also [56]). The idea of �World as a graph� is that if the World is a graph, then

it has to be asymmetric to avoid that two spatio-temporal points can be identical and

therefore can be swapped.

There are no asymmetric graphs with 2 ≤ n < 6, but there are 8 asymmetric

graphs with 6 vertices, which are illustrated in Fig. 6.2).
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Fig. 6.2: Illustration of the asymmetric (identity) eight graphs with 6 vertices, i.e, those

graphs with 6 vertices for which Aut (G) = 1.

I calculated the CCC for all the vertices in these 8 asymmetric graphs with n = 6
and found that this centrality distinguishes all their vertices. That is, let An be the

set of all asymmetric graphs with n vertices, we have observed that if v ̸= w then

Cv ̸= Cw for all v, w ∈ A6. This is not the case for the standard CC, which does not

distinguish all the vertices in any of these asymmetric graphs, nor for the RCC, which

only �nds all vertices di�erent for 4 out of the 8 asymmetric graphs. Although not a

closeness centrality we also compared the results with the SC, which distinguishes all

vertices in these 8 asymmetric graphs with 6 vertices.

I now extend these calculations to all asymmetric graphs with 7 ≤ n ≤ 9 and

the results are displayed in Table 7. It is known that the cardinality of the sets An

are 8, 144, 3552, 131452 for n = 6, 7, 8, 9, respectively (see integer sequence A124059

in the Encyclopedia of Integer Sequences [57]). As can be seen in Table 7 the CCC

di�erentiates all the vertices in 100% of the asymmetric graphs with 6 ≤ n ≤ 9. That is,
if v ̸= w then Cv ̸= Cw for all v, w ∈ An≤9. The standard CC di�erentiates very poorly

the vertices of these asymmetric graphs, distinguishing only 2.1% of the asymmetric

graphs with 7 vertices, 0.36% of those with 8 vertices and 0.09% of those with 9 vertices.

The situation improves when we consider the resistance closeness centrality which

di�erentiates 93.75%, 79.53% and 96.33% of asymmetric graphs with 7, 8 and 9 vertices,

respectively. Here again, the SC is the second best, after CCC, and di�erentiates 100%,

97.83% and 98.3% of asymmetric graphs with 7, 8 and 9 vertices, respectively.
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n = 6 n = 7 n = 8 n = 9

CC 0 3 13 116
RCC 4 135 2824 126,626
CCC 8 144 3552 131,452
#An 8 144 3552 131,452

Table 7: Number of asymmetric (identity) graphs whose vertices are di�erentiated by

the di�erent centrality measures for 6 ≤ n ≤ 9.

A particularly interesting class of graphs is formed by those having at least one

pair of pseudosimilar vertices [25, 26] (hereafter I will call them �pseudoidentical�).

That is, these are graphs for which a pair of vertices v, w exists such that G − v is

isomorphic to G − w but there is no automorphism transforming v onto w. From the

perspective of the current work, these pairs of vertices could be seem as di�cult ones

to be distinguished by any centrality measure. Two examples of asymmetric graphs

with a pair of pseudoidentical vertices are the graphs G and H illustrated in Fig. 6.3.

Both graphs have no automorphism but the identity one. In graph G the vertices 4

and 6 are pseudoidentical as well as the vertices 5 and 7 in H.

Fig. 6.3: Illustration of two pseudoidentity graphs. In graph G the vertices 4 and 6 are

those that if removed the resulting graphs G−4 and G−6 are isomorphic (see �rst line

of the �gure). For the graph H such vertices are 5 and 7 and the resulting isomorphic

graphs are H − 5 and H − 7.

