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Introduction

In the classic book of Wasserman and Faust [START_REF] Wasserman | Social network analysis: Methods and Applications[END_REF] it is stated that one of the primary uses of graph theory in social network analysis is the identication of the most important actors in a social network. Such identication is mainly done by means of the socalled centrality measures. A vertex centrality measure is a local vertex invariant, i.e., a property of vertices that is equal for pairs of vertices interchangeable by an automorphism [START_REF] Watkins | Handbook of Graph Theory[END_REF]. Therefore, the vertex degree is a centrality measure, i.e., the more connections a vertex has, the most important it is. Although the pioneering work of Institute for Cross-Disciplinary Physics and Complex Systems (IFISC) CSIC-UIB, Palma de Mallorca, Spain. E-mail: estrada@isc.uib-csic.es Bavelas [START_REF] Bavelas | A mathematical model for group structures[END_REF] about centrality were based on counting walks in the graph, the inuential works of Freeman [START_REF] Freeman | A set of measures of centrality based on betweenness[END_REF][START_REF] Freeman | Centrality in social networks: I. Conceptual clarication[END_REF] about closeness and betweenness centrality put a lot of emphasis on counting geodesicsshortest pathsin the graphs. The shortest path (SP) between two vertices is the shortest (in terms of number of edges) of all sequences of distinct vertices/edges (paths) connecting the two vertices. Dierently, a walk allows for the repetition of both vertices and edges. The closeness centrality (CC) accounts for how close in terms of SP a vertex is in relation to the rest of the vertices in the graph.

The betweenness centrality (BC) refers to the importance that a vertex has in the SP communication between other pairs of vertices (see [START_REF] Estrada | The Structure of Complex Networks: Theory and Applications[END_REF] for denitions and properties of these and other centrality measures).

What it should mean, for instance, that the peaks of two mountains are separated at a distance x? This information is very valuable for an eagle who can y from one peak to the other. For a mountaineer, this information is useless because she cannot y, but has to go down from the rst peak and hike the second one. The same happens if we say that the average SP distance in a network is y (see [START_REF] Burago | A course in metric geometry[END_REF]). If items are not traveling through the shortest pathswhich can only be the case when the sender has complete information about the topology of the networkthe information about the SP is useless. It is not surprising, however, that such measures like the CC based on SP brings some information about dynamical processes which do not take place through the SP but using diusive patterns of spreading. These are the cases, for instance, of epidemic spreading or synchronization of couple oscillators, which are well-known diusive processes. What happen is similar to the fact that the mountaineer can guess how much eort it will cost to go down the rst mountain and hike the second one by using the distance between the two peaks. CC based on SP can guess how a diusive process takes place (see for instance [START_REF] Janyasupab | Network diusion with centrality measures to identify disease-related genes[END_REF]), but it does not provide a precise information about such processes because it is out of its designed scope.

Nowadays centrality measures are used beyond social network analysis in a broad spectrum of computational analysis of networked systems. They include, for instance, use in dynamics on networks (synchronization, consensus, epidemics, information spreading), pattern recognition, community detection [START_REF] Saxena | Centrality measures in complex networks: A survey[END_REF][START_REF] Rodrigues | Network centrality: an introduction[END_REF], dimensionality reduction [START_REF] Chen | Self-similarity of complex networks under centralitybased node removal strategy[END_REF] and isomorphism detection [START_REF] Meghanathan | Use of eigenvector centrality to detect graph isomorphism[END_REF]. The last two topics are of particular interest for the current work. The main idea of dimensionality reduction is to reduce a large-scale network to a smaller one while preserving some of its global structural characteristics.

Chen et al. [START_REF] Chen | Self-similarity of complex networks under centralitybased node removal strategy[END_REF] proposed to use centrality measures for this purpose, such that by removing the least central vertices they were reducing the size of the networks while observing that certain structural features were preserved. The second application is that of determining whether two graphs are isomorphic, for which there exist no deterministic polynomial-time algorithm. The strategy is to rank the vertices of two test graphs using a given centrality [START_REF] Meghanathan | Use of eigenvector centrality to detect graph isomorphism[END_REF]. If they are not the same, then the two graphs are not isomorphic. If they have the same ranked sequences, then they are declared to be potentially isomorphic and conrmed through additional heuristics. Both applications of centrality measures, dimensionality reduction and graph isomorphism detection, are heavily dependent on the discriminant power of the centrality measures used. For instance consider a regular graph. In this case, the eigenvector centrality (EC)the entries of the eigenvector associated to the spectral radius of the adjacency matrix (see [START_REF] Estrada | The Structure of Complex Networks: Theory and Applications[END_REF])is the same for every node. Therefore, there is no chance of ranking the nodes to start a pruning based on the least central ones. If you are detecting whether two k-regular graphs of degree k are isomorphic or not using the EC you will end up always by using an additional heuristics because both graphs have the same list of EC. The dis-criminant power of a centrality measure in general refers to the capacity of the index to dierentiate pairs of vertices [START_REF] Bao | Discriminating power of centrality measures in complex networks[END_REF]. A better denition should be given in term of the capacity of a centrality index to dierentiate nonidentical pairs of vertices, where identical vertices are those which can be swapped by an automorphism.

The problem of graph automorphism is intimately related to the symmetry of graphs. This problem has been treated in the mathematical literature using several approaches [START_REF] Chan | Symmetry and eigenvectors[END_REF][START_REF] Kocay | Groups & graphssoftware for graphs, digraphs, and their automorphism groups[END_REF]. More recently, the problem of analyzing the size of the automorphism group in large real-world networks has been explored [1822]. The size of the automorphism group refers to the number of symmetric operations which swap the vertices of the graphs leaving unaltered its adjacency matrix. Then, it is clear that a complete graph on four vertices K 4 is more symmetric than a cycle graph of the same size C 4 . While the rst has |Aut (K 4 )| = 24there are n! dierent symmetries in Kn, the second has |Aut (C 4 )| = 8, n rotational and n reection symmetries in Cn.

However, from a vertex point of view it is true that both graphs have exactly the same number of identical pairs of vertices, which is equal to four. There are many more ways of swapping the vertices in Kn than in Cn but what an inspector of these graphs sees is that both are formed by four identical vertices. This is the important problem of vertex similaritymore appropriately vertex identity [2428]. Symmetry groups has also been used as a proxy for the calculation of SP distance invariants in graphs [START_REF] Koorepazan-Moftakhar | Distance under symmetry[END_REF].

Here, I will propose a distance metric between vertices in a simple graph. I will prove that this distance, which appears naturally from the way in which diusive objects navigate a graph, is Euclidean and spherical, i.e., induces an embedding of the graph in a Euclidean hypersphere. I will then propose to use the Euclidean distance matrix (EDM) of communicability cosine distances (CCD) as a quantitative proxy to detect similarity between vertices and show some problems arising with a popular existing measure. Such drawbacks are corrected by the new method proposed here. Further I will dened and study a measure of closeness centrality based on CCD. This measure dierentiates very well vertices in small graphs, allowing to distinguish all nonidentical vertices in connected graphs of up to 9 vertices. I also study several identity (asymmetric) graphs with this measure, all of whose vertices are dierentiated by the new closeness centrality. Real-world networks are also studied for both the discriminating power of the new centrality on their vertices as well as for ranking their vertices. Several of the advantages of the communicability closeness centrality proposed here are analyzed along the paper.

Preliminaries

Here we consider simple (nite, undirected, unweighted and connected) graphs G = (V, E) with #V = n and #E = m. As usual, A denotes the adjacency matrix of the graph G, which is obviously symmetric for the kind of graphs we study here. We consider that A = U ΛU T where Λ is a diagonal matrix of eigenvalues of A and U is an orthogonal matrix of eigenvectors.

A walk of length l in a graph is a sequence of (not necessarily dierent) vertices v 1 , v 2 , . . . , v l , v l+1 such that for each i = 1, 2, . . . l there is an edge from v i to v i+1 . The walk is known as closed if v l+1 = v 1 . The number of walks of length l between vp and vq is given by A l pq . Hereafter we will designate the vertices directly by the subindex, such as p and q. A path is a walk in which there is no repetition neither of vertices nor of edges. We also denote by u an all-ones vector.

