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non-wellfounded sequent calculi with

least and greatest fixed points
(extended version)
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Abstract. This paper establishes cut-elimination for µLL∞, µLK∞ and
µLJ∞, that are non-wellfounded sequent calculi with least and greatest
fixed-points, by expanding on prior works by Santocanale and Fortier [20]
as well as Baelde et al [4,3]. The paper studies a fixed-point encoding
of LL exponentials in order to deduce those cut-elimination results from
that of µMALL∞. Cut-elimination for µLK∞ and µLJ∞ is obtained by
developing appropriate linear decorations for those logics.
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1 Introduction

On the non-wellfounded proof-theory of fixed-point logics. In the context of log-
ics with induction and coinduction (such as logics with inductive definitions à
la Martin Löf [6,9,10,25], or variants of the µ-calculus [22,23,11]), the need for a
(co)inductive invariant (in the form of the Park’s rule for induction) is replaced
by the ability to pursue the proof infinitely, admitting non-wellfounded branches,
when considering non-wellfounded and circular proofs (also called cyclic, or reg-
ular proofs, since the proof tree is a regular tree, with finitely many distinct
subtrees). In such frameworks, sequent proofs may be finitely branching but
non-wellfounded derivation trees and infinite branches shall satisfy some validity
condition. (Otherwise one could derive any judgement, see Figure 1(a).) Various
validity conditions have been considered in the literature [3].

The non-wellfounded and circular proof-theory of fixed-points attracted a
growing attention first motivated by proof-search [18,17,1,16,29,7,8] and more
recently by a Curry-Howard perspective, studying the dynamics of the cut-
elimination in those logics [4,20,30] where formulas correspond to (co)inductive
types. Notice also that when interested in the computational content of proofs,
we will not focus solely on the regular fragment as we expect, for instance, that
we can write a regular program that computes a non-ultimately periodic stream.
⋆ This work was partially funded by the ANR project RECIPROG, project reference

ANR-21-CE48-019-01.



...
(µ)

⊢ Γ, µX.X
(µ)

⊢ Γ, µX.X

...
(ν)

⊢ νX.X,∆
(ν)

⊢ νX.X,∆
(Cut)

⊢ Γ,∆

⊢ Γ ,C ⊢ C⊥,∆,D ⊢ D⊥, Σ
mcut(ι,⊥⊥)

⊢ Γ ,∆,Σ

(a) (b)

Fig. 1. (a) Example of an invalid circular pre-proof. (b) Schema of the multicut rule.

Cut-elimination and LL. When studying the structure of proofs and their cut-
elimination properties, LL, Girard’s Linear Logic [21], is a logic of choice: the
careful treatment of structural rules gives access to a lot of information and a
fine-grained control over cut-reduction. The constrained use of structural rules
indeed renders the cut-elimination theorem more informative than in LJ and of
course LK. Interestingly it provided a positive feedback on the understanding of
LJ and LK: by decorating intuitionistic and classical proofs with enough expo-
nential modalities (!, ?), they can become LL proofs and one can therefore refine
the original cut-elimination relations [21,13]. This approach impacted the under-
standing of evaluation strategies of programming languages such as call-by-name
and call-by-value notably. Another way to view this is by noting that in, say, LK
the additive and multiplicative presentation of conjunction (resp. disjunction)
can be shown to be interderivable thanks to structural rules. This fails in LL and
it is the reason why LL has well-established additive – ⊕,N,⊤, 0 – (resp. multi-
plicative O,⊗,⊥, 1) fragments. It is the role of the exponential fragment to relate
the additive and multiplicative worlds, by mean of the fundamental equivalence:
!A⊗ !B ⊣⊢ !(ANB) (and its dual, ?AO ?B ⊣⊢ ?(A ⊕ B)). The exponential
modalities are precisely introduced where structural rules are needed to restore
the equivalence between the additive and multiplicative conjunctions; in cate-
gorical models of LL [27], this principle is referred to as Seely isomorphisms.

Cut-elimination for non-wellfounded proofs. Proving cut-elimination results for
non-wellfounded proofs in the presence of least and greatest fixed-points requires
to use reasoning techniques coping with the non-inductive structure of the con-
sidered formulas (fixed-points formulas regenerate) and proof objects (which
are non-wellfounded). For instance, Santocanale and Fortier [20] proved cut-
elimination for the regular fragment of non-wellfounded proofs of purely additive
linear logic with fixed points, µALL while Baelde et al. [4] proved cut-elimination
for non-wellfounded proofs with additive and multiplicative connectives, µMALL.
In both cases, the proof relies on a generalization of the cut-rule (which abstracts
a portion of a proof tree constituted only of cut inferences, the multicut rule,
see Figure 1(b)) and on a reasoning by contradiction to prove that one can elim-
inate cuts at the limit of an infinite cut reduction sequence, while preserving
the validity condition. Baelde et al. [4,3] use a so-called “locative” approach by
modelling sequents as sets of formulas paired with addresses which determines
uniquely the formula occurrence in a sequent and makes explicit the ancestor
relation used to trace the progress along branches. Moreover, the cut-elimination
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proof proceeds by a rather complex semantical, indirect, argument relying on a
soundness theorem.

In a slightly different direction, Das and Pous [15] proved a cut-elimination
result for Kleene algebras and their variants. This can be viewed as a non-
commutative version of intuitionistic MALL with a particular form of inductive
construction, Kleene’s star. Kuperberg et al [24] and more specifically Pinault’s
PhD thesis [28] as well as Das [14] examine non-wellfounded versions of System
T based on [15], exploring the computational content of non-wellfounded proofs.

Neither Santocanale and Fortier’s [30,20], nor Baelde et al. [4,3] works cap-
tured full linear logic: the exponentials are missing and the proofs cannot deal
with them in a simple way. Indeed, the proof for µALL strongly relies on the
assumption the sequents are pairs of formulas (A ⊢ B) while in µMALL, the
locative approach taken by Baelde et al. is not well-suited to work with struc-
tural rules: the extension of the proof would be possible though highly technical.
In contrast, our motto in the present work is to work with traditional sequents
as lists of formulas and to exploit the (co)inductive nature of LL exponentials.

On the (co)inductive nature of exponential modalities in linear logic. The orig-
inal works by Baelde and Miller on fixed-points in linear logic [5,2] focus on
µMALL only and present an encoding of the exponential modalities of LL using
least and greatest fixed points. Indeed, the ? and ! modalities have an infinitary
character which is well-known from the early days of linear logic (see Section
V.5 of Girard’s seminal paper [21]) and which is in fact respectively inductive
for ? and coinductive for !; let us discuss it briefly here.

One can decide to contract a ?-statement any finite number of times before
it is ultimately weakened or derelicted. It is therefore natural to represent ?A
with formula ?•A = µX.A ⊕ (⊥ ⊕ (XOX)): A allows for dereliction, ⊥ for
weakening and XOX will regenerate, by unfolding, two copies of ?•A, making the
contraction derivable. The ⊕ and µ connectives respectively provide the ability
to choose either of those three inferences and to repeat finitely this process.

On the other hand, a !-formula is a formula which, during cut-elimination,
shall maintain a proper interaction with any number of contractions, weakenings
or derelictions: a proof concluded with a promotion shall be able to react to any
number of duplications or erasure before the promotion actually interact with
a dereliction to open the exponential box : from that follows the coinductive
character of !A modelled as !•A = νX.AN(1N(X⊗X)).

As informally described above and formally established by Baelde and Miller [5],
the exponential rules can be derived in the finitary sequent calculus µMALL: to
any LL provable sequent can be associated a provable µMALL sequent via the
above translations of the exponentials. However, until now one can hardly say
more about this embedding for two deep reasons: (i) the fundamental Seely iso-
morphisms which relate the additive and multiplicative versions of conjunction
(resp. disjunction) are still derivable through this encoding but they are no more
isomorphisms and (ii) it is unknown whether the converse of the above provabil-
ity preservation result holds: whether the µMALL provability of the translation
of an LL sequent s entails the LL provability of s itself. A contribution of the
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present paper is to put to work Baelde and Miller’s encoding, showing that, in
the case of non-wellfounded proofs, its structure is faithful enough to extract
information of the cut-reduction behaviour of the logic.

Several ap-
pendices are
provided for
the reviewers,
at their dis-
cretion.
It details
some defi-
nitions and
provides
proofs which,
most often,
could not be
included in
the body of
the paper
due to lack
of space. A
companion
technical
report is
available
online [31].
References
to the Ap-
pendices are
presented in
such margin
paragraphs.

Contributions and organization of the paper. The main result of this paper is
a cut-elimination theorem for µLL∞, the non-wellfounded sequent calculus for
linear logic extended with least and greatest fixed points. Our proof proceeds
by encoding LL exponentials in µMALL∞ and studying µLL∞ cut-reduction se-
quences through their simulation in µMALL∞ which may be a transfinite se-
quence. In Section 2, we introduce our logics, µMALL∞, µLL∞, µLK∞ and
µLJ∞, altogether with their non-wellfounded proofs and validity conditions.
We adapt µMALL∞ cut-elimination theorem [4] to our setting where sequents
are lists and prove a compression lemma for µMALL∞ transfinite cut-reduction
sequences. Section 3 constitutes the core of our paper: we define µLL∞ cut-
reduction rules, study the encoding of exponentials in µMALL∞ and show that
µLL∞ cut-reduction steps can be simulated in µMALL∞, before proving µLL∞

cut-elimination theorem. We prove in Section 4, as corollaries, cut-elimination
for µLK∞ and µLJ∞, the non-wellfounded sequent-calculi for classical and in-
tuitionistic logic. While our result for µLL∞ shows that any fair cut-reduction
sequence produces a cut-free valid proof, our two other cut-elimination results
are truly (infinitary) weak-normalization results. We finally conclude in Sec-
tion 5 with perspectives. A major advantage of our approach is that µMALL∞

cut-elimination proof and, to some extent, the validity conditions, are regarded
as black box, simplifying the presentation of the proof and making it reusable
wrt. other validity condition or µMALL∞ proof techniques. An additional by-
product of our approach, to the theory of linear logic, is to illustrate the fact
that Seely isomorphisms are not needed to reach a cut-free proof.

2 Non-wellfounded proofs: µMALL∞, µLL∞, µLK∞, µLJ∞.

2.1 µ-signatures and formulas.

Definition 1 (µ-signature). A µ-signature is a set C of pairs (c, p) of a
connective symbol c and a tuple p of elements of {+,−}. The arity of c, ar(c),
is the length of p, while the elements of p indicate the mono/antitonicity of the
connective in the given component. The empty tuple will be denoted as ().1

Example 2 (µ-signature associated with µMALL, µLL, µLK, µLJ). The µ-signature
associated with µMALL, µLL, µLK, µLJ, considered in this paper are:

– µMALL signature: CµMALL = {O,⊗,⊕,N} × {(+,+)} ∪ {0, 1,⊤,⊥} × {()} ;
– one-sided µLL signature: CµLL1

= CµMALL ∪ {!, ?} × {(+)} ;
– two-sided µLL signature: CµLL2

= CµLL1
∪ {(⊸, (−,+)), (·⊥, (−))} ;

1 µ-signature can be enriched to consider quantifiers but we restrict to the proposi-
tional case here.
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– µLK signature: CµLK = {∧,∨} × {(+,+)} ∪ {(⇒, (−,+))} ∪ {⊤,F} × {()};
– µLJ signature: CµLJ = CµLK.

Definition 3 (Pre-formulas). Given a µ-signature C, a countable set V of
fixed-point variables and a set of atomic formulas A, the set of pre-formulas
over S is defined as the least set FS such that: (α) A∪ V ⊆ FS ; (β) for every c
of arity n in C and F1, . . . , Fn ∈ FS , c(F1, . . . , Fn) ∈ FS ; (γ) for every X ∈ V
and pre-formula F ∈ FS , µX.F ∈ FS and νX.F ∈ FS .

Definition 4 (Positive and negative occurrences of a variable). Given
a µ-signature C and a fixed-point variable X ∈ V, one defines by induction
on pre-formulas the fact, for X, to occur positively (resp. negatively) in a pre-
formula : (α) X occurs positively in X; (β) X occurs positively (resp. negatively)
in c(F1, . . . , Fn), for (c, p) ∈ C, if there is some 1 ≤ i ≤ n such that X occurs
positively (resp. negatively) in Fi and pi = + or there is some 1 ≤ i ≤ n such that
X occurs negatively (resp. positively) in Fi and pi = −; (γ) X occurs positively
(resp. negatively) in σY.F , for σ ∈ {µ, ν}, if Y ̸= X and X occurs positively
(resp. negatively) in F .

Definition 5 (µ-formula). A µ-formula F over a signature S is a pre-formula
containing no free fixed-point variable and such that for any sub-pre-formula of
F of the form σX.G, all occurrences of X in G are positive.

Definition 6. One-sided µLL formulas are those formulas defined over the sig-
nature CµLL1

together with a set of atomic formulas {a, a⊥ | a ∈ A} for a count-
able set A. Negation (_)⊥ is the involution on pre-formulas defined by:

(a⊥)⊥ = a; ⊥⊥ = 1; ⊤⊥ = 0; (FOG)⊥ = F⊥⊗G⊥; (F ⊕G)⊥ = F⊥NG⊥;
(?F )⊥ = !F⊥; X⊥ = X; (νX.F )⊥ = µX.F⊥.

Definition 7 (µ-Fischer-Ladner subformulas). Given a µ-signature C and
a µ-formula F , FL(F ) is the least set of formulas such that:

– F ∈ FL(F );
– c(F1, . . . , Fn) ∈ FL(F ) ⇒ F1, . . . , Fn ∈ FL(F ) for c ∈ C;
– σX.B ∈ FL(F ) ⇒ B[σX.B/X] ∈ FL(F ) for σ ∈ {µ, ν}.

Example 8. Let us consider F = νX.((aOa⊥)⊗ (!X⊗µY.X)). FL(F ) is the set
{F, (aOa⊥)⊗ (!F ⊗µY.F ), aOa⊥, a, a⊥, !F ⊗µY.F, !F, µY.F}.

Appendix B.1
provides more
details.

The finiteness of FL(F ) makes it an adequate notion of subformula:

Proposition 9. For any µ-signature S and µ-formula F , FL(F ) is finite.

See proof in
Doumane’s
PhD the-
sis [18].

2.2 µMALL∞, µLL∞, µLK∞ & µLJ∞ inference rules.

Now, we define the inference rules associated with the above µ-signatures.
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(a)
(Ax)

⊢ F, F⊥
⊢ Γ, F ⊢ F⊥,∆

(Cut)
⊢ Γ,∆

⊢ Γ,G, F,∆
(X)

⊢ Γ, F ,G,∆

⊢ F,G, Γ
(O)

⊢ FOG,Γ

⊢ F , Γ ⊢ G,∆
(⊗)

⊢ F ⊗G,Γ,∆

⊢ Γ
(⊥)

⊢ ⊥, Γ
(1)

⊢ 1

⊢ F , Γ ⊢ G,Γ
(N)

⊢ FNG,Γ

⊢ Ai, Γ
(⊕i)

⊢ A1 ⊕A2, Γ
(⊤)

⊢ ⊤, Γ (no rule for 0)

⊢ G[νX.G/X], Γ
(ν)

⊢ νX.G, Γ

⊢ F [µX.F/X], Γ
(µ)

⊢ µX.F, Γ

(b)
⊢ F , Γ

(?d)
⊢?F , Γ

⊢ F , ?Γ
(!p)

⊢!F , ?Γ

⊢ Γ
(?w)

⊢?F, Γ
⊢?F , ?F, Γ

(?c)
⊢?F , Γ

Fig. 2. (a) µMALL∞ Inferences; (b) µLL∞ Exponential Inferences

Definition 10 (Sequents and inferences). A sequent s = Γ ⊢ ∆ over a µ-
signature S is a pair of finite lists Γ,∆ of S-formulas: Γ is the antecedent and
∆ the succedent. An inference rule r, usually presented by a schema, is the

Appendix B.2
provides more
details.

data of a conclusion sequent, premise sequents, together with an ancestor
relation relating formulas of the conclusion with formulas of the premises. A
rule has a subset of distinguished principal formulas of the conclusion.

