Arun Anil 
email: arunanil93@gmail.com
  
Manoj Changat 
email: mchangat@keralauniversity.ac.in
  
Recognition of chordal graphs and cographs which are Cover-Incomparability graphs

Keywords: Cover-Incomparability graphs, Chordal graph, Cographs, Recognition Algorithm

Cover-Incomparability graphs (C-I graphs) are an interesting class of graphs from posets. A C-I graph is a graph from a poset P = (V, ≤) with vertex set V , and the edge-set is the union of edge sets of the cover graph and the incomparability graph of the poset. The recognition of the C-I graphs is known to be NP-complete (Maxová et al., Order 26(3), 229-236(2009)). In this paper, we prove that chordal graphs having at most two independent simplicial vertices are exactly the chordal graphs which are also C-I graphs. A similar result is obtained for cographs as well. Using the structural results of these graphs, we derive linear time recognition algorithms for chordal graphs and cographs, which are C-I graphs.

Introduction

Chordal graphs or triangulated graphs are graphs that do not have induced cycles of length greater than three, and cographs which are P 4 -free graphs form two wellstudied graphs that have wider applications beyond mathematics. Special classes of these two graphs are also studied in many contexts, including theoretical, practical, and algorithmic interests. A vertex v of a graph G is a simplicial vertex if v together with all its adjacent vertices form a clique (a complete subgraph) in G.

Simplicial vertices and simplicial or perfect elimination play a crucial role in chordal graphs. It is a well-known fact that every chordal graph contains at least one simplicial vertex, and a noncomplete chordal graph contains at least two nonadjacent simplicial vertices. Chordal graphs that contain exactly two non-adjacent simplicial vertices form a special class of chordal graphs. In a similar manner, cographs that contain exactly two non-adjacent simplicial vertices are a proper subclass of the above described family of chordal graphs and the join of cographs having exactly two non-adjacent simplicial vertices form a special class of cographs. In this paper, we identify chordal graphs and cographs having exactly two non-adjacent simplicial vertices and cographs obtained by join of chordal cographs having exactly two simplicial vertices. Interestingly, these two special classes of graphs have been found to belong to a particular class of graphs that can be derivable from a partially ordered set or poset. This class of graphs obtained from posets is known as the cover-incomparability graphs of posets, or shortly C-I graphs. These graphs were introduced in [START_REF] Brešar | Cover-incomparability graphs of posets[END_REF] as the underlying graphs of the so-called standard transit function of posets. The C-I graphs are precisely the graphs whose edge set is the union of edge sets of the cover graph and the incomparability graph (complement of a comparability graph) of a poset. Graph-theoretic characterization of C-I graphs has not been known until now and, moreover, the recognition complexity of C-I graphs is NP-complete (Maxová et al. [START_REF] Maxová | On the complexity of coverincomparability graphs of posets[END_REF]). Hence, problems in C-I graphs are focused on identifying the structure and characterization of well-known graph families, which are C-I graphs. Such C-I graphs studied include the family of split graphs, block graphs [START_REF] Brešar | Coverincomparability graphs and chordal graphs[END_REF], cographs [START_REF] Brešar | Cographs Which are Cover-Incomparability Graphs of Posets[END_REF], Ptolemaic graphs [START_REF] Maxová | Which distance-hereditary graphs are coverincomparability graphs?[END_REF], distance hereditary graphs [START_REF] Maxová | Which distance-hereditary graphs are coverincomparability graphs?[END_REF], and k-trees [START_REF] Maxová | Which k-trees are coverincomparability graphs[END_REF]. The C-I graphs were identified among the planar and chordal graphs along with new characterizations of the Ptolemaic graphs, respectively, in [START_REF] Anil | Ptolemaic and planar cover-incomparability graphs[END_REF] and [START_REF] Anil | Ptolemaic and Chordal Cover-Incomparability Graphs[END_REF]. It is also interesting to note that every C-I graph has a Ptolemaic C-I graph as a spanning subgraph [START_REF] Anil | Ptolemaic and planar cover-incomparability graphs[END_REF]. C-I graphs are also studied among the comparability graphs [START_REF] Anil | Comparability Graphs Among Cover-Incomparability Graphs[END_REF]. The effect of composition operation, lexicographic, and strong products of C-I graphs was studied in a recent paper [START_REF] Anil | Composition and Product of Cover-Incomparability Graphs[END_REF].

In this paper, we obtain that chordal graphs having at most two independent simplicial vertices are exactly the chordal graphs which are also C-I graphs. A similar result is obtained for cographs as those cographs which are join of chordal cographs having exactly two independent simplicial vertices are precisely cographs which are also C-I graphs. Using the structural results of these graphs, we derive linear time recognition algorithms for have for both classes. The recognition algorithm for an arbitrary chordal graph [START_REF] Tarjan | Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs[END_REF][START_REF] Rose | Algorithmic Aspects of Vertex Elimination on Graphs[END_REF] and a cograph [START_REF] Corneil | A linear recognition algorithm for cographs[END_REF] is well known and has linear-time complexity.