Let us now consider a few denitions related to the communicability function of networks [START_REF] Estrada | Communicability in complex networks[END_REF][START_REF] Estrada | The physics of communicability in complex networks[END_REF]. Denition 1 The communicability function between two nodes v, w ∈ V of G is given by Gvw = (exp (βA)) vw ,

(2.1)
where exp (βA

) = I + βA + (βA) 2 2! + • • • + (βA) k k! + • • • is the matrix exponential of
A and β is an empirical parameter which may be set to one for the sake of simplicity.

Obviously, due to the spectral decomposition of the adjacency matrix we have

Gvw = n j=1 ψ jv ψ jw exp (βλ j ) , (2.2) 
where ψ jv is the vth entry of the eigenvector associated with the jth eigenvalue λ j of A.

Denition 2

The term Gvv = (exp (βA)) vv is the subgraph centrality [START_REF] Estrada | Subgraph centrality in complex networks[END_REF] of the node v and it accounts for the importance of a node in terms of its participation in all subgraphs of the network giving more importance to the smaller than to the larger ones.

Denition 3

The terms [START_REF] Estrada | The communicability distance in graphs[END_REF][START_REF] Estrada | Communicability angle and the spatial eciency of networks[END_REF] ξvw := Gvv + Gww -2Gvw,

and

ζvw := Gvw √ GvvGww , (2.4) 
account for the proximity between the nodes v and w in terms of the way in which they transmit information from each other. If ξvw or ζvw are small it means that most of the information sent from v (resp. w) to w (resp. to v) arrives to its destination, in contrast to the information which is returned to the origin.

Lemma 1 The terms ξvw and ζvw are a squared Euclidean distance between the vertices v and w and cosine of the angle between the position vectors of both vertices in a Euclidean space, respectively.

Proof First let us write

G = e A = U e Λ U T = U e Λ/2 e Λ/2 U T = e Λ/2 U T T e Λ/2 U T = X T X.
(2.5)

Therefore,

Gvw = xv • xw, (2.6) 
where x i = e Λ/2 φ i represents the position vector of the vertex i in the Euclidean space induced by the communicability and φ i is the ith column of U T . Thus, we have 

ξvw = xv • xv + xw • xw -2xv • xw = ∥xv -xw∥ 2 , (2.7 

⊓ ⊔

Another known Euclidean distance between the vertices of a graph is the so-called resistance distance, which is formally dened below. Denition 4 Let L = K -A be the Laplacian matrix of a graph, where K is the diagonal matrix of vertex degree and A its adjacency matrix. Then,

Ωvw := L + vv + L + ww -2L + vw , (2.9) 
is the resistance distance [START_REF] Klein | Resistance distance[END_REF] between the vertices v and w in the graph, where L + is the Moore-Penrose pseudoinverse of the Laplacian matrix.

Denition 5 Let dvw and Ωvw be the shortest-path and resistance distance between the vertices v and w in a graph. Then,

CCv = n w=1 dvw -1 , (2.10) 
and

RCCv = n w=1 Ωvw -1 , (2.11) 
are the closeness [START_REF] Bavelas | A mathematical model for group structures[END_REF] (see also [START_REF] Wasserman | Social network analysis: Methods and Applications[END_REF][START_REF] Estrada | The Structure of Complex Networks: Theory and Applications[END_REF]) and resistance-closeness [START_REF] Bozzo | Resistance distance, closeness, and betweenness[END_REF] centrality of the vertex v, respectively.

Other denitions needed in the current work are the following.

Denition 6 Let D = (d ij ) be an n × n matrix. Then, D is called Euclidean distance matrix (EDM) if there exist points p 1 , p 2 , . . . , p n in some Euclidean space R r , such that

d ij = p i -p j 2 , (2.12) 
for all i, j = 1, . . . , n, where ∥∥ denotes Euclidean norm. An EDM D is called spherical EDM or circum-EDM if the points p 1 , p 2 , . . . , p n that generate D lie on a hypersphere [START_REF] Tarazaga | Circum-Euclidean distance matrices and faces[END_REF][START_REF] Alfakih | A remark on the faces of the cone of Euclidean distance matrices[END_REF]. The matrix having entries given by ξvw is a spherical EDM [START_REF] Estrada | Hyperspherical embedding of graphs and networks in communicability spaces[END_REF].

Let us now consider some denitions on graph automorphism which will be used in this work (see [START_REF] Watkins | Handbook of Graph Theory[END_REF]).

Denition 7 Let G = (V, E) be a simple graph. A permutation α of V is an auto- morphism of G if {v, w} ∈ E ⇐⇒ {α (v) , α (w)} ∈ E, for all v, w ∈ V .

Denition 8

The set of all automorphisms of G, together with the operation of composition of functions, forms a subgroup of the symmetric group of V, which is called the automorphism group of G, and it is denoted by Aut (G).

Denition 9 Two vertices v and w in a graph G are identical (usually called similar [START_REF] Harary | On similar points of a graph[END_REF] in graph theory) if some automorphism of G maps v onto w. If v and w are identical vertices in G then the graphs G -v and G -w, obtained by deleting v and w, respectively, from G, are isomorphic. However, this is not true the other way around because it is possible for G -v and G -w to be isomorphic even when v and w are not similar. In this case the nodes are pseudoidentical (usually pseudosimilar [START_REF] Godsil | Constructing graphs with pairs of pseudo-similar vertices[END_REF][START_REF] Lauri | Pseudosimilarity in graphs-a survey[END_REF] in graph theory).

Denition 10 A graph in which there is no pair of identical vertices is known as asymmetric or identity graph [START_REF] Albertson | Symmetry breaking in graphs[END_REF]. Let ι be the identity of any group of permutations. Then, the graph G is asymmetric if ι is its only automorphism.

Communicability cosine distance

The communicability distance ξvw between two vertices v and w, previously dened and studied, is an unbounded magnitude. On the contrary, the communicability angle θvw is always bounded between 0 °and 90 °for unweighted graphs [START_REF] Estrada | Communicability angle and the spatial eciency of networks[END_REF]. This boundedness may represent an interesting characteristic for comparing properties within and between graphs. Therefore, here I propose a transformation of the communicability angle into a communicability cosine distance which is bounded and display a few mathematically interesting properties. Let me start with the following.

Denition 11 Let cos θvw be the cosine of the communicability angle. Then

Dvw = 2 -2 cos θvw, (3.1) 
is the squared communicability cosine distance (CCD) between the nodes v and w in G.

Denition 12

The CCD matrix D is the square, symmetric matrix whose v, w entry is Dvw.

Now, I will prove some of the mathematical properties of the CCD.

Lemma 2 The CCD is a squared Euclidean distance between the corresponding pair of nodes in G.

Proof Let us write

Dvw = 2 -2 xv • xw ∥xv∥ ∥xw∥ , (3.2) 
which can be expressed as

Dvw = xv • xv ∥xv∥ 2 + xw • xw ∥xw∥ 2 -2 xv • xw ∥xv∥ ∥xw∥ = xv ∥xv∥ - xw ∥xw∥ 2 , (3.3) 
which proves the result.

⊓ ⊔

Theorem 1 The CCD matrix is a spherical EDM.

Proof First, let write the matrix D as follows:

D = 2 uu T -S -1/2 e A S -1/2 , (3.4) 
where S is the diagonal matrix with diagonal entries Svv = e A vv .

To prove that D is circum-Euclidean it is needed to prove that D -1 exists and u T D -1 u > 0. Then let me nd D -1 using the Sherman-Morrinson formula:

1 2 D -1 = -S 1/2 e -A S 1/2 - S 1/2 e -A S 1/2 uu T S 1/2 e -A S 1/2 1 -u T S 1/2 e -A S 1/2 u . (3.5) 
To prove that D -1 exists it is only needed to prove that u T S 1/2 e -A S 1/2 u ̸ = 1. Then, let J = uu T and write

a = u T S 1/2 e -A S 1/2 u = T r S 1/2 e -A S 1/2 J = T r e -A S 1/2 JS 1/2
= T r e -A Z , (3.6) where Z = S 1/2 JS 1/2 . Now, I will use Ruhe's trace inequality [START_REF] Ruhe | Perturbation bounds for means of eigenvalues and invariant subspaces[END_REF] to nd

T r e -A Z ≥ n j=1 λ j (Z) λ n-j+1 e -A = λ 1 (Z) λn e -A , (3.7) 
where λ j (Z) = {λ 1 (Z) , 0, . . . , 0} are the eigenvalues of Z. It is straightforward to realize that λ 1 (Z) = EE (G) = T r e A , which is known as the Estrada index of the graph (see [START_REF] Estrada | The many facets of the Estrada indices of graphs and networks[END_REF]), and λn e -A = e -λ1(A) , where λ 1 (A) is the spectral radius of A.