In Table 8 we give the values of CCC, RCC and SC for every vertex in the two

graphs illustrated in Fig. 6.3. I do not display the results for the classical CC because
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it is highly degenerated in most of the cases, i.e., many pairs of nonidentical vertices

have the same values of the CC. Although the RCC fails to di�erentiate all the vertices

of these two graphs, the pairs of vertices for which RCC gives the same values do

not coincide with the pseudoidentical ones. That is, in graph G the pseudoidentical

vertices are labeled 4 and 6 while the RCC produces identical values for vertices 5

and 6. The same happens for graph H where the RCC is degenerated for vertices 6

and 8 while the pseudoidentical ones are 5 and 7. This situation is repeated across the

asymmetric graphs with 8 vertices where we have identi�ed 36 graphs having one pair

of pseudoidentical vertices. The vertices of 22 of these 36 graphs are distinguished by

the RCC and in the remaining cases the pairs with similar values of this centrality

do not necessarily coincide with the pseudoidentical ones. A di�erent situation occurs

with the SC which have the same value for the pairs of pseudoidentical vertices in

both graphs illustrated in Fig. 6.3 (see able 8). However, the SC does not only produce

degeneration for these pairs of pseudoidentical vertices but occasionally also in other

pairs, such as pair 6,8 in graph H. This happened in 14 out of the 36 asymmetric

graphs with one pair of pseudoidentical vertices.

graph G graph H
No. Cv RCv SCv Cv RCv SCv

1 0.1151 0.0888 1.7342 0.1172 0.0904 1.7459
2 0.1599 0.1367 2.7588 0.1831 0.1445 2.9435
3 0.1460 0.1338 2.6019 0.1687 0.1391 3.1937
4 0.1944 0.1675 3.7434 0.2344 0.1766 5.0812
5 0.2014 0.1692 4.1330 0.2631 0.1952 6.2944

6 0.1952 0.1692 3.7434 0.2604 0.1978 5.6427

7 0.2303 0.1902 5.1577 0.2654 0.1987 6.2944

8 0.2449 0.1931 5.4313 0.2567 0.1978 5.6427

Table 8: Values of centrality measures for the two pseudoidentity graphs illustrated

in Fig. 6.3. The values of the CCC and RCC are provided together with those of the

subgraph centrality (SC). Identical values are marked in bold (�rst pair) and gray

(second pair). Notice that no pair of identical vertices exist in these two graphs.

I calculated the di�erence between the CCC of every pair of vertices in the two

graphs illustrated in Fig. 6.3. In both cases it is found that the smallest di�erence is

observed for the pair of pseudoidentical vertices. Unfortunately, this is not always true,

as for the 36 asymmetric graphs with a pair of pseudoidentical vertices, the smallest

di�erence between the CCC of every pair of vertices coincides with the pseudoidentical

vertices in 27 occasions, but it does not coincide in 9.

Let me now consider some other examples of known identity graphs which are

illustrated in Fig. 6.4, which have from 12 to 222 vertices.
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Fig. 6.4: Illustration of the structure of eight �classical� examples of identity graphs,

i.e., those having no symmetry but the identity one.

In Table 9 I give the number of pairs of vertices which CC, RCC and CCC identify

as equivalent. As can be seen CCC di�erentiates all the vertices in the eight graphs.

RCC identi�es as equivalent a pair of vertices in the Frucht graph but in general

distinguishes very well the vertices in these graphs. Finally, CC only gives di�erent

values for the vertices of the (10,3)-incidence graph illustrated.

name n CC RC CCC

a Frucht graph 12 13 1 0
b (10,3)-incidence graph 16 0 0 0
c 20-snark graph 20 36 0 0
d Kittell graph 23 18 0 0
e Walther graph 25 5 0 0
f cubic nonhamiltonian graph 50 21 0 0
g (3,9)-cage graph 58 498 0 0
h Gardner graph 222 59 0 0

Table 9: Number of pairs of vertices with the same value of the closeness centrality

measures studied here for eight �classical� examples of identity graphs. For instance,

for the Frucht graph CC identi�es 13 pairs of equivalent vertices and RCC identi�es one

pair, while this graph has zero pairs of identical vertices, which is correctly identi�ed

by CCC.

Note 1 A note of caution should be raised here about numerical accuracy. In some

cases, the values of the centrality can be very close for di�erent pairs of vertices and

the precision of the calculations should be increased. However, it also must be taken

into account what is the accuracy of the numerical methods used to compute the

corresponding centrality. For instance, in the case of CCC in the Gardner graph we

have to consider accuracy up to 15 decimal places and using
∑n

w=1Dvw instead of
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its reciprocal in order to avoid problems with rounding errors. Therefore, I would like

to remark that more numerical analysis is needed before giving conclusive statements

about the true discriminant power of CCC.