Convention 1 In the following, the ancestor relation will be depicted as colored
lines joining related formulas. The principal formulas of an inference are the
formulas which are explicitly spelled out in the conclusion sequent of an inference,
not described via a context meta-variable. A formula occurrence of an inference
is said to be active if it is principal or related to a principal formula by the
ancestor relation. We will freely use the derived rules obtained by pre- and
post-composition with the exchange rule, adapting the ancestry relation
accordingly. Finally, for one-sided sequent calculi with an involutive negation ·⊥,
we may write Γ ⊢ ∆ for sequents ⊢ Γ⊥, ∆ to clarify the computational behaviour
of our examples (keeping the rule names unchanged).

Definition 11 (µMALL∞, µLL∞, µLK∞, µLJ∞). µMALL∞ inferences are given
in Figure 2. Those for one-sided µLL∞ in Fig. 2(a) and 2(b). Those for µLK∞

in Fig. 3. Those for µLJ∞ by considering only inference from Fig. 3 where the
succedent of both premises and conclusion sequents are singletons.

Appendix B.3
provides more
details on
µLJ∞.

In the above sequent calculi, every inference but the cut satisfies the subfor-
mula property wrt. FL-subformulae. The 2-sided µLL∞ sequent calculus, over
CµLL2

, is defined as usual and not recalled here for space constraints.
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(Ax)
Γ, F ⊢ F,∆

Γ ⊢ F,∆ Γ ′, F ⊢ ∆′

(Cut)
Γ, Γ ′ ⊢ ∆,∆′

Γ ⊢ ∆
(Wl)

Γ, F ⊢ ∆

Γ ⊢ ∆
(Wr)

Γ ⊢ F ,∆

Γ,G, F, Γ ′ ⊢ ∆
(Xl)

Γ, F ,G, Γ ′ ⊢ ∆

Γ ⊢ ∆,G,F,∆′

(Xr)
Γ ⊢ ∆,F ,G,∆′

Γ, F , F ⊢ ∆
(Cl)

Γ, F ⊢ ∆

Γ ⊢ F , F,∆
(Cr)

Γ ⊢ F ,∆

Γ ⊢ F,∆ Γ ′, G ⊢ ∆′

(⇒l)
Γ, Γ ′, F ⇒ G ⊢ ∆,∆′

Γ, F ⊢ G,∆
(⇒r)

Γ ⊢ F ⇒ G,∆
(⊤r)

Γ ⊢ ⊤,∆
(Fl)

Γ,F ⊢ ∆

Γ,F ⊢ ∆ Γ,G ⊢ ∆
(∨l)

Γ, F ∨G ⊢ ∆

Γ ⊢ Fi,∆
(∨i

r)
Γ ⊢ F1 ∨ F2,∆

Γ,Ai ⊢ ∆
(∧i

l)
Γ,A1 ∧A2 ⊢ ∆

Γ ⊢ F ,∆ Γ ⊢ G,∆
(∧r)

Γ ⊢ F ∧G,∆
Γ, F [µX.F/X] ⊢ ∆

(µl)
Γ, µX.F ⊢ ∆

Γ ⊢ F [µX.F/X],∆
(µr)

Γ ⊢ µX.F,∆

Γ,G[νX.G/X] ⊢ ∆
(νl)

Γ, νX.G ⊢ ∆

Γ ⊢ G[νX.G/X],∆
(νr)

Γ ⊢ νX.G,∆

Fig. 3. µLK∞ Two-sided Inferences

2.3 Pre-proofs and validity conditions.

Definition 12 (Pre-proofs). The set PS,I of I-pre-proofs associated to
some of the above µ-signatures S and sets of inferences I is the set of finite or
infinite trees whose nodes are correctly labelled with inferences and sequents.

See details in
appendix B.4.

Pre-proofs are equipped with a metric structure as follows: we define a dis-
tance d : PS,I × PS,I → R as: d(π, π′) = 0 if π = π′ and d(π, π′) = 2−k where
k is the length of the shortest position where π and π′ differ otherwise.

Example 13. Consider µLJ formulas N = µX.⊤ ∨X and S = νX.N ∧X. They
represent nats and streams of nats. The µLJ∞ derivations of Figure 4 respectively
represent natural numbers, successor function, n :: n + 1 :: n + 2 :: . . . , the
double functions and the function that builds a stream enumerating the natural
numbers from its input: the cut-elimination process considered below will ensure
that cutting πk with πenum will infinitarily reduce to πk

from. Figure 5 shows other
examples of µLL∞ pre-proofs, discussed with the validity condition.

The back-edge arrow to a lower sequent is a fixed-point definition of the
proof object: the subproof rooted in the source is equal to the proof rooted in
the target. This fixed-point definition trivially has a unique solution.

In the following, we assume given a µ-signature S and a sequent calculus S for
this signature and we shall define the valid S-proofs as a subset of S-pre-proofs,
by introduction a thread-based validity condition .

More details
provided in
appendix B.4.

Definition 14 (Thread and validity). Given a pre-proof π and an infinite
branch β = (si)i∈ω in π, a thread for β is an infinite sequence θ of formula
occurrences such that ∀i ∈ ω, θi is a formula occurrence of si and θi and θi+1

are ancestor of each other. θ is said to support β.
A formula F is recurring in a thread θ of β if there are infinitely many i

such that θi is an occurrence of F .
A thread θ is valid if it contains infinitely often the principal formula (oc-

currence) of a ν or µ rule and if the set of recurring formulas of θ has a least
element (for the usual subformula ordering) which is (i) a ν formula when the
least element occurs in the succedents or (ii) a µ formula if it occurs in the an-
tecedents. A pre-proof is valid if all its infinite branches have a suffix supported
by a valid thread.
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π0 =

(⊤)
⊢ ⊤

(∨l)⊢ ⊤ ∨N
(µr)

⊢ N

πk+1 =

πk
(∨2

r )⊢ ⊤ ∨N
(µr)

⊢ N

πsucc =

(Ax)
N ⊢ N

(∨2
r )

N ⊢ ⊤ ∨N
(µr)

N ⊢ N

πn
from =

πn πn+1
from

(∧r)
N ∧ S

(νr)
⊢ S

πdouble = π0
(⊤l)⊤ ⊢ N

N ⊢ N
(∨2

r )
N ⊢ ⊤ ∨N

(µr)
N ⊢ N

(∨2
r )

N ⊢ ⊤ ∨N
(µr)

N ⊢ N
(∨l)⊤ ∨N ⊢ N

(µl)
N ⊢ N

πenum =

(Ax)
N ⊢ N

πsucc N ⊢ S
(Cut)

N ⊢ S
(∧r)

N ⊢ N ∧ S
(ν)

N ⊢ S
(⇒r)

⊢ N ⇒ S

Fig. 4. Examples of µLJ∞ pre-proofs.

Example 15 ((Non-)valid pre-proofs). Consider the pre-proof in Fig. 5(a), with
F = νX.((aOa⊥)⊗ (!X ⊗ µY.X)) and G = µY.F . The rightmost branch is
supported by the green thread for which the least recurring formula is F , a ν-
formula. All other branches are valid: this pre-proof is valid. Consider now the
same pre-proof but with F = νX.((aOa⊥)⊗(!X⊗G)) and G = µY.νX.((aOa⊥)⊗
(!X ⊗Y )). G is now a subformula of F and G, a µ-formula, and becomes the
least recurring formula of all threads along the right-most infinite branch. This
branch is invalid: the pre-proof is not a proof. Examples of µLL∞ invalid pre-
proofs are given in Fig. 1(a),5(b–c). In Fig. 4, πdouble has a left thread on N while
πn
from, πenum have right threads on S: they are valid.

2.4 Non-locative µMALL∞ cut-elimination theorem

The validity condition defines a subset of pre-proofs, ensuring good properties
for those non-wellfounded derivations that satisfy the validity condition. In this
paper, we will mainly be interested in cut-elimination theorem, which was proved
for µMALL∞ [4] and that we review in this subsection. In [4], a somehow stronger
result than cut-elimination is proved: infinitary strong normalization with re-
spect to the class of fair reduction sequences.

The only new result developed in this subsection is the lifting of the occurrence-
based cut-elimination result of [4] to our setting system, for which we first in-
troduce the multicut inference and review the main multicut-reduction steps for
µMALL∞ before defining fair reductions. The cut-elimination results of [4,20] do
not rewrite cuts, per se, but subtrees of cuts in the form of an abstraction called
multicut which is a variable arity inference defined as follows:See details in

appendix B.5.

Definition 16. The multicut inference is given by the data of (i) a conclu-
sion sequent s, (ii) a non-empty list of premises (s1, . . . , sn), n ≥ 1, (iii) an
ancestor relation ι which is an injective map from the conclusion formulas to
the premise formulas and relates identical formulas and additionally (iv) a cut-
connectedness relation |= which is a total, symmetric, binary relation among
the formula occurrences of the premises which are not ancestor of a conclusion

8



(Ax)

⊢ a, a⊥

(O)

⊢ aOa⊥

⊢ F
(!p)

⊢!F
⊢ F

(µ)
⊢ G

(⊗)
⊢!F ⊗G

(⊗)

⊢ (aOa⊥)⊗(!F ⊗G)
(ν)

⊢ F

...
⊢ ?F, ?F, ?F

(?c)
⊢ ?F, ?F

(?c)
⊢ ?F

⊢ ?F
(?w)

⊢ ?F, ?F
(?c)

⊢ ?F

(a) (b) (c)

Fig. 5. Examples of valid and invalid pre-proofs.

formula, which relates dual formulas2 and which satisfies a connectedness and
acyclicity condition (see [3,4]). The multicut inference has no principal formula.

We write this multicut rule as: s1 . . . sn
mcut(ι,⊥⊥)

s
.

In the following, we only consider µMALL∞ pre-proofs with specific multicuts:

Definition 17 (µMALL∞m ). µMALL∞m (pre)proofs are those (pre)proofs built from
µMALL∞ inferences and the multicut, such that (i) any branch contains at most
one multicut and (ii) any occurrence of a cut is above a multicut inference.

In the following, we shall always assume, even without mentioning it, that
we consider proofs in µMALL∞m (as well as µLL∞m , µLJ∞m , µLK∞

m ). We need the
following definition (from [4]), identifying the premises of an mcut which are
cut-connected to a given formula occurrence:

Definition 18 (Restriction of a mcut-context). Consider an occurrence of
a mcut

s1 . . . sn
mcut(ι,⊥⊥)

s
and assume si to be ⊢ F1, . . . , Fk. We define

CFj
, 1 ≤ j ≤ k, to be the least set of sequent occurrences contained in {s1, . . . , sn}

such that:
(i) If ∃k, l such that (k, l) |= (i, j), then sk ∈ CFj ;
(ii) for any k, k′ ̸= i, if sk ∈ CFj

and ∃l, l′ such that (k, l) |= (k′, l′), then sk′ ∈ CFj
.

We define C∅ = ∅ and CF,Γ = CF ∪ CΓ .

When relating µLL∞ and µMALL∞ mcut-sequences below, we shall consider
not only finite sequence nor ω-indexed sequences but also transfinite sequences.
Those are sequences of triples of a proof, a redex and the position of the redex
in the proof tree. A position p has a depth dpth(p) which is its length.

Definition 19 (mcut-reduction rules, transfinite sequences). µMALL∞

mcut-reduction sequences are directly adapted from [3,4]. Given an ordinal λ, a

See details in
appendix B.6.

transfinite reduction sequence of length λ, or λTRS, is a λ-indexed sequence
(πi, ri, pi)i∈λ such that πi −→pi

ri πi+1, for any i such that i + 1 ∈ λ, where the
reduction occurs at position pi reducing mcut-redex ri.

Definition 20 (Weak and strong convergence). A (transfinite) mcut re-
duction sequence (πi, ri, pi)i∈α is weakly converging if for any limit ordinal
β ∈ α, lim(πi)i∈β = πβ. (πi, ri, pi)i∈α is strongly converging if it is weakly
converging and moreover for any limit ordinal β ∈ α, lim(dpth(pi))i∈β = +∞.

See details in
appendix A.

2 When working with two-sided sequents, |= will relate identical formulas, one in a
succedent, the other in an antecedent.
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Remark 21. The cut-reduction rules preserve the property that every branch of
a proof has at most one multicut inference: µMALL∞m is closed by cut-reduction.

A µMALL∞m pre-proof π may contain multiple cut-redexes: π −→p1
r1 π1 and

π −→p2
r2 π2. As usual, a notion of residual associates to (r1, p1), a set of redexes

of π2, (r1, p1)/(r2, p2) which is generalized to reduction sequences: (r1, p1)/σ.

See details in
appendix B.8.

Definition 22 (Fair reduction sequences). A reduction sequence (πi, ri, pi)i∈ω

is fair if for all i ∈ ω and r, p such that πi −→p
r π′ there is some j ≥ i such that

πj does not contain a residual of (r, p) anymore.

Theorem 23. Every fair mcut-reduction sequence of µMALL∞ valid proofs of
⊢ Γ (strongly) converges to a cut-free valid proof of ⊢ Γ .

See proof in
appendix B.7.

2.5 Compressing transfinite µMALL∞ cut-reduction sequences

In the previous paragraph, we introduced not only ω-indexed sequences, but
transfinite µMALL∞ cut-reduction sequences as we shall need reduction beyond
ω when simulating µLL∞ cut-elimination in µMALL∞. We shall now prove that
a class of transfinite µMALL∞ mcut-reduction sequences can be compressed to
ωTRS. This result can be viewed as adapting to our setting the compression
lemma from infinitary rewriting [32], even though we require more on the struc-
ture of the compressed sequences as it will be useful to establish µLL∞ cut-
elimination.

See details
on infinitary
rewriting in
appendix A.

Definition 24 (Depth-increasing). A µMALL∞ cut reduction sequence σ =
(πi, ri, pi)i∈ω is depth-increasing if (dpth(pi))i∈ω is (weakly) increasing.

Definition 25 (Reordering). An mcut reduction sequence σ = (πi, ri, pi)i∈α

is a reordering of σ′ = (π′
i, r

′
i, p

′
i)i∈β if there is a bijection o between α and β

such that for any i ∈ α, (r′o(i), p
′
o(i)) = (ri, pi).

Proposition 26 (Compression lemma). Let σ = (πi, ri, pi)i∈α be a strongly
converging µMALL∞ transfinite cut-reduction sequence. There exists a µMALL∞

cut-reduction sequence Comp(σ) = (π′
i, r

′
i, p

′
i)i∈β which is a reordering of σ,

depth-increasing, strongly converging with the same limit as σ and such that
β = α if α is finite and β = ω otherwise.

See proof in
App B.9.

3 Cut-elimination theorem for µLL∞

The aim of this section is to prove the following theorem:

Theorem 27. For any valid µLL∞ proof π, fair µLL∞ mcut-sequences from π
converge to cut-free µLL∞ proofs.

The idea of the proof and outline of the present section are as follows:
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1. We shall first define the cut-reduction rules for µLL∞ by extending µMALL∞

multicut-reduction with rules for reducing exponential cuts.
2. We then encode exponentials with fixed-points and translate µLL∞ sequents

(resp. pre-proofs) into µMALL∞, preserving validity both ways.
3. We will then simulate µLL∞ reductions in µMALL∞: a single µLL∞ step may

require an infinite, or even transfinite, µMALL∞ mcut-reduction sequence.
4. Finally, we will study the simulation of fair µLL∞ cut-reduction sequences.

Even though the simulation of µLL∞ sequences builds transfinite sequences,
we shall see that one can associate a(n almost) fair µMALL∞ mcut-reduction
sequence to any fair µLL∞ mcut-reduction sequence, and conclude.
The next four subsections will closely follow the above pathway.