Therefore, a = T r e -A Z ≥ e -λ1(A) T r e A = e -λ1(A)

n j=1 e λj (A) = n j=1 e λj (A)-λ 1 (A) = 1 + n j=2 e λj (A)-λ 1 (A) > 1, (3.8)
with the last inequality due to the fact that the graph is not trivial. Now, let me prove that u T D -1 u > 0, for which I will start by writing

1 2 u T D -1 u = -u T S 1/2 e -A S 1/2 u - u T S 1/2 e -A S 1/2 ee T S 1/2 e -A S 1/2 u 1 -u T S 1/2 e -A S 1/2 u . = -a - a 2 1 -a = 1 a -1 > 0, (3.9) 
where the last inequality is due to the fact that a > 1 as proved before. ⊓ ⊔

Remark 1

The previous result indicates that the CCD induces an embedding of a graph into a Euclidean n-dimensional sphere of radius (see [START_REF] Estrada | Hyperspherical embedding of graphs and networks in communicability spaces[END_REF]):

R = 1 2 (u T D -1 u) -1 = √ a -1.
(3.10)

In a recent paper [START_REF] Estrada | Every nonsingular spherical Euclidean distance matrix is a resistance distance matrix[END_REF] I have proved that every circum-EDM is the eective resistance matrix of a graph with appropriate edge weights.

Communicability cosine distance as vertex similarity

It is obvious that the EDM of communicability cosines distances represents a dissimilarity matrix where the nondiagonal entries represent the dissimilarity between the corresponding pair of nodes. Such dissimilarity accounts for how well communicated a pair of nodes are in the network based on the ratio of the number of weighted walks connecting them to the number of weighted walks that start and end in the corresponding nodes. Here, the weight is given by the reverse of the factorial of the length of the walk.

The use of dierent graph measures to account for vertex similarities is not new. In fact, the use of the so-called structural equivalence, where two vertices sharing many of the same network neighbors are considered structurally equivalent, dates back to the 1970's [START_REF] Lorrain | Structural equivalence of individuals in social networks[END_REF]. Further developments include the regular equivalence, in which vertices are said to be similar if they are connected to other vertices that are themselves similar [START_REF] Borgatti | Two algorithms for computing regular equivalence[END_REF][START_REF] Batagelj | An optimizational approach to regular equivalence[END_REF]. More recent approaches include the use of algebraic methods, such as the method proposed by Blondell et al. [START_REF] Blondel | A measure of similarity between graph vertices: Applications to synonym extraction and web searching[END_REF] as a generalization of Kleinberg's hub and authority method [START_REF] Kleinberg | Authoritative sources in a hyperlinked environment[END_REF], and the method proposed by Leicht, Holme and Newman (LHN) [START_REF] Leicht | Vertex similarity in networks[END_REF] on the basis of the so-called Katz centrality index [START_REF] Katz | A new status index derived from sociometric analysis[END_REF]. In this last approach two vertices are similar if their immediate neighbors in the network are themselves similar, which leads to a self-consistent matrix formulation of similarity that can be evaluated in an iterative way using only a knowledge of the adjacency matrix of the network. LHN [START_REF] Leicht | Vertex similarity in networks[END_REF] tested their measure, among other networks, for extracting sensible synonyms to words from a network representing the structure of Roget's Thesaurus [START_REF]Thesaurus of English Words and Phrases[END_REF], similarly to what Blondell et al. [START_REF] Blondel | A measure of similarity between graph vertices: Applications to synonym extraction and web searching[END_REF] have done before. In general, the authors considered that this new measure is capable of extracting useful information about vertex similarity based on network topology and that it displays some advantages in relation with previously dened measures. Therefore, I will concentrate here in the comparison between the CCD dissimilarity and that of LHN. More formally, the similarity matrix proposed by LHN [START_REF] Leicht | Vertex similarity in networks[END_REF] is as follows.

Denition 13 Let G be a graph with adjacency matrix A and let K be the diagonal matrix of vertex degrees. The LHN similarity between two nodes v and w is given by the v, w entry of the following matrix

N = 2mλ 1 K -1 I - α λ 1 A -1 K -1 , (4.1) 
where m is the number of edges, λ 1 is the spectral radius of A, I is the identity matrix and 0 < α < 1 is an empirical parameter.

LHN [START_REF] Leicht | Vertex similarity in networks[END_REF] performed a brief analysis of the parameter α in their paper determining empirically that a value of α = 0.97 was the most appropriated for the analysis of vertex similarities in networks. Because 0 ≤ Dvw ≤ 2, I will consider here Dvw = 1 2 Dvw, which is then bounded as 0 ≤ Dvw ≤ 1 as required by any dissimilarity metric. I then applied here the two measures Dvw and Nvw to the analysis of similarities between words in the Roget Thesaurus network. It should be noticed from the eq. ( 4.1) that the diagonal entries of N are not one, like it is common in all similarity matrices. However, it should be not a problem if Nvv > Nvw for all w ∈ V . That is, a vertex is most similar to itself than with any other vertex in the graph. This is indeed observed for all the vertices in the network of the Roget Thesaurus. For the comparison of the two approaches I have considered the same words analyzed by LHN [START_REF] Leicht | Vertex similarity in networks[END_REF] and the results are displayed in Table 1.

alarm hell As can be seen in Table 1 there are some dierences between the ranking of words performed by both approaches, but in general they are qualitatively very similar. For instance, for alarm both methods identify warning as the most similar one and then rank omen and indication in the top ve. For hell, LHN identies heaven as the top similar word while the new method identies pain as the top one, which is then ranked as the second most similar by LHN. For mean the words in the top ve according to both methods dier, but they are closely related words, which is understood by the very meanings of the words mean. Finally, there is coincidence in the top-ranked similar word for water, in which both methods coincide in plunge, and then coincide in identifying moisture, insertion and river in the top ve.

However, an important diculty can be foreseen for the general use of the LHN method [START_REF] Leicht | Vertex similarity in networks[END_REF] in real-world networks. The analysis of the formula (4.1) indicates that if a network has a very large spectral radius of the adjacency matrix, i.e., λ 1 ≫ 1, then α/λ 1 → 0, which makes that the inuence of the whole topology of the network, accounted for by the adjacency matrix, disappears from the similarity matrix. That is, in a network in which λ 1 is relatively large, it is expected that Nvw ∼ 2mλ1 kvkw , where kv is the degree of the vertex v. That is, in this case the similarity between the two vertices will depend only on their respective degrees. The Roget Thesaurus network has λ 1 ≈ 12.027, which according to the results previously obtained, still allows for capturing the inuence of the topology of the network in the LHN formula. Let us then consider another network, for which λ 1 ≈ 44.303. This network is a representation of the Online Dictionary for Library and Information Science by Joan M. Reitz [START_REF] Reitz | Dictionary for library and information science[END_REF]. That is, a dictionary which is specialized in library and information science.

The rst curious result obtained with the LHN for this network is the following. Now, it is not always true that Nvv > Nvw. That is, there are some vertices for which there are other vertices more similar to them than themselves. This is certainly weird! For instance, for homepage, LHN nds that there are 22 other words more similar to it that the proper word homepage. As another example, LHN nds that the words data and queue are more similar than data to itself. For the word book there are 1682 words more similar to it than the word book itself, and for the word work there are 1378 words in the same situation. Why is this happening? Simply because in this case λ 1 is suciently large as for α/λ 1 → 0, implying that Nvw ∼ 2mλ1 kvkw . Then, if the vertex v has a relatively large degree, it will have more similarity with those vertices w displaying a very low degree, e.g., kw = 1. As can be seen in Table 2 there are ve words which are repeated among the top seven found as the most similar one for work, text and homepage. These words, according to their denitions in ODLIS, are completely unrelated to the target words as can be seen in Table 3. What happen is that these ve words have degree one in the ODLIS network. Then, they are found as most similar simply because of the fact that the similarity is given here by Nvw ∼ 2mλ1 kvkw , such that low degree of vertex w will increase its similarity with vertex v. architectural rendering A pictorial representation of a building or other structure, usually from an angle showing the front or main entrance, created by the architect or an architectural rm to give an accurate, if somewhat idealized, impression of how the structure will appear after it is constructed.

