World Haptics, Delft 10th July 2023

The complexity of touch encoding in humans and applying it in tactile sensors

Dr. Rochelle Ackerley

Laboratoire de Neurosciences Cognitives UMR7291 CNRS – Aix-Marseille University, Marseille, France rochelle.ackerley@univ-amu.fr

@RochelleAckerley@qoto.org

Importance of touch

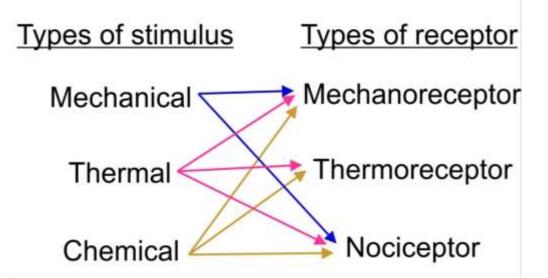
'Touch is a language we understand instinctively'

Duration

Isaac Asimov's Robot:

"Robbie's metal skin, kept at a constant temperature of 70°F by

Rough Pressure		Chemoreception				the high resistance coils	
Edges		Softness			within, felt nice and comfortable".		
	Wet		Warm	Cool	Cold		
Texture		Sticky			Hot		
		Pleasant		Calming		Excitin	g
Link between afferents and feelings		Soothi		ing	Unplea		Painful
						ltchy	

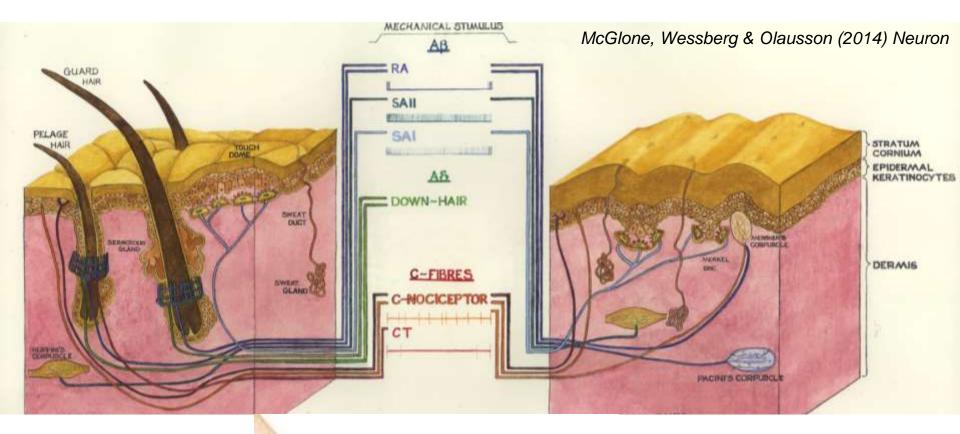

Mechanoreception

Thermoreception

Encoding of somatosensory signals

Does not matter if it is solid, liquid or gas...

Mechanoreception Thermoreception Chemoreception


How *real* can artificial touch be?

How *closely* does it need to resemble the biology to be useful or convey complex messages?

Realistic artificial feedback:

- Mechanical signals
- Thermal signals
- Nociceptive signals

Mechanoreceptors in the skin

Hairy skin

Glabrous skin

Low-threshold mechanoreceptive afferents

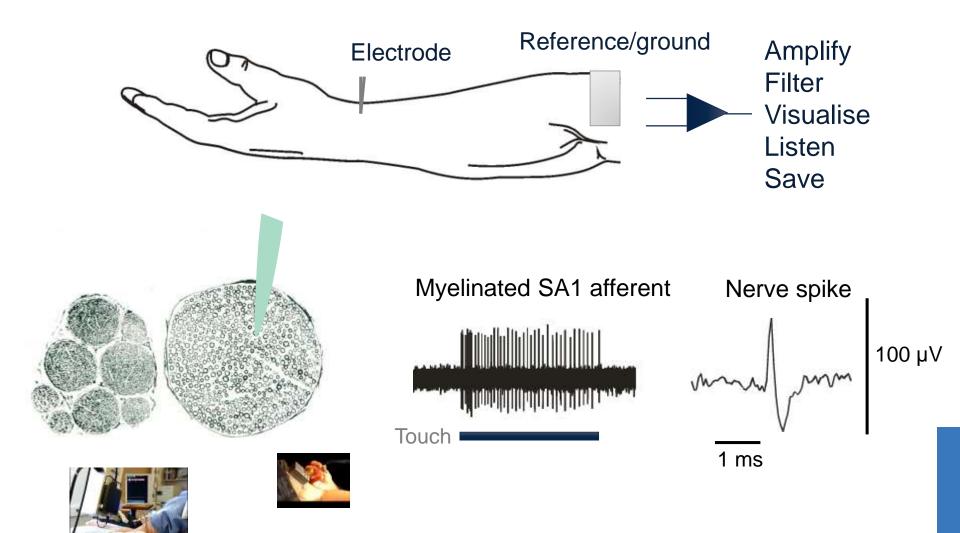
Response to long-lasting indentation		Receptive field in: Glabrous Hairy		Characteristics
	type	skin	skin	
	FA1		(Not present)	Small, sharp receptive field Density highest in finger tips
	FA2			Large receptive field Sensitive to vibration
	SA1)°	Small, sharp receptive field Irregular firing to indentation
	SA2) • •	Often spontaneous firing Regular firing to indentation
	Hair	(Not present)		One unit consists of ~20 hairs Sensitive to movement of hairs
	Field	(Not present)		Large, irregular receptive field with high-sensitivity spots