3.1 Cut-elimination rules for µLL∞

µLL∞ mcut-reduction is defined by extending µMALL∞ multicut-reduction with
the steps given in Figure 6. The reduction rules for the exponentials assume a

More de-
tails can
be found in
appendix C.1.condition on the premisses of the multi-cut rule: all the proofs (hereditarily) cut-

connected to some distinguished formula must have promotions as last inferences.

Definition 28 ((!p)-ready contexts). A subset of the subproofs of a multicut
is said to be (!p)-ready if all its elements are concluded with an (!p) rule. C! will
denote a (!p)-ready context and C!

Γ a context restriction which is (!p)-ready.

Remark 29. The condition for triggering the exponential key reductions (?w)/(!p)
and (?c)/(!p) as well as the (!p)-commutation rule is expressed in terms of (!p)-
readiness: for every ?-formula ?G in the context of a promotion which shall either
commute or cut-reduce with a ?-rule, we require that C?G is (!p)-ready.

3.2 Embedding µLL∞ in µMALL∞

To extend the cut-elimination result from µMALL∞ to µLL∞, we encode the
exponential connectives using fixed points as follows, following Baelde [2]:

Definition 30. ?•(F ) = µX.F ⊕ (⊥⊕ (XOX)); !•(F ) = νX.FN(1N(X ⊗X))

This straightforwardly induces an embedding of µLL∞ into µMALL∞:

Definition 31 (Embedding of µLL∞ sequents into µMALL∞).
(a)• = a if a is an atom (σX.F )• = σX.(F )• , σ ∈ {µ, ν}
(u)• = u if u ∈ {1,⊥,⊤, 0} (?F )• = ?•(F •)
(A ⋆ B)• = (A)• ⋆ (B)• if ⋆ ∈ {N,⊕,O,⊗} (!F )• = !•(F •)

Definition 32 (µMALL∞ derivability of the exponentials). µLL∞ expo-
nential rules can be encoded in µMALL∞ as shown in Figure 7. We denote the
derivable rules by ?d•, ?c•, ?w• and !p• respectively. (!p• uses a circular proof.)

Proposition 33 (Preservation of validity). π is a valid µLL∞ proof of ⊢ Γ
iff π• is a valid µMALL∞ proof of ⊢ Γ •.
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C
⊢ ∆,F

(?d)
⊢ ∆, ?F

mcut(ι,⊥⊥)
⊢ Σ, ?F

−→
r

C ⊢ ∆,F
mcut(ι′,⊥⊥)

⊢ Σ,F
(?d)

⊢ Σ, ?F

C
⊢ ∆, ?F, ?F

(?c)
⊢ ∆, ?F

mcut(ι,⊥⊥)
⊢ Σ, ?F

−→
r

C ⊢ ∆, ?F, ?F
mcut(ι′,⊥⊥)

⊢ Σ, ?F, ?F
(?c)

⊢ Σ, ?F

C
⊢ ∆

(?w)
⊢ ∆, ?F

mcut(ι,⊥⊥)
⊢ Σ, ?F

−→
r

C ⊢ ∆
mcut(ι′,⊥⊥)

⊢ Σ
(?w)

⊢ Σ, ?F

⊢ F, ?Γ
(!p)

⊢!F, ?Γ C!

mcut(ι,⊥⊥)
⊢!F, ?Σ

−→
r

⊢ F, ?Γ C!

mcut(ι′,⊥⊥)
⊢ F, ?Σ

(!p)
⊢!F, ?Σ

C
⊢ F, Γ

(?d)
⊢?F, Γ

⊢ F⊥, ?∆
(!p)

⊢!F⊥, ?∆
mcut(ι,⊥⊥)

⊢ Σ

−→
r

C ⊢ F, Γ ⊢ F⊥, ?∆
mcut(ι,⊥⊥′)

⊢ Σ

where ?F |= !F⊥ and |= ′ coincides with |= except for F |= ′ F⊥.

CΓ C!
?F

⊢?F, ?F, Γ
(?c)

⊢?F, Γ
mcut(ι,⊥⊥)

⊢ Γ ′, ?Σ

−→
r

CΓ C!
?F C!

?F ⊢?F, ?F, Γ
mcut(ι′,⊥⊥′)

⊢ Γ ′, ?Σ, ?Σ
(?c)

⋆

⊢ Γ ′, ?Σ
where C!

?F ̸= ∅, |= ′ corresponds to |= on CΓ and is a “duplication” of |= on C!
?F and

each copy of ?F is in |= ′-relation with the corresponding copy of !F⊥ in C!
?F .

CΓ C!
?F

⊢ Γ
(?w)

⊢?F, Γ
mcut(ι,⊥⊥)

⊢ Γ ′, ?Σ

−→
r

CΓ ⊢ Γ
mcut(ι′,⊥⊥′)

⊢ Γ ′
(?w)

⋆

⊢ Γ ′, ?Σ
where C!

?F ̸= ∅ and |= ′ corresponds to the restriction of |= on CΓ , Γ .

Fig. 6. µLL∞ mcut-reduction rules.

Proof (Proof sketch). We simply relate the infinite branches in both pre-proofs.
Assuming that π is valid, consider the special case of an infinite branch β of π•

that, when entering the encoding of a promotion, follows the left-most premise of
the (N) rule. To such an infinite branch it is easy to associate an infinite branch
b of π. b is valid and supported by a thread t with least formula νX.F . (νX.F )•

is the least recurring formula in the thread θ associated with t in β: β is valid.

The detailed
proof can be
found in Ap-
pendix C.2.

3.3 Simulation of µLL∞ cut-elimination steps

Now we have to show that µLL∞ cut-elimination steps can be simulated by the
previous encoding. E.g., the commutation rule for dereliction is simulated by a
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Dereliction : Contraction : Weakening :

⊢ F,∆
(⊕1)

⊢ F ⊕ (⊥⊕ (?•FO?•F )),∆
(µ)

⊢?•F,∆

⊢?•F, ?•F∆
(O)

⊢?•FO?•F,∆
(⊕2)

⊢ ⊥ ⊕ (?•FO?•F ),∆
(⊕2)

⊢ F ⊕ (⊥⊕ (?•FO?•F )),∆
(µ)

⊢?•F,∆

⊢ ∆
(⊥)

⊢ ⊥,∆
(⊕1)

⊢ ⊥ ⊕ (?•FO?•F ),∆
(⊕2)

⊢ F ⊕ (⊥⊕ (?•FO?•F )),∆
(µ)

⊢?•F,∆

Promotion :

⊢ F, ?•∆

(1)
⊢ 1

(?w•)⋆

⊢ 1, ?•∆

⊢!•F , ?•∆ ⊢!•F , ?•∆
(⊗)

⊢!•F⊗!•F, ?•∆, ?•∆
(?c•)⋆

⊢!•F⊗!•F, ?•∆
(ν) , (N) , (N)

⊢!•F, ?•∆

Fig. 7. µMALL∞ encoding of the exponential inferences.

(µ)/(Cut) commutation followed by a (⊕)/(Cut) commutation as follows:
⊢ F,G, Γ

(?d•)
⊢?•F,G, Γ ⊢ G⊥, ∆

(Cut)
⊢?•F, Γ,∆

−→2

⊢ F,G, Γ ⊢ G⊥, ∆
(Cut)

⊢ F, Γ,∆
(?d•)

⊢?•F, Γ,∆
The challenge is to show that the simulation of reductions also holds (i) for

the reductions involving (!p) as well as (ii) for reductions occurring above a
promotion rule (aka. in a box) since the encoding of [!p] uses an infinite, circular
derivation. In the promotion commutation case for instance, we have:

⊢ F, ?•G, ?•Γ
(!p•)

⊢!•F, ?•G, ?•Γ

⊢ G⊥, ?•∆
(!p•)

⊢!•G⊥, ?•∆
(Cut)

⊢!•F, ?•Γ, ?•∆
−→ω ⊢ F, ?•G, ?•Γ

⊢ G⊥, ?•∆
(!p•)

⊢!•G⊥, ?•∆
(Cut)

⊢ F, ?•Γ, ?•∆
(!p•)

⊢!•F, ?•Γ, ?•∆

Proposition 34. Each µLL∞ mcut-reduction r can be simulated in µMALL∞

by a (possibly infinite) sequence of mcut-reductions, denoted r•.

See proof in
App C.3.

Remark 35. Conversely, one can wonder whether a possible reduction in π• nec-
essarily comes from the simulation of a reduction step in π. It is almost the
case except when the reduction in π• comes from exponential cuts requiring
a (!p)-ready context (ie. (!p) commutation as well as (?w)/(!p) and (?c)/(!p)
key cases, see above): in those cases indeed, if the context is “partially ready”
– meaning that some, but not all, the required premises are promoted – a prefix
of the sequence simulating the reduction step can indeed be performed, before
being stuck. As consequence – and we shall exploit it in the next section when
proving µLL∞ cut-elimination – the simulation of a fair reduction sequence is
not necessarily fair, but only as long as the above cases are involved:

Proposition 36. There exists a fair reduction ρ from some µLL∞ (pre-)proof
π such that ρ• is an ω-indexed unfair µMALL∞ cut-reduction sequence

See proof in
App C.4.
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3.4 Proof of µLL∞ cut-elimination theorem

µLL∞ cut-elimination theorem follows from the following two lemmas:

Lemma 37. Let π be a µLL∞-proof of ⊢ Γ and σ = (πi, ri, pi)i∈ω a fair µLL∞

cut-reduction sequence from π. σ converges to a cut-free µLL∞-pre-proof of ⊢ Γ .
See proof in
App C.5.

Lemma 38. Let π be a µLL∞ pre-proof of ⊢ Γ and let us consider a cut-
reduction sequence σ = (πi, ri, pi)i∈ω in µLL∞ from π that converges to a cut-free
µLL∞ pre-proof π′. σ• is a strongly converging (possibly transfinite) sequence.

See proof in
App C.5.

Proof (Sketch for Thm. 27). Let π be a µLL∞-proof of ⊢ Γ and σ = (πi, ri, pi)i∈ω

be a fair µLL∞ mcut-reduction sequence from π. Consider the associated (trans-

See details in
App C.5.

finite) µMALL∞ mcut-reduction sequence σ• from π• obtained by simulation.
By Lemma 37, σ converges (strongly) to a cut-free µLL∞ pre-proof π′.

Let us prove that π′ is valid. By Lemma 38, σ• is a transfinite mcut-reduction
sequence from π• strongly converging to π′•. By Prop. 26, σ• can be compressed
into ρ = (π′

i, r
′
i, p

′
i)i∈ω an ω-indexed depth-increasing µMALL∞ mcut-reduction

sequence which converges to π′• and contains the same reductions as σ•. By
Proposition 36, ρ may not be fair: this prevents us from concluding directly
by Proposition 33 but we can still conclude. Let us consider ρf a fair reduction
sequence obtained from ρ by reducing those redexes which cause the lack of
fairness of ρ and let us consider the limit of ρf , πf . To any infinite branch β of
π′•, one can associate a branch βf of πf : it coincides with β except when the
next inference of βf is on a (!F )

• (in a sequent, say, ⊢ (!F )
•
, ?•∆• which is not

principal along β). In that case, we expand βf by following the unique premise
of the (ν) rule, the second premise of the first (N) rule and the first premise
of the second (N) rule, reaching ⊢ 1, ?•∆•, in which case we know that the 1
is not principal (and never will be) and we follow back β. βf has exactly the
same threads as β: finite threads may only be extended finitely on occurrences
of (!F )

•. Since ρf is fair, βf is valid and so is β.
We can then conclude that π′• is cut-free and valid and, using preservation

of validity (Proposition 33), that π′ is a valid cut-free µLL∞-proof. ⊓⊔

Infinitary cut-elimination for µLL∞ two-sided sequent calculus is an easy
corollary of Theorem 27. Indeed, fair cut-reduction sequences in two-sided µLL∞

are mapped to fair reduction sequences in one-sided µLL∞ from which follows:

Corollary 39. Fair 2-sided µLL∞ valid mcut-reduction sequences eliminate cuts.
See proof in
App C.5.

4 Cut-elimination theorem for µLK∞ and µLJ∞

Cut-elimination theorems for both µLK∞ and µLJ∞ can be established as corol-
laries of Theorem 27. For lack of space, we directly go to our results and postpone
to future work a detailed study of the generalizations to non-wellfounded sequent
calculi of the linear embeddings of LK and LJ into LL developed since Girard
seminal paper. We shall comment on those translations in the conclusion.
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4.1 µLK∞ cut-elimination: Skeletons and decorations

To any µLL∞ formulas and µLL∞ proofs, one can associate their skeletons, that is
corresponding µLK∞ formulas and proofs, after erasing of the linear information:

Definition 40 (Skeleton). Sk(A) is defined by induction on A ∈ µLL∞:
Sk(A⊗B) = Sk(A) ∧ Sk(B) Sk(AOB) = Sk(A) ∨ Sk(B) Sk(!A) = Sk(A)
Sk(ANB) = Sk(A) ∧ Sk(B) Sk(A⊕B) = Sk(A) ∨ Sk(B) Sk(?A) = Sk(A)

Sk(1) = Sk(⊤) = ⊤ Sk(⊥) = Sk(0) = F Sk(a) = a
Sk(A ⊸ B) = Sk(A) ⇒ Sk(B) Sk(σX.A) = σX.Sk(A) Sk(X) = X

with σ ∈ {µ, ν}.
Given a 2-sided µLL∞ pre-proof π of Γ ⊢ ∆ with last rule r and premises

(πi)1≤i≤n, Sk(π) is the µLK∞ pre-proof of Sk(Γ ) ⊢ Sk(∆) defined corecursively,
by case on r: (i) if r ∈ {(!p), (?d)}, Sk(π) = Sk(π1); (ii) otherwise, apply the
µLK∞ rule corresponding to r with premises (Sk(πi))1≤i≤n.

See details in
App D.1.

Proposition 41. Sk(·) transports valid µLL∞-proofs to valid µLK∞ proofs.

See proof in
App D.2.

µLK∞ cut-elimination follows from the existence of µLK∞ linear decorations.

Proposition 42. For any µLK∞ sequent s and any µLK∞ proof π of s, there
is a linear decoration of π, that is a µLL∞ proof πd such that Sk(πd) = π.

See details in
App D.3.

Definition 43 (µLK∞ cut-reduction). µLK∞ mcut-reduction relation is de-
fined as follows: −→µLK∞= {(Sk(π),Sk(π′)) | π −→mcut π

′ & π ̸= π′}.

Theorem 44. µLK∞ enjoys cut-elimination.
See proof in
App D.4.

4.2 µLJ∞ cut-elimination

The linear decoration for µLJ∞ is simply Girard’s call-by-value translation [21]
extended to fixed-points on formulas and proofs as follows:

[X]j = !X; [µX.F ]j = !µX.[F ]j ; [νX.F ]j = ! νX.[F ]j .

 π

Γ ⊢ F [σX.F/X]
(σr)

Γ ⊢ σX.F

j

=

[π]j

[Γ ]j ⊢ [F ]j [σX.[F ]j/X]
(σr)

[Γ ]j ⊢ σX.[F ]j
(!pr)

[Γ ]j ⊢ [σX.F ]j π

Γ, F [σX.F/X] ⊢ G
(σl)

Γ, σX.F ⊢ G

j

=

[π]j

[Γ ]j , [F ]j [σX.[F ]j/X],⊢ [G]j
(σl)

[Γ ]j , σX.[F ]j ⊢ [G]j
(!dl)

[Γ ]j , [σX.F ]j ⊢ [G]j

The translation is consistent with µLJ∞- and µLL∞-positivity conditions.

Definition 45 (µILL∞). µILL formulas are defined inductively as:
I, J ::= a | !X | I ⊸ J | INJ | I ⊕ J | ⊤ | 0 | µX.I | νX.I | ! I.