Table 3: Denitions given at ODLIS for the words ubiquitously found by LHN approach as most similar to several nonrelated words.

On the contrary, all words found by the CCS approach are related to the target ones, and indeed in all cases the target word appears in the denition of the word found. For instance, original: the word original appear in ODLIS as: In literature, a work as written by the author or in the author's own words. In art, a nished work as completed by the artist and ready for reproduction, the phrase direct edition appears as: An edition of a work for which the author provides the publisher with cameraready copy produced on a computer with the aid of word processing software. Used mainly for works that cannot be produced economically from type.

Cosine-distance closeness centrality

Here I propose an analogous of the closeness centrality index based on the CCD between a pair of nodes in a graph. Denition 14 Let Dvw be the CCD between the nodes v and w. Then,

Cv = n w=1 Dvw -1 , ( 5.1) 
is the communicability closeness centrality (CCC) of the vertex v.

The closeness centrality measures, such as CC and RCC, are designed to account for the importance of a vertex in a graph in terms of its proximity to the rest of the vertices. Then, these indices are useful in comparing dierent vertices in the same graph. However, I will analyze the change of the centrality of a given vertex in a graph when the size of the graph growth. The main goal of this exercise is to show some signicant dierences between CCC and the classical closeness centrality measures. I will start by the analysis of cycle graphs.

Lemma 3 Let Cn be a cycle graph with n nodes. Let Iν (z) be the modied Bessel function of the rst kind, and let

Cv (Cn) = I 0 (2) 2 (nI 0 (2) -e 2 )
. (5.3)

Proof The communicability between a pair of nodes v and w and the subgraph centrality of a given node in Cn are, respectively

Gvw (Cn) = 1 n n/2 j=0 exp 2 cos 2jπ n cos 2jπ (v -w) n , (5.4 
)

Gvv (Cn) = 1 n n/2 j=0 cos 2jπ
n .

(5.5)

Let

Gvw (Cn) := 1

π π 0 exp (2 cos (ϕ)) cos (ϕ (v -w)) dϕ = I dv,w (2) , (5.6) 
Gvv (Cn) := 1

π π 0 2 cos (ϕ) dϕ = I 0 (2) , (5.7) 
where dv,w is the shortest path distance between the two nodes and ϕ = 2πj/n.

Then, we dene cos θvw (Cn) := Gvw (Cn)

Gvv (Cn) Gww (Cn) = I dv,w (2) I 0 (2) 
.

(5.8)

It can be easy to see that limn→∞ Gvw (Cn) /Gvw (Cn) = 1 and limn→∞ Gvv (Cn) /Gvv (Cn) = 1, such that limn→∞ cos θvw (Cn) / cos θvw (Cn) = 1.

Therefore, let

Cv (Cn) = 1 

w̸ =v 2 -2 cos θvw (Cn) = 1 2 (n -1) -2 w̸ =v cos θvw (Cn)
lim n→∞ Cv (Cn) = I 0 (2) 2 (nI 0 (2) -e 2 )
, (5.11) which nally proves the result.

⊓ ⊔

Example 1 Let us consider the cycles Cn for 4 ≤ n ≤ 12 and obtain the value of Cv (Cn) using the previous result as well as Cv (Cn) using the function expm(A) im- plemented in Matlab. The results are given in Table 4. First, it is observed that the values of Cv (Cn) converge to those of Cv (Cn) when the sized of the graph is still relatively small. In this case the three closeness centralities, CC, RCC and CCC, drop with the increment of the graph size. The fastest drawing is observed for CC where CCv (Cn tion expm(A), Cv (Cn), as well as using the results of Lemma 3, Cv (Cn). The values of the CC and RCC are also shown for comparison.

) = 4 n 2 if n is even, or CCv (Cn) = 4 n 2 -1 if it
Let us now consider the complete graphs with n vertices.

Lemma 4 Let Kn be the complete graph with n nodes. Then,

Cv (Kn) = e n + n -1 2n (n -1)
.

(5.12)

Proof The eigenvalues of the adjacency matrix of Kn are n -1 with multiplicity 1 and -1 with multiplicity n -1. We thereby have

Gvv = 1

ne (e n + n -1) ,

Gvw = 1

ne (e n -1) ,

therefore, the cosine of the communicability angle between any pair of vertices is

cos θvw = e n -1 e n + n -1 . (5.15)
Then the result follows by substitution in the formula for the CCC.

⊓ ⊔

Example 2 Let us now consider all the complete graphs with 3 ≤ n ≤ 12. In Fig. 5.1 we illustrate the values of CCC for a vertex of Kn as well as the values of CC and RCC. The classical closeness centrality takes values CCv (Kn) = (n -1) -1 which clearly decays to zero when n → ∞. The shortest path distance between two nodes in Kn is always one. In the case of the RCC there are two competing factors. When the size of the graph increases the number of vertices that can be reached in one step from a given node also increases. However, due to the increase in the number of walks, the length of these edges drops as Ω ij (Kn) = 2/n. The resulting eect is a domination of the rst of the two mentioned factors, which means that RCC drops with the increase of size, RCCv (Kn) = n/ (2 (n -1)), reaching the asymptotic value of 1/2 as the size growth. As a result of the second factor, RCC drops more slowly than CC as can be seen in Fig. 5.1. Finally, in the case of CCC the competition between the two previously mentioned factors is won by the drop of the edge length, which decays exponentially in this case, Duv = 2n e n + n -1

. As a result, CCC increases monotonically with the size of the complete graphs. From an application point of view it means that a node in Kn becomes more central as n growth because it can reach more neighbors with relatively little eort due to the contraction of the edge length separating them. Such contraction of edge lengths is due to the fact that more walks exists to go from one vertex to another, which can be used as ways of communication between such pair of vertices. Geometrically this means that the radius of the hypersphere in which Kn is embedded decays exponentially as n increases. Empirically we have found that R ≈ 2.167 exp (-0.3856n) with a correlation coecient of 0.9981 for 4 ≤ n ≤ 12. Finally, I will illustrate the behavior of CCC on star graphs of dierent sizes.

Lemma 5 Let S 1,n-1 be the star graph with n nodes and central node labeled by 1.

Then,

C 1 (K 1,n-1 ) = Υ 1/2 Σ 1/2 (n -1) 2Σ 1/2 Υ 1/2 -2Φ , (5.16 
)

C j (K 1,n-1 ) = Υ 1/2 Σ 1/2 2n 2 Σ 1/2 -4nΣ 1/2 + 2Σ 3/2 -ΦΥ 1/2 , (5.17) 
where

Υ = cosh √ n -1 + n -2, (5.18) 
Φ = sinh √ n -1 , (5.19) 
Σ = cosh √ n -1 .
(5.20)

Proof The communicability between the dierent pairs of nodes in K 1,n-1 are

G 1w (K 1,n-1 ) = 1 √ n -1 sinh √ n -1 , (5.21 
)

Gvw (K 1,n-1 ) = 1 n -1 cosh √ n -1 -1 , (5.22) 
and the subgraph centrality of these vertices are

G 11 (K 1,n-1 ) = cosh √ n -1 , (5.23 
)

Gww (K 1,n-1 ) = 1 n -1 cosh √ n -1 + n -2 .
(5.24)

Therefore, we have

cos θ 1w = sinh √ n -1 cosh √ n -1 cosh √ n -1 + n -2 = Φ Σ 1/2 Υ 1/2 , (5.25) cos θvw = cosh √ n -1 -1 cosh √ n -1 + n -2 = Σ -1 Υ , (5.26) 
from which the results follow by substitution into the denition of CCC. ⊓ ⊔

Example 3 Here I consider star graphs with 4 ≤ n ≤ 100 for which I calculate

C 1 (K 1,n-1 ) and C 2 (K 1,n-1
). The comparison with the analogous of CC (notice that RCC is identical to CC because the graph is a tree) is straightforward because what happens in star graphs is that for relatively small number of vertices the contraction in the communicability distance is not enough to overcome the eect of the increase in the number of paths of length one and two. That is, the centrality of the vertex 1, for instance, decays when n increases in this region because the vertex has to make a greater eort to contact a larger number of nearest neighbors. However, after certain size, due to the contraction of the edge lengths between this vertex and its neighbors, the number of nearest neighbors that can be visited from this vertex is bigger and bigger without increasing too much the eort that it takes to visit them. Plot of the cosine communicability distance from the vertex 1 to a nearest neighbor (left) and between a pair of adjacent vertices i ̸ = j ̸ = 1 (right).