Chordal graphs are precisely the intersection graphs of subtrees of a tree [START_REF] Gavril | The intersection graphs of a path in a tree are exactly the chordal graphs[END_REF].

Most of the information contained in a chordal graph is captured in its clique tree representation, which is useful for its algorithmic applications [START_REF] Gavril | The intersection graphs of a path in a tree are exactly the chordal graphs[END_REF][START_REF] Shibata | On the tree representation of chordal graphs[END_REF].

Cographs are exactly the P 4 free graphs and the class of cographs has been intensively studied since its definition by Seinsche [START_REF] Seinsche | On the property of the class of n-colorable graphs[END_REF]. The cographs appear as comparability graphs of series-parallel partial orders [START_REF] Jung | On a class of posets and the corresponding comparability graphs[END_REF], and can be generated from the single-vertex graph K 1 by complementation and disjoint union operations. It is well known that any cograph has a canonical tree representation called a cotree. This tree decomposition scheme for cographs is a particular case of modular decomposition [START_REF] Gallai | Transitiv orientierbare Graphen[END_REF] that applies to arbitrary graphs. Indeed, the algorithm that computes the modular tree decomposition of an arbitrary graph in linear time can also recognize cographs in linear time. In 1994, linear time modular decomposition algorithms were designed independently by Cournier and Habib [START_REF] Cournier | A new linear algorithm for modular decomposition[END_REF] and by McConnell and Spinrad [START_REF] Mcconnell | Linear-time modular decomposition and efficient transitive orientation of comparability graphs[END_REF]. In 2001, Dahlhaus et al. [START_REF] Dahlhaus | Efficient and practical algorithms for sequential modular decomposition[END_REF] proposed a simpler algorithm. Unfortunately, because they build the decomposition tree, all these algorithms are complicated or need to maintain complicated data structures. In 2004, Habib and Paul [START_REF] Habib | A simple linear time algorithm for cograph recognition[END_REF] proposed a new algorithm, which is not incremental, and instead of building the cotree directly, it first computes a special ordering of the vertices, namely a factorizing permutation, using a very efficient partition refinement techniques via two elementary refinement rules.

A search of a graph visits all vertices and edges of the graph and will visit a new vertex only if it is adjacent to some previously visited vertex. The two fundamental search strategies are Breadth-First Search (BFS) and Depth-First Search (DFS). As the names indicate, BFS visits all previously unvisited neighbors of the currently visited vertex before visiting the previously unvisited non-neighbors. Several greedy recognition algorithms for chordal graphs are known. The most famous is Lex-BFS [START_REF] Rose | Algorithmic Aspects of Vertex Elimination on Graphs[END_REF], a variant of BF S, introduced by Rose et al. in [START_REF] Rose | Algorithmic Aspects of Vertex Elimination on Graphs[END_REF] and Maximum Cardinality Search (MCS for short) [START_REF] Tarjan | Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs[END_REF]. Both algorithms are linear. The recognition of chordal graphs involves two distinct phases: the execution of MCS or Lex-BFS in order to compute an elimination ordering and a checking procedure to decide whether this elimination ordering is perfect (PEO). By employing Lex-BFS as a basic method to check the chordality and to find the perfect elimination ordering, the recognition algorithm for the chordal graphs can be done in linear time for chordal graphs which are C-I graphs. For cographs, using the BFS, we can check whether a given rooted tree is the cotree of the C-I cograph in linear time because of the special structure of the cotrees of these graphs.

The rest of this section is organized as follows. In Section 2, we begin with some preliminaries. In Section 3, we characterize chordal C-I graphs in terms of the number of independent simplicial vertices and present a linear-time algorithm for recognizing chordal C-I graphs based on this characterization. In Section 4, we present a structure of the C-I cograph and characterize the structure of the cotree of C-I cographs and, using this, present a linear time recognition algorithm for C-I cographs.

Preliminaries

Some preliminary definitions and results that were used in this paper are discussed in this section.

