Modeling of H₂/air flame stabilization regime above coaxial dual swirl injectors -Supplementary material

1. Results from TFUP model applied with laminar burning velocity as edge flame speed

In order to further consolidate the choice of the triple flame speed s_d as an estimation of the edge flame speed s_l , the same comparisons between the TFUP model predictions and the observed flame transition are realized using the laminar burning velocity s_l . They are presented and commented in the following.

Fig. S1: Comparison of predicted flame re-attachment with experimental observations for cases $F_2 - S_i - Air + N_2/H_2 + CH_4 + He$ using the laminar burning velocity s_l as an estimation of the edge flame speed. The burning velocity s_l is calculated with Cantera. The corresponding central jet angles α_i and dilution levels Y_{H_2} and Y_{O_2} achieved with CH₄/He for the central tube and N₂ for the annular channel are reported in Table 3 in the manuscript. Flow conditions F_2 (see Table 1 in the manuscript)).

The same comparison as in Fig. 11 in the manuscript between predictions of the TFUP model and experimental observations is now carried out considering the laminar burning velocity s_l to estimate the speed of the leading edge flame. The results are presented in Fig. S1 for the case $F_2 - S_i - Air + N_2/H_2 + CH_4 + He$ of Fig. 11 in the manuscript. It is shown that the results are no longer

Preprint submitted to Combustion and Flame

in good agreement with the experimental observations of the transition from lifted to anchored flame stabilization.

Fig. S2: Comparison of the predicted flame transitions with observations made for diluted cases $F_1 - 0.6 - Air + N_2/H_2 + CH_4 + He$, $F_2 - 0.6 - Air + N_2/H_2 + CH_4 + He$ and $F_3 - 0.6 - Air + N_2/H_2 + CH_4 + He$ using the laminar burning velocity s_l as an estimation of the edge flame speed. Yellow symbols correspond to s_l values calculated at the highest equivalence ratio measured in the TFUP zone. Red symbols correspond to s_l values calculated at the highest equivalence ratio measured in the TFUP zone. Red symbols correspond to s_l values calculated for the maximum laminar burning velocity. The injection velocity changes from $u_i = 17$ m/s to $u_i = 45$ m/s in the central channel and is fixed to $u_e = 28.5$ m/s inside the air channel (see flow conditions F_1 to F_3 in Table 1 in the manuscript). The corresponding central jet angles α_i and dilution levels Y_{H_2} and Y_{O_2} achieved with CH₄/He for the central tube and N₂ for the annular channel are reported in Table 5 in the manuscript.

The comparison of observed and predicted transitions for different central injection velocities u_i as in Fig. 13 in the manuscript with the edge flame speed estimated a the triple flame speed s_d is now presented in Fig. S2 estimating the leading edge flame speed with the laminar burning velocity s_l . As in Fig. S1, the experimental results are no longer in good agreement with the predictions of the TFUP model, except for the case $F_1 - 0.6 - Air + N_2/H_2 + CH_4 + He (\alpha_i = 64^\circ)$ when

June 7, 2023

the laminar burning velocity s_l is estimated at the mixture fraction featuring the higher laminar burning velocity. Looking at the other results when the leading edge flame speed is estimated with the laminar burning velocity s_l , this case is considered as not relevent and his agreement with the model predictions as a coincidence.

Results from Figs. S1 and S2 consolidate the choice to estimate the speed of the leading edge flame using the expression from Ruetsch *et al.* [1] for the triple flame speed.

[1] G. R. Ruetsch, L. Vervisch, A. Liñán, Effects of heat release on triple flames, Phys. Fluids 7 (1995) 1447–1454.