CC 1 K 1,n/1 = (n -1) -1 , and CC j K 1,n/1 = (2n -3) -1 . That is,
In closing, we have seen that CCC has very dierent behavior for dierent types of graphs and that they dier signicantly from those observed for CC and RCC.

6 Discriminant power of CCC vertices if there is a permutation matrix P that interchange these two vertices, such that: P AP T = A. We have found that there is only one of such permutations vertices, which interchanges the vertices labeled as 3 and 6, which are colored in black in Fig. 6.1. Therefore, there is at least one nontrivial automorphism of the graph that swap these two vertices. These vertices are name similar in graph theory, but here I propose to call them identical in order to avoid confusion with the quantitative concept of vertex similarity used before. 5). That is, there are three pairs of indistinguishable vertices according to this centrality. The resistance closeness centrality identies the pair 3, 6 as having the same centrality but it also identies another pair of vertices as indistinguishable, which corresponds to the pair 4, 5. As we have seen these vertices are not identical because there is not a permutation matrix that interchange them leaving unchanged the adjacency matrix. As can be seen in the third column of see Table 5 the CCC only identies one pair of vertices as indistinguishable and they coincide with the identical vertices previously found.

No. Proof We can write

CCv

(G) = Fw (G), (xv -xw) • (x 1 + • • • + xn) = 0, (6.2 
Fv (G) = Fw (G) ∥xv -x1 ∥ 2 + • • • + ∥xv -xn∥ 2 = ∥xw -x1 ∥ 2 + • • • + ∥xw -xn∥ 2 xv • x1 + xv • x2 + • • • + xv • xn = xw • x1 + xw • x2 + • • • + xw • xn. (6.3)
Because the vectors xv and xw are respectively in the LHS and RHS of the sums and recalling that xv

• xv = 1 we have Fv (G) -Fw (G) = 0 implies that (xv -xw) • (x 1 + • • • + xn) = 0. (6.4)
Because 0 ≤ Mvw ≤ 1, the angle between every pair of position vectors is not larger than 90 °, which implies that x1 + • • • + xn > 0, which nally proves the result.

⊓ ⊔

Remark 2 If CCC discriminate vertices up to automorphism it should be the case that Cv = Cw implies that AP = P A for a permutation matrix P that swap the vertices v and w. This last condition is fullled if φv = φw. The fact that xv • R = xw • R, does not imply mathematically that xv = xw and consequently does not imply that φv = φw. Therefore, this condition does not imply that if Fv (G) = Fw (G) there is a permutation that swap the two vertices v and w while preserving the adjacency matrix.

Let us then consider the second case, that is when xv = xw. First, let us consider that xv = xw which means that e Λ/2 (φv -φw) = 0. Therefore, it implies that φv = φw. Also because Gvv = xv • xv, the fact that xv = xw also implies that Gvv = Gww. In closing, if xv = xw we have that e Λ/2 φv Gvv -φw Gww = 0, (6.5) which necessarily implies that φv = φw.

Because it is not always necessarily true that Cv = Cw implies that the two vertices are identical we then studied all 11,117 connected graphs with 8 vertices and identied the number of graphs with a given number of pairs of identical vertices. For instance, there are 3552 graphs with 8 vertices which have no pair of identical vertices (see next section). There are 2825 graphs with only one pair of identical vertices, 1913 with two pairs, and so on. In Table 6 I give the number of graphs with a given number of distinguishable pairs of vertices for the three closeness centralities studied here.

For instance, there are only 12 graphs for which CC give dierent values for all their vertices, this number increases up to 2823 for RCC, but only CCC identies all graphs having no pair of identical vertices. As can be seen in Table 6 the CCC identies all graphs with any number of pairs of identical vertices among the graphs with 8 vertices. This performance is not observed even for other indices based on the exponential of the adjacency matrix, such as the subgraph centrality (SC), for which I shown the number of identical pairs of vertices identied by this centrality in 

Graphs with no pair of identical vertices

Let me recall that a graph is called asymmetric or identity if it does not contain any pair of identical vertices [START_REF] Albertson | Symmetry breaking in graphs[END_REF]. That is, if there is no nontrivial automorphism for the graph.

Asymmetric graphs are of relevance for the study of graph controllability [5154]. For instance, it was proved that the class of essentially controllable graphs form a strict subset of asymmetric graphs [START_REF] Aguilar | Graph controllability classes for the Laplacian leader-follower dynamics[END_REF]. Additionally, identity graphs have been proposed as the mathematical structure of the World in the World as a graph proposal of Dipert [START_REF] Dipert | The mathematical structure of the world: The world as graph[END_REF] (see also [START_REF] Shackel | The world as a graph: defending metaphysical graphical structuralism[END_REF]). The idea of World as a graph is that if the World is a graph, then it has to be asymmetric to avoid that two spatio-temporal points can be identical and therefore can be swapped.

There are no asymmetric graphs with 2 ≤ n < 6, but there are 8 asymmetric graphs with 6 vertices, which are illustrated in Fig. 6.2). I calculated the CCC for all the vertices in these 8 asymmetric graphs with n = 6

and found that this centrality distinguishes all their vertices. That is, let An be the set of all asymmetric graphs with n vertices, we have observed that if v ̸ = w then Cv ̸ = Cw for all v, w ∈ A 6 . This is not the case for the standard CC, which does not distinguish all the vertices in any of these asymmetric graphs, nor for the RCC, which only nds all vertices dierent for 4 out of the 8 asymmetric graphs. Although not a closeness centrality we also compared the results with the SC, which distinguishes all vertices in these 8 asymmetric graphs with 6 vertices.

I now extend these calculations to all asymmetric graphs with 7 ≤ n ≤ 9 and the results are displayed in Table 7. It is known that the cardinality of the sets An are 8, 144, 3552, 131452 for n = 6, 7, 8, 9, respectively (see integer sequence A124059 in the Encyclopedia of Integer Sequences [START_REF] Sloane | The on-line encyclopedia of integer sequences[END_REF]). As can be seen in Table 7 the CCC dierentiates all the vertices in 100% of the asymmetric graphs with 6 ≤ n ≤ 9. A particularly interesting class of graphs is formed by those having at least one pair of pseudosimilar vertices [START_REF] Godsil | Constructing graphs with pairs of pseudo-similar vertices[END_REF][START_REF] Lauri | Pseudosimilarity in graphs-a survey[END_REF] (hereafter I will call them pseudoidentical).

That is, these are graphs for which a pair of vertices v, w exists such that G -v is isomorphic to G -w but there is no automorphism transforming v onto w. In Table 8 we give the values of CCC, RCC and SC for every vertex in the two graphs illustrated in Fig. (second pair). Notice that no pair of identical vertices exist in these two graphs.

I calculated the dierence between the CCC of every pair of vertices in the two graphs illustrated in Fig. 6.3. In both cases it is found that the smallest dierence is observed for the pair of pseudoidentical vertices. Unfortunately, this is not always true, as for the 36 asymmetric graphs with a pair of pseudoidentical vertices, the smallest dierence between the CCC of every pair of vertices coincides with the pseudoidentical vertices in 27 occasions, but it does not coincide in 9.

Let me now consider some other examples of known identity graphs which are illustrated in Fig. 6.4, which have from 12 to 222 vertices. for graph e). The graph f ) is a tree, which is shown to illustrate that even in very simple graphs CC identies dierent set of vertices than CCC. In this case CC (RCC is identical to CC for trees) identies vertex 7 as equivalent to vertices 1-4, which are the identical ones.

In graphs g) and h) CC identies 9 and 16 equivalent nodes, respectively, while RCC identies correctly only the identical vertices in g) and h). However, in g) SC identies Remark 3 A note of caution should be stressed here. It is not the case that centrality measures in general should dierentiate vertices up to their automorphism. For instance, CC is designed to identify those vertices in a graph which are closer to the rest of the vertices. Therefore, two vertices with the same proximity to the rest of the vertices of the graph have to have the same CC even if they are not identical.

CCC in networks

Here I consider 14 networks representing complex systems in a variety of scenarios.