A partially ordered set or poset P = (V, ≤) consists of a nonempty set V and a reflexive, antisymmetric, transitive relation ≤ on V , denoted as P = (V, ≤), we call u ∈ V an element of P . If u ≤ v or v ≤ u in P , we say u and v are comparable, otherwise incomparable. If u ≤ v but u ̸ = v, then we write u < v. If u and v are in V , then v covers u in P if u < v and there is no w in V with u < w < v, denoted by u ◁ v. We write u ◁ ◁v if u < v but not u ◁ v. By u||v, we mean that u and v are incomparable elements of

P . Let V ′ ⊆ V and Q = (V ′ , ≤ ′ ) be a poset, Q is called a subposet of P , if u ≤ ′ v if and only if u ≤ v, for any u, v ∈ V ′ . The subposet Q = (V ′ , ≤
) is a chain (antichain) in P , if every pair of elements of V ′ is comparable (incomparable) in P . A chain of maximum cardinality is named as the height of P denoted as h(P ). An element u in P is a minimal (maximal) if there is no x ∈ V such that x ≤ u(x ≥ u) in P . A finite ranked poset (also known as graded poset [START_REF] Brightwell | Partially ordered sets[END_REF]) is a poset P = (V, ≤) that is equipped with a rank function ρ : V → Z satisfying: ρ has value 0 on all minimal elements of P , and

ρ preserves covering relations: if a ◁ b then ρ(b) = ρ(a) + 1.
A ranked poset P is said to be complete if for every i, every element of rank i covers all elements of rank i -1. For a completely ranked poset P = (V, ≤) we say that the element v ∈ V is at height i if ρ(v) = i -1. We refer to [START_REF] Brightwell | Partially ordered sets[END_REF], for notions of posets.

Let G = (V, E) be a connected graph, vertex set and edge set of G denoted as A tree is a graph in which two vertices are connected by exactly one path. Let T be a rooted tree and two vertices x and y in T , we say that x is an ancestor of y and y is a descendant of x if x lies on the path from y to the root of T . For a set of leaves S of T , we say that the lowest common ancestor (LCA) of S is the internal node v of T such that v is the root of the smallest rooted subtree of T containing S. 

V (G) and E(G) respectively, the complement of G is denoted as G. For a vertex v ∈ V (G),
A graph H is said to be a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). H is an induced subgraph of G if for u, v ∈ V (H) and uv ∈ E(G) implies uv ∈ E(H). A graph G is said to be H-free if G has no induced subgraph isomorphic to H. A complete graph is a graph whose vertices are pairwise adjacent, denoted K n , a set S ⊆ V (G) is a clique if the subgraph of G induced by S is a complete graph,
G = G 1 ∪ G 2 has V = V 1 ∪ V 2 and E = E 1 ∪ E 2 and their join, denoted by G 1 ∨ G 2 , consists of G = G 1 ∪ G 2 and all edges joining V 1 with V 2 .
A graph G is chordal if it contains no induced cycles of length more than 3, it is distance-hereditary if every induced path is also the shortest path in G. A graph G is Ptolemaic if it is distance-hereditary and chordal. Equivalently, G is Ptolemaic if and only if it is a 3-fan-free chordal graph. P 4 -free graphs are called cographs. A graph G that is both chordal and cograph is called chordal cograph. Finally, the cover-incomparability graph (C-I graph) of a poset P = (V, ≤) denoted as (ii) points of P that are independent in the C-I graph of P lie on a common chain;

G P is the graph G = (V, E), where uv ∈ E(G), if u ◁ v or v ◁ u or u||v in P . A graph is a C-I graph if it is the C-I
(iii) an antichain of P corresponds to a complete subgraph in the C-I graph of P;

(iv) the C-I graph of P contains no induced cycles of length greater than 4. Lemma 2. [START_REF] Maxová | Which distance-hereditary graphs are coverincomparability graphs?[END_REF] If G is a C-I graph, then G does not contain 3 independent simplicial vertices. Lemma 3. [START_REF] Maxová | Which distance-hereditary graphs are coverincomparability graphs?[END_REF] Let P be a poset and G its C-I graph. If v is a simplicial vertex in G, then v is a maximal or a minimal element of P . Theorem 1. [START_REF] Maxová | Which k-trees are coverincomparability graphs[END_REF] Let G = (V, E) be a C-I graph of a poset P and v ∈ V a minimal or maximal element in P . Then G\v is also a C-I graph.

In the following sections, we discuss algorithms for recognizing chordal C-I graphs and C-I cographs.

Structure of chordal C-I graphs

In this section, we present an algorithm to recognize chordal C-I graphs. For that, first, we prove a characterization of a chordal graph that is a C-I graph.

If v is a simplicial vertex of a chordal graph G, then the closed neighborhood

N [v] is a clique in G. So removal of v does not affect the chordal property of G \{v}.
This is stated in the following remark.

Remark 1. If G is a chordal graph and v is a simplicial vertex, then G\v is chordal. Proof. Let G be a chordal graph with exactly two independent simplicial vertices and v be a simplicial vertex. Then by Remark 1, G \ v is a chordal graph. Since v is a simplicial vertex, the removal of v from G does not increase the number of independent simplicial vertices in G \ v. And if G \ v is not a complete graph, then removal of v from G does not decrease the number of independent simplicial vertex in G \ v. That is, G \ v has exactly two independent simplicial vertices, otherwise G \ v is a complete graph. Hence the lemma.