A µILL sequent is a sequent of µILL formulas with exactly one formula in the
succedent. A µILL∞ proof is a µLL∞ proof containing only µILL sequents.
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The translation preserves validity, following from [X]j = !X, by induction.

Lemma 46. The following hold:

– For any µLJ formulas A,B, σ ∈ {µ, ν}, [A[σX.B/X]]j = [A]j [σX.[B]j/X].
– For any µLJ formula A, [A]j is a µILL formula.
– If π is a µLJ∞ proof of Γ ⊢ F , then [π]j is a µILL∞ proof of [Γ ]j ⊢ [F ]j.

On µILL∞ proofs, the skeletons of the previous section can be reused: Sk(·)
transports valid µILL∞ proof to valid µLJ∞ proofs. Moreover µILL∞ proofs are
closed by µLL∞ cut-reductions from which we deduce, as for µLK∞, that:

Theorem 47. µLJ∞ enjoys cut-elimination.

5 Conclusion

In the present paper, we established several cut-elimination results for non-
wellfounded proof systems for logics with least and greatest fixed-points expand-
ing on previous works [4,20]: (i) for µMALL∞ with sequents as lists in contrast
sequents as sets of locative occurrences [4], (ii) for the 1-sided and 2-sided se-
quent calculi of µLL∞, (iii) for µLK∞ and (iv) for µLJ∞. We also established
additional results from a compression lemma for µMALL∞ strongly converging
cut-reduction sequences to linear embeddings of µLK∞ and µLJ∞ into µLL∞.

On the meaning and expressiveness of tree-exponential modalities. The proof of
our main result proceeds by encoding LL exponentials in µMALL∞ following an
encoding first considered by Baelde and Miller, and studying µLL∞ cut-reduction
sequences through their simulation in µMALL∞, which was first conjectured in
Doumane’s thesis [18]. We think that the present paper does not only demon-
strate the usefulness of the encoding but that it also suggests new questions.
Indeed, this encoding has interesting features:

– this “rigid” tree-like exponential does not exhibit the Seely isomorphism but,
even though those isomorphisms are common in axiomatizations of categor-
ical models of linear logic, it is not necessary to have them as isomorphisms

See discussion
& example in
appendix E.

to build a denotational model of linear logic (that is, which quotients proofs
up to cut-equivalence): the present work is actually an example of this fact.
(They are crucial, though, to encode the λ-calculus in linear logic, as addi-
tional equations are needed, which are realized by Seely isos.)

– These exponentials allow for a realization of a somehow non-uniform promo-
tion: indeed, while a proof of ⊢ !•F, ?•Γ has to provide a proof of ⊢ F, ?•Γ ,
the circular definition of the promotion is not the only possible definition:
one can consider as well promotions that would provide a distinct value each
time a box is opened (e.g. a proof of ⊢ !•µX.1 ⊕ X may provide distinct
integers depending on how structural rules managed the resource).

This tree-like exponential is being investigated with Ehrhard and Jafarrahmani.
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Benefiting from advances in infinitary rewriting. Our cut-elimination proof by
encoding µLL∞ into µMALL∞ relies on a simulation of reductions sequences
which makes use of transfinite reductions sequences and compression results.
Those techniques are inspired and adapted from the literature on infinitary
rewriting. We plan to make clearer the connection between non-wellfounded
proof theory and infinitary rewriting in the future, even though in the present
state it was not possible to readily apply results from infinitary rewriting such
as the compression lemma which we has to reprove in our setting [32]. Moreover,
we did not make use of coinductive formulations of infinitary rewriting [19]. That
is another direction for future work: currently, we do not know how to use those
formulations of infinitary rewriting because the sequences we consider by simu-
lation are not given as (strongly) converging sequences. We plan to reconsider
this and benefit from the coinductive approach to infinite reduction sequences.

On linear translations for fixed-point logics and non-wellfounded proofs. We ob-
tained a cut-elimination theorem for µLK∞ and µLJ∞ thanks to linear transla-
tions which deserve some comments. While the linear translation used for µLJ∞
is standard (it is a call-by-value translation dating back to Girard’s seminal
paper), the treatment of classical logic was more complex. Indeed, usual linear
translation for classical logic introduce, at places, cuts. Due to the sensitivity
of the straight-thread validity condition with respect to the presence of cuts
in cycles, we could not use those translations. However, we plan to investigate
whether a more standard translation can be used in the specific case of bouncing
validity [3].

A treatment of cut-elimination which is agnostic to validity conditions. Last but
not least, a major advantage of our approach is that µMALL∞ cut-elimination
proof and, to some extent, the validity conditions, are regarded as black boxes,
simplifying the presentation of the proof and making it reusable wrt. other va-
lidity condition or µMALL∞ proof techniques. The proof seems to be reusable
easily with bouncing validity for instance (even though setting up an adequate
definition of bouncing validity for µLL∞ is quite tricky). A fragment which
seems promising and that we wish to investigate in the near future, is µMELL∞

equipped with bouncing validity [3].
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A Appendix on infinitary rewriting

In the present section, we review some standard notions of infinitary rewriting
which shall be useful in the remainder of the paper and are standard from the
literature, see for instance TERESE book [32] for a general reference for infinitary
rewriting covering (more than) what we will need.

Definition 48 (Non-wellfounded terms). Given a signature Σ, that is a
set of pairs (f, a) of a function symbol f and an arity a ∈ ω, we write as usual
Term(Σ) for the set of finite terms over Σ. The set of non-wellfounded terms,
or infinite terms over Σ, written Term∞(Σ), is given as the set of Σ-labelled
infinite trees given by a set P of (finite) sequences of natural numbers, the posi-
tions of the tree, and a function ℓ : P 7→ Σ, the labelling function satisfying
the following conditions:

– P is prefix closed: if p · k ∈ P , then p ∈ P ;
– if p · k ∈ P and k′ ≤ k, then p · k′ ∈ P ;
– for any p ∈ P , if a is the arity of ℓ(p), then p ·k ∈ P if and only if 0 ≤ i < a.

If t ∈ Term∞(Σ), we denote by Pos(t) the set of positions of t and if p ∈ Pos(t),
the subterm of t at p, written t@p, is the subtree of t rooted in p.

Two positions p, p′ of a term are incomparable if none is a prefix of the
other. The length of a position is defined as usual

We define a distance between terms d : Term∞(Σ) × Term∞(Σ) → R as:
d(s, t) = 0 if s = t and d(s, t) = 2−k where k is the length of the shortest position
p ∈ Pos(s) ∩ Pos(t) where s and t differ otherwise.

Definition 49 (Infinitary rewriting rules, infinitary rewriting step). An
infinitary rewriting rule (∞RR) if a pair (t, s) with t ∈ Term(Σ) and s ∈
Term∞(Σ) such that t is not reduced to a variable and Var(s) ⊆ Var(t).

If r is an ∞RR, t, s ∈ Term∞(Σ) and p ∈ Pos(t), we call an infinitary
rewriting step (∞RS) from t to s along r at p, and write t −→p

r s, if r = (t′, s′)
and there exists a substitution σ : Var(t′) 7→ Term∞(Σ) such that t@p = σ(t′),
s@p = σ(s′).

If p is a position and R = t −→p
r s is an ∞RS, the depth of p (resp. R),

written dpth(p), is the length of p

Definition 50 (Transfinite reduction sequence). Given a signature Σ, a
set of infinitary rewriting rules R and an ordinal λ, a transfinite reduction
sequence of length λ, or λTRS, is a λ-indexed sequence (ti, ri, pi)i∈λ such that:

– ∀i ∈ λ, ti ∈ Term∞(Σ), ri ∈ R, pi ∈ Pos(ti);
– ti −→pi

ri ti+1, for any i such that i+ 1 ∈ λ.

Definition 51 (Weak and strong convergence). Let ρ = (ti, ri, pi)i∈α be a
αTRS. ρ is weakly converging if for every limit ordinal λ ≤ α, (d(ti, tλ))i∈λ

tends to 0. ρ is strongly converging if it is weakly converging and if for every
limit ordinal λ ≤ α, (dpth(pi))i∈λ tends to infinity.
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Example 52. Let us consider π =

...
(µ)

⊢ Γ, µX.X
(µ)

⊢ Γ, µX.X

...
(ν)

⊢ νX.X,∆
(ν)

⊢ νX.X,∆
(Cut)

⊢ Γ,∆

. With

the cut-reduction system to be considered in this paper, π −→ϵ
(princ,{µX.X,νX.X})

π, therefore there is a weakly converging reduction sequence from π but not
strongly converging reduction.

Remark 53. It is easy to see that in a strongly converging reduction sequence,
there can only be finitely many reduction steps occurring at each depth; therefore
every strongly converging reduction sequence is indexed by a countable ordinal.

We end this section with a property that will be essential in our construction,
the compression property:

Definition 54 (Compression property). A infinitary term rewriting system
is said to have the compression property (or is said to be CP) when for
every transfinite strongly converging reduction sequence from s converging to t,
there is a strongly converging reduction sequence indexed by ω or a finite ordinal
from s converging to t.

Proposition 55 (Compression Lemma [32]). Every left-linear infinitary
term rewriting system is CP.
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B Appendix on the non-wellfounded proof systems:
µMALL∞, µLL∞, µLK∞, µLJ∞.

B.1 µ-Formulas and subformulas (details on Section 2.1)

One can represent the Fischer-Ladner closure as a graph, following Example 8.

F (aOa⊥)⊗ (!F ⊗µY.F )
!F ⊗µY.F

!F

µY.F

aOa⊥
a

a⊥

B.2 Inference rules

Definition 56 (S-sequents and inferences). A sequent s = Γ ⊢ ∆ over a
µ-signature S is a pair of finite lists Γ,∆ of S-formulas. (As usual, Γ is called
the antecedent and ∆ the succedent.)

An inference rule r = (s, (s1, . . . , sn),Princ, α, l) is the data of

– a conclusion S-sequent s, also noted Conc(r);
– a tuple of premise S-sequents s1, . . . , sn, also noted Prem(r);
– together with an ancestor relation α ⊆ [1,Card(s)] × {(i, j), 1 ≤ i ≤ n, 1 ≤

j ≤ Card(si)};
– a subset Princ ⊆ {1, . . . ,Card(s)} of cardinality at most 2, identifying the

so-called principal formulas of the (conclusion of the) inference, also noted
Princ(r);

– and a label l, the rule name, also noted RName(r).

We set a number of conventions that will facilitate the description and ma-
nipulation of sequent derivations.

Convention 2 In the following, inference rules will be described, as is usual, as
inference schema thanks to both formula meta-variables (ranging over F,G, . . . )
and context meta-variables (ranging over Γ,∆, . . . ) while the ancestor relation
will be depicted as colored lines joining related formulas. When identical context
meta-variables are related, we mean that the part of the ancestor relation such
described relates the ith formula of the bottom context with the ith formula of
the topmost context: that will allow us to avoid the very explicit description of
inference rules given above, while allowing to reconstruct it at will.

Convention 3 In the sequent calculi defined in the following, we follow the
usual convention that the principal formulas of an inference are all those formu-
las which are explicitly spelled out in the conclusion sequent and not described
via a context meta-variable.

A formula occurrence of an inference is said to be active if it is principal or
if its a related to a principal formula of the inference by the ancestor relation.
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Convention 4 In general, all the considered sequent calculi will have the ex-
change rule and we shall make the assumption that the set of inference rules
to be closed by pre-composition and post-composition of the exchange rule. By
that, we mean that we will freely use the derived rules which are obtained by
adding any number of exchange rule above and below each inference, adapting
the ancestry relation of course.

Convention 5 When considering a proof system with one-sided sequents and an
involutive negation ·⊥, we shall sometimes write Γ ⊢ ∆ for sequents ⊢ Γ⊥, ∆ in
order to make the computational behaviour of our examples clearer. The labelling
of our inferences will be unchanged (note that the index associated to formulas
in a sequent remain unchanged by this operation).

B.3 µLJ∞ sequent calculus

We provide details on Definition 11:

Definition 57 (µLJ∞ inferences). The inference rules of µLJ∞ sequent cal-
culus, defined with respect to the µ-signature CµLJ, is given in Figure 8.

(Ax)
Γ, F ⊢ F

Γ ⊢ F ∆,F ⊢ H
(Cut)

Γ,∆ ⊢ H

Γ,G, F,∆ ⊢ H
(Xl)

Γ, F ,G,∆ ⊢ H

Γ,F , F ⊢ H
(Cl)

Γ, F ⊢ H

Γ ⊢ H
(Wl)

Γ, F ⊢ H

Γ,F ⊢ H Γ,G ⊢ H
(∨l)

Γ, F ∨G ⊢ H

Γ ⊢ Fi
(∨i

r)
Γ ⊢ F1 ∨ F2

Γ, Fi ⊢ H
(∧i

l)
Γ, F1 ∧ F2 ⊢ H

Γ ⊢ F Γ ⊢ G
(∧r)

Γ ⊢ F ∧G

(⊤r)
Γ ⊢ ⊤

(Fl)
Γ,F ⊢ H

Γ ⊢ F ∆,G ⊢ H
(⇒l)

Γ,∆, F ⇒ G ⊢ H

Γ,F ⊢ G
(⇒r)

Γ ⊢ F ⇒ G

Γ,F [µX.F/X] ⊢ H
(µl)

Γ, µX.F ⊢ H

Γ ⊢ F [µX.F/X]
(µr)

Γ ⊢ µX.F

Γ,G[νX.G/X] ⊢ H
(νl)

Γ, νX.G ⊢ H

Γ ⊢ G[νX.G/X]
(νr)

Γ ⊢ νX.G

Fig. 8. µLJ∞ Inferences

B.4 Pre-proofs and validity (Appendix for Section 2.3 )

We provide some details on Definition 12:

Definition 58 (Pre-proofs). Given one of the above considered µ-signatures
and sets of inferences, the corresponding set of pre-proofs is the set of finite
and infinite trees whose nodes are labelled with inference rules and which are
locally correct in the following sense: for every node n of a pre-proof, the arity
n coincides with the number of premises of the corresponding inference and the
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ith premise of n matches the conclusion sequent of the root of the ith subtree of
n. Such a tree is called a pre-proof of sequent s if s is the conclusion sequent of
the root of the pre-proof.

We provide more details here about the precise treatment of infinite branches
and threads given in Section 2.3.

Definition 59 (Infinite branch). Given a pre-proof π, the set of infinite
branches of π, ∞Br(π) is defined as ∞Br(π) = {(ai)i∈ω/π =

π1 . . . πk

r
& 1 ≤

a0 ≤ k & (ai+1)i∈ω ∈ ∞Br(πa0)}.
It is useful to consider also enriched branches: ∞EBr(π) = {(ai, ri)i∈ω/π =

π1 . . . πk

r
& 1 ≤ a0 ≤ k & (ai+1, ri+1)i∈ω ∈ ∞EBr(πa0

)}.

Enriched branches are convenient to define threads:

Definition 60 (Thread). Let π be a pre-proof and β = (ai, ri)i∈ω ∈ ∞EBr(π).
We define

∞Th(β) = {(ti)i∈ω/r0 = (s, (s1, . . . , sk), p, α, l), 1 ≤ t0 ≤ Card(s)
& α(t0, (a0, t1)) & (ti+1)i∈ω ∈ ∞Th((ai+1)i∈ω)}.

It is useful to consider also enriched threads:
∞ETh((ai, ri)i∈ω) = {(ai, ri, ti)i∈ω/r0 = (s, (s1, . . . , sk), p, α, l), 1 ≤ t0 ≤ Card(s)
& α(t0, (a0, t1)) & (ai+1, ri+1, ti+1)i∈ω ∈ ∞ETh((ai+1, ri+1)i∈ω)}.

Definition 61 (Recurring formula). A formula F is recurring in an enriched
thread (ai, ri, ti)i∈ω if {i ∈ ω/Conc(ri)(ti) = F} is infinite.