They include a ip-op electronic circuit, the neuronal network of the worm C. elegans, the networks of connections between regions of cat and macaque cortex, a network connecting pairs of human brain that coactivate, a network indicating whether the buyers of a given political book also buy another one, the Roget thesaurus, and the ODLIS, a network representing the ights connections between USA airports, a food web in Bridge Brooks, the protein-protein interaction network of yeast, a network indicating whether two drug users have interchanged needles in a given period of time, the network indicating whether two authors in computational geometry have published a paper together, and a network representing the Internet at the Autonomous System (more details and references can be found in the Appendix of [START_REF] Estrada | The Structure of Complex Networks: Theory and Applications[END_REF]).

Distinguishing vertices

For all the 14 real-world networks previously described I calculated the number of pairs of identical vertices #A, as well as the number of vertices which are dierentiated by each of the three CC studied. The rst interesting result is that all neuronal systems in dierent species considered here are identity graphs. This is particularly interesting in the case of those neuronal systems coming from brains with bilateral symmetry, such as cat and macaque visual cortex as well as the human brain. That is, the bilateral symmetry, as well as any other kind of symmetry, is broken in these networks possibly due to functional reasons. However, the study of the implication of this network asymmetry is outside the scope of this work. As can be seen in Table 11 in all these cases RCC and CCC distinguish all pairs of vertices.

The degree of vertices redundancy in a network can be calculated as R (G) := 2#A n (n -1) , (6.6) which are given as percentages in Table 11. As can be seen, real-world networks have very few pairs of identical vertices in relation to their total possible number. This contrasts with the very high global symmetry observed by some of these graphs obtained from the automorphism group. For instance, |Aut (G)| = 2.5916 • 10 24 for the airport network in USA and |Aut (G)| = 1.8994 • 10 320 for the collaboration network in computational geometry (we have used exactly the same versions of the networks used in [START_REF] Macarthur | Symmetry in complex networks[END_REF]). This means that there are much more ways of transforming the 1436 pairs of identical vertices existing in the collaboration network than symmetry operations exist to transform the 135 pairs of identical vertices in the airport network. However, as we have remarked in the Introduction with the example of K Let us now turn our analysis to the identical vertices in the Roget Thesaurus network. The complete enumeration of all pairs of vertices that can be swapped by a nontrivial automorphism identies only three pairs, formed by words: duality-bisection, celibacy-divorce, and man-woman. The CC identied 307 pairs of words with equivalent closeness centrality. However, both CCC and RCC identies three uniquely existing identical pairs of words. The pairs duality-bisection and celibacy-divorce are pairs of trivially identical words because they correspond to vertices of degree one which are connected to the same root vertex. In the rst case the two words are connected to duplication and in the second they are connected to marriage. The words man and woman are connected to each other in the network and each of them is connected to other three words: infant, adolescent and marriage.

The second example is the network representing ODLIS which is formed by 2898 vertices and 16,376 edges, after the elimination of 5 self-loops (self-referenced words).

In We can now identify the most central words according to CCC in the Roget Thesaurus network, which are given in Table 12 together with the degree, CC and RCC.

As can be seen CC and RCC identies as most central the most connected words in the thesaurus, while CCC again identies words with relatively small degree but well connected to the rest of words via relatively short walks. degree CC RCC CCC indication [START_REF] Sun | Similar vertices and isomorphism detection for planar kinematic chains based on ameliorated multi-order adjacent vertex assignment sequence[END_REF] inutility ( 25) deterioration ( 27) hope ( 12) neglect [START_REF] Albertson | Symmetry breaking in graphs[END_REF] neglect ( 27) neglect [START_REF] Albertson | Symmetry breaking in graphs[END_REF] non-preparation (13) deterioration [START_REF] Albertson | Symmetry breaking in graphs[END_REF] preparation ( 25) indication ( 28) success ( 11) inactivity [START_REF] Lauri | Pseudosimilarity in graphs-a survey[END_REF] deterioration ( 27) preparation ( 25) danger ( 16) information [START_REF] Godsil | Constructing graphs with pairs of pseudo-similar vertices[END_REF] hindrance ( 24) inutility ( 25) importance [START_REF] Cameron | Automorphisms of graphs[END_REF] Table 12: Most central words in Roget Thesaurus according to degree and the three closeness centrality studied here. The degree of the vertices is indicated in parenthesis.

These dierences are even more remarked in the case of the ODLIS network as can be seen in Table 13 where CC and RCC identify the most connected vertices, while CCC identies vertices of relatively small degree. [START_REF] Meghanathan | Use of eigenvector centrality to detect graph isomorphism[END_REF] Table 13: Most central words in ODLIS according to degree and the three closeness centrality studied here. The degree of the vertices is indicated in parenthesis.

Finally, I will focus on a network of books about US politics, where books about US politics published around the time of the 2004 presidential election and sold by the online bookseller Amazon.com are represented as vertices and edges between books represent frequent co-purchasing of books by the same buyers. The books have been classied as liberal, conservative and neutral as can be seen in Fig. 6.7(a). The degree of the vertices identies three conservative books as the most central ones, followed by ve liberal books and then again three conservatives and so on (see Fig. 
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 510 Then, because e z = I 0 (z) + 2 ∞ r=1 Ir (z), we have that

  Fig. 5.1

  for CC the centrality of both nodes decays with the number of vertices. Here the edge length is always equal to one, such that the only eect observed is the fact that a walker at a vertex in a star encounters more vertices to visit as n increases. However, when we consider CCC we nd again two competing factors: (i) the increase in the number of rst and/or second neighbors, and (ii) the change of the edge length due to the increase in the number of walks connecting pairs of vertices. The resulting eect of both factor is nonmonotonic on the number of vertices as can be seen in Fig.5.2(a), where CCC rst drop with the number of vertices and then growth for n ≥ 23. The dierence in the CCC of the central and pendant vertices also increases with the growth of the graph size. The reason for the nonmonotonic behavior observed resides in the fact that here the communicability distance between pairs of vertices decays still exponentially, but not so fast as for the case of complete graphs. Without loss of generality let me focus on the central node labeled as 1. Instead of using the more dicult to interpret expression for cos θ 1w that we have found before, let us proceed as follow. We can obtain an empirical relation between between the communicability distance and n by nding the best nonlinear regression model. It results to be of the form: D 1,j ≈ ae bn + ce dn , where I have found that a ≈ 0.8896, b ≈ -0.0472, c ≈ -0.5259, and d ≈ -0.2606. Similar results are also obtained for D i,j when i ̸ = j ̸ = 1. The result of the exact values of these distances and that of the best tting are given in Fig.5.2(b). Thus,
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 52 Fig. 5.2: (a) Plot of the communicability closeness centrality for the central node (continuous line) and the pendant node (broken line) of star graphs with n vertices. (b)

Bao and Zhang [ 13 ]

 13 have recently analyzed the discriminant power of several centrality measures, including the CC one. They quantify the number of pairs of vertices that are dierentiated by a given centrality measure relative to the total number of pairs as the discriminant power of the centrality. Here I analyze the discriminant power of the CCC and the analogous closeness centrality CC and RCC, based on their capacity to discriminate the nonidentical vertices in a graph. Let me start with the following. Example 4 Let us consider the labeled graph illustrated in Fig. 6.1. As the graph has 7 vertices it has 21 pairs of vertices. Let us check for every of these 21 pairs of
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 61 Fig. 6.1: Illustration of a labeled graph used in the Example.

  ) meaning that either xv = xw or that xv • R = xw • R, where R = x1 + • • • + xn and a • b indicates inner product.
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 62 Fig. 6.2: Illustration of the asymmetric (identity) eight graphs with 6 vertices, i.e, those graphs with 6 vertices for which Aut (G) = 1.

  From the perspective of the current work, these pairs of vertices could be seem as dicult ones to be distinguished by any centrality measure. Two examples of asymmetric graphs with a pair of pseudoidentical vertices are the graphs G and H illustrated in Fig. 6.3. Both graphs have no automorphism but the identity one. In graph G the vertices 4 and 6 are pseudoidentical as well as the vertices 5 and 7 in H.

Fig. 6 . 3 :

 63 Fig. 6.3: Illustration of two pseudoidentity graphs. In graph G the vertices 4 and 6 are those that if removed the resulting graphs G -4 and G -6 are isomorphic (see rst line of the gure). For the graph H such vertices are 5 and 7 and the resulting isomorphic graphs are H -5 and H -7.

5 and 6 .