From Lemmas 3-4 and Theorem 1, we get the following corollary. A pendant clique of a graph G is a clique that contains a clique separator C such that one of the components obtained after removing C is a single vertex. Observe that if G is a chordal graph, then G has a pendant clique.

The following remark is immediate.

Remark 2. Let G be the family of graphs obtained by adding a vertex v to a chordal graph G that has at most two independent simplicial vertices, in such a way that v is adjacent to some or all vertices in a pendant clique of G. Let G ′ be a chordal graph having exactly two independent simplicial vertices. If G is the graph obtained by adding a simplicial vertex v to G ′ such that the resulting graph has exactly two independent simplicial vertices, then G belongs to the family G . Proof. Let G be a chordal graph obtained by adding a simplicial vertex v to a chordal G ′ that has exactly two independent simplicial vertices such that G also has exactly two independent simplicial vertices. Then by Remark 2, the vertex v is such that v is adjacent to some or all vertices in a pendant clique in G ′ . Now we need to prove that G is a chordal C-I graph. Since G ′ is both a C-I graph and chordal, let P ′ be a poset such that G P ′ ∼ = G ′ . Since the vertex v is added to some or all vertices in a pendant clique in G ′ , the graph G is chordal. Since G ′ P is chordal and has exactly two independent simplicial vertices, G ′ P has exactly two pendant cliques, and the two pendent cliques are formed, respectively, by S and S ′ , where S and S ′ are defined as follows.

M = {u ∈ P ′ | u is a maximal element of P ′ }, S 1 = {w ∈ P ′ | w ◁ u, u ∈ M }, M ′ = {u ∈ P ′ | u is a minimal element of P ′ }, S ′ 1 = {w ∈ P ′ | u ◁ w, u ∈ M ′ } S = M ∪ S 1 \ {u ∈ S 1 | ∃w ∈ S 1 , u ◁ ◁w in P ′ } and S ′ = M ′ ∪ S ′ 1 \ {u ∈ S ′ 1 | ∃w ∈ S ′
1 , w ◁ ◁u in P ′ }. Now v is adjacent to some or all vertices of the set S or S ′ in G. If v is adjacent to some vertices of S, then v must be adjacent to all the elements of M , as otherwise there will be more than two independent simplicial vertices. Similarly, if v is adjacent to some vertices of S ′ , then v must be adjacent to all elements of M ′ . Now, we construct a poset P from P ′ as follows.

If v adjacent to some vertices of S:

If v is adjacent to only the elements in M , then P is constructed from P ′ with the covering relation defined as u ◁ v for all u ∈ M .

If v is adjacent to the elements of S 0 , where M ⊂ S 0 ⊂ S, then P is constructed from P ′ with the covering relation as

u ′ ◁ v for all u ′ ∈ S 0 \ M and u ′′ ◁ u ◁ v for all u ′′ ∈ S \ S 0 for some u ∈ M .
If v is adjacent to all elements of S, then P is constructed from P ′ with the covering relation defined as u ◁ v for all u ∈ S \ M .

Similarly, if v adjacent to some vertices of S ′ : if v is adjacent to only the elements in M ′ then P is constructed from P ′ with the covering relation defined as v ◁ u for all u ∈ M ′ .

if v is adjacent to the elements of S ′ 0 , where M ′ ⊂ S ′ 0 ⊂ S ′ , then P is constructed with the covering relation defined as v ◁ u ′ for all u ′ ∈ S ′ 0 \ M ′ and v ◁ u ◁ u ′′ for all u ′′ ∈ S ′ \ S ′ 0 and some u ∈ M ′ .

If v is adjacent to all elements of S ′ , then P is constructed from P ′ with the covering relation v ◁ u for all u ∈ S ′ \ M ′ .

It follows from construction that P is a well-defined poset and that G is isomorphic to G P .

A perfect elimination ordering (PEO) is an ordering then it has two non-adjacent simplicial vertices.

π = v 1 , . . . , v n of vertices in G such that the neighborhood N [v i ] of v i is
In the following, we prove an interesting characterization of C-I chordal graphs as precisely those chordal graphs having exactly two independent simplicial vertices.

Theorem 3. Let G be a chordal graph. Then G is a C-I graph if and only if G is a complete graph or G has exactly two independent simplicial vertices.

Proof. If G is a chordal and CI graph, then G is a complete graph or G contains two independent simplicial vertices by Lemma 6. Also, every complete graph is a C-I graph. It remains to prove that if G is chordal and G has exactly two independent simplicial vertices, then G is a C-I graph.