Definition 62 (Valid thread). A thread τ = (ai, ri, ti)i∈ω ∈ ∞ETh(β) is said
to be a valid thread for β if for any i ∈ N, there exists j ≥ i such that tj is
principal in rj (and rj is not an exchange rule) and the set of recurring formulas
of τ has a least elements for the subformula ordering which is ν when it occurs
in the succedents of sequents or a µ if it occurs in the antecedent of sequents.

Definition 63 (Valid pre-proof). A pre-proof is valid if all its infinite branches
have suffixes which are supported by valid threads.

B.5 Details on the multicut rule (Definition 16)

Definition 64 (Multicut inference rule (Expanded definition)). The
multicut inference is given by the data of

– a conclusion sequent s;
– non-empty tuple (s1, . . . , sn) of premises, n ≥ 1;
– an ancestor relation ι which is an injective map from the conclusion formu-

las to the premise formulas, that is from C = [1,Card(s)] to Pr = {(j, k), 1 ≤
j ≤ n, 1 ≤ k ≤ Card(sj)}, that is, for any 1 ≤ i ≤ Card(s) there exists a
unique (j, k) ∈ Pr such that ι(i, (j, k)) and a given pair (j, k) is in relation
with at most one conclusion formula.
Moreover, if ι(i, (j, k)), then s(i) = sj(k): the ancestor relation relates iden-
tical formulas.
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– the rule has no principal formula (as the cut rule);
– the rule name is mcut(ι,⊥⊥), where |= is a symmetric binary relation over

Pr \ ι(C) defined as follows:
• |= is total: for any t ∈ Pr \ ι(C), there exists some t′ ∈ Pr \ ι(C) such

that t |= t′;
• (i, j) |= (k, l) =⇒ si(j) = (sk(l))

⊥ (the multicut relation relates dual
formulas);

• ∀1 ≤ i, k ≤ n, if (i, j) |= (k, l) and (i, j′) |= (k, l′), then j = j′, l = l′ (two
sequents are related in at most one way by the multicut relation.)

• if n1, . . . , nk ∈ Pr \ ι(C), ni |= ni+1 and nk = n1 then there is 1 ≤ i, j ≤ k
such that ni = nj+1 and nj = ni+1 (the only cycles come from the
symmetry of the relation);

• for any 1 ≤ i, j ≤ n, there exists k, l and n1, . . . , np ∈ Pr \ ι(C) such that
n1 = (i, k), np = (j, l) and nq |= nq+1 for 1 ≤ q < p (the relation induce
a connected relation over premise sequents).

We write this multicut rule as:
s1 . . . sn

mcut(ι,⊥⊥)
s

B.6 µMALL∞ cut-reductions and cut-elimination

µMALL∞ cut-reduction rules

Definition 65. External reductions are defined in fig. 9.

Definition 66. Internal reductions are the principal reductions given in ??
together with the following two reductions:

– the merge (mcut)/(Cut) reduction

C
⊢ ∆,F ⊢ Γ, F⊥

(Cut)
⊢ ∆,Γ

mcut(ι,⊥⊥)
⊢ Σ

−→
r

C ⊢ ∆,F ⊢ Γ, F⊥
mcut(ι,⊥⊥′)

⊢ Σ

where |= ′ extends |= with F |= ′ F⊥ and r = (merge, {F, F⊥}).
– the axiom reduction (mcut)/(Ax) defined as follows, with F, F ′ and F ′′ be-

ing three occurrences of the same formula, that we distinguish with primes
instead of explicitly describing their positions in sequents.

C
(Ax)

⊢ F, F ′⊥ ⊢ F ′′, Γ
mcut(ι,⊥⊥)

⊢ Σ

−→
r

C ⊢ F ′′, Γ
mcut(ι′,⊥⊥′)

⊢ Σ

where r = (CutAx, {F, F ′⊥}), F ′⊥ |= F ′′ and ι′, |= ′ are defined as follows:
• for all G ∈ Σ, if ι(G) = F then ι′(G) = F ′′, otherwise ι′(G) = ι(G);
• |= ′ = |= ∪ {{F ′′, G}|{F,G} ∈ |= }.
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C
⊢ ∆,F ⊢ Γ,G

(⊗)
⊢ ∆,Γ, F ⊗G

mcut(ι,⊥⊥)
⊢ Σ∆, ΣΓ , F ⊗G

−→
r

C∆ ⊢ ∆,F
mcut(ι′,⊥⊥)

⊢ Σ∆, F

CΓ ⊢ Γ,G
mcut(ι′′,⊥⊥)

⊢ ΣΓ , G
(⊗)

⊢ Σ∆, ΣΓ , F ⊗G

C
⊢ ∆,F,G

(O)
⊢ ∆,FOG

mcut(ι,⊥⊥)
⊢ Σ,FOG

−→
r

C ⊢ ∆,F,G
mcut(ι′,⊥⊥)

⊢ Σ,F,G
(O)

⊢ Σ,FOG

C
⊢ ∆,F ⊢ ∆,G

(N)
⊢ ∆,FNG

mcut(ι,⊥⊥)
⊢ Σ,FNG

−→
r

C ⊢ ∆,F
mcut(ι′,⊥⊥)

⊢ Σ,F

C ⊢ ∆,G
mcut(ι′,⊥⊥)

⊢ Σ,G
(N)

⊢ Σ,FNG

C
⊢ ∆,Fi

(⊕i)
⊢ ∆,F1 ⊕ F2

mcut(ι,⊥⊥)
⊢ Σ,F1 ⊕ F2

−→
r

C ⊢ ∆,Fi
mcut(ι′,⊥⊥)

⊢ Σ,Fi
(⊕i)

⊢ Σ,F1 ⊕ F2

C
⊢ ∆,F [σX.F/X]

(σ)
⊢ ∆,σX.F

mcut(ι,⊥⊥)
⊢ Σ, σX.F

−→
r

C ⊢ ∆,F [σX.F/X]
mcut(ι′,⊥⊥)

⊢ Σ,F [σX.F/X]
(σ)

⊢ Σ, σX.F

C
(⊤)

⊢ ∆,⊤
mcut(ι,⊥⊥)

⊢ Σ,⊤
−→
r

(⊤)
⊢ Σ,⊤

C
⊢ ∆

(⊥)
⊢ ∆,⊥

mcut(ι,⊥⊥)
⊢ Σ,⊥

−→
r

C ⊢ ∆
mcut(ι′,⊥⊥)

⊢ Σ
(⊥)

⊢ Σ,⊥

(1)
⊢ 1

mcut(ι,⊥⊥)
⊢ 1

−→
r

(1)
⊢ 1

In all the above rules, one requires that ι′ and ι′′ are the ancestry relation induced
by ι after the possible modification of the premises when taking restrictions of the
premises as in the⊗ commutation and relate the subformulas of the commuted formula
occurrence that are not in the premise and conclusion of the multicut.

Fig. 9. External reduction rules, where r = (ext, F ) and F is the principal occurrence.
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C
⊢ ∆,F ⊢ Γ,G

(⊗)
⊢ ∆,Γ, F ⊗G

⊢ Θ,F⊥, G⊥

(O)

⊢ Θ,F⊥OG⊥

mcut(ι,⊥⊥)
⊢ Σ

−→
r

C ⊢ ∆,F ⊢ Γ,G ⊢ Θ,F⊥, G⊥

mcut(ι,⊥⊥′)
⊢ Σ

where F ⊗G |= F⊥OG⊥ and |= ′ coincides with |= except for F |= ′ F⊥ and G |= ′ G⊥

C
⊢ ∆,F1 ⊢ ∆,F2

(N)
⊢ ∆,F1NF2

⊢ Γ, F⊥
i

(⊕i)

⊢ Γ, F⊥
1 ⊕ F⊥

2
mcut(ι,⊥⊥)

⊢ Σ

−→
r

C ⊢ ∆,Fi ⊢ Γ, F⊥
i

mcut(ι,⊥⊥′)
⊢ Σ

If {F1NF2, F
⊥
1 ⊕ F⊥

2 } ∈ |= , where: |= ′ ≜ |= ∪ {{Fi, F
⊥
i }}.

C
⊢ ∆,F [µX.F/X]

(µ)
⊢ ∆,µX.F

⊢ Γ, F⊥[νX.F⊥/X]
(ν)

⊢ Γ, νX.F⊥

mcut(ι,⊥⊥)
⊢ Σ

−→
r

C ⊢ ∆,F [µX.F/X] ⊢ Γ, F⊥[νX.F⊥/X]
mcut(ι,⊥⊥′)

⊢ Σ

where µX.F |= νX.F⊥ and |= ′ coincides with |= except for F [µX.F/X] |= ′ F⊥[νX.F⊥/X]

C
⊢ Γ

(⊥)
⊢ Γ,⊥

(1)
⊢ 1

mcut(ι,⊥⊥)
Σ

−→
r

C ⊢ Γ
mcut(ι,⊥⊥)

Σ
where ⊥ |= 1

Fig. 10. Principal reductions, where r = (princ, {F, F⊥}) with {F, F⊥} the principal
occurrences that have been reduced for the µMALL rules.
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B.7 Adapting Baelde et al. µMALL∞ cut-elimination proof to
sequents as lists (Proof of Theorem 23).

We here sketch how to transfer the cut-elimination result for µMALL∞ formu-
lated as in Baelde et al [4,3] where sequents are sets of occurrences (ie of pairs of
a formula and of an address) and the system of the present paper where sequents
are ordered lists of formulas, with the exchange rule.

Let us refer to proofs with sequents as sets of occurrences as µMALL∞o , proofs
with sequents as ordered lists as µMALL∞l for clarity.

– It is straightforward to lift the µMALL∞l proof system considered in the
present paper to a proof system in which sequents are ordered lists of
occurrences (following the methodology described in [4] that we do not
recall here.) Call this system µMALL∞ol .

– One can define two forgetful maps:

• (·)occ : µMALL∞ol −→ µMALL∞l
• (·)list : µMALL∞ol −→ µMALL∞o

that respectively erase the addresses or the ordering of the formulas (together
with the exchange rules, accordingly).

– Both of those maps are validity preserving and are onto.
– It is straightforward that:

If π, π′ ∈ µMALL∞ol such that π −→µMALL∞
ol

cut π′, then (π)occ −→µMALL∞
ol

cut (π′)
occ

and if π, π′ ∈ µMALL∞ol such that π −→µMALL∞
l

cut π′, then either (π)list = (π′)list

or (π)list −→µMALL∞
o

cut (π′)list. (Indeed, in the case of an exchange commutation
for instance, the two proofs are translated to the same proof.)

– It is straightforward as well that there exists no infinite cut-reduction se-
quence made of only exchange commutations.

– Now, consider some proof π in µMALL∞l and consider an antecedent of π by
(·)occ and consider a fair cut-reduction sequence σ from π. Clearly, σ can be
lifted to a sequence σo in µMALL∞ol , preserving fairness as reduction steps
exactly match.

– Finally, (σo)
list is a fair reduction sequence in µMALL∞o , which is therefore

productive and has a valid cut-free proof as a limit, from which we conclude
that σo and finally σ has a cut-free and valid limit.

B.8 Residuals

Definition 67 (Residual). Let π be a µMALL pre-proof such that π −→p1
r1 π1

and π −→p2
r2 π2. We define the notion of residual of (r1, p1) after (r2, p2), written

(r1, p1)/(r2, p2) as follows:

– if p1, p2 are incomparable, then (r1, p1)/(r2, p2) = {(r1, p1)}
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– if p1 = p2 = p then (r1, p1)/(r2, p2) =

∅ if r1 and r2 are the same reduction step
∅ if r1 and r2 are both (Cut)/(Ax) key cases involving two distinct axioms which are cut-connected
{(r1, p1)} if r2 is a principal reduction
{(r1, p1 · 1), (r1, p1 · 2)} if r2 is a (N) commutation
{(r1, p1 · 0)} if r2 is a (⊕), (O) or (σ) commutation
{(r1, p1 · 1)} if r2 = (ext, (⊗)) and r1 is cut-connected to the ⊗ left context
{(r1, p1 · 2)} if r2 = (ext, (⊗)) and r1 is cut-connected to the ⊗ right context

B.9 Details on the compression of µMALL∞ cut-reduction sequence:
Proof of Proposition 26

The following lemma is a trivial observation:

Lemma 68 (Cut-reductions at incomparable positions commute). Let
π a µMALL∞ pre-proof such that π −→p1

r1 π1, π −→p2
r2 π2 with p1, p2 incompara-

ble. Then there exists π3 such that π1 −→p2
r2 π3 and π2 −→p1

r1 π3.

Lemma 69. Let σ = (πi, ri, pi)i∈ω+1 be a strongly converging µMALL∞ cut-
reduction sequence, with πω −→pω

rω πω+1. There exists a strongly converging
µMALL∞ cut-reduction sequence Comp(σ) = (π′

i, r
′
i, p

′
i)i∈ω which converges to

πω+1. More precisely, there exists some j such that

– for any i < j, (π′
i, r

′
i, p

′
i) = (πi, ri, pi)

– r′j = rω, p′j = pω
– and r′i+1 = ri, p′i+1 = pi for any i ≥ j and
– Comp(σ) strongly converges to πω+1

Proof. The lemma is a direct consequence of Lemma 68 since, by strong conver-
gence, there exists some j such that for any i ≥ j, pi is longer than pω, therefore
the reduction rω occurring at pω in πω can already be performed in πj since the
root of the subproof at pω will never be modified in (πi, ri, pi)j≤i∈ω, therefore
there must be a multicut at pω in πi for every j ≤ i ∈ ω and since this is there
is at most one multicut per branch, all pi for j ≤ i ∈ ω are incomparable with
pω.

We can now prove that µMALL∞ cut-reduction is CP:

Proposition 70 (Compression lemma). Let σ = (πi, ri, pi)i∈α be a strongly
converging µMALL∞ transfinite cut-reduction sequence. There exists a µMALL∞

cut-reduction sequence Comp(σ) = (π′
i, r

′
i, p

′
i)i∈β which is a reordering of σ,

depth-increasing, strongly converging with the same limit as σ and such that
if α is finite, then β = α and β = ω otherwise.

Proof. By transfinite induction on the length of the reduction σ that we want
to compress and make depth-increasing.
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– If α is a successor ordinal α = λ+1, the property follows directly from Lemma 68:
applying induction hypothesis to the prefix of length λ results in a reduc-
tion σ′ = (π′

i, r
′
i, p

′
i)i∈β′ which is depth-increasing and such that every redex

fired in the prefix of σ of length λ is still present. In particular, σ′ strongly
converges to πα.
σ′ being depth-increasing, there exists some j such that for any i < j, dpth(p′i) ≤
dpth(pα) and for any j ≤ i ∈ β′, dpth(p′i) > dpth(pα), therefore the reduction
rα occurring at pα in πα can already be performed in π′

j since the root of
the subproof at pα will never be modified in (π′

i, r
′
i, p

′
i)j≤i∈β′ , therefore there

must be a multicut at pα in π′
i for every j ≤ i ∈ β′. Since there is at most

one multicut per branch, all p′i for j ≤ i ∈ β′ are incomparable with pα. In
particular, π′

j −→rα
pα

π′′
j and for any j ≤ i ∈ β′ π′′

i −→r′i
p′
i
π′′
i+1 by using the

commutation property.
In particular σ′′ = (π′′

i , r
′′
i , p

′′
i )j≤i∈β′ strongly converges to πα+1. Consider-

ing the reduction sequence (π′
i, r

′
i, p

′
i)i<j · (π′

j , pα, rα) · σ′′ one get a depth-
increasing reduction sequence indexed by β = 1 + β′ (due to the additional
reduction step (π′

j , pα, rα) inserted in the reduction sequence) with is such
that every redex of σ is still present. Finally, notice that α was a finite ordi-
nal, β = 1 + β′ = 1 + λ = λ+ 1 = α as expected and if α is infinite, β′ = ω
and β = 1 + ω = ω.