6.2 Graphs with at least one pair of identical vertices

In Fig. 6.5 I illustrate eight graphs in which there are one (a), two (b), three (c), four

(d), �ve (e), six (f), seven (g) and eight (h) pairs of identical vertices, respectively. The

number of identical pairs of vertices was identi�ed computationally by obtaining all

possible permutations of the 8 vertices and checking which ones obeys that PAPT = A.

The groups of identical nodes are identi�ed in the Figure with di�erent colors. For

instance, in graph b) there are two pairs of identical vertices, 1,2 colored in black and

6,7 in gray. For larger number of pairs it is possible that such pairs are grouped in

clusters. For instance, in c) where there are three pairs, they are formed by the vertices

3,4,5 (3,4; 3,5; 4,5). It could be in other cases that the pairs are isolated and not

grouped in this way.

Fig. 6.5: Illustration of graphs with 8 vertices having one (a), two (b), three (c), four

(d), �ve (e), six (f), seven (g) and eight (h) pairs of identical vertices, respectively.

Every group of identical vertices is colored the same. For instance, in h) there are

found vertices in black, which form 6 pairs of identical vertices, plus one pair in dark

gray and another pair in pale gray, summing 8 pairs of identical vertices.

In Table 10 I give the values of CCC for every vertex in these eight graphs. The

pairs of nodes for which Cv = Cw coincide in all cases with the identical nodes existing

in these graph and no other pair of nodes have the same values of CCC. This situation

is very di�erent for the other closeness centrality measures. For instance, for graph a)

CC gives the same value CCj = 0.1, j = 3, . . . , 7 for �ve vertices, such that there are

10 pairs of vertices with the same values of CC. The RCC identi�es, apart from the
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pair 4,5 for which RC4 = RC5 ≈ 0.2689, also the pair 6,7 as having the same value

of this centrality, RC6 = RC7 ≈ 0.2647. The SC identi�es the vertices 4,5,7 with the

same value, SC4 = SC5 = SC7 ≈ 8.0135. In the case of the graph b) the CC identi�es

11 pairs of equivalent vertices (vertices 1-5 and 6,7), while the RCC identi�es three

pairs (1,2; 3,4 and 6,7) as well as SC which identi�es 1,2; 3,5 and 6,7. In graph c) CC

and RCC identify the same 10 pairs of equivalent vertices (3-7), they also coincide in

identifying 15 pairs (2-7) for graph d) and 7 pairs (1-3; 4,5 and 6-8) for graph e). The

graph f) is a tree, which is shown to illustrate that even in very simple graphs CC

identi�es di�erent set of vertices than CCC. In this case CC (RCC is identical to CC

for trees) identi�es vertex 7 as equivalent to vertices 1-4, which are the identical ones.

In graphs g) and h) CC identi�es 9 and 16 equivalent nodes, respectively, while RCC

identi�es correctly only the identical vertices in g) and h). However, in g) SC identi�es

9 vertices which coincide with those identi�ed by CC. If we consider the sum of the

rows of the LHN matrix N (Eq. 4.1) as a centrality measure, then, the graph h) is

an example where it fails to identify only the identical vertices because it identi�es 16

pairs of equivalent vertices (1,2 and 3-8) instead of 8. More examples exist among the

graphs with 8 vertices.

vertex a b c d e f g h

1 0.2146 0.7556* 0.2409 0.2858 1.3450* 0.1121* 0.0989 0.2664*

2 0.3361 0.7556* 0.3512 0.6232* 1.3450* 0.1121* 0.1211* 0.2664*

3 0.3909 0.6811 0.4993* 0.6232* 1.0402 0.1121* 0.1211* 0.3738�

4 0.4370* 0.7788 0.4993* 0.6232* 1.7942� 0.1121* 0.1211* 0.4052�

5 0.4370* 0.6788 0.4993* 0.5955� 1.7942� 0.0872 0.1211* 0.4052�

6 0.4193 0.9668� 0.4877 0.5955� 2.2196� 0.1330 0.1475 0.4052�

7 0.4360 0.9668� 0.4519 0.5081 2.2196� 0.1032 0.1467� 0.4052�

8 0.5264 1.2170 0.5730 0.8262 2.2196� 0.1610 0.1467� 0.3738�

Table 10: Values of CCC for the vertices in the graphs illustrated in Fig. 6.5. *, � and

� are used to indicate the di�erent groups of identical vertices in every graph.