 56 6.3. I do not display the results for the classical CC because it is highly degenerated in most of the cases, i.e., many pairs of nonidentical vertices have the same values of the CC. Although the RCC fails to dierentiate all the vertices of these two graphs, the pairs of vertices for which RCC gives the same values do not coincide with the pseudoidentical ones. That is, in graph G the pseudoidentical vertices are labeled 4 and 6 while the RCC produces identical values for vertices The same happens for graph H where the RCC is degenerated for vertices 6 and 8 while the pseudoidentical ones are 5 and 7. This situation is repeated across the asymmetric graphs with 8 vertices where we have identied 36 graphs having one pair of pseudoidentical vertices. The vertices of 22 of these 36 graphs are distinguished by the RCC and in the remaining cases the pairs with similar values of this centrality do not necessarily coincide with the pseudoidentical ones. A dierent situation occurs with the SC which have the same value for the pairs of pseudoidentical vertices in both graphs illustrated in Fig.6.
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 649 Fig. 6.4: Illustration of the structure of eight classical examples of identity graphs, i.e., those having no symmetry but the identity one.
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 65 Fig. 6.5: Illustration of graphs with 8 vertices having one (a), two (b), three (c), four (d), ve (e), six (f ), seven (g) and eight (h) pairs of identical vertices, respectively.Every group of identical vertices is colored the same. For instance, in h) there are found vertices in black, which form 6 pairs of identical vertices, plus one pair in dark gray and another pair in pale gray, summing 8 pairs of identical vertices.
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 66 Fig. 6.6: Illustration of the degree (a), betweenness (b), closeness (c) and communicability closeness (d) centrality of the nodes in the network of a karate club, where the size and color of the vertices are proportional to the corresponding centrality.

6. 7

 7 (b)). In the case of closeness measures we would expect that books placed more or less equidistant from both polarized groups, i.e., liberal and conservative, would be among the most central ones. The CC identies the books The Price of Loyalty, Rise of the Vulcans, The Bushes, Ghost Wars and Bush Country as the most central ones. The books at positions 2, 3 and 4 of CC ranking are almost equidistant of both main political groups. Rise of the Vulcans is connected to 5 conservative books, 3 neutral and 4 liberal. The Bushes and Ghost wars both have 4, 2, 2 connections to conservative, neutral and liberal books. However, The Price of Loyalty and Bush Country are selected due to the CC bias towards high degree nodes. The rst has 2, 3, 15 connections, being clearly closer to liberal books, and the second has 14, 2, 0, being clearly closer to conservative ones. RCC is highly biased towards degree as can be seen in Fig. 6.7(c). Indeed in the top ten ranking of books by RCC we nd the top most connected books in the network, and there is a high correlation between the two centralities. Indeed RCC ∼ k -ζ with a squared correlation coecient of 0.97. The ranking produced by the betweenness centrality also displays bias by the degree of the vertices. It ranks at the top the books: The Price of Loyalty, The Bushes, Bush Country, O with Their Heads and American Dynasty. The books at positions 1, 4 and 5 are among the most connected ones in the network: (the rst was already analyzed), O with Their Heads has 22, 3, 0 connections and American Dynasty has 1, 2, 19 connections. Finally we arrive at the ranking produced by CCC where the top books are: The Bushes, Ghost Wars, Rise of the Vulcans, Sleeping With the Devil, and Why Courage Matters, which have (4, 2, 2), (4, 1, 3), (5, 3, 4), (3, 3, 2) and (4, 1 0) connections, respectively. As can be seen in Fig. 6.7(f ) all the most central books are at the central part of the network almost equidistant from both major political wings, without any bias due to the vertex degree, which is a characteristics not observed by any of the other centrality measures and illustrate one of the main characteristic features of the communicability cosine distance and derived indices.
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 67 Fig. 6.7: Political books repurchased by the same buyers. (a) A classication of books as liberal (brown), liberal (blue) and neutral (green). (b-f ) Coloring of the vertices according the degree (b), CC (c), RCC (d), betweenness (e) and CCC (f ).

Table 1 :

 1 Top ve most similar words found by the LHN similarity measure, Mvw, and by the cosine communicability similarity, Nvw, for the words alarm, hell, mean and water.

	Nvw	Dvw	Nvw	Dvw
	warning	warning	heaven	pain
	danger	omen	pain	dejection
	omen	indication	discontent	heaven
	indication	prediction	adversity	discontent
	caution	threat	pleasure	physical pain
	mean		water
	Nvw	Dvw	Nvw	Dvw
	compromise	imperfection	plunge	plunge
	middle	unimportance	moisture	insertion
	generality	smallness	air	moisture
	mid-course	inferiority	insertion	river
	compensation	weakness	river	egress

Table 2 :

 2 And this is exactly what happens for words like work (k = 380), text (k = 246) or homepage (k = 150), just to give three examples. In Table 2 I give the top seven most similar words according to LHN and to the CCD dissimilarity.

	work	text
	Nvw juvenalia potboiler bibliotaph book cradle bookrest imbrication lectionary	Dvw original direct edition national bibliography series title page annotated edition royalty subtitle	Nvw bibliotaph book cradle bookrest imbrication lectionary polaire architectural rendering	Dvw composition note reading level print galley proof rst edition extent
	homepage	book
	Nvw	Mvw	Nvw	Mvw
	DEMCO	Medical Association Library	bibliotaph	curiosa
	Highsmith Inc.	Freedom to Foundation Read	book cradle	easel
	Brodart bibliotaph book cradle standing order Librarian of Congress library of science bookrest curator imbrication National Film Registry	bookrest imbrication lectionary polaire book light	demand publishing primer book collecting prepub remainders

Top most similar words in ODLIS to the words work, text, homepage and book according to LHN method and the current approach. The words in bold correspond to unrelated words that LHN identies simply because they have degree one and are connected to a hub in the ODLIS network.

  The fact that the words juvenalia and potboiler are among the top most similar ones with work is due to the fact that they have degree one, and they are connected to work in the network. The same happen for DEMCO, Highsmith Inc. and Brodart in relation with homepage. However, because the word text has no word of degree one connected to it, LHN selects any word with degree one as the most similar to it.

	word	ODLIS denition
	bibliotaph book cradle bookrest imbrication lectionary polaire	A person who hoards books and hides them from others, even to the extent of keeping them under lock and key. A low stand or rack, usually made of wood, metal, or plastic, designed to display a book open at an angle, rather than at, to minimize strain on the spine when the volume is exhibited, mounted, studied, microlmed, or scanned (see this soft-surfaced example). A portable device similar to the music rest on a piano, designed to be placed on a desk or table to hold a book at an angle convenient for reading. In the book arts, a decorative pattern designed to give the impression of overlapping scales, tiles, shingles, leaves, etc. A liturgical book containing lessons and selections from the Bible, also indicating the sequence in which they are to be read by the congregation in services throughout the year. A sturdily made leather satchel or case used by monks, scribes, and other literate persons of the medieval period for transporting manuscript books.

Table 4 :

 4 is odd. It is followed by RCC where Values of the cosine distance closeness centrality obtained using Matlab func-

	RCv (Cn) =	6 n 2 -1	and nally by CCC where Cv (Cn) ≈	2.2796 4.5592n -14.7781	.
		n	Cv (Cn)	Cv (Cn)	CCv (Cn)	RC (Cn)
		4	0.5575465980 0.6591120482	1/4	0.4000
		5	0.2799080062 0.2843176590	1/6	0.2500
		6	0.1809535106 0.1812515986	1/9	0.1714
		7	0.1330057818 0.1330283840	1/12	0.1250
		8	0.1050712617 0.1050730010	1/16	0.0952
		9	0.0868265836 0.0868267141	1/25	0.0750
		10 0.0739798487 0.0739798581	1/30	0.0606
		11 0.0644446458 0.0644446465	1/36	0.0500
		12 0.0570867727 0.0570867727	1/42	0.0419

Table 5 :

 5 Values Let v and w be two dierent vertices of a graph G. Then, if Fv

			RCv	Cv
	1	0.0769	0.0991	0.1397
	2 3 4 5 6 7	0.1250 0.1000 0.1702 0.2395 0.1967 0.2789 0.1000 0.1739 0.2375 0.1111 0.1739 0.2311 0.1000 0.1702 0.2395 0.0714 0.0930 0.1244
	x j x j	, such that Dvw = ∥xv -xw∥	2 and let us call com-
	municability cosine farness to			
			n	
		Fv =	Dvw.		(6.1)
			w=1	
	Then, we have the following.			
	Lemma 6			

of the communicability closeness centrality (CCC) as well as of the standard closeness centrality and of the resistance closeness centrality for the nodes in the graph illustrated in Fig. 6.1. Let us rst designate xj =

Table 6 .

