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Abstract9

Cover-Incomparability graphs (C-I graphs) are an interesting class of graphs10

from posets. A C-I graph is a graph from a poset P = (V,≤) with vertex set11

V , and the edge-set is the union of edge sets of the cover graph and the in-12

comparability graph of the poset. The recognition of the C-I graphs is known13

to be NP-complete (Maxová et al., Order 26(3), 229–236(2009)). In this pa-14

per, we prove that chordal graphs having at most two independent simplicial15

vertices are exactly the chordal graphs which are also C-I graphs. A similar16

result is obtained for cographs as well. Using the structural results of these17

graphs, we derive linear time recognition algorithms for chordal graphs and18

cographs, which are C-I graphs.19

Key Words: Cover-Incomparability graphs; Chordal graph; Cographs; Recognition20

Algorithm.21

1 Introduction22

Chordal graphs or triangulated graphs are graphs that do not have induced cycles23

of length greater than three, and cographs which are P4-free graphs form two well-24

studied graphs that have wider applications beyond mathematics. Special classes25

of these two graphs are also studied in many contexts, including theoretical, prac-26

tical, and algorithmic interests. A vertex v of a graph G is a simplicial vertex if27

v together with all its adjacent vertices form a clique (a complete subgraph) in G.28

Simplicial vertices and simplicial or perfect elimination play a crucial role in chordal29

graphs. It is a well-known fact that every chordal graph contains at least one sim-30

plicial vertex, and a noncomplete chordal graph contains at least two nonadjacent31

simplicial vertices. Chordal graphs that contain exactly two non-adjacent simpli-32

cial vertices form a special class of chordal graphs. In a similar manner, cographs33

that contain exactly two non-adjacent simplicial vertices are a proper subclass of34
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the above described family of chordal graphs and the join of cographs having ex-35

actly two non-adjacent simplicial vertices form a special class of cographs. In this36

paper, we identify chordal graphs and cographs having exactly two non-adjacent37

simplicial vertices and cographs obtained by join of chordal cographs having ex-38

actly two simplicial vertices. Interestingly, these two special classes of graphs have39

been found to belong to a particular class of graphs that can be derivable from a40

partially ordered set or poset. This class of graphs obtained from posets is known41

as the cover-incomparability graphs of posets, or shortly C-I graphs. These graphs42

were introduced in [6] as the underlying graphs of the so-called standard transit43

function of posets. The C-I graphs are precisely the graphs whose edge set is the44

union of edge sets of the cover graph and the incomparability graph (complement of45

a comparability graph) of a poset. Graph-theoretic characterization of C-I graphs46

has not been known until now and, moreover, the recognition complexity of C-I47

graphs is NP-complete (Maxová et al. [24]). Hence, problems in C-I graphs are fo-48

cused on identifying the structure and characterization of well-known graph families,49

which are C-I graphs. Such C-I graphs studied include the family of split graphs,50

block graphs [7], cographs [8], Ptolemaic graphs [22], distance hereditary graphs51

[22], and k-trees [23]. The C-I graphs were identified among the planar and chordal52

graphs along with new characterizations of the Ptolemaic graphs, respectively, in [4]53

and[3]. It is also interesting to note that every C-I graph has a Ptolemaic C-I graph54

as a spanning subgraph [4]. C-I graphs are also studied among the comparability55

graphs[2]. The effect of composition operation, lexicographic, and strong products56

of C-I graphs was studied in a recent paper[1].57

In this paper, we obtain that chordal graphs having at most two independent58

simplicial vertices are exactly the chordal graphs which are also C-I graphs. A similar59

result is obtained for cographs as those cographs which are join of chordal cographs60

having exactly two independent simplicial vertices are precisely cographs which are61

also C-I graphs. Using the structural results of these graphs, we derive linear time62

recognition algorithms for have for both classes. The recognition algorithm for an63

arbitrary chordal graph [29, 26] and a cograph [13] is well known and has linear-time64

complexity.65

Chordal graphs are precisely the intersection graphs of subtrees of a tree [19].66

Most of the information contained in a chordal graph is captured in its clique tree67

representation, which is useful for its algorithmic applications [19, 28].68

Cographs are exactly the P4 free graphs and the class of cographs has been in-69

tensively studied since its definition by Seinsche [27]. The cographs appear as com-70

parability graphs of series-parallel partial orders [21], and can be generated from the71

single-vertex graph K1 by complementation and disjoint union operations. It is well72

known that any cograph has a canonical tree representation called a cotree. This73

tree decomposition scheme for cographs is a particular case of modular decomposi-74

tion [18] that applies to arbitrary graphs. Indeed, the algorithm that computes the75

modular tree decomposition of an arbitrary graph in linear time can also recognize76

cographs in linear time. In 1994, linear time modular decomposition algorithms were77

designed independently by Cournier and Habib [14] and by McConnell and Spinrad78

[25]. In 2001, Dahlhaus et al. [15] proposed a simpler algorithm. Unfortunately,79

because they build the decomposition tree, all these algorithms are complicated or80
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need to maintain complicated data structures. In 2004, Habib and Paul [20] pro-81

posed a new algorithm, which is not incremental, and instead of building the cotree82

directly, it first computes a special ordering of the vertices, namely a factorizing per-83

mutation, using a very efficient partition refinement techniques via two elementary84

refinement rules.85

A search of a graph visits all vertices and edges of the graph and will visit a new86

vertex only if it is adjacent to some previously visited vertex. The two fundamental87

search strategies are Breadth-First Search (BFS) and Depth-First Search (DFS). As88

the names indicate, BFS visits all previously unvisited neighbors of the currently89

visited vertex before visiting the previously unvisited non-neighbors. Several greedy90

recognition algorithms for chordal graphs are known. The most famous is Lex-BFS91

