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Turbulent cascade in fully developed turbulent channel flow

We show that Kolmogorov scale-by-scale equilibrium in the intermediate layer of fully developed turbulent channel flow is only achieved asymptotically around the Taylor length and, therefore, not in an inertial range. Furthermore, we analyse scale-by-scale turbulence production and interscale turbulence energy transfer in terms of alignments/anti-alignments of fluctuating velocities, straining/compressive relative motions, forward/inverse interscale transfer/cascade and homogeneous/nonhomogeneous interscale transfer rate contributions. We also propose leading order scalings for second and third order two-point statistics, including the extremum interscale turbulence energy transfer rate and a second order anisotropic structure function, which acts as a scale-by-scale Reynolds shear stress and determines the scale-by-scale (two-point) turbulence production rate.

Introduction

The Kolmogorov theory of equilibrium cascade works best for statistically stationary and homogeneous turbulence where the power input balances the dissipation rate and predicts that the interscale transfer rate balances the turbulence dissipation rate in an inertial range of scales [START_REF] Batchelor | The theory of homogeneous turbulence[END_REF][START_REF] Frisch | Turbulence: The Legacy of A.N. Kolmogorov[END_REF][START_REF] Lesieur | Turbulence in Fluids[END_REF]. In particular, this inertial range equilibrium cascade leads to the well-known turbulence dissipation scaling [START_REF] Batchelor | The theory of homogeneous turbulence[END_REF][START_REF] Sreenivasan | On the scaling of the turbulence energy dissipation rate[END_REF][START_REF] Vassilicos | Dissipation in turbulent flows[END_REF] first introduced by Taylor (1935) without justification. In statistically homogeneous but non-stationary, in particular decaying, turbulence, the situation is different. Specifically, there is a nonequilibrium turbulence dissipation scaling initially during decay, [START_REF] Vassilicos | Dissipation in turbulent flows[END_REF][START_REF] Goto | Unsteady turbulence cascades[END_REF]) followed at later times by the classical turbulence dissipation as a result of balanced non-equilibrium [START_REF] Goto | Unsteady turbulence cascades[END_REF][START_REF] Steiros | Balanced nonstationary turbulence[END_REF]) rather than Kolmogorov equilibrium throughout an inertial range. homogeneous isotropic turbulence far from initial conditions, which led to the conclusion that the interscale transfer rate has an extremum at a length scale r max that is proportional to the Taylor length λ. Wind tunnel data of nominally freely decaying homogeneous isotropic turbulence [START_REF] Obligado | The non-equilibrium part of the inertial range in decaying homogeneous turbulence[END_REF]) confirm r max ≈ 1.5λ and EDQNM simulations of such turbulence [START_REF] Meldi | Analysis of lundgren's matched asymptotic expansion approach to the k ármán-howarth equation using the eddy damped quasinormal markovian turbulence closure[END_REF]) confirm r max ≈ 1.12λ

for Re λ = 10 2 to 10 6 . Hence, Kolmogorov equilibrium in non-stationary, in fact freely decaying far from initial conditions, statistically homogeneous isotropic turbulence seems to be achieved asymptotically only around λ; and not in an inertial range given that λ depends on viscosity and total turbulent kinetic energy and that there is a systematic departure from equilibrium (most clearly demonstrated in [START_REF] Meldi | Analysis of lundgren's matched asymptotic expansion approach to the k ármán-howarth equation using the eddy damped quasinormal markovian turbulence closure[END_REF] when moving away from λ, both towards the integral scale and towards the Kolmogorov length η.

Diverting attention from homogeneous non-stationary turbulence to stationary nonhomogeneous turbulence, we ask about the validity of Kolmogorov equilibrium in stationary non-homogeneous conditions and chose to focus in this paper on fully developed turbulent channel flow (FD TCF). This is a statistically stationary non-homogeneous turbulent flow where turbulence production approximately balances turbulence dissipation (similarly to statistically stationary homogeneous turbulence) in some very significant region of space, the intermediate layer where the log-law of the wall has been traditionally claimed. Is there an average equilibrium between interscale turbulence energy transfer rate and turbulence dissipation in the intermediate layer of FD TCF where turbulence production approximately balances turbulence dissipation? If so, in what range of length scales, inertial or not? What processes are involved in the scale-by-scale turbulence energy balance in that range, if there is one, and outside it? What is the role of inhomogeneity, in particular in terms of scale-by-scale turbulence production but also directly on interscale energy transfer? What type of flow motions underpin interscale turbulence energy transfers and scale-by-scale turbulence production (referred to as twopoint turbulence production in the remainder of this paper)?

In the following section, we introduce the scale-by-scale turbulence energy balance in its most general form and the spherical average operation, which we use to simplify it for this study. Section 3 is a brief description of the FD TCF DNS data we utilize for our post-processing. In section 4 we simplify the spherically averaged scale-by-scale turbulence energy balance for the particular case of the intermediate layer of a FD TCF and in section 5 we examine the two-point turbulence production term which appears in this balance. Section 6 deals with second and third order structure functions and interscale turbulence energy transfer by adapting to FD TCF the matched asymptotic expansion approach of [START_REF] Lundgren | Kolmogorov two-thirds law by matched asymptotic expansion[END_REF], and then we compare the results to the DNS data in section 7. Finally, section 8 introduces two decompositions of the interscale turbulence energy transfer rate and attempts to answer the questions of non-homogeneity's role and of what flow motions are responsible for which aspects of interscale turbulence energy transfer. In the paper's last section, we summarise our conclusions.

Scale-by-scale turbulence energy balance

To analyse the turbulent energy cascade in turbulent channel flow, we utilize a Kármán-Howarth-Monin-Hill (KHMH) equation which is a scale-by-scale energy budget equation in its most general form without any assumptions about the flow [START_REF] Hill | Equations relating structure functions of all orders[END_REF][START_REF] Hill | Exact second-order structure-function relationships[END_REF]. The form of KHMH equation that we use is an evolution equation for |δu| 2 , where δu ≡ u(x + r/2, t)u(xr/2, t) is the difference between fluctuating velocities at two points ξ + ≡ x + r/2 and ξ -≡ xr/2 in the flow where the separation vector r = (r 1 , r 2 , r 3 ) gives some sense of scales. The centroid x = (x 1 , x 2 , x 3 ) is mid-way between these two points.

A Reynolds decomposition U +u is used for the velocity field in this form of the KHMH equation where U = (U 1 , U 2 , U 3 ) is the mean flow. The KHMH equation follows