Remark 3 A note of caution should be stressed here. It is not the case that central-

ity measures in general should di�erentiate vertices up to their automorphism. For

instance, CC is designed to identify those vertices in a graph which are closer to the

rest of the vertices. Therefore, two vertices with the same proximity to the rest of the

vertices of the graph have to have the same CC even if they are not identical.

6.3 CCC in networks

Here I consider 14 networks representing complex systems in a variety of scenarios.

They include a �ip-�op electronic circuit, the neuronal network of the worm C. elegans,

the networks of connections between regions of cat and macaque cortex, a network

connecting pairs of human brain that coactivate, a network indicating whether the

buyers of a given political book also buy another one, the Roget thesaurus, and the

ODLIS, a network representing the �ights connections between USA airports, a food

web in Bridge Brooks, the protein-protein interaction network of yeast, a network

indicating whether two drug users have interchanged needles in a given period of time,
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the network indicating whether two authors in computational geometry have published

a paper together, and a network representing the Internet at the Autonomous System

(more details and references can be found in the Appendix of [6]).

6.3.1 Distinguishing vertices

For all the 14 real-world networks previously described I calculated the number of pairs

of identical vertices #A, as well as the number of vertices which are di�erentiated by

each of the three CC studied. The �rst interesting result is that all neuronal systems in

di�erent species considered here are identity graphs. This is particularly interesting in

the case of those neuronal systems coming from brains with bilateral symmetry, such

as cat and macaque visual cortex as well as the human brain. That is, the bilateral

symmetry, as well as any other kind of symmetry, is broken in these networks possibly

due to functional reasons. However, the study of the implication of this network asym-

metry is outside the scope of this work. As can be seen in Table 11 in all these cases

RCC and CCC distinguish all pairs of vertices.

The degree of vertices redundancy in a network can be calculated as

R (G) :=
2#A

n (n− 1)
, (6.6)

which are given as percentages in Table 11. As can be seen, real-world networks have

very few pairs of identical vertices in relation to their total possible number. This con-

trasts with the very high global symmetry observed by some of these graphs obtained

from the automorphism group. For instance, |Aut (G)| = 2.5916 · 1024 for the airport

network in USA and |Aut (G)| = 1.8994 · 10320 for the collaboration network in com-

putational geometry (we have used exactly the same versions of the networks used

in [18]). This means that there are much more ways of transforming the 1436 pairs

of identical vertices existing in the collaboration network than symmetry operations

exist to transform the 135 pairs of identical vertices in the airport network. However,

as we have remarked in the Introduction with the example of K4 and C4 the size of

the automorphism group does not indicate the number of pairs of vertices which are

identical, which is what is matter in many real-world problems, such as the problem of

controllability.
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network n CC RCC CCC #A R (G)

electronic circuit 522 109 0 0 0 0
C. elegans neurons 280 143 0 0 0 0

cat cortex 52 43 0 0 0 0
macaque cortex 30 31 0 0 0 0
Human brain 638 469 0 0 0 0
Political books 105 42 0 0 0 0
Roget thesaurus 994 307 3 3 3 6 · 10−4

ODLIS 2898 1324 121 121 121 0.0029
USA airports 332 297 135 135 135 0.246
Food web 75 451 446 446 446 16.07
PIN yeast 2224 1451 863 863 863 0.035
Drugs 612 1060 636 636 636 0.34

Collaboration 3621 2169 1440 1436 1436 0.022
Internet_97 3015 38,816 37,893 37,893 37,893 0.85

Table 11: Number of pairs of vertices which are di�erentiated by the three closeness

centrality studied here in the 14 real-world networks analyzed. For comparison the

number of nonidentical pairs of vertices, #A, in every network is also provided. For

instance, #A = 0 indicates that the graph is asymmetric (identity).