– If α is a limit ordinal.
Let us first observe the following fact: if d is the minimal depth of a reduction
step in σ, by strong convergence, there is a finite number nd of reduction
steps of σ at depth d and there is an ordinal α′ < α such that for any
α′ ∈ i ∈ α, dpth(pi) > d. By applying the transfinite induction hypothesis to
σα′ = (πj , rj , pj)j∈α′ , one gets a depth-increasing reduction sequence σ′

β′ =
(π′

i, r
′
i, p

′
i)i∈β′ with the same limit and containing the same reduction steps

as σα′ and which is indexed by min(α′, ω). In particular, σ′
β′ = σ′

d ·σ′′
d with all

reduction steps in σ′
d being at depth d and all reduction steps in σ′′

d being at
depth at least d+ 1. Therefore σ′′

d · (πi, ri, pi)α′∈i∈α is a strongly converging
sequence of length at most α and having all its reduction steps at depth at
least d+ 1. Then one builds by induction on i ∈ ω, (ki, σi, σ

′
i)i∈ω such that:

1. for any i ∈ ω, σi = (πi
j , r

i
j , p

i
j)j∈αi with αi ≤ α and for any j ∈ αi,

dpth(pij) ≥ i;
2. for any i ∈ ω, ki ≤ ki+1, σ′

i = (π′
j , r

′
j , p

′
j)ki≤j<ki+1 and if ki ≤ j < ki+1,

dpth(p′j) = i;
3. for any i ∈ ω, (π′

j , r
′
j , p

′
j)j<ki

· σi is a strongly converging µMALL∞ cut
reduction sequence that contains the same reduction steps as σ up to
reordering.

Initialization. We set σ0 = σ and k0 = 0. By the above observation with
d = 0, we get an α′

0 ≤ α we build σ′
0, we set k1 = k0 + n0 and set

σ1 = σ′′
0 · (π0

j , r
0
j , p

0
j )α′

0∈j∈α. Conditions 1–3 are satisfied for i = 0.
Heredity. Assuming (ki)i≤l, (σi)i≤l, (σ

′
i)i<l are built, satisfying the condi-

tions, one proceeds as above taking σl for σ and l + 1 for d and setting
kl+1 = kl + nl and σ′

l being provided as before and σl+1 as the concate-
nation of σ′′

l and (πl
j , r

l
j , p

l
j)α′

l∈i∈αl
, satisfying the required conditions.
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Finally, we set σ′ = (π′
j , r

′
j , p

′
j)j∈ω which is trivially depth increasing, strongly

converging, and which is a reordering of the reduction steps of σ: any reduction
step of σ′ comes from a reduction in σ and for any reduction step (ri, pi) in σ,
it occurs by construction in σ′

dpth(pi)
and therefore in σ′.
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C Appendix on Section 3

C.1 Details on µLL∞ cut-reduction rules

We detail the rules of µLL∞ cut elimination.

Definition 71. Cut commutations or External reductions are defined in
fig. 11.

Definition 72. Key cut-reductions, or internal reductions, are the prin-
cipal reductions given in fig. 12 together with the following two reductions:

– the merge (mcut)/(Cut) reduction

C
⊢ ∆,F ⊢ Γ, F⊥

(Cut)
⊢ ∆,Γ

mcut(ι,⊥⊥)
⊢ Σ

−→
r

C ⊢ ∆,F ⊢ Γ, F⊥
mcut(ι,⊥⊥′)

⊢ Σ

where |= ′ extends |= with F |= ′ F⊥ and r = (merge, {F, F⊥}).
– the axiom reduction (mcut)/(Ax) defined as follows, with F, F ′ and F ′′ be-

ing three occurrences of the same formula, that we distinguish with primes
instead of explicitly describing their positions in sequents.

C
(Ax)

⊢ F, F ′⊥ ⊢ F ′′, Γ
mcut(ι,⊥⊥)

⊢ Σ

−→
r

C ⊢ F ′′, Γ
mcut(ι′,⊥⊥′)

⊢ Σ

where r = (CutAx, {F, F ′⊥}), F ′⊥ |= F ′′ and ι′, |= ′ are defined as follows:
• for all G ∈ Σ, if ι(G) = F then ι′(G) = F ′′, otherwise ι′(G) = ι(G);
• |= ′ = |= ∪ {{F ′′, G}|{F,G} ∈ |= }.

C.2 Proof of Proposition 33

Proposition 73 (Preservation of validity). π is a valid µLL∞ proof of ⊢ Γ
iff π• is a valid µMALL∞ proof of ⊢ Γ •.

Proof. It is simply a matter of relating the infinite branches in both pre-proofs:
Since every infinite branch in π gives rise to at least an infinite branch of π•,
validity of π• entails that of π. Conversely, let us prove that all infinite branches
of π• are valid. Let us consider three types of infinite branches:

– Let us consider an infinite branch β of π• such that a suffix of β loops around
the backedges of the encoding of some promotion introducing !F in π. In that
case β is valid as it is inhabited by a thread having as least recurring formula
(!F )• (indeed, in such a case, the only recurring formulas of the thread are
(!F )•, F •N(1N((!F )•⊗ (!F )•), 1N((!F )•⊗ (!F )• and (!F )•⊗ (!F )•)

33



C
⊢ ∆,F

(?d)
⊢ ∆, ?F

mcut(ι,⊥⊥)
⊢ Σ, ?F

−→
r

C ⊢ ∆,F
mcut(ι′,⊥⊥)

⊢ Σ,F
(?d)

⊢ Σ, ?F

C
⊢ ∆, ?F, ?F

(?c)
⊢ ∆, ?F

mcut(ι,⊥⊥)
⊢ Σ, ?F

−→
r

C ⊢ ∆, ?F, ?F
mcut(ι′,⊥⊥)

⊢ Σ, ?F, ?F
(?c)

⊢ Σ, ?F

C
⊢ ∆

(?w)
⊢ ∆, ?F

mcut(ι,⊥⊥)
⊢ Σ, ?F

−→
r

C ⊢ ∆
mcut(ι′,⊥⊥)

⊢ Σ
(?w)

⊢ Σ, ?F
⊢ F, ?Γ

(!p)
⊢!F, ?Γ C!

mcut(ι,⊥⊥)
⊢!F, ?Σ

−→
r

⊢ F, ?Γ C!

mcut(ι′,⊥⊥)
⊢ F, ?Σ

(!p)
⊢!F, ?Σ

C
⊢ ∆,F ⊢ Γ,G

(⊗)
⊢ ∆,Γ, F ⊗G

mcut(ι,⊥⊥)
⊢ Σ∆, ΣΓ , F ⊗G

−→
r

C∆ ⊢ ∆,F
mcut(ι′,⊥⊥)

⊢ Σ∆, F

CΓ ⊢ Γ,G
mcut(ι′′,⊥⊥)

⊢ ΣΓ , G
(⊗)

⊢ Σ∆, ΣΓ , F ⊗G

C
⊢ ∆,F,G

(O)
⊢ ∆,FOG

mcut(ι,⊥⊥)
⊢ Σ,FOG

−→
r

C ⊢ ∆,F,G
mcut(ι′,⊥⊥)

⊢ Σ,F,G
(O)

⊢ Σ,FOG

C
⊢ ∆,F ⊢ ∆,G

(N)
⊢ ∆,FNG

mcut(ι,⊥⊥)
⊢ Σ,FNG

−→
r

C ⊢ ∆,F
mcut(ι′,⊥⊥)

⊢ Σ,F

C ⊢ ∆,G
mcut(ι′,⊥⊥)

⊢ Σ,G
(N)

⊢ Σ,FNG

C
⊢ ∆,Fi

(⊕i)
⊢ ∆,F1 ⊕ F2

mcut(ι,⊥⊥)
⊢ Σ,F1 ⊕ F2

−→
r

C ⊢ ∆,Fi
mcut(ι′,⊥⊥)

⊢ Σ,Fi
(⊕i)

⊢ Σ,F1 ⊕ F2

C
⊢ ∆,F [σX.F/X]

(σ)
⊢ ∆,σX.F

mcut(ι,⊥⊥)
⊢ Σ, σX.F

−→
r

C ⊢ ∆,F [σX.F/X]
mcut(ι′,⊥⊥)

⊢ Σ,F [σX.F/X]
(σ)

⊢ Σ, σX.F

C
(⊤)

⊢ ∆,⊤
mcut(ι,⊥⊥)

⊢ Σ,⊤
−→
r

(⊤)
⊢ Σ,⊤

C
⊢ ∆

(⊥)
⊢ ∆,⊥

mcut(ι,⊥⊥)
⊢ Σ,⊥

−→
r

C ⊢ ∆
mcut(ι′,⊥⊥)

⊢ Σ
(⊥)

⊢ Σ,⊥

(1)
⊢ 1

mcut(ι,⊥⊥)
⊢ 1

−→
r

(1)
⊢ 1

In the promotion commutation case, all premisses in C! are assumed to end with pro-
motion rules.
In all the above rules, one requires that ι′ and ι′′ are the ancestry relation induced
by ι after the possible modification of the premises when taking restrictions of the
premises as in the⊗ commutation and relate the subformulas of the commuted formula
occurrence that are not in the premise and conclusion of the multicut. (For instance,
for the contraction commutation, each occurrence of ?F is related to the occurrence
in the corresponding position in the premise.)

Fig. 11. External reduction rules, where r = (ext, F ) and F is the principal occurrence.
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C
⊢ F, Γ

(?d)
⊢?F, Γ

⊢ F⊥, ?∆
(!p)

⊢!F⊥, ?∆
mcut(ι,⊥⊥)

⊢ Σ

−→
r

C ⊢ F, Γ ⊢ F⊥, ?∆
mcut(ι,⊥⊥′)

⊢ Σ

where ?F |= !F⊥ and |= ′ coincides with |= except for F |= ′ F⊥.

CΓ C!
?F

⊢?F, ?F, Γ
(?c)

⊢?F, Γ
mcut(ι,⊥⊥)

⊢ Γ ′, ?Σ

−→
r

CΓ C!
?F C!

?F ⊢?F, ?F, Γ
mcut(ι′,⊥⊥′)

⊢ Γ ′, ?Σ, ?Σ
(?c)

⋆

⊢ Γ ′, ?Σ
where C!

?F ̸= ∅, |= ′ corresponds to |= on CΓ and is a “duplication” of |= on C!
?F and

each copy of ?F is in |= ′-relation with the corresponding copy of !F⊥ in C!
?F .

CΓ C!
?F

⊢ Γ
(?w)

⊢?F, Γ
mcut(ι,⊥⊥)

⊢ Γ ′, ?Σ

−→
r

CΓ ⊢ Γ
mcut(ι′,⊥⊥′)

⊢ Γ ′
(?w)

⋆

⊢ Γ ′, ?Σ
where C!

?F ̸= ∅ and |= ′ corresponds to the restriction of |= on CΓ , Γ .

C
⊢ ∆,F ⊢ Γ,G

(⊗)
⊢ ∆,Γ, F ⊗G

⊢ Θ,F⊥, G⊥

(O)

⊢ Θ,F⊥OG⊥

mcut(ι,⊥⊥)
⊢ Σ

−→
r

C ⊢ ∆,F ⊢ Γ,G ⊢ Θ,F⊥, G⊥

mcut(ι,⊥⊥′)
⊢ Σ

where F ⊗G |= F⊥OG⊥ and |= ′ coincides with |= except for F |= ′ F⊥ and G |= ′ G⊥

C
⊢ ∆,F1 ⊢ ∆,F2

(N)
⊢ ∆,F1NF2

⊢ Γ, F⊥
i

(⊕i)

⊢ Γ, F⊥
1 ⊕ F⊥

2
mcut(ι,⊥⊥)

⊢ Σ

−→
r

C ⊢ ∆,Fi ⊢ Γ, F⊥
i

mcut(ι,⊥⊥′)
⊢ Σ

If {F1NF2, F
⊥
1 ⊕ F⊥

2 } ∈ |= , where: |= ′ ≜ |= ∪ {{Fi, F
⊥
i }}.

C
⊢ ∆,F [µX.F/X]

(µ)
⊢ ∆,µX.F

⊢ Γ, F⊥[νX.F⊥/X]
(ν)

⊢ Γ, νX.F⊥

mcut(ι,⊥⊥)
⊢ Σ

−→
r

C ⊢ ∆,F [µX.F/X] ⊢ Γ, F⊥[νX.F⊥/X]
mcut(ι,⊥⊥′)

⊢ Σ

where µX.F |= νX.F⊥ and |= ′ coincides with |= except for F [µX.F/X] |= ′ F⊥[νX.F⊥/X]

C
⊢ Γ

(⊥)
⊢ Γ,⊥

(1)
⊢ 1

mcut(ι,⊥⊥)
Σ

−→
r

C ⊢ Γ
mcut(ι,⊥⊥)

Σ
where ⊥ |= 1

Fig. 12. Principal reductions, where r = (princ, {F, F ′⊥}) with {F, F ′⊥} the
principal occurrences that have been reduced for the µMALL rules and r ∈
{(princ, {F, F ′⊥}, (?d)), (princ, {F, F ′⊥}, (?c)), (princ, {F, F ′⊥}, (?w))} for the exponen-
tial case.
In the principal reduction involving contraction and weakening, the restrictions C?∆

are required to contain only proofs ending with a promotion rule.
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– Otherwise, let us first consider the special case of an infinite branch that,
each time it enters the encoding of a promotion, takes the left-most premise
of the (N) rule. To such an infinite branch it is easy to associate an infinite
branch b of π which is valid, therefore supported by a thread the least formula
of which is some νX.F . Then one observes that (νX.F )• is recurring in β as
is the least such formula: β is valid.

– In the last case, on each promotion, one shall first backedge a finite number of
times on the backedges of the promotion before moving towards the encoding
of the premise of the promotion. Note that during those loop phases, the
subformulas of the context (?∆)• are preserved as well as F •. This allows to
find, as in the previous case, a ν-formula that is the lest recurring formula
along some thread.

C.3 Simulation of µLL∞ cut-reduction: proof of Proposition 34

Proposition 74 (Simulation of µLL∞ cut-elimination steps). Each µLL∞

mcut-reduction r can be simulated in µMALL∞ by a (possibly infinite) sequence
of mcut-reductions, denoted r•.

Proof. We first assume that the position of the reduction is not above some (!p)
rule. In that case, the simulation of µMALL∞ reduction rules is trivial.

The simulation of exponential cut-reductions are shown in Figures 13 & 14
in the simplified case of cuts. The simulation for the general mcut case can
easily be inferred: it does not modify the length of the simulated sequence for
commutation rules nor in the (?d)/(!p) key reduction, while the simulation of
contraction and weakening key reductions shall be adapted to take into account
the length of the (!p)-ready context of the mcut rule.

In the case the position of the reduction step is above a certain number of
(!p), the redex is in fact encoded as an infinity of redexes, which induce, in each
case, a simulation of length ω done as a depth-increasing reduction, which is
always possible.

C.4 Proof of Proposition 36

Proposition 75 (Non-preservation of fairness by simulation). There
exists a µLL∞ (pre-)proof π and a fair reduction ρ from π such that ρ• is an
ω-indexed µMALL∞ cut-reduction sequence from π• which is not fair.