[26], a variant of BFS, introduced by Rose et al. in [26] and Maximum Cardinality92

Search (MCS for short) [29]. Both algorithms are linear. The recognition of chordal93

graphs involves two distinct phases: the execution of MCS or Lex-BFS in order to94

compute an elimination ordering and a checking procedure to decide whether this95

elimination ordering is perfect (PEO). By employing Lex-BFS as a basic method96

to check the chordality and to find the perfect elimination ordering, the recognition97

algorithm for the chordal graphs can be done in linear time for chordal graphs which98

are C-I graphs. For cographs, using the BFS, we can check whether a given rooted99

tree is the cotree of the C-I cograph in linear time because of the special structure100

of the cotrees of these graphs.101

The rest of this section is organized as follows. In Section 2, we begin with102

some preliminaries. In Section 3, we characterize chordal C-I graphs in terms of103

the number of independent simplicial vertices and present a linear-time algorithm104

for recognizing chordal C-I graphs based on this characterization. In Section 4, we105

present a structure of the C-I cograph and characterize the structure of the cotree106

of C-I cographs and, using this, present a linear time recognition algorithm for C-I107

cographs.108

2 Preliminaries109

Some preliminary definitions and results that were used in this paper are discussed110

in this section.111

A partially ordered set or poset P = (V,≤) consists of a nonempty set V and a112

reflexive, antisymmetric, transitive relation ≤ on V , denoted as P = (V,≤), we call113

u ∈ V an element of P . If u ≤ v or v ≤ u in P , we say u and v are comparable,114

otherwise incomparable. If u ≤ v but u ̸= v, then we write u < v. If u and v are in115

V , then v covers u in P if u < v and there is no w in V with u < w < v, denoted116

by u ◁ v. We write u ◁ ◁v if u < v but not u ◁ v. By u||v, we mean that u and117

v are incomparable elements of P . Let V ′ ⊆ V and Q = (V ′,≤′) be a poset, Q is118

called a subposet of P , if u ≤′ v if and only if u ≤ v, for any u, v ∈ V ′. The subposet119

Q = (V ′,≤) is a chain (antichain) in P , if every pair of elements of V ′ is comparable120

(incomparable) in P . A chain of maximum cardinality is named as the height of P121

denoted as h(P ). An element u in P is a minimal (maximal) if there is no x ∈ V122

such that x ≤ u(x ≥ u) in P . A finite ranked poset (also known as graded poset [10])123

is a poset P = (V,≤) that is equipped with a rank function ρ : V → Z satisfying:124
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� ρ has value 0 on all minimal elements of P , and125

� ρ preserves covering relations: if a◁ b then ρ(b) = ρ(a) + 1.126

A ranked poset P is said to be complete if for every i, every element of rank i covers127

all elements of rank i−1. For a completely ranked poset P = (V,≤) we say that the128

element v ∈ V is at height i if ρ(v) = i− 1. We refer to [10], for notions of posets.129

Let G = (V,E) be a connected graph, vertex set and edge set of G denoted as130

V (G) and E(G) respectively, the complement of G is denoted as G. For a vertex131

v ∈ V (G), the set of all vertices adjacent to v is called the open neighborhood of132

v and is denoted by N(v). The set consisting of the open neighborhood and the133

vertex v is the closed neighborhood of v and is denoted by N [v]. A tree is a graph in134

which two vertices are connected by exactly one path. Let T be a rooted tree and135

two vertices x and y in T , we say that x is an ancestor of y and y is a descendant136

of x if x lies on the path from y to the root of T . For a set of leaves S of T , we say137

that the lowest common ancestor (LCA) of S is the internal node v of T such that138

v is the root of the smallest rooted subtree of T containing S. A graph H is said to139

be a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). H is an induced subgraph140

of G if for u, v ∈ V (H) and uv ∈ E(G) implies uv ∈ E(H). A graph G is said to be141

H-free if G has no induced subgraph isomorphic to H. A complete graph is a graph142

whose vertices are pairwise adjacent, denoted Kn, a set S ⊆ V (G) is a clique if the143

subgraph of G induced by S is a complete graph, and a maximum clique is a clique144

that is not contained by any other clique. A vertex v is called simplicial vertex if145

its neighborhood induces a complete subgraph. An independent set in a graph is146

a set of pairwise non-adjacent vertices. If graphs G1 and G2 have disjoint vertex147

set V1 and V2 and edge set E1 and E2 respectively, then their union G = G1 ∪ G2148

has V = V1 ∪ V2 and E = E1 ∪ E2 and their join, denoted by G1 ∨ G2, consists of149