Let us now turn our analysis to the identical vertices in the Roget Thesaurus net-

work. The complete enumeration of all pairs of vertices that can be swapped by a non-

trivial automorphism identi�es only three pairs, formed by words: �duality�-�bisection�,

�celibacy�-�divorce�, and �man�-�woman�. The CC identi�ed 307 pairs of words with

equivalent closeness centrality. However, both CCC and RCC identi�es three uniquely

existing identical pairs of words. The pairs �duality�-�bisection� and �celibacy�-�divorce�

are pairs of trivially identical words because they correspond to vertices of degree one

which are connected to the same root vertex. In the �rst case the two words are con-

nected to �duplication� and in the second they are connected to �marriage�. The words

�man� and �woman� are connected to each other in the network and each of them is

connected to other three words: �infant�, �adolescent� and �marriage�.

The second example is the network representing ODLIS which is formed by 2898

vertices and 16,376 edges, after the elimination of 5 self-loops (self-referenced words).

In this case there are 121 identical pairs of words. The CCC and RCC identify correctly

these 121 pairs of words, while CC identi�es 1324 pairs of equivalent words. The large

majority of the existing identical words correspond to trivial pairs�pairs of pendant

vertices connected to the same vertex. For instance, 102 out of 121 pairs correspond to

such cases, with groups of up to 8 pendant vertices connected to the same node. One

of these groups is formed by the words: �book cradle�, �bookrest�, �imbrication�, �lec-

tionary�, �polaire� and �bibliotaph�, which are all connected to the term �bibliographic

item�, which have appeared previously in the analysis of words similarity in this work.

There are, however, 19 pairs of words forming pairs of nontrivial identical vertices,

i.e., their vertices have degree larger than one. These 19 pairs of nontrivial identical

vertices are formed only by isolated pairs, that is, there are no triples, quadruples, etc.

Some examples are: �chef-d'oeuvre�-�masterpiece� of degree 2; �imprimatur�-�in press�

of degree 3; �americanize�-�briticize�, �elegy�-�ode�; �burlesque�-�parody�, all of degree

4; �color plate�-�monochrome plate� of degree 5; �broader term (BT or B)�-�narrower

term (NT or N)� of degree 12.
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6.3.2 Ranking vertices

One of the most important applications of centrality measures is the ranking of vertices

in decreasing order of the given centrality. The most central vertices are then expected

to play some fundamental, structural and/or dynamical, role in the network. However,

in most of real-world networks, vertex centrality measures are highly correlated with

the degree of the vertices, in particular for those which depends on shortest paths. For

instance, if a vertex has degree k there are k (k − 1) /2 shortest paths of length two

that cross this vertex. Therefore, if k is relatively large, there are high chances that

the betweenness centrality of this node is also high. Thus, we are counting duplicated

information in this case. This happens, for instance, in the social network where a

group of 34 members of a karate club express their friendship preferences. The nodes

labeled by 1 and 34 correspond to the trainer and administrator of the club and they

are visibly the most connected ones with degrees 16 and 17 respectively. A polarization

is known to exist in this network as there are two factions in it: one following the

administrator and the other following the trainer. In Fig. 6.6 I represent this network

with vertices colored and with radii proportional to their degrees (a) and betweenness

centrality (b). If we consider the CC (see Fig. 6.6 (c)) we can see that it is also biased

by the degree of the nodes. The ranking according to CC is: 1, 3, 34, 32, 33, which are

the vertices with degrees 16, 10, 17, 6, 12. RCC identi�es 34, 1, 3, 33, and 2 as the

most central vertices which have degrees: 17, 16, 10, 12, and 9. Thus, it is even more

biased by degree than CC. However, CCC identi�es the vertices 9, 3, 20, 32, 14 and 31

with degrees 5, 10, 3, 6, 5, and 4, but placed somehow in between the two groups in

con�ict in this network. This group of the most central vertices according to CCC are

those for which there are a relatively large number of short walks connecting them to

the rest of the vertices but a relatively small number of walks starting and ending at

themselves. They are �good communicators� between the two factions existing in the

network.
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Fig. 6.6: Illustration of the degree (a), betweenness (b), closeness (c) and communica-

bility closeness (d) centrality of the nodes in the network of a karate club, where the

size and color of the vertices are proportional to the corresponding centrality.

We can now identify the most central words according to CCC in the Roget The-

saurus network, which are given in Table 12 together with the degree, CC and RCC.