Proof. Consider pre-proofs πk, k ∈ ω:

πk =

...
(ν)

⊢ νY.Y
(?w)

⊢ ?µX.X, νY.Y

...
(ν)

⊢ νX.X, ?B
(!p)

⊢ ! νX.X, ?B

...
(σ)

⊢ !B⊥, σZ.Z
mcut(ι,⊥⊥)

⊢ νY.Y, σZ.Z
(σ)

k

⊢ νY.Y, σZ.Z
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⊢ F,G, Γ
(?d•)

⊢?•F,G, Γ ⊢ G⊥,∆
(Cut)

⊢?•F, Γ,∆
−→2

⊢ F,G, Γ ⊢ G⊥,∆
(Cut)

⊢ F, Γ,∆
(?d•)

⊢?•F, Γ,∆
⊢?•F, ?•F,G, Γ

(?c•)
⊢?•F,G, Γ ⊢ G⊥,∆

(Cut)
⊢?•F, Γ,∆

−→3

⊢?•F, ?•F,G, Γ ⊢ G⊥,∆
(Cut)

⊢?•F, ?•F, Γ,∆
(?c•)

⊢?•F, Γ,∆
⊢ G,Γ

(?w•)
⊢?•F,G, Γ ⊢ G⊥,∆

(Cut)
⊢?•F, Γ,∆

−→3

⊢ G,Γ ⊢ G⊥,∆
(Cut)

⊢ Γ,∆
(?w•)

⊢?•F, Γ,∆

⊢ F, ?•G, ?•Γ
(!p•)

⊢!•F, ?•G, ?•Γ

⊢ G⊥, ?•∆
(!p•)

⊢!•G⊥, ?•∆
(Cut)

⊢!•F, ?•Γ, ?•∆

−→ω ⊢ F, ?•G, ?•Γ

⊢ G⊥, ?•∆
(!p•)

⊢!•G⊥, ?•∆
(Cut)

⊢ F, ?•Γ, ?•∆
(!p•)

⊢!•F, ?•Γ, ?•∆

Fig. 13. Simulation of µLL∞ (m)cut-commutation rules

The mcut-reduction sequence ρ = (πi, ri, pi)i∈ω consisting in commuting (σ)
inferences below the multicut at each step is fair, since the (?w) and (!p) rules
never constitute a reducible key-step as the context is not ready.

On the other hand, in the simulation π0
• of π0 there is a (µ)/(ν) key-step

that is reducible in each πi
• but that is never performed: ρ• is not fair.

Note that the proposition holds both for valid and invalid pre-proof as choos-
ing σ to be µ or ν in the above example covers both situations.

C.5 Proofs of Section 3.4

Proof of Lemma 37

Lemma 76. Let π be a µLL∞-proof of ⊢ Γ and let us consider a fair cut-
reduction sequence σ = (πi, ri, pi)i∈ω in µLL∞ initiated with π. σ converges to a
cut-free µLL∞-preproof of ⊢ Γ .

Proof. Let π be a µLL∞-proof of ⊢ Γ and let us consider a fair cut-reduction
sequence σ = (πi, ri, pi)i∈ω in µLL∞ initiated with π. We want to prove that σ
has a limit, say π′, and that this limit is a cut-free µLL∞-preproof of ⊢ Γ .

Consider the associated (potentially transfinite) µMALL∞ cut-reduction se-
quence σ• initiated in π• ⊢ Γ • obtained by simulating each cut-reduction step
of σ.

Reasoning by contradiction, assume that σ does not converge to a cut-free
pre-proof, that means that there exists a position p and an integer k such that for
any i larger than k, the subproof of πi rooted at p, denoted as πi@p, is concluded
with a cut inference.
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π

⊢ F, Γ
(?d•)

⊢?•F, Γ

π′

⊢ F⊥, ?•∆
(!p•)

⊢!•F⊥, ?•∆
(Cut)

⊢ Γ, ?•∆

−→2

π

⊢ F, Γ

π′

⊢ F⊥, ?•∆
(Cut)

⊢ Γ, ?•∆

π

⊢?•F, ?•F, Γ
(?c•)

⊢?•F, Γ

π′

⊢ F⊥, ?•∆
(!p•)

⊢!•F⊥, ?•∆
(Cut)

⊢ Γ, ?•∆

−→4int,4×#∆ext

π

⊢?•F, ?•F, Γ
π′

⊢!•F⊥, ?•∆

π′

⊢!•F⊥, ?•∆
(mcut)

⊢ Γ, ?•∆, ?•∆
(?c•)

⋆

⊢ Γ, ?•∆

π

⊢ Γ
(?w•)

⊢?•F, Γ

π′

⊢ F⊥, ?•∆
(!p•)

⊢!•F⊥, ?•∆
(Cut)

⊢ Γ, ?•∆

−→3int,3×#∆ext

π

⊢ Γ
(?w•)

⋆

⊢ Γ, ?•∆

Fig. 14. Simulation of µLL∞ key-(m)cut rules

By the fairness assumption, that implies that there is a suffix τ of σ (in fact
(πi, ri, pi)i≥k) containing infinitely many cut-reduction steps occurring at the
root of the subproof of πi rooted in p (πi@p), for i ≥ k. We want to view τp =
(πi@p)i≥k as a reduction sequence. As such, this is not a µLL∞ cut-reduction
sequence as there are steps of τ reducing outside of the πi@p: in that case,
πi@p = πi+1@p.

Let I = {i ≥ k | pi = p} and let κ be an enumeration of the infinite
set I. Since for any j ≥ k such that j ̸∈ I, πj@p = πj+1@p, the sequence
ρ = (πκ(i)@p, rκ(i), ϵ)i∈ω is a cut-reduction sequence which is a fair µLL∞ cut-
reduction sequence and which consists only of key-cut-reduction such that the
multicuts remain at the root.

Consider the µMALL∞ encoding of ρ, ρ•. One can first remark that it is an
ω-indexed sequence since no reduction occurs above a promotion in ρ and since
there is no commutation rule. ρ• is therefore unproductive, from which we want
to draw a contradiction with µMALL∞ cut-elimination theorem.

Is ρ• a fair reduction sequence? Proposition 36 shows that it is not necessarily
the case: there may be available reduction steps which are not fired along ρ• (in
fact they can only be (µ)/(ν), (⊕)/(N) key cases as they come only from the
condition on the application of key cases for weakening and contraction) and
which have residual along the whole sequence ρ•. Let σ be a reduction obtained
from ρ• by firing those redexes causing the lack of fairness of ρ•: it is easy to
notice that σ is fair. But remark that σ contains exactly the same commutation
rules as ρ•, that is none, contradicting µMALL∞ cut-elimination theorem.

Proof of Lemma 38
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Lemma 77. Let π be a µLL∞ pre-proof of ⊢ Γ and let us consider a cut-
reduction sequence σ = (πi, ri, pi)i∈ω in µLL∞ initiated with π that converges
to a cut-free µLL∞ pre-proof π′. σ• is a strongly converging (possibly transfinite)
sequence.

Proof. Let λ be the indexing ordinal of σ•: σ• = (π′
i)i∈λ. We want to prove that

σ• is strongly converging. This comes from two facts:

– first, because π′• – the encoding of the limit of σ – is cut-free, the depth of
the redexes tend to infinity when tending to the limit ordinal λ indexing σ•

as σ is itself strongly converging.
– Second, because only !-commutations as well as reductions above a promo-

tion can create infinite reduction sequence. Let λ′ be a limit ordinal strictly
below λ: the depths of the cuts reduced in π′

i tend to infinity as i tends to
λ′ as it corresponds either to the simulation of a ! commutation, which is
strongly converging or to a reduction in an exponential box, which is also
simulated by a strongly converging sequence.

Details on the cut-elimination proof, page 14

Theorem 78. Fair µLL∞ mcut-reduction sequences converge to cut-free µLL∞

proofs.

Proof. Let π be a µLL∞-proof of ⊢ Γ and let us consider a fair cut-reduction
sequence σ = (πi, ri, pi)i∈ω in µLL∞ initiated with π. We want to prove that σ
has a limit, say π′, which is a cut-free µLL∞-proof of ⊢ Γ .

Consider the associated (potentially transfinite) µMALL∞ cut-reduction se-
quence σ• initiated in π• ⊢ Γ • obtained by simulating each cut-reduction step
of σ. By Lemma 37, we know that σ converges to a cut-free µLL∞ pre-proof.
From this, one can conclude that σ is productive and therefore that σ strongly
converges to some µLL∞ cut-free pre-proof π′.

We are left with proving that the limit of σ, π′, is actually valid. By Lemma 38,
σ• is a transfinite cut-reduction sequence from π• which strongly converges
to π′•. Therefore, the Compression Lemma applies to π′•: there exists ρ =
(π′

i, r
′
i, p

′
i)i∈ω an ω-indexed µMALL∞ cut-reduction sequence converging to π′•.

In order to apply µMALL∞ cut-elimination theorem, we would need to ensure
that ρ is fair, from which validity of π′• would follow and that of π′ by Proposi-
tion 33. However, we know by Proposition 36 that it is not necessary the case.
We can still conclude by considering what happens when ρ is made fair (in a
reduction sequence called ρf ). By remark 35, we know that the loss of fairness of
ρ can only have one reason: the lack of (!p)-readiness, in a multicut mcut(ι,⊥⊥),
of the cut-context associated to the context of a (!p) rule the principal formula of
which (i) either is ι-related to a formula in the conclusion of the (mcut), therefore
blocking a (!p) commutation rule, or (ii) is |= -related with a ?F which is con-
clusion of a (?w) or of a (?c) rule, therefore blocking a key cut-reduction step of
type (?w)/(!p) or (?c)/(!p). Indeed, in those two cases, the µMALL∞-encoding of
the proof can perform partially the simulation of the reduction that is blocked.
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We shall analyze more precisely what happen in this case to prove that to any
infinite branch β of π′•, one can associate an infinite branch βf of the limit, say
πf , of ρf (ρf being fair by assumption, it has a limit which is valid) containing
the same infinite threads as β.

Before proceeding, let us notice that the content of remark 35 does not entail
that the only reduction steps added to ρ in order to obtain ρf are the partial
reduction of (the simulation of) the blocked reductions. Indeed, let us consider
the case of a blocked (!p)-commutation:

!(π)
(!p)

⊢ !F, ?Γ C?Γ
mcut(ι,⊥⊥)

⊢ !F,Σ

with !(π) =

π

⊢ F, ?Γ
(!p)

⊢ !F, ?Γ

, assuming that

C?Γ is not (!p)-ready.

The µMALL∞ encoding of the above proof is:

!•(π•)

⊢ !•F •, ?•Γ • (C?Γ )•
mcut(ι,⊥⊥)

⊢ !F •, Σ•

and since !•(π•) is concluded with (N) and (ν) rules on !•F •, the corresponding
commutation step can be performed (and will be performed in a fair reduction)
resulting in

C?Γ • π•
mcut(ι,⊥⊥)

⊢ F •, Σ•
C?Γ •

(1)
⊢ 1

(?w)•
+

⊢ 1, ?Γ •

mcut(ι,⊥⊥)
⊢ 1, Σ•

C?Γ •

!•(π•) !•(π•)
(⊗)

⊢ !F •⊗ !F •, ?Γ •, ?Γ •

(?c)•
+

⊢ !F •⊗ !F •, ?Γ •

mcut(ι,⊥⊥)
⊢ !F •⊗ !F •, Σ•

(ν) (N) (N)
⊢ !F •, Σ•

In the left-most premise, the subproof π• is cut with C?Γ • which could unlock
productive new reduction steps.

On the other hand, considering the middle premise, one notices that this
cannot happen as the (1) inference is guarded by at least one (encoding of)
weakening (since Γ is non-empty, otherwise C?Γ is (!p)-ready) which will not
interact with some premise of C?Γ • by non-readiness.

Similarly, analyzing the cases of blocked key cut-steps of type (?w)/(!p) or
(?c)/(!p), one realizes that ρf could contain some additional (µ)/(ν), (⊕2)/(N),
(⊕1)/(N) steps or some additional (µ)/(ν), (⊕2)/(N), (⊕2)/(N) steps respec-
tively. In particular, the (encoding of the) premise of the blocked structural rule
cannot produce part of the cut-free proof πf as they are blocked respectively by
(?w)• and by (?c)• respectively.

This remark is the key to conclude the proof: indeed, let β be an infinite
branch of π′• and let us consider ρf a fair reduction sequence obtained from ρ
by reducing those redexes which have residuals along the whole of ρ causing the
lack of fairness of ρ (and doing that hereditarily) and let us consider the limit
πf of this sequence.

The above analysis of the blocking situations allows us to define a branch βf

of πf as follows: βf agrees with β as long as possible. When the next inference
in πf differ from that of β, that means that it comes from the commutations of
inferences used in the simulation of a (!p) which is blocked.
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In that case one requires βf to follow the unique premise of the (ν) rule, the
second premise of the (N) rule and finally the first premise of the following (N)
rule, ending in sequent ⊢ 1, ?∆ as described below:

⊢ F •, ?•∆•

...
⊢1, ?•∆• ⊢ (!F )

•⊗ (!F )
•
, ?•∆•

(N)

⊢1N((!F )
•⊗ (!F )

•
), ?•∆•

(N)

⊢F •N(1N((!F )
•⊗ (!F )

•
)), ?•∆•

(ν)

⊢(!F )
•
, ?•∆•

...
and we follow back the branch according to β as before.
It is easy to notice that in βf we have exactly the same (infinite) threads as

in β (some finite thread may possibly have been extended finitely on occurrences
of (!F )

•): indeed, the only inferences on which βf differs from β are of the type
pictured in green above and therefore end in a 1 formula. Therefore β is valid if,
and only if, βf is valid, which is the case since ρf is fair.

We can then conclude that π′• is cut-free and valid and, using preservation
of validity, that π′ is a valid cut-free µLL∞-proof.

Proof of Corollary 39

Corollary 79. Fair two-sided µLL∞ mcut-reduction sequences converge to cut-
free two-sided µLL∞ proofs.

Proof. A fair reduction sequence in two-sided µLL∞ can easily be seen to map
to a fair reduction sequence in one-sided µLL∞ from which the result follows.

A two-sided sequent Γ ⊢ ∆ is mapped to ⊢ Γ⊥, ∆ with A ⊸ B interpreted as
A⊥OB. Each right rule is mapped to the same rule and each left rule is mapped
to the same rule for the de Morgan dual connective. In such a way, any two-
sided µLL∞ pre-proof π can be mapped to a one-sided µLL∞ pre-proof πmono

preserving validity: π is valid if, and only if, πmono is valid.
From the above remark, any fair reduction cut-reduction sequence (πi)i∈ω

in two-sided µLL∞ can be mapped to a fair one-sided cut-reduction sequence
(πi

mono)i∈ω which has a limit Π which is valid. It follows that (πi)i∈ω is produc-
tive and that its limit π satisfies πmono = Π from which validity follows.
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D Appendix on Section 4

D.1 Details on skeletons

To any µLL∞ formulas and µLL∞ proofs, one can associate their classical skele-
tons, that is corresponding µLK∞ formulas and proofs, after erasing of the linear
information of the sequent and proof:

Definition 80 (µLK∞-Skeleton). The µLK∞-skeleton of a µLL∞ formula is
defined inductively as follows (σ ∈ {µ, ν}):
Sk(A⊗B) = Sk(A) ∧ Sk(B) Sk(AOB) = Sk(A) ∨ Sk(B) Sk(!A) = Sk(A)
Sk(ANB) = Sk(A) ∧ Sk(B) Sk(A⊕B) = Sk(A) ∨ Sk(B) Sk(?A) = Sk(A)

Sk(1) = ⊤ Sk(⊥) = F Sk(a) = a
Sk(⊤) = ⊤ Sk(0) = F Sk(a⊥) = ¬a

Sk(A ⊸ B) = Sk(A) ⇒ Sk(B) Sk(σX.A) = σX.Sk(A) Sk(X) = X
Let π be a two-sided µLL∞ pre-proof of Γ ⊢ ∆. Sk(π) is the µLK∞ pre-proof

of Sk(Γ ) ⊢ Sk(∆) obtained by the following corecursive process by case analysis
on the last rule r of π:

– if r = (Ax), then Sk(π) is an axiom;
– if r = (Cut), then Sk(π) ends with a cut of premises the skeletons of the

premises of π;
– if r is a fixed-point rules, then Sk(π) ends with the same rule of µLK∞ with,

for premise, the skeleton of the premise of π;
– if r is a multiplicative or additive rule, then Sk(π) ends with the correspond-

ing rule for the associated connective with, for premises, the skeletons of the
premises of π;

– if r is a structural rules for an exponential formula or an exchange rule,
then Sk(π) ends with the corresponding structural rules with, for premise,
the skeleton of the premise of π;

– if r is a promotion or dereliction, then Sk(π) is the skeleton of the premise
of π of Sk(π).