G = G1 ∪G2 and all edges joining V1 with V2.150

A graph G is chordal if it contains no induced cycles of length more than 3, it is151

distance-hereditary if every induced path is also the shortest path in G. A graph G152

is Ptolemaic if it is distance-hereditary and chordal. Equivalently, G is Ptolemaic if153

and only if it is a 3-fan-free chordal graph. P4- free graphs are called cographs. A154

graph G that is both chordal and cograph is called chordal cograph. Finally, the155

cover-incomparability graph (C-I graph) of a poset P = (V,≤) denoted as GP is the156

graph G = (V,E), where uv ∈ E(G), if u◁ v or v◁u or u||v in P . A graph is a C-I157

graph if it is the C-I graph of some poset P . We call a graph that is both a chordal158

and a C-I graph as a chordal C-I graph. Similarly, we use the term protolemaic159

C-I graph, C-I cograph, chordal C-I cograph, etc. to denote the C-I graph which is160

Ptolemaic, cograph, chordal cograph, etc.161

Now we recall some basic properties of posets and their C-I graphs.162

Lemma 1. [6] Let P be a poset. Then163

(i) the C-I graph of P is connected;164

(ii) points of P that are independent in the C-I graph of P lie on a common chain;165

(iii) an antichain of P corresponds to a complete subgraph in the C-I graph of P;166
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(iv) the C-I graph of P contains no induced cycles of length greater than 4.167

Lemma 2. [22] If G is a C-I graph, then G does not contain 3 independent simplicial168

vertices.169

Lemma 3. [22] Let P be a poset and G its C-I graph. If v is a simplicial vertex in170

G, then v is a maximal or a minimal element of P .171

Theorem 1. [23] Let G = (V,E) be a C-I graph of a poset P and v ∈ V a minimal172

or maximal element in P . Then G\v is also a C-I graph.173

In the following sections, we discuss algorithms for recognizing chordal C-I graphs174

and C-I cographs.175

3 Structure of chordal C-I graphs176

In this section, we present an algorithm to recognize chordal C-I graphs. For that,177

first, we prove a characterization of a chordal graph that is a C-I graph.178

If v is a simplicial vertex of a chordal graph G, then the closed neighborhood179

N [v] is a clique in G. So removal of v does not affect the chordal property of G\{v}.180

This is stated in the following remark.181

Remark 1. If G is a chordal graph and v is a simplicial vertex, then G\v is chordal.182

Lemma 4. Let G be a chordal graph, and v be a simplicial vertex of G. If G has183

exactly two independent simplicial vertices, then either G \ v is chordal and has184

exactly two independent simplicial vertices or G \ v is a complete graph.185

Proof. Let G be a chordal graph with exactly two independent simplicial vertices186

and v be a simplicial vertex. Then by Remark 1, G \ v is a chordal graph. Since187

v is a simplicial vertex, the removal of v from G does not increase the number of188

independent simplicial vertices in G \ v. And if G \ v is not a complete graph, then189

removal of v from G does not decrease the number of independent simplicial vertex190

in G \ v. That is, G \ v has exactly two independent simplicial vertices, otherwise191

G \ v is a complete graph. Hence the lemma.192

From Lemmas 3-4 and Theorem 1, we get the following corollary.193

Corollary 1. Let G be a chordal C-I graph and v be a simplicial vertex of G. If194

G has exactly two independent simplicial vertices, then G \ v is a chordal C-I graph195

and has exactly two independent simplicial vertices or G \ v is a complete graph.196

A pendant clique of a graph G is a clique that contains a clique separator C such197

that one of the components obtained after removing C is a single vertex. Observe198

that if G is a chordal graph, then G has a pendant clique.199

The following remark is immediate.200
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Remark 2. Let G be the family of graphs obtained by adding a vertex v to a chordal201

graph G that has at most two independent simplicial vertices, in such a way that v202

is adjacent to some or all vertices in a pendant clique of G. Let G′ be a chordal203

graph having exactly two independent simplicial vertices. If G is the graph obtained204

by adding a simplicial vertex v to G′ such that the resulting graph has exactly two205

independent simplicial vertices, then G belongs to the family G .206

Lemma 5. Let G′ be a chordal C-I graph having exactly two independent simplicial207

vertices, and let G be a graph obtained by adding a simplicial vertex v to G′. If G208

has exactly two independent simplicial vertices, then G is a chordal C-I graph.209

Proof. LetG be a chordal graph obtained by adding a simplicial vertex v to a chordal210