+ C-tactile (CT) unmyelinated afferents

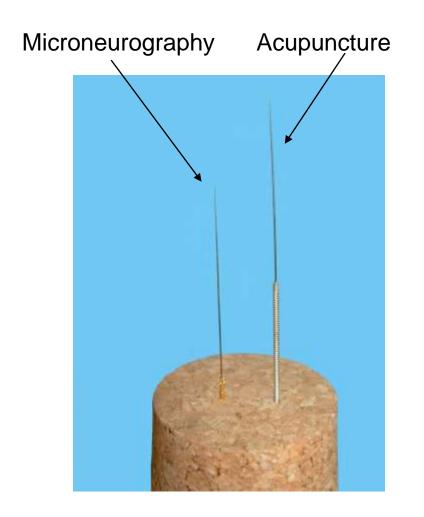
Ackerley & Kavounoudias (2015) Neuropsychologia

Innocuous touch + temperature

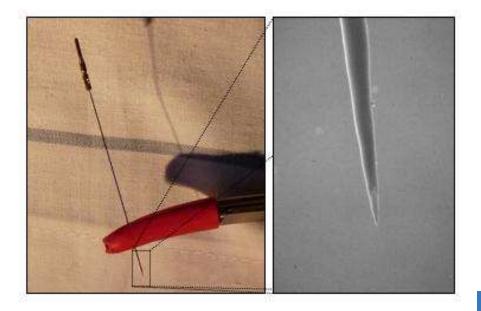
- With touch comes temperature
 - Neutral little sense of temperature, as similar to skin temperature (28-34°C)
 - Increase warm, hot, painful burning, hairy, dry, cosy, rough, scratchy, dirty, sticky
 - Decrease cool, cold, painful wet, slippery, smooth, numb, fresh, clean
- Temperature can:
 - Modify touch
 - Add an affective component to touch

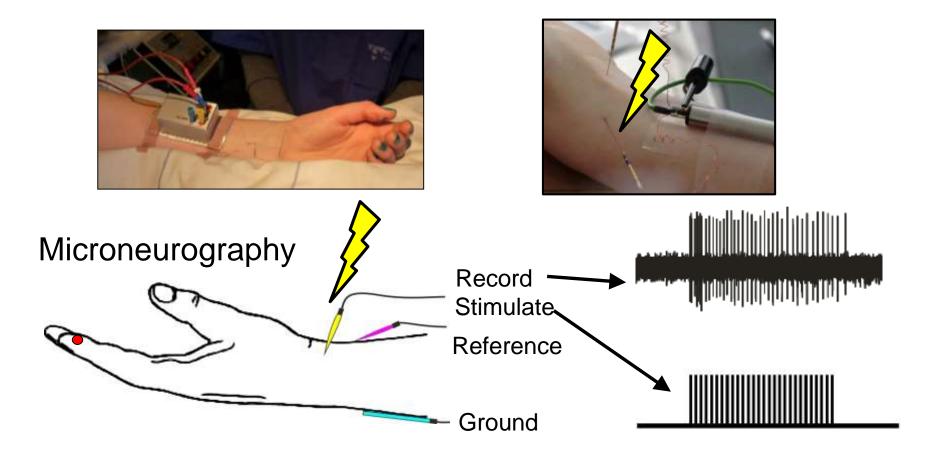

Thermoreceptors in human skin

Class	Туре	Preferred stimulus		
Thermoreceptor Αδ cool		Touch and cooling		
Thermoreceptor C-cold		Cold ~20°C; spontaneous from ~30°C, respond down to 0°C Changes in temperature		
Thermoreceptor C-warm (?)		Low threshold ~30-40°C High threshold >38°C		
Nociceptor	Aδ hot	Noxious touch/temperature		
Nociceptor C-mecha		Touch with heat (~40°C)		
Nociceptor C-mechano heat-cold		Touch with heat (~40°C) or cold (<20°C)		