D.2 Proof of Proposition 41

Proposition 81. For any valid µLL∞ proof π of s, Sk(π) is a valid µLK∞ proof
of Sk(s).

Proof. It is easy to check that Sk(π) is a µLK∞ pre-proof (as soon as one
admit both additive and multiplicative inference for classical conjunction and
disjunction):

– even though the corecursive call, in the promotion and dereliction cases are
non-guarded, the procedure is productive as there can only be finitely many
such inferences

– Sk(π) is trivially locally correct and of conclusion Sk(s).

Every infinite branch of Sk(π) is valid since all fixed-points unfoldings are pre-
served in the skeleton and therefore every infinite thread of a branch of π with
least recurring formula F may be mapped to a thread of minimal formula Sk(F )
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D.3 A linear decoration of µLK∞ into µLL∞

We consider the following embedding of µLK∞ (and µLK∞ sequents) into two-
sided µLL∞:

[a]k = ! a
[X]k = !X

[A ⇒ B]k = !((? [A]k) ⊸ (?[B]k))
[A ∧B]k = !((?[A]k)N(?[B]k))
[A ∨B]k = !((?[A]k)⊕ (?[B]k))
[σX.A]k = !σX. ?[A]k σ ∈ {µ, ν}

[T]k = !⊤
[F]k = ! 0

[Γ ⊢ ∆]k = [Γ ]k ⊢ ?[∆]k

One easily checks that the translation is consistent with positivity conditions
of µLK and that:

Lemma 82. For any µLK formula A, [A]k is a µLL formula.

Moreover, setting [X]k = !X entails easily that:

Lemma 83. For any µLK formula A,B, σ ∈ {µ, ν},

[A[σX.B/X]]k = [A]k[σX. ?[B]k/X].

Proof. This simply follows from the fact that [X]k = !X, by induction on A.

Definition 84 (Translation of µLK∞ proofs in µLL∞ proofs). In Figures 15
and 16, each µLK∞ inference is translated in a µLL∞ proof pattern relating the
translation of the premisses sequents to the translation of the conclusion sequent.

A non-wellfounded µLK∞ pre-proof π of Γ ⊢ ∆ can therefore be translated
into a non-wellwounded pre-proof [π]k of [Γ ⊢ ∆]k of µLL∞.

In the above definition and the corresponding figures, we do not make explicit
the ancestor relations as it is unambiguous.

Remark 85. Notice that the translation preserve the ancestor relation in the
following sense: for each inference r of µLK∞, if the ith formula of conclusion s
is in ancestor relation with the jth formula of the kth premise sk, then in [r]k,
the ith formula of [s]k is in relation, for the transitive closure of µLL∞ ancestor
relation, with the jth formula of the kth open sequent [sk]

k.

Proposition 86. Let be a non-wellfounded µLK∞ pre-proof π of Γ . π is a valid
µLK∞ proof if, and only if, [π]k is a valid µLL∞ proof.

Proof. Indeed, the infinite branches of π are in one-to-one correspondence with
the infinite branches of [π]k, the thread are preserved thanks to the previous
remark and the translation of formula ensures that a thread is valid in π if, and
only if, it is valid in [π]k.
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[
(Ax)

Γ, F ⊢ F,∆

]k
=

(Ax)

[F ]k ⊢ [F ]k

(?dr)

[F ]k ⊢?[F ]k

(!wl)
⋆, (?wr)

⋆

[Γ ]k, [F ]k ⊢?[F ]k, ?[∆]k

[
Γ ⊢ ∆,F Γ ′, F ⊢ ∆′

(Cut)
Γ, Γ ′ ⊢ ∆,∆′

]k

= [Γ ]k ⊢?[∆]k, ?[F ]k

[Γ ′]k, [F ]k ⊢?[∆′]k

(?pl)

[Γ ′]k, ? [F ]k ⊢?[∆′]k

(Cut)

[Γ, Γ ′]k ⊢?[∆,∆′]k

[
Γ ⊢ ∆

(Wr)
Γ ⊢ F,∆

]k

=
[Γ ]k ⊢?[∆]k

(?wr)

[Γ ]k ⊢?[F ]k, ?[∆]k

[
Γ ⊢ ∆

(Wl)
Γ, F ⊢ ∆

]k

=
[Γ ]k ⊢?[∆]k

(!wl)

[Γ ]k, [F ]k ⊢?[∆]k

(Since [F ]k is a !-formula.)[
Γ ⊢ F, F,∆

(Cr)
Γ ⊢ F,∆

]k

=
[Γ ]k ⊢?[F, F,∆]k

(?cr)

[Γ ]k ⊢?[F,∆]k

[
Γ, F, F ⊢ ∆

(Cl)
Γ, F ⊢ ∆

]k

=
[Γ, F, F ]k ⊢?[∆]k

(!cl)

[Γ, F ]k ⊢?[∆]k

(Since [F ]k is a !-formula.)[
Γ ⊢ ∆,G, F,∆′

(Xr)
Γ ⊢ ∆,F,G,∆′

]k

=
[Γ ]k ⊢?[∆,G,F,∆′]k

(Xr)

[Γ ]k ⊢?[∆,F,G,∆′]k

[
Γ,G, F, Γ ′ ⊢ ∆

(Xl)
Γ, F,G, Γ ′ ⊢ ∆

]k

=
[Γ,G, F, Γ ′]k ⊢?[∆]k

(Xl)

[Γ, F,G, Γ ′]k ⊢?[∆]k

Fig. 15. Translation of µLK∞ inferences into µLL∞: identity and structural rules

44



[
Γ ⊢ F,∆ Γ ⊢ G,∆

(∧r)
Γ ⊢ F ∧G,∆

]k

=

[Γ ]k ⊢?[F ]k, ?[∆]k [Γ ]k ⊢?[G]k, ?[∆]k

(Nr) , (!pr)

[Γ ]k ⊢!(?[F ]kN?[G]k), ?[∆]k

(?dr)

[Γ ]k ⊢?[F ∧G]k, ?[∆]k

[
Γ, Fi ⊢ ∆

(∧i
l)

Γ, F1 ∧ F2 ⊢ ∆

]k

=

[Γ ]k, [Fi]
k ⊢?[∆]k

(?pl)

[Γ ]k, ?[Fi]
k ⊢?[∆]k

(Ni
l)

[Γ ]k, ?[F1]
kN?[F2]

k ⊢?[∆]k

(!dl)

[Γ ]k, [F1 ∧ F2]
k ⊢?[∆]k

[
Γ ⊢ Fi,∆

(∨i
r)

Γ ⊢ F1 ∨ F2,∆

]k

=

[Γ ]k ⊢?[Fi]
k, ?[∆]k

(⊕i
r) , (!pr)

[Γ ]k ⊢ !(?[F1]
k ⊕ ?[F2]

k), ?[∆]k

(?dr)

[Γ ]k ⊢ ?[F1 ∨ F2]
k, ?[∆]k

[
Γ, F ⊢ ∆ Γ,G ⊢ ∆

(∨l)
Γ, F ∨G ⊢ ∆

]k

=

[Γ ]k, [F ]k ⊢?[∆]k

(?pl)

[Γ ]k, ?[F ]k ⊢?[∆]k

[Γ ]k, [G]k ⊢?[∆]k

(?pl)

[Γ ]k, ?[G]k ⊢?[∆]k

(⊕l)

[Γ ]k, ?[F ]k ⊕ ?[G]k ⊢ ?[∆]k

(!dl)

[Γ ]k, [F ∨G]k ⊢?[∆]k

[
(⊤r)

Γ ⊢ ⊤,∆

]k
=

(⊤r)

[Γ ]k ⊢ ⊤, ?[∆]k

(!pr)

[Γ ]k ⊢ !⊤, ?[∆]k

(?dr)

[Γ ]k ⊢?[⊤]k, ?[∆]k

[
(Fl)

Γ,F ⊢ ∆

]k
=

(0l)

[Γ ]k, 0 ⊢?[∆]k

(!dl)

[Γ ]k, [F]k ⊢?[∆]k

[
Γ, F ⊢ G,∆

(⇒r)
Γ ⊢ F ⇒ G,∆

]k

=

[Γ ]k, [F ]k ⊢ ?[G]k, ?[∆]k

(?pl)

[Γ ]k, ?[F ]k ⊢ ?[G]k, ?[∆]k

(⊸r) , (!pr)

[Γ ]k ⊢ !(?[F ]k ⊸ ?[G]k), ?[∆]k

(?dr)

[Γ ]k ⊢ ?[F ⇒ G]k, ?[∆]k

[
Γ ⊢ F,∆ Γ ′, G ⊢ ∆′

(⇒l)
Γ, Γ ′, F ⇒ G ⊢ ∆,∆′

]k

=
[Γ ]k ⊢ ?[F ]k, ?[∆]k

[Γ ′]k, [G]k ⊢ ?[∆′]k

(?pl)

[Γ ′]k, ?[G]k ⊢ ?[∆′]k

(⊸l)

[Γ, Γ ′]k, ?[F ]k ⊸ ?[G]k ⊢ ?[∆]k, ?[∆′]k

(!dl)

[Γ, Γ ′, F ⇒ G]k ⊢ ?[∆,∆′]k

[
Γ ⊢ G[σX.G/X],∆

(σr)
Γ ⊢ σX.G,∆

]k

=

[Γ ]k ⊢ ?[G]k[σX. ?[G]k/X], ?[∆]k By Lemma 83
(σr)

[Γ ]k ⊢ σX. ?[G]k, ?[∆]k

(!pr)

[Γ ]k ⊢ !σX. ?[G]k, ?[∆]k

(?dr)

[Γ ]k ⊢ ?[σX.G]k, ?[∆]k

[
Γ,G[σX.G/X] ⊢ ∆

(σl)
Γ, σX.G ⊢ ∆

]k

=

[Γ ]k, [G[σX.G/X]]k ⊢ ?[∆]k

(?pl) By Lemma 83
[Γ ]k, ?([G]k[σX. ?[G]k/X]) ⊢ ?[∆]k

(σl)

[Γ ]k, σX. ?[G]k ⊢ ?[∆]k

(!dl)

[Γ ]k, [σX.G]k ⊢ ?[∆]k

Fig. 16. Translation of µLK∞ inferences into µLL∞: logical rules
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D.4 Proof of Theorem 44

Theorem 87. µLK∞ eliminates cuts.

Proof. Let π ∈ µLK∞ be a proof of Γ ⊢ ∆. πd is a valid proof of (Γ ⊢ ∆)d

so that by cut-elimination, there is a fair reduction sequence σ = (Πi)i∈ω with
Π0 = πd which converges to a cut-free µLL∞ proof Π ′. For any i ∈ ω, one has
either Sk(Πi) = Sk(Πi+1) or Sk(Πi) −→µLK∞ Sk(Πi+1) so that one can extract
from σ a strongly converging −→µLK∞-reduction sequence which converges to
Sk(Π ′), a cut-free valid µLK∞ proof of Γ ⊢ ∆.
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E On Seely (iso)morphisms.

E.1 From multiplicatives to additives and back

In LL, there are two conjunctions and two disjunctions, the additives and mul-
tiplicatives, which are clearly distinguished and have no interderivability prop-
erties.

On the other hand, in LK, the additive and multiplicative presentations of
conjunction and disunction are interderivable thanks to structural rules. One
has:

(Ax)
A ⊢ A

(Wl)
A,B ⊢ A

(Ax)
B ⊢ B

(Wl)
A,B ⊢ B

(∧a
r)

A,B ⊢ A ∧a B
(∧m

l)
A ∧m B ⊢ A ∧a B

(Ax)
A ⊢ A

(∧a2
l )

A ∧a B ⊢ A

(Ax)
B ⊢ B

(∧a1
l )

A ∧a B ⊢ B
(∧m

r)
A ∧a B,A ∧a B ⊢ A ∧m B

(Cl)
A ∧a B ⊢ A ∧m B

A, B are weakened on the left, A ∧a B is contracted on the left.

In LL, we do not have free structural rules, but only thanks to exponentials,
so we need to decorate formulas with exponentials where structural rules are
needed, leading to:

E.2 !A⊗ !B ⊣⊢ !(ANB)

πS =

(Ax)
A ⊢ A

(?d)
!A ⊢ A

(?w)
!A, !B ⊢ A

(Ax)
B ⊢ B

(?d)
!B ⊢ B

(?w)
!A, !B ⊢ B

(N)
!A, !B ⊢ ANB

(!p)
!A, !B ⊢ !(ANB)

(O)
!A⊗ !B ⊢ !(ANB)

π′
S =

(Ax)
A ⊢ A

(⊕1)
ANB ⊢ A

(?d)
!(ANB) ⊢ A

(!p)
!(ANB) ⊢ !A

(Ax)
B ⊢ B

(⊕2)
ANB ⊢ B

(?d)
!(ANB) ⊢ B

(!p)
!(ANB) ⊢ !B

(⊗)
!(ANB), !(ANB) ⊢ !A⊗ !B

(?c)
!(ANB) ⊢ !A⊗ !B
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πS π′
S

(Cut)
!A⊗ !B ⊢ !A⊗ !B

−→⋆
cut

(Ax)
A ⊢ A

(?d)
!A ⊢ A

(?w)
!A, !B ⊢ A

(!p)
!A, !B ⊢ !A

(Ax)
B ⊢ B

(?d)
!B ⊢ B

(?w)
!A, !B ⊢ B

(!p)
!A, !B ⊢ !B

(⊗)
!A, !B, !A, !B ⊢ !A⊗ !B

(?c)2

!A, !B ⊢ !A⊗ !B
(O)

!A⊗ !B ⊢ !A⊗ !B

E.3 What about the fixed-point encoding?

(πS)
• (π′

S)
•

(Cut)
!• A⊗ !• B ⊢ !• A⊗ !• B

−→ω
cut

(Ax)
A ⊢ A

(? d•)
!• A ⊢ A

(?w•)
!• A, !• B ⊢ A

(! p•)
!• A, !• B ⊢ !• A

(Ax)
B ⊢ B

(? d•)
!• B ⊢ B

(?w•)
!• A, !• B ⊢ B

(! p•)
!• A, !• B ⊢ !• B

(⊗)
!• A, !• B, !• A, !• B ⊢ !• A⊗ !• B

(? c•)
2

!• A, !• B ⊢ !• A⊗ !• B
(O)

!• A⊗ !• B ⊢ !• A⊗ !• B

The left occurrences of A,B require two unfoldings of the ν-fixed-point, while
the right occurrences of A,B require only one unfolding of the ν-fixed-point.

The fixed-point unfolding structure keeps track of the history of the structural
rules.

E.4 There is more than a promotion in !•

Remember the encoding of promotion in µMALL∞:

!•(
π

(!p)
⊢ F, ?∆

) =

π•

⊢ F •, (?∆)•

(1)
⊢ 1

(?w•)
⋆

⊢ 1, (?∆)•

⊢ (!F )•, (?∆)• ⊢ (!F )•, (?∆)•
(⊗)

⊢ (!F )• ⊗ (!F )•, (?∆)•, (?∆)•
(?c•)⋆

⊢ (!F )• ⊗ (!F )•, (?∆)•
(ν) , (N) , (N)

⊢ (!F )•, (?∆)•

This is certainly not the only way to derive a sequent ⊢ (!F )•, (?∆)•

Indeed, for any family (πi)i∈I of proofs of ⊢ F, ?∆ and any map φ from
{l, r}⋆ to I, one gets a derivation shown in Figure 17.

Such a proof allows us to provide a different linear proofs in "each copy" of the
exponential box and therefore to have a sort of non-uniform promotion [12,26].
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