G′ that has exactly two independent simplicial vertices such that G also has exactly211

two independent simplicial vertices. Then by Remark 2, the vertex v is such that v212

is adjacent to some or all vertices in a pendant clique in G′.213

Now we need to prove that G is a chordal C-I graph. Since G′ is both a C-I graph214

and chordal, let P ′ be a poset such that GP ′ ∼= G′. Since the vertex v is added to215

some or all vertices in a pendant clique in G′, the graph G is chordal. Since G′
P216

is chordal and has exactly two independent simplicial vertices, G′
P has exactly two217

pendant cliques, and the two pendent cliques are formed, respectively, by S and S ′,218

where S and S ′ are defined as follows.219

M = {u ∈ P ′ | u is a maximal element of P ′}, S1 = {w ∈ P ′ | w ◁ u, u ∈ M},220

M ′ = {u ∈ P ′ | u is a minimal element of P ′}, S ′
1 = {w ∈ P ′ | u ◁ w, u ∈ M ′}221

S = M ∪ S1 \ {u ∈ S1 | ∃w ∈ S1, u◁◁w in P ′} and222

S ′ = M ′ ∪ S ′
1 \ {u ∈ S ′

1 | ∃w ∈ S ′
1, w ◁ ◁u in P ′}. Now v is adjacent to some or223

all vertices of the set S or S ′ in G. If v is adjacent to some vertices of S, then v224

must be adjacent to all the elements of M , as otherwise there will be more than225

two independent simplicial vertices. Similarly, if v is adjacent to some vertices of S ′,226

then v must be adjacent to all elements of M ′. Now, we construct a poset P from227

P ′ as follows.228

If v adjacent to some vertices of S:229

� If v is adjacent to only the elements in M , then P is constructed from P ′ with230

the covering relation defined as u◁ v for all u ∈ M .231

� If v is adjacent to the elements of S0, whereM ⊂ S0 ⊂ S, then P is constructed232

from P ′ with the covering relation as u′ ◁ v for all u′ ∈ S0 \M and u′′ ◁ u◁ v233

for all u′′ ∈ S \ S0 for some u ∈ M .234

� If v is adjacent to all elements of S, then P is constructed from P ′ with the235

covering relation defined as u◁ v for all u ∈ S \M .236

Similarly, if v adjacent to some vertices of S ′:237

� if v is adjacent to only the elements in M ′ then P is constructed from P ′ with238

the covering relation defined as v ◁ u for all u ∈ M ′.239

� if v is adjacent to the elements of S ′
0, where M ′ ⊂ S ′

0 ⊂ S ′, then P is con-240

structed with the covering relation defined as v ◁ u′ for all u′ ∈ S ′
0 \M ′ and241

v ◁ u◁ u′′ for all u′′ ∈ S ′ \ S ′
0 and some u ∈ M ′.242

6



� If v is adjacent to all elements of S ′, then P is constructed from P ′ with the243

covering relation v ◁ u for all u ∈ S ′ \M ′.244

It follows from construction that P is a well-defined poset and that G is isomorphic245

to GP .246

A perfect elimination ordering (PEO) is an ordering π = v1, . . . , vn of vertices247

in G such that the neighborhood N [vi] of vi is a clique of the subgraph G{vi,...,vn}248

induced by the vertices {vi, . . . , vn} of G. The following characterizations of chordal249

graphs are well known.250

Theorem 2. [17] A graph G is chordal if and only if G has a perfect elimination251

ordering.252

Lemma 6. [16] Every chordal graph G has a simplicial vertex. If G is not complete,253

then it has two non-adjacent simplicial vertices.254

In the following, we prove an interesting characterization of C-I chordal graphs255

as precisely those chordal graphs having exactly two independent simplicial vertices.256

Theorem 3. Let G be a chordal graph. Then G is a C-I graph if and only if G is257

a complete graph or G has exactly two independent simplicial vertices.258

Proof. If G is a chordal and CI graph, then G is a complete graph or G contains two259

independent simplicial vertices by Lemma 6. Also, every complete graph is a C-I260

graph. It remains to prove that if G is chordal and G has exactly two independent261

simplicial vertices, then G is a C-I graph.262

Let G be the chordal graph with the vertex set V (G) = {v1, v2, v3, . . . , vn}. Since263

G is chordal, there is a perfect elimination ordering(PEO), let vn, vn−1, . . . , v2, v1 be a264

PEO in G. By the definition of PEO on a chordal graph, the neighborhood N(vn−i)265

of vn−i is a clique in the subgraph G{vn−i+1,...,v1}, for i = 0, 1, . . . n − 1 and also the266

subgraphs G{vn−(i+1),...,v1} are chordal for i = 0, 1, . . . n− 1.267

We eliminate the simplicial vertices until we get the smallest non-trivial chordal268

graph containing exactly two independent simplicial vertices, say Gk. The removal of269

a simplicial vertex from Gk results in a complete graph. That is, Gk−1 is a complete270

graph with Gk−1 = Gk \ vk, where vk is a simplicial vertex in Gk. Clearly, Gk−1 is a271