Let G be the chordal graph with the vertex set V (G) = {v 1 , v 2 , v 3 , . . . , v n }. Since G is chordal, there is a perfect elimination ordering(PEO), let v n , v n-1 , . . . , v 2 , v 1 be a PEO in G. By the definition of PEO on a chordal graph, the neighborhood N (v n-i ) of v n-i is a clique in the subgraph G {v n-i+1 ,...,v 1 } , for i = 0, 1, . . . n -1 and also the subgraphs G {v n-(i+1) ,...,v 1 } are chordal for i = 0, 1, . . . n -1.

We eliminate the simplicial vertices until we get the smallest non-trivial chordal graph containing exactly two independent simplicial vertices, say G k . The removal of

a simplicial vertex from G k results in a complete graph. That is, G k-1 is a complete graph with G k-1 = G k \ v k , where v k is a simplicial vertex in G k . Clearly, G k-1 is a C-I graph.
Now, we add the simplicial vertices to the graphs G k-1 , G k , . . . , G n-1 , in reverse order in the PEO; that is, we add vertices in order v k , v k+1 , . . . , v n and consider all the possible ways of adding edges to build G. We add edges so that the resulting graph is obtained in each stage such that the graphs contain only two independent simplicial vertices.

In particular, the graph G k is obtained by adding the simplicial vertex v k to

G k-1 . The vertex v k is adjacent to some vertices of G k-1 . Let C k-1 ⊂ V (G k-1
) and Finally, we see that the graph G n is such that G ∼ = G n and is a C-I graph.

C ′ k-1 = V (G k-1 ) \ C k-1 be such that v k is
It is well known that a chordal graph G can be characterized as the intersection graph of sub-trees of some tree T . Such a tree is known as the clique tree of G.

This well-known theorem is proved independently by Buneman [START_REF] Buneman | A characterization of rigid circuit graphs[END_REF] and Gavril [START_REF] Gavril | The intersection graphs of a path in a tree are exactly the chordal graphs[END_REF].

A tree representation of a chordal graph G is a pair (T, F ) where T is a tree and F is a family of subtrees of T such that the intersection graph of F is isomorphic to G. Further Gavril [START_REF] Gavril | The intersection graphs of a path in a tree are exactly the chordal graphs[END_REF] has shown that given a chordal graph G, it is possible to construct a tree T with vertex set K = {q 1 , q 2 , . . . , q r } where q i corresponds to the

maximal clique Q i of G, such that (T, {R v 1 , R v 2 , . . . , R vn }) is a tree representation of G. Here, each R v i , 1 ≤ i ≤ n, is the set of maximal cliques that contain the vertex v i , that is, R v i = {q j | v i ∈ Q j }. Such a tree representation of G is called a clique tree of G.
The clique tree T of G need not be unique, for the sets R i determine the edges of T , not necessarily in a unique manner. Fig. 1 shows a chordal graph and two of its clique trees.

Fig. 1: A chordal graph and two of its clique trees

Theorem 4 (Gavril [START_REF] Gavril | The intersection graphs of a path in a tree are exactly the chordal graphs[END_REF] and Buneman [START_REF] Buneman | A characterization of rigid circuit graphs[END_REF]). The following propositions are equivalent:

1. G is a chordal graph.

2. G is the intersection graph of a family of subtrees of a tree.

3. There exists a tree T (called Clique tree) with vertex set {q 1 , q 2 , . . . , q r } such that for each vertex v, the set

R v = {q i | v ∈ Q i } induces a subtree of T .
Here

q i represents the maximal clique Q i .
From the above description, we have that a graph G is a chordal graph if and only if there exists a clique tree T with maximal cliques of G as the vertices of T and any two cliques containing v ∈ V (G) are either adjacent in T or connected by a path of cliques that contain v. The Lemma below is also very useful in understanding the structure of chordal graphs and their simplicial vertices.

Lemma 7. [5]

A vertex is simplicial if and only if it belongs to precisely one maximal clique.

The following result can be proved for establishing the recognition of chordal graphs which are C-I graphs.

Lemma 8. Every leaf node of a clique tree of a chordal graph contains a simplicial vertex.

Proof. Let T be a clique tree of a chordal graph G. Let C k be a leaf node of T .

Since C k is a leaf node of T there is a node C k ′ in T such that C k C k ′ ∈ E(T ). Since
T is a clique tree of G every node of T is a maximal clique of G and hence there is a

vertex v of G in C k but not in C k ′ .
From the definition of the clique tree, it is clear that v is not in any other nodes of T (cliques). Then it follows that v is a simplicial vertex by Lemma 7.

Lemma 9. Let G be a chordal graph with the clique tree T being a path. Let C i be an internal node of T , C i+1 , the parent node of C i , and Step 1: Apply the perfect elimination ordering (PEO) on G and check whether G is a chordal graph or not. If there is no PEO then return G not chordal and stop. Otherwise, go to Step 2.