As can be seen CC and RCC identi�es as most central the most connected words in

the thesaurus, while CCC again identi�es words with relatively small degree but well

connected to the rest of words via relatively short walks.
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degree CC RCC CCC

indication (28) inutility (25) deterioration (27) hope (12)
neglect (27) neglect (27) neglect (27) non-preparation

(13)
deterioration (27) preparation (25) indication (28) success (11)
inactivity (26) deterioration (27) preparation (25) danger (16)
information (25) hindrance (24) inutility (25) importance (15)

Table 12: Most central words in Roget Thesaurus according to degree and the three

closeness centrality studied here. The degree of the vertices is indicated in parenthesis.

These di�erences are even more remarked in the case of the ODLIS network as can

be seen in Table 13 where CC and RCC identify the most connected vertices, while

CCC identi�es vertices of relatively small degree.

degree CC RCC CCC

book (593) library (566) book (593) nonprint (30)
library (566) book (593) library (566) lacuna (8)
work (380) publishing (368) work (380) obituary (10)

printing (372) work (380) publishing (368) subject bibliography (13)
publishing (368) catalog (204) printing (372) digital library (12)

Table 13: Most central words in ODLIS according to degree and the three closeness

centrality studied here. The degree of the vertices is indicated in parenthesis.

Finally, I will focus on a network of books about US politics, where books about

US politics published around the time of the 2004 presidential election and sold by the

online bookseller Amazon.com are represented as vertices and edges between books

represent frequent co-purchasing of books by the same buyers. The books have been

classi�ed as �liberal�, �conservative� and �neutral� as can be seen in Fig. 6.7(a). The

degree of the vertices identi�es three conservative books as the most central ones,

followed by �ve liberal books and then again three conservatives and so on (see Fig.

6.7(b)). In the case of closeness measures we would expect that books placed more

or less equidistant from both polarized groups, i.e., liberal and conservative, would be

among the most central ones. The CC identi�es the books �The Price of Loyalty�, �Rise

of the Vulcans�, �The Bushes�, �Ghost Wars� and �Bush Country� as the most central

ones. The books at positions 2, 3 and 4 of CC ranking are almost equidistant of both

main political groups. �Rise of the Vulcans� is connected to 5 conservative books, 3

neutral and 4 liberal. �The Bushes� and �Ghost wars� both have 4, 2, 2 connections

to conservative, neutral and liberal books. However, �The Price of Loyalty� and �Bush

Country� are selected due to the CC bias towards high degree nodes. The �rst has 2,

3, 15 connections, being clearly closer to liberal books, and the second has 14, 2, 0,

being clearly closer to conservative ones.

RCC is highly biased towards degree as can be seen in Fig. 6.7(c). Indeed in the top

ten ranking of books by RCC we �nd the top most connected books in the network,

and there is a high correlation between the two centralities. Indeed RCC ∼ k−ζ with

a squared correlation coe�cient of 0.97. The ranking produced by the betweenness

centrality also displays bias by the degree of the vertices. It ranks at the top the books:
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�The Price of Loyalty�, �The Bushes�, �Bush Country�, �O� with Their Heads� and

�American Dynasty�. The books at positions 1, 4 and 5 are among the most connected

ones in the network: (the �rst was already analyzed), �O� with Their Heads� has 22,

3, 0 connections and �American Dynasty� has 1, 2, 19 connections.

Finally we arrive at the ranking produced by CCC where the top books are: �The

Bushes�, �Ghost Wars�, �Rise of the Vulcans�, �Sleeping With the Devil�, and �Why

Courage Matters�, which have (4, 2, 2), (4, 1, 3), (5, 3, 4), (3, 3, 2) and (4, 1 0)

connections, respectively. As can be seen in Fig. 6.7(f) all the most central books are

at the central part of the network almost equidistant from both major political wings,

without any bias due to the vertex degree, which is a characteristics not observed

by any of the other centrality measures and illustrate one of the main characteristic

features of the communicability cosine distance and derived indices.
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Fig. 6.7: Political books repurchased by the same buyers. (a) A classi�cation of books

as liberal (brown), liberal (blue) and neutral (green). (b-f) Coloring of the vertices

according the degree (b), CC (c), RCC (d), betweenness (e) and CCC (f).
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