C-I graph.272

Now, we add the simplicial vertices to the graphs Gk−1, Gk, . . . , Gn−1, in reverse273

order in the PEO; that is, we add vertices in order vk, vk+1, . . . , vn and consider all274

the possible ways of adding edges to build G. We add edges so that the resulting275

graph is obtained in each stage such that the graphs contain only two independent276

simplicial vertices.277

In particular, the graph Gk is obtained by adding the simplicial vertex vk to278

Gk−1. The vertex vk is adjacent to some vertices of Gk−1. Let Ck−1 ⊂ V (Gk−1) and279

C ′
k−1 = V (Gk−1) \Ck−1 be such that vk is adjacent to every element of Ck−1 and vk280

is not adjacent to any element of C ′
k−1. It follows by construction that the graph281

Gk is a Ptolemaic C-I graph with height 3 so that Gk is a chordal C-I graph having282

exactly two simplicial vertices.283
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Now, the graph Gk+1 is obtained by adding the simplicial vertex vk+1 to Gk284

and Gk+2 is obtained by adding the simplicial vertex vk+2 to Gk+1 and continuing285

as this, we obtain Gn by adding the simplicial vertex vn to Gn−1. By the lemma286

5 and Corollary 1, Gk+1, Gk+2, . . . , Gn−1 are chordal C-I graphs with exactly two287

independent simplicial vertices.288

Finally, we see that the graph Gn is such that G ∼= Gn and is a C-I graph.289

290

It is well known that a chordal graph G can be characterized as the intersection291

graph of sub-trees of some tree T . Such a tree is known as the clique tree of G.292

This well-known theorem is proved independently by Buneman [11] and Gavril [19].293

A tree representation of a chordal graph G is a pair (T,F ) where T is a tree and294

F is a family of subtrees of T such that the intersection graph of F is isomorphic295

to G. Further Gavril [19] has shown that given a chordal graph G, it is possible to296

construct a tree T with vertex set K = {q1, q2, . . . , qr} where qi corresponds to the297

maximal clique Qi of G, such that (T, {Rv1 , Rv2 , . . . , Rvn}) is a tree representation of298

G. Here, each Rvi , 1 ≤ i ≤ n, is the set of maximal cliques that contain the vertex299

vi, that is, Rvi = {qj | vi ∈ Qj}. Such a tree representation of G is called a clique300

tree of G. The clique tree T of G need not be unique, for the sets Ri determine the301

edges of T , not necessarily in a unique manner. Fig.1 shows a chordal graph and302

two of its clique trees.303

Fig. 1: A chordal graph and two of its clique trees

Theorem 4 (Gavril [19] and Buneman [11]). The following propositions are equiv-304

alent:305

1. G is a chordal graph.306

2. G is the intersection graph of a family of subtrees of a tree.307

3. There exists a tree T (called Clique tree) with vertex set {q1, q2, . . . , qr} such308

that for each vertex v, the set Rv = {qi | v ∈ Qi} induces a subtree of T . Here309

qi represents the maximal clique Qi.310

From the above description, we have that a graph G is a chordal graph if and311

only if there exists a clique tree T with maximal cliques of G as the vertices of T and312

any two cliques containing v ∈ V (G) are either adjacent in T or connected by a path313

of cliques that contain v. The Lemma below is also very useful in understanding314

the structure of chordal graphs and their simplicial vertices.315

8



Lemma 7. [5] A vertex is simplicial if and only if it belongs to precisely one maximal316

clique.317

The following result can be proved for establishing the recognition of chordal318

graphs which are C-I graphs.319

Lemma 8. Every leaf node of a clique tree of a chordal graph contains a simplicial320

vertex.321

Proof. Let T be a clique tree of a chordal graph G. Let Ck be a leaf node of T .322

Since Ck is a leaf node of T there is a node Ck′ in T such that CkCk′ ∈ E(T ). Since323

T is a clique tree of G every node of T is a maximal clique of G and hence there is a324

vertex v of G in Ck but not in Ck′ . From the definition of the clique tree, it is clear325

that v is not in any other nodes of T (cliques). Then it follows that v is a simplicial326

vertex by Lemma 7.327

Lemma 9. Let G be a chordal graph with the clique tree T being a path. Let Ci be328

an internal node of T , Ci+1, the parent node of Ci, and Ci−1 the child node of Ci329

in T . If v is vertex of G such that v ∈ Ci \ Ci+1 and v ∈ Ci \ Ci−1, then v is a330

simplicial vertex in G.331

Proof. Since v ∈ Ci \ Ci+1 and v ∈ Ci \ Ci−1 and T is a path, it follows from the332

definition of a clique tree that v is not in any other cliques in T . Then by Lemma 7,333

v is a simplicial vertex.334

Based on Theorem 3 and Lemma 8 and 9, we formulate the following algorithm335

for recognizing a chordal C-I graph G. The correctness of the algorithm follows from336

these results.337

Algorithm 1: Algorithm for recognizing given graph G is chordal C-I
graph G or not.

Input : G be a connected graph with |V (G)| = n and |E(G)| = m
Output: G is chordal C-I graph or not

Step 1: Apply the perfect elimination ordering (PEO) on G and check whether G is a
chordal graph or not. If there is no PEO then return G not chordal and stop.
Otherwise, go to Step 2.