C i-1 the child node of C i in T . If v is vertex of G such that v ∈ C i \ C i+1 and v ∈ C i \ C i-1 , then v is a simplicial vertex in G. Proof. Since v ∈ C i \ C i+1 and v ∈ C i \ C i-
Step 2: Using the PEO find the clique tree T of the given graph G. If the clique tree has more than 2 leaf nodes, then return G, not chordal C-I graph, and stop. Otherwise, go to Step 3. (Now the clique tree is a path, and the vertices are in order C 1 , C 2 , . . . , C k )

Step 3: Check whether there is an element in C i that is not in C i+1 and C i-1 for i = 2, 3, . . . , k -1. If such an element exists at any stage, then stop and return G is not a chordal C-I graph. Otherwise, return G is a chordal C-I graph.

The time complexity of Algorithm 1 can be analyzed as follows.

Using the Lex-BFS or M CS, the PEO can be done in O(n+m) time. For Step 2, using PEO, the optimum clique tree T of G can be determined as follows. For each vertex v in the PEO, let S be the set of its neighbors that come later in the PEO.

Find the maximal cliques in the induced subgraph of G formed by S and v. For each maximal clique C, create a node in T corresponding to C. For each pair of maximal cliques C 1 and C 2 that share a vertex, add an edge between their corresponding nodes in T so that the resulting tree is the clique tree of G. Because each maximal clique contains all the vertices of its smaller cliques, the resulting tree is guaranteed to be a clique tree of the chordal graph G. The time complexity of this procedure is O(n + m), where n is the number of vertices and m is the number of edges in the chordal graph G. This is because computing a PEO can be done in linear time, and the time to find maximal cliques is O(n + m) using a standard algorithm such as Bron-Kerbosch, and the number of maximal cliques is O(m). Checking whether there are more than 2 leaf nodes can be done in constant time.

In Step 3, let k be the length of the clique tree which is a path P . Then, in the worst case, the size of the sets C i is of the order O(n/k). To check whether an 

element v ∈ C i \ C i+1 and v ∈ C i \ C i-

Structure of C-I cographs

In this section, we present an algorithm for recognizing C-I cograph. From Theorem 6, we get the following remark.

Remark 4. Let G be a C-I cograph such that G = G 1 ∨ G 2 ∨ • • • ∨ G k , where G i 's
are chordal C-I cographs. By Remark 3, there exists a pairwise disjoint set The structure of an arbitrary C-I cograph is depicted in Fig. 3. (see Fig. 6). Since

C i 1 , C i 2 and C i 3 such that V (G i ) = C i 1 ∪ C i 2 ∪ C i 3 and xy ∈ E(G i ) if and only if x, y ∈ C i 1 ∪ C i 2 or x, y ∈ C i 2 ∪ C i 3 . Thus in G,
G = G 1 ∨ G 2 ∨ • • • ∨ G k , the non-adjacent vertices lie in the same G j for some j ∈ {1, 2, . . . , k}. That is, u, v, w ∈ V (G j ). Since G j is a chordal C-I cograph, if uv, uw / ∈ E(G j ) then vw ∈ E(G j )
, which is a contradiction. Hence, the C-I cograph is a claw-free graph.

A cotree is a tree in which the internal nodes are labelled with the numbers 0 and 1. Every cotree T defines a cograph G having the leaves of T as vertices, and in which the subtree rooted at each node of T corresponds to the induced subgraph in G defined by the set of leaves descending from that node. A subtree rooted at a node labelled 0 corresponds to the union of the subgraphs defined by the children of that node and a node labelled 1 corresponds to the join of the subgraphs defined by the children of that node. The cotree satisfies the property that, on every root-to-leaf path, leaves are the vertices of the graph, the labels of the internal nodes alternate between 0 and 1, and every internal node has at least two children. The cotree can be easily obtained from any tree labelled with such 0/1 T by coalescing all pairs of child-parent nodes in T having the same label or where the parent has only one child. Vertices x and y of G are adjacent in G if and only if their lowest common ancestor(LCA) in the cotree is labelled 1. This representation is unique and every cograph can be represented in this way by a cotree [START_REF] Corneil | Complement reducible graphs[END_REF]. Since G is a connected graph, the root of the cotree is a 1-node.

It is known that cographs have a unique tree representation, called a cotree.

Using the cotree, it is possible to design very fast polynomial-time algorithms for problems that are intractable for graphs in general. Such problems include chromatic number, clique determination, clustering, minimum weight domination, isomorphism, minimum fill-in, and Hamiltonicity. A linear-time cograph recognition algorithm, such as those in [START_REF] Bretscher | A simple linear time LexBFS cograph recognition algorithm[END_REF][START_REF] Corneil | A linear recognition algorithm for cographs[END_REF][START_REF] Habib | A simple linear time algorithm for cograph recognition[END_REF], which also builds a cotree, a data structure that fully encodes the cograph.