Adriaensen et al (1983) J Neurophsyiol Ackerley & Watkins (2018) J Neurophysiol

Microneurography : Recording from single afferents in humans


Microneurography

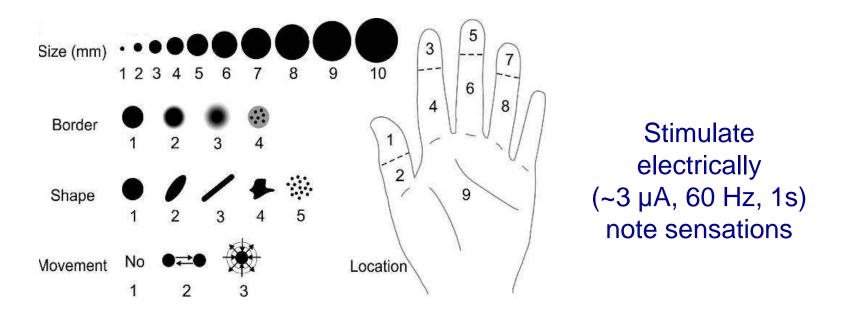

Electrodes

Coated tungsten 0.2 mm diameter Electrode tip ~5 μm ~ 300-500 kΩ impedance

Microstimulation

Does the projected sensory field match the receptive field?

Touch


- Glabrous skin (e.g. hands) suited to convey discriminative touch Ackerley et al. (2014a) Front Neurosci
- Hand contains ~17 000 mechanoreceptors
- Mechanoreceptors are most dense at the fingertip
- Humans use more sensory language for touch on glabrous skin e.g. hard, rough, smooth, cold Ackerley et al. (2014b) Front Neurosci
- Of interest to investigate discriminative touch input
 how we sense shape, texture, stickiness
- Investigate "quantal touch"
 - stimulate single mechanoreceptive afferents...

Microstimulation

Does activity in a single afferent reach consciousness?

~handful of research papers on single unit microstimulation

Vallbo et al (1984) Brain

Sensations generated from microstimulation

Quantify artificial projected sensations

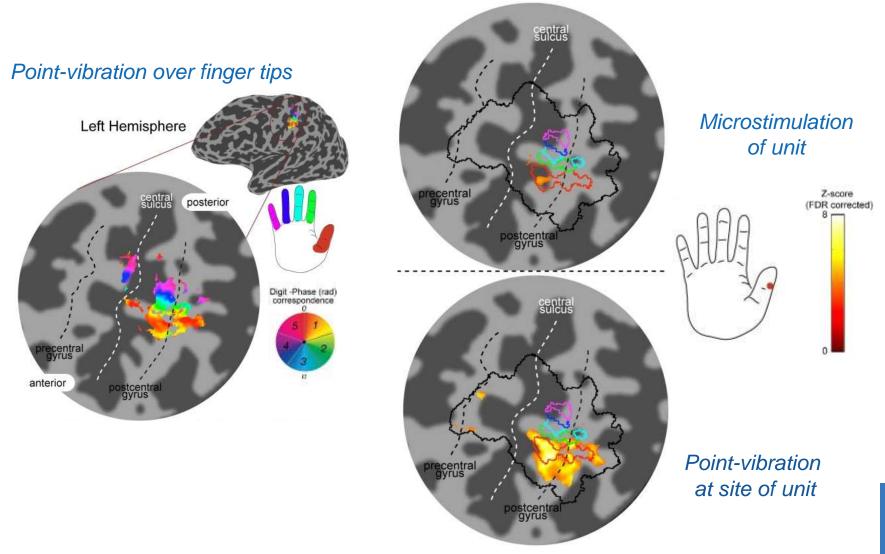
Туре	Ν	Size	Shape	Border	Sensations felt
FA1 Meissner	125	2 mm	Oval	Slightly sharp	Small point of vibration, pricking, tingle
SA1 Merkel	90	2 mm	Round	Slightly sharp	Pulling, small point of pressure
FA2 Pacini	14	6 mm	Oval	Slightly diffuse	Larger area of touch sensation, intense vibration
SA2 Ruffini	21	8 mm	Oval	Slightly diffuse	Natural pushing sensation*

Total n = 250 units

Sanchez-Panchuelo, Ackerley et al (2016) eLife, O'Neill et al (2019) NeuroImage, *Watkins et al (2022) J Physiol, Ackerley et al (in prep)