 6 Both CC and RCC are far from discriminate all the pairs of nonidentical vertices in these graphs.

	#pairs CC RCC CCC	SC	real
	0	12	2823 3552	3494 3552
	1	72	2042 2825	2813 2825
	2	194 1387 1913	1888 1913
	3	279 1206 1449	1440 1449
	4	207	489	586	586	586
	5	79	148	167	167	167
	6	41	75	91	91	91
	7	123	201	218	216	218
	8	129	180	185	185	185
	9	15	19	20	20	20
	10	7	8	8	8	8
	11	12	14	14	14	14
	12	38	39	39	39	39
	13	4	5	5	5	5
	15	7	7	7	7	7
	16	25	25	25	25	25
	21	3	3	3	3	3
	28	10	10	10	10	10

Table 6 :

 6 Number of connected graphs with 8 vertices which are identied by the three closeness centrality studied here, plus the subgraph centrality, as having a given number of equivalent vertices. The last column (real) indicates the number of graphs having a given number of identical vertices. For instance, there are 3552 graphs with 8 vertices that have 0 pair of identical vertices, i.e., they are identity graphs. From those, CC identies 12, RCC 2823, SC 3494, and CCC identies all of them.

Table 7 :

 7 That is, if v ̸ = w then Cv ̸ = Cw for all v, w ∈ A n≤9 . The standard CC dierentiates very poorly the vertices of these asymmetric graphs, distinguishing only 2.1% of the asymmetric graphs with 7 vertices, 0.36% of those with 8 vertices and 0.09% of those with 9 vertices. Number of asymmetric (identity) graphs whose vertices are dierentiated by the dierent centrality measures for 6 ≤ n ≤ 9.

	The situation improves when we consider the resistance closeness centrality which
	dierentiates 93.75%, 79.53% and 96.33% of asymmetric graphs with 7, 8 and 9 vertices,
	respectively. Here again, the SC is the second best, after CCC, and dierentiates 100%,
	97.83% and 98.3% of asymmetric graphs with 7, 8 and 9 vertices, respectively.

Table 8 :

 8 3 (see able 8). However, the SC does not only produce degeneration for these pairs of pseudoidentical vertices but occasionally also in other pairs, such as pair 6,8 in graph H. This happened in 14 out of the 36 asymmetric graphs with one pair of pseudoidentical vertices. Values of centrality measures for the two pseudoidentity graphs illustrated in Fig.6.3. The values of the CCC and RCC are provided together with those of the subgraph centrality (SC). Identical values are marked in bold (rst pair) and gray

			graph G			graph H	
	No.	Cv	RCv	SCv	Cv	RCv	SCv
	1	0.1151	0.0888	1.7342	0.1172	0.0904	1.7459
	2	0.1599	0.1367	2.7588	0.1831	0.1445	2.9435
	3 4 5 6 7 8	0.1460 0.1944 0.2014 0.1692 4.1330 0.1338 2.6019 0.1675 3.7434 0.1952 0.1692 3.7434 0.2303 0.1902 5.1577 0.2449 0.1931 5.4313	0.1687 0.2344 0.2631 0.2604 0.1978 5.6427 0.1391 3.1937 0.1766 5.0812 0.1952 6.2944 0.2654 0.1987 6.2944 0.2567 0.1978 5.6427

Table 10 :

 10 9 vertices which coincide with those identied by CC. If we consider the sum of the rows of the LHN matrix N (Eq. 4.1) as a centrality measure, then, the graph h) is an example where it fails to identify only the identical vertices because it identies 16 Values of CCC for the vertices in the graphs illustrated in Fig.6.5. *, and are used to indicate the dierent groups of identical vertices in every graph.

	pairs of equivalent vertices (1,2 and 3-8) instead of 8. More examples exist among the
	graphs with 8 vertices.						
	vertex	a	b	c	d	e	f	g	h
	1 2 3 4 5	0.2146 0.3361 0.3909 0.4370 * 0.4370 *	0.7556 * 0.7556 * 0.6811 0.7788 0.6788	0.2409 0.3512 0.4993 * 0.6232 * 0.2858 0.6232 * 1.3450 * 0.1121 * 0.1211 * 0.2664 * 1.3450 * 0.1121 * 0.0989 0.2664 * 1.0402 0.1121 * 0.1211 * 0.3738 0.4993 * 0.6232 * 1.7942 0.1121 * 0.1211 * 0.4052 0.4993 * 0.5955 1.7942 0.0872 0.1211 * 0.4052
	6	0.4193	0.9668	0.4877	0.5955 2.2196	0.1330	0.1475	0.4052
	7	0.4360	0.9668	0.4519	0.5081	2.2196	0.1032	0.1467 0.4052
	8	0.5264	1.2170	0.5730	0.8262	2.2196	0.1610	0.1467 0.3738

Table 11 :

 11 4 and C 4 the size of the automorphism group does not indicate the number of pairs of vertices which are identical, which is what is matter in many real-world problems, such as the problem of Number of pairs of vertices which are dierentiated by the three closeness centrality studied here in the 14 real-world networks analyzed. For comparison the number of nonidentical pairs of vertices, #A, in every network is also provided. For instance, #A = 0 indicates that the graph is asymmetric (identity).

	controllability.

  this case there are 121 identical pairs of words. The CCC and RCC identify correctly these 121 pairs of words, while CC identies 1324 pairs of equivalent words. The large majority of the existing identical words correspond to trivial pairspairs of pendant vertices connected to the same vertex. For instance, 102 out of 121 pairs correspond to such cases, with groups of up to 8 pendant vertices connected to the same node. One of these groups is formed by the words: book cradle, bookrest, imbrication, lectionary, polaire and bibliotaph, which are all connected to the term bibliographic item, which have appeared previously in the analysis of words similarity in this work.There are, however, 19 pairs of words forming pairs of nontrivial identical vertices, i.e., their vertices have degree larger than one. These 19 pairs of nontrivial identical vertices are formed only by isolated pairs, that is, there are no triples, quadruples, etc. The ranking according to CC is: 1, 3, 34, 32, 33, which are the vertices with degrees 16, 10, 17, 6, 12. RCC identies 34, 1, 3, 33, and 2 as the most central vertices which have degrees: 17, 16, 10, 12, and 9. Thus, it is even more biased by degree than CC. However, CCC identies the vertices 9, 3, 20, 32, 14 and 31 with degrees 5, 10, 3, 6, 5, and 4, but placed somehow in between the two groups in conict in this network. This group of the most central vertices according to CCC are those for which there are a relatively large number of short walks connecting them to the rest of the vertices but a relatively small number of walks starting and ending at themselves. They are good communicators between the two factions existing in the network.

	6.3.2 Ranking vertices
	Some examples are: chef-d'oeuvre-masterpiece of degree 2; imprimatur-in press
	of degree 3; americanize-briticize, elegy-ode; burlesque-parody, all of degree
	4; color plate-monochrome plate of degree 5; broader term (BT or B)-narrower
	term (NT or N) of degree 12.

One of the most important applications of centrality measures is the ranking of vertices in decreasing order of the given centrality. The most central vertices are then expected to play some fundamental, structural and/or dynamical, role in the network. However, in most of real-world networks, vertex centrality measures are highly correlated with the degree of the vertices, in particular for those which depends on shortest paths. For instance, if a vertex has degree k there are k (k -1) /2 shortest paths of length two that cross this vertex. Therefore, if k is relatively large, there are high chances that the betweenness centrality of this node is also high. Thus, we are counting duplicated information in this case. This happens, for instance, in the social network where a group of 34 members of a karate club express their friendship preferences. The nodes labeled by 1 and 34 correspond to the trainer and administrator of the club and they are visibly the most connected ones with degrees 16 and 17 respectively. A polarization is known to exist in this network as there are two factions in it: one following the administrator and the other following the trainer. In Fig.

6

.6 I represent this network with vertices colored and with radii proportional to their degrees (a) and betweenness centrality (b). If we consider the CC (see Fig.

6

.6 (c)) we can see that it is also biased by the degree of the nodes.
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