The Fig. 5 Step 0: Using the recognition algorithm in Theorem 8 determine the cotree if G is a cograph and go to Step 1. Otherwise, stop and return G is not cograph

Step 1: Perform BFS from the root node 1 of the cotree.

Step 2: If BFS completes in one step by reaching all the leaf nodes ( if all the adjacent nodes of the root node are leaf nodes), then the graph is a complete graph and it is C-I cograph; stop, and we are done. Otherwise, go to Step 3.

Step 3: ( that is in Step 2, we obtain 0-nodes and leaf nodes or only 0-nodes). If all the neighbours of the root nodes are only 0-nodes or the number of 0-nodes is greater than the number of leaf nodes of the root node, then G is not a C-I cograph and stop. Otherwise, go to Step 4.

Step 4: Continue the searching at level 2. If 0-nodes has more than two children as 1-nodes then G is not a C-I cograph and stop. Otherwise, go to Step 5.

Step 5: Continue searching at level 3. In level 3, if any 1-node has 0-node as a child, then G is not a C-I cograph and stop. If all the children of the 1-nodes are the leaf node then we are done. the resulting graph is a C-I cograph.

The correctness of the algorithm follows from the structure of cotree stated in Therefore T has at most 1 + k + 2k + n vertices. The worst case for k is when k = n 3 .

Therefore in the worst case, the total number of vertices in T is 1 + n 3 + 2n 3 + 3, which is of the order of O(n).

The time complexity of the recognition algorithm for cographs and finding its cotree by Theorem 8 is linear. Now the complexity of Algorithm 2 is linear in the size of the cotree, which is O(n) in the worst case since the complexity of the BFS can be performed on the cotree in linear time.

  the set of all vertices adjacent to v is called the open neighborhood of v and is denoted by N (v). The set consisting of the open neighborhood and the vertex v is the closed neighborhood of v and is denoted by N [v].

  and a maximum clique is a clique that is not contained by any other clique. A vertex v is called simplicial vertex if its neighborhood induces a complete subgraph. An independent set in a graph is a set of pairwise non-adjacent vertices. If graphs G 1 and G 2 have disjoint vertex set V 1 and V 2 and edge set E 1 and E 2 respectively, then their union

  graph of some poset P . We call a graph that is both a chordal and a C-I graph as a chordal C-I graph. Similarly, we use the term protolemaic C-I graph, C-I cograph, chordal C-I cograph, etc. to denote the C-I graph which is Ptolemaic, cograph, chordal cograph, etc. Now we recall some basic properties of posets and their C-I graphs. Lemma 1. [6] Let P be a poset. Then (i) the C-I graph of P is connected;

Lemma 4 .

 4 Let G be a chordal graph, and v be a simplicial vertex of G. If G has exactly two independent simplicial vertices, then either G \ v is chordal and has exactly two independent simplicial vertices or G \ v is a complete graph.

Corollary 1 .

 1 Let G be a chordal C-I graph and v be a simplicial vertex of G. If G has exactly two independent simplicial vertices, then G \ v is a chordal C-I graph and has exactly two independent simplicial vertices or G \ v is a complete graph.

Lemma 5 .

 5 Let G ′ be a chordal C-I graph having exactly two independent simplicial vertices, and let G be a graph obtained by adding a simplicial vertex v to G ′ . If G has exactly two independent simplicial vertices, then G is a chordal C-I graph.

  adjacent to every element of C k-1 and v k is not adjacent to any element of C ′ k-1 . It follows by construction that the graph G k is a Ptolemaic C-I graph with height 3 so that G k is a chordal C-I graph having exactly two simplicial vertices. Now, the graph G k+1 is obtained by adding the simplicial vertex v k+1 to G k and G k+2 is obtained by adding the simplicial vertex v k+2 to G k+1 and continuing as this, we obtain G n by adding the simplicial vertex v n to G n-1 . By the lemma 5 and Corollary 1, G k+1 , G k+2 , . . . , G n-1 are chordal C-I graphs with exactly two independent simplicial vertices.

Algorithm 1 :

 1 1 and T is a path, it follows from the definition of a clique tree that v is not in any other cliques in T . Then by Lemma 7, v is a simplicial vertex. Based on Theorem 3 and Lemma 8 and 9, we formulate the following algorithm for recognizing a chordal C-I graph G. The correctness of the algorithm follows from these results. Algorithm for recognizing given graph G is chordal C-I graph G or not. Input : G be a connected graph with |V (G)| = n and |E(G)| = m Output: G is chordal C-I graph or not

Theorem 5 . 2 ∪ C 3 .Fig. 2 :

 5232 Fig. 2: General structure of a chordal C-I cograph G

2

 2 are universal vertices and for u, v ∈ V (G) such that uv / ∈ E(G) if and only if both u and v in V (G i ) with u ∈ C i 1 and v ∈ C i 3 , for some i. Thus, for any u, v, w ∈ V (G) with uv, uw / ∈ E(G), then vw ∈ E(G).