Step 2: Using the PEO find the clique tree T of the given graph G. If the clique tree has
more than 2 leaf nodes, then return G, not chordal C-I graph, and stop.
Otherwise, go to Step 3. (Now the clique tree is a path, and the vertices are in
order C1, C2, . . . , Ck)

Step 3: Check whether there is an element in Ci that is not in Ci+1 and Ci−1 for
i = 2, 3, . . . , k − 1. If such an element exists at any stage, then stop and return G
is not a chordal C-I graph. Otherwise, return G is a chordal C-I graph.

338

The time complexity of Algorithm 1 can be analyzed as follows.339

Using the Lex-BFS or MCS, the PEO can be done in O(n+m) time. For Step 2,340

using PEO, the optimum clique tree T of G can be determined as follows. For each341

vertex v in the PEO, let S be the set of its neighbors that come later in the PEO.342
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Find the maximal cliques in the induced subgraph of G formed by S and v. For each343

maximal clique C, create a node in T corresponding to C. For each pair of maximal344

cliques C1 and C2 that share a vertex, add an edge between their corresponding345

nodes in T so that the resulting tree is the clique tree of G. Because each maximal346

clique contains all the vertices of its smaller cliques, the resulting tree is guaranteed347

to be a clique tree of the chordal graph G. The time complexity of this procedure348

is O(n + m), where n is the number of vertices and m is the number of edges in349

the chordal graph G. This is because computing a PEO can be done in linear time,350

and the time to find maximal cliques is O(n+m) using a standard algorithm such351

as Bron-Kerbosch, and the number of maximal cliques is O(m). Checking whether352

there are more than 2 leaf nodes can be done in constant time.353

In Step 3, let k be the length of the clique tree which is a path P . Then, in354

the worst case, the size of the sets Ci is of the order O(n/k). To check whether an355

element v ∈ Ci \ Ci+1 and v ∈ Ci \ Ci−1 takes O(3n/k) time by using a hash set356

operation. Since there are at most k − 2 internal nodes, the total time for Step 3 is357

O(n). Now, the complexity of Algorithm 1 is O(n+m).358

4 Structure of C-I cographs359

In this section, we present an algorithm for recognizing C-I cograph.360

Theorem 5. [8] Let G be a chordal cograph. Then G is a C-I graph if and only if361

G is a connected graph that contains at most two maximal cliques.362

From Theorem 5, we get the following remark363

Remark 3. A graph G is chordal C-I cograph if and only if there exists three pairwise364

disjoint sets C1, C2 and C3 such that V (G) = C1 ∪ C2 ∪ C3, and x, y ∈ V (G) are365

adjacent in G if and only if x, y ∈ C1 ∪ C2 or x, y ∈ C2 ∪ C3.366

That is, C1, C2, C3, C1 ∪C2 and C2 ∪C3 form cliques and the graph has no other367

edges. So in the C-I chordal cograph, if xy, xz /∈ E(G) then yz ∈ E(G). It is368

clear that a chordal C-I cograph is a Ptolemaic C-I graph as it is a C-I graph of369

a completely ranked poset of height 3. The structure of an arbitrary chordal C-I370

cograph is shown in Fig. 2.

Fig. 2: General structure of a chordal C-I cograph G

371
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Theorem 6. [8] A graph G is a C-I cograph if and only if G is the join of chordal372

C-I cographs.373

From Theorem 6, we get the following remark.374

Remark 4. Let G be a C-I cograph such that G = G1 ∨ G2 ∨ · · · ∨ Gk, where Gi’s375

are chordal C-I cographs. By Remark 3, there exists a pairwise disjoint set Ci
1, C

i
2376

and Ci
3 such that V (Gi) = Ci

1∪Ci
2∪Ci

3 and xy ∈ E(Gi) if and only if x, y ∈ Ci
1∪Ci

2377

or x, y ∈ Ci
2∪Ci

3. Thus in G,
k⋃

i=1

Ci
2 are universal vertices and for u, v ∈ V (G) such378

that uv /∈ E(G) if and only if both u and v in V (Gi) with u ∈ Ci
1 and v ∈ Ci

3, for379

some i. Thus, for any u, v, w ∈ V (G) with uv, uw /∈ E(G), then vw ∈ E(G).380

The structure of an arbitrary C-I cograph is depicted in Fig. 3.

Fig. 3: General structure of a C-I cograph G

381

Lemma 10. Let G be a C-I cograph then there exists a poset P = P1+P2+ · · ·+Pr,382

where Pi’s are completely ranked poset of rank 2 such that G ∼= GP .383

Proof. Let G be a C-I cograph. Then G is the join of chordal C-I cographs. That is,384

let G = G1∨G2∨ . . . Gr. Since Gi’s are chordal cographs, Gi’s are C-I graphs of the385

completely ranked poset Pi’s of rank at most 2. Hence P = P1 + P2 + · · ·+ Pr.386

Fig. 4: Claw

Lemma 11. If G is a C-I cograph then G is a claw-free graph387

Proof. Let G be a C-I cograph and G = G1 ∨G2 ∨ · · · ∨Gk, where Gi’s are chordal388

C-I cograph for i = 1, 2, . . . k. Suppose that G contains an induced claw by the389

vertices {u, v, w, x} ⊆ V (G) with edges ux, vx, wx ∈ E(G) and uv, vw, uw /∈ E(G)390
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(see Fig.6). Since G = G1 ∨G2 ∨ · · · ∨Gk, the non-adjacent vertices lie in the same391

Gj for some j ∈ {1, 2, . . . , k}. That is, u, v, w ∈ V (Gj). Since Gj is a chordal C-I392

cograph, if uv, uw /∈ E(Gj) then vw ∈ E(Gj), which is a contradiction. Hence, the393

C-I cograph is a claw-free graph.394

A cotree is a tree in which the internal nodes are labelled with the numbers 0395

and 1. Every cotree T defines a cograph G having the leaves of T as vertices, and in396

which the subtree rooted at each node of T corresponds to the induced subgraph in397

G defined by the set of leaves descending from that node. A subtree rooted at a node398

labelled 0 corresponds to the union of the subgraphs defined by the children of that399

node and a node labelled 1 corresponds to the join of the subgraphs defined by the400

children of that node. The cotree satisfies the property that, on every root-to-leaf401

path, leaves are the vertices of the graph, the labels of the internal nodes alternate402

between 0 and 1, and every internal node has at least two children. The cotree can403

be easily obtained from any tree labelled with such 0/1 T by coalescing all pairs404

of child-parent nodes in T having the same label or where the parent has only one405

child. Vertices x and y of G are adjacent in G if and only if their lowest common406

ancestor(LCA) in the cotree is labelled 1. This representation is unique and every407

cograph can be represented in this way by a cotree [12]. Since G is a connected408

graph, the root of the cotree is a 1-node.409

It is known that cographs have a unique tree representation, called a cotree.410

Using the cotree, it is possible to design very fast polynomial-time algorithms for411

problems that are intractable for graphs in general. Such problems include chro-412

matic number, clique determination, clustering, minimum weight domination, iso-413

morphism, minimum fill-in, and Hamiltonicity. A linear-time cograph recognition414

algorithm, such as those in [9, 13, 20], which also builds a cotree, a data structure415

that fully encodes the cograph.416

The Fig. 5 illustrates a cograph G and an embedding of the corresponding cotree417

TG. The leaves of TG represent the set of vertex V (G), and each internal node418

signifies the union (0) or the joining (1) operations in the children. The significance419

of the 0(1) nodes is captured by the fact that xy ∈ E(G) if and only if LCA(x, y) is420

a 1 node, as shown in Fig. 5.421

Fig. 5: G be a cograph and TG be the cotree of G
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Fig. 6: Cotree for C-I cograph (TC)

The general structure of the cotree of C-I cographs is shown in Fig. 6, and422

we denote the family of cotree of C-I cograph as TC. Let G be a C-I cograph,423

G = G1 ∨ G2 ∨ · · · ∨ Gk, where Gi’s are chordal C-I cographs. Then by Remark 4,424

two vertices x and y are not adjacent in G if and only if x ∈ Ci
1 and y ∈ Ci

3 for425

i = 1, 2, . . . , k. Therefore, in the cotree, the lowest common ancestor(LCA) of x and426

y is 0-node. That is, LCA(x, y) = 0 for x ∈ Ci
1 and y ∈ Ci

3. In other cases, LCA is427

a 1-node. That is, LCA(x, y) = 0 for x /∈ Ci
1 and y /∈ Ci

3.428

Lemma 12. The cotree of C-I cograph which is not a complete graph satisfies the429

following properties430

(i) The root node (which is a 1-node) of TC has leaf nodes and 0-nodes as children.431

the number of 0-nodes (which are children of the root node) is always less than432

or equal to the number of leaf nodes (which are children of the root node).433

(ii) Every 0-node has exactly two children (both the children are 1-nodes or both434

the children are leaves nodes or one child is a leaf node and another child is435

1-node).436

(iii) The 1-nodes other than the root node have only leaf nodes as children.437

(iv) The cotree of G belongs to the family of TC.438

Proof. Let G be a C-I cograph which is not a complete graph.439

(i) Since G is not a complete C-I graph, it is either a chordal cograph or joins440

of chordal cographs. Since there are non-adjacent vertices, there exist some441

0-nodes as children of the root node. From the structure of the C-I cograph,442

there exist universal vertices, which should be leaf nodes of the root node.443

From Theorem 6, G = G1 ∨G2 ∨ · · · ∨Gk, where Gi are chordal C-I cographs.444

The leaf nodes of the subtree rooted by each 0-node contain the non-universal445

vertices of each Gi. That is, if there are k 0-nodes, then since the universal446

vertices of each Gi, are also universal vertices of G, and since each Gi has at447
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least one universal vertex, the number of 0-nodes of the root node must be at448

most the number of leaf nodes as a child nodes. Hence (i) follows.449

(ii) Suppose there are 0-nodes having more than two children. Let 0′ be a 0-450

node having three child nodes. Let u, v, w be the three leaf nodes from the451

different branches of the subtree with the root node as the 0′-node. Then by452

the structure of the C-I cograph, we have that uv, vw, uw /∈ E(G). Let x be a453

leaf node of the root of the cotree TC. Then x is adjacent to u, v and w. That454

is, {u, v, w, x} induce a claw in G which is a contradiction to Lemma 11. So455

every 0-node has no more than two children. In a cotree, every node has a456

minimum of two child nodes. Hence every 0-node has exactly two child nodes457

as 1-nodes. Hence (ii) follows.458

(iii) Suppose that there is a 1-node other than the root node which has a 0-node,459

say 0′. Consider a sub-tree T of CT with root as 0′. Let u and v be the vertices460

of G such that the LCA(u, v) is 0′. The vertices u and v exist since the sub-tree461

T has exactly two branches. Now consider the sub-tree T ′ of CT containing T462

with root as a 0-node, say 0′′ different from 0′. Let w be a vertex of G such463

that the LCA(u, v, w) is 0′′ ( the vertex w exists since there are two children464

from 0′′ of T ′). Clearly, the vertices u, v, w are mutually non-adjacent. Now465

any vertex x of G which are leaves of the root node 1 of CT is adjacent to all466

of u, v, w so that u, v, w, x form an induced claw, a contradiction. Hence (iii)467

follows.468

(iv) Follows from (i),(ii) and (iii).469

470

Theorem 7. A cograph G is a C-I cograph if and only if the cotree of G belongs to471

the family CT472

Proof. It is clear that when G is a complete graph if and only if the cotree is the473

tree with every vertex of G as a child of the root node and which is a part of CT .474

Let G be a C-I cograph which is not a complete graph. Then by Lemma 12,475

cotree of G is of the form TC476

Conversely, we need to prove that if TC is the cotree of a cograph G then G is a477

C-I graph. Consider the set of leaves of the co-tree TC ( Refer Figure 6 ). It follows478

by the definition of co-tree of a cograph G that the sets Cj
i ’s are cliques of G, for479

i = 1, 3 and j = 1, 2, . . . , k and
k⋃

i=1

Ci
2 = {w1, w2, . . . , wm} are universal vertices.480

Now Cj
1 is adjacent to every vertex in G except Cj

3 and Cj
3 is adjacent to every481

vertex in G except Cj
1 for j = 1, 2, . . . , k. Then by Remark 4, G is a C-I cograph.482

Hence proved.483

484

In [13], Corneil et al. presented a linear time algorithm for recognizing cographs485

and constructing their cotree representation. Using that algorithm, we get the486

cotree.487
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Theorem 8. [13] The family of cographs possesses a linear time recognition algo-488

rithm by the construction of the cotrees in linear time.489

Algorithm 2: Algorithm for recognizing C-I cograph

Input : A connected graph G with |V (G)| = n
Output: G is a C-I cograph or not.

Step 0: Using the recognition algorithm in Theorem 8 determine the cotree if G is a
cograph and go to Step 1. Otherwise, stop and return G is not cograph

Step 1: Perform BFS from the root node 1 of the cotree.

Step 2: If BFS completes in one step by reaching all the leaf nodes ( if all the
adjacent nodes of the root node are leaf nodes), then the graph is a complete
graph and it is C-I cograph; stop, and we are done. Otherwise, go to Step 3.

Step 3: ( that is in Step 2, we obtain 0-nodes and leaf nodes or only 0-nodes). If all
the neighbours of the root nodes are only 0-nodes or the number of 0-nodes
is greater than the number of leaf nodes of the root node, then G is not a C-I
cograph and stop. Otherwise, go to Step 4.

Step 4: Continue the searching at level 2. If 0-nodes has more than two children as
1-nodes then G is not a C-I cograph and stop. Otherwise, go to Step 5.

Step 5: Continue searching at level 3. In level 3, if any 1-node has 0-node as a child,
then G is not a C-I cograph and stop. If all the children of the 1-nodes are
the leaf node then we are done. the resulting graph is a C-I cograph.

490

The correctness of the algorithm follows from the structure of cotree stated in491

Lemma 10 and the facts mentioned above.492

Now the size of the cotree of a C-I cograph can be estimated as follows. Let G493

be a C-I cograph with n vertices and G = G1∨G2∨· · ·Gk. Then from the structure494

of the cotree T of G, T contains leaf nodes( which are the n-vertices of G), 0-nodes,495

and 1-nodes. Then T contains k 0-nodes, and each 0-node has exactly 2 children.496

Therefore T has at most 1+k+2k+n vertices. The worst case for k is when k = n
3
.497

Therefore in the worst case, the total number of vertices in T is 1+ n
3
+ 2n

3
+3, which498

is of the order of O(n).499

The time complexity of the recognition algorithm for cographs and finding its500

cotree by Theorem 8 is linear. Now the complexity of Algorithm 2 is linear in the501

size of the cotree, which is O(n) in the worst case since the complexity of the BFS502

can be performed on the cotree in linear time.503
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