Microstimulation at 7T fMRI

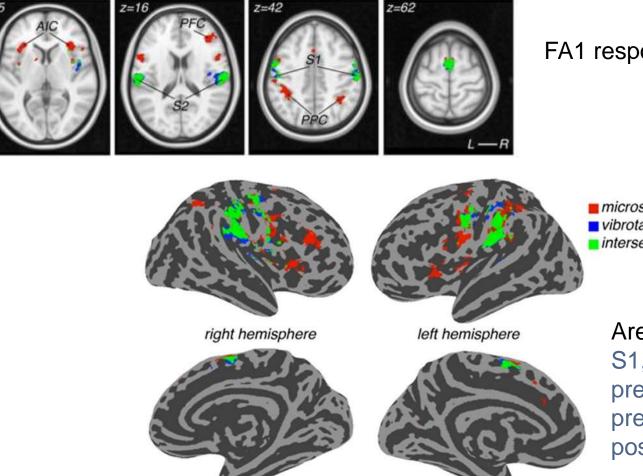
- Characterise afferent
- Test sensation
- Into 7T scanner
- Electrical stimulation
- Vibrotactile stimulation



Link events at the periphery with central interpretation

? 111. 1

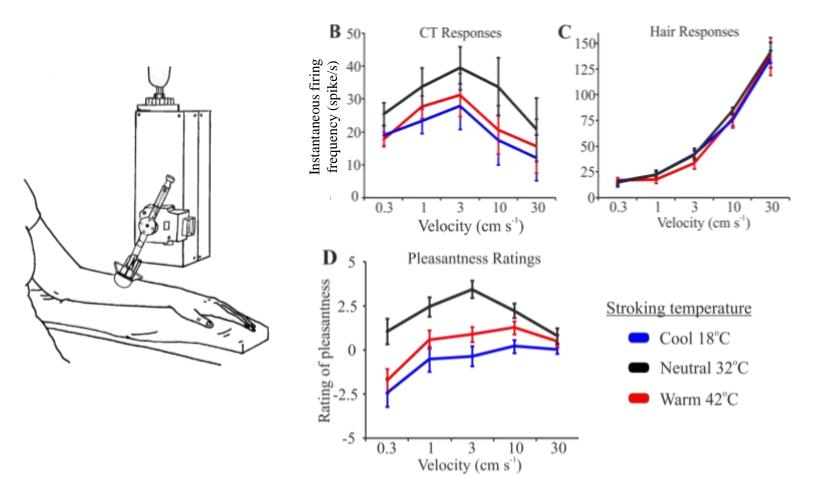
PHILIPS


Microstimulation S1

Sanchez-Panchuelo, Ackerley et al. (2016) eLife

Regions activated in touch and microstimulation

(a) Activations in MNI space


FA1 responses, n = 8

microstimulation
 vibrotactile stimulation
 intersection

Areas activated: S1, S2, M1, insula, premotor cortex, prefrontal cortex, posterior parietal cortex

Sanchez-Panchuelo, Ackerley et al. (2016) eLife

C-tactile (CT) optimal responses

Preferential responses to the speed and temperature of touch

Ackerley et al. (2014) J Neurosci

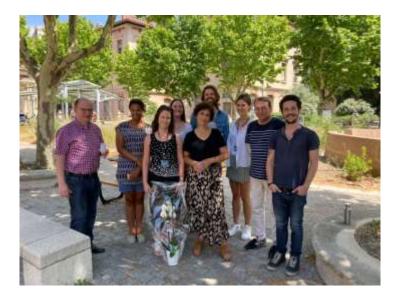
Conclusions

Single afferent microstimulation

- You can feel a single mechanoreceptor
- Inherent differences between mechanoreceptor types
- Network of brain areas involved in the most basic touch
- Facilitate artificial dexterous manipulation
 - Subtle signals are important (e.g. slip) large force encoding range
 - Thermal signals much smaller thermal encoding range
 - Congruence with multisensory signals (e.g. audition)

Considerations

- Need to consider firing from different types of afferent
- A lack of firing is also important (absence of signal)
- How real does artificial touch <u>need</u> to be?


Thank you

LNC, Marseille, France Roger Watkins, Mariama Dione

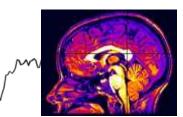
University of Gothenburg, Sweden

Johan Wessberg, Helena Backlund Wasling, Karin Göthner

Dept of Physics & Astronomy, University of Nottingham, UK Susan Francis, Rosa Sanchez-Panchuelo, Paul Glover

@LabSomato

AU TERVICE DE LA SCIENCE


somatosense.fr

Consolidator grant ARTTOUCH Proof of Concept SOMATOSENSE

TY OF GOT

UNIVERSITY OF GOTHENBURG