Fig. 3 :

 3 Fig. 3: General structure of a C-I cograph G

Fig. 4 :Lemma 11 .

 411 Fig. 4: Claw

Fig. 5 :Algorithm 2 :

 52 Fig.5: G be a cograph and T G be the cotree of G

  Lemma 10 and the facts mentioned above. Now the size of the cotree of a C-I cograph can be estimated as follows. Let G be a C-I cograph with n vertices andG = G 1 ∨ G 2 ∨ • • • G k .Then from the structure of the cotree T of G, T contains leaf nodes( which are the n-vertices of G), 0-nodes, and 1-nodes. Then T contains k 0-nodes, and each 0-node has exactly 2 children.

  a clique of the subgraph G {v i ,...,vn} induced by the vertices {v i , . . . , v n } of G. The following characterizations of chordal graphs are well known.

	Theorem 2. [17] A graph G is chordal if and only if G has a perfect elimination
	ordering.
	Lemma 6. [16] Every chordal graph G has a simplicial vertex. If G is not complete,

  [START_REF] Anil | Composition and Product of Cover-Incomparability Graphs[END_REF] takes O(3n/k) time by using a hash set operation. Since there are at most k -2 internal nodes, the total time for Step 3 is O(n). Now, the complexity of Algorithm 1 is O(n + m).
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The general structure of the cotree of C-I cographs is shown in Fig. 6, and we denote the family of cotree of C-I cograph as T C . Let G be a C-I cograph,

where G i 's are chordal C-I cographs. Then by Remark 4, two vertices x and y are not adjacent in G if and only if x ∈ C i 1 and y ∈ C i 3 for i = 1, 2, . . . , k. Therefore, in the cotree, the lowest common ancestor(LCA) of x and

Lemma 12. The cotree of C-I cograph which is not a complete graph satisfies the following properties (i) The root node (which is a 1-node) of T C has leaf nodes and 0-nodes as children.

the number of 0-nodes (which are children of the root node) is always less than or equal to the number of leaf nodes (which are children of the root node).

(ii) Every 0-node has exactly two children (both the children are 1-nodes or both the children are leaves nodes or one child is a leaf node and another child is 1-node).

(iii) The 1-nodes other than the root node have only leaf nodes as children.

(iv) The cotree of G belongs to the family of T C .

Proof. Let G be a C-I cograph which is not a complete graph.

(i) Since G is not a complete C-I graph, it is either a chordal cograph or joins of chordal cographs. Since there are non-adjacent vertices, there exist some 0-nodes as children of the root node. From the structure of the C-I cograph, there exist universal vertices, which should be leaf nodes of the root node.

The leaf nodes of the subtree rooted by each 0-node contain the non-universal vertices of each G i . That is, if there are k 0-nodes, then since the universal vertices of each G i , are also universal vertices of G, and since each G i has at least one universal vertex, the number of 0-nodes of the root node must be at most the number of leaf nodes as a child nodes. Hence (i) follows.

(ii) Suppose there are 0-nodes having more than two children. Let 0 ′ be a 0node having three child nodes. Let u, v, w be the three leaf nodes from the different branches of the subtree with the root node as the 0 ′ -node. Then by the structure of the C-I cograph, we have that uv, vw, uw / ∈ E(G). Let x be a leaf node of the root of the cotree T C . Then x is adjacent to u, v and w. That is, {u, v, w, x} induce a claw in G which is a contradiction to Lemma 11. So every 0-node has no more than two children. In a cotree, every node has a minimum of two child nodes. Hence every 0-node has exactly two child nodes as 1-nodes. Hence (ii) follows.

(iii) Suppose that there is a 1-node other than the root node which has a 0-node, say 0 ′ . Consider a sub-tree T of C T with root as 0 ′ . Let u and v be the vertices of G such that the LCA(u, v) is 0 ′ . The vertices u and v exist since the sub-tree T has exactly two branches. Now consider the sub-tree T ′ of C T containing T with root as a 0-node, say 0 ′′ different from 0 ′ . Let w be a vertex of G such that the LCA(u, v, w) is 0 ′′ ( the vertex w exists since there are two children from 0 ′′ of T ′ ). Clearly, the vertices u, v, w are mutually non-adjacent. Now any vertex x of G which are leaves of the root node 1 of C T is adjacent to all of u, v, w so that u, v, w, x form an induced claw, a contradiction. Hence (

(iv) Follows from (i),(ii) and (iii). Hence proved.

In [START_REF] Corneil | A linear recognition algorithm for cographs[END_REF], Corneil et al. presented a linear time algorithm for recognizing cographs and constructing their cotree representation. Using that algorithm, we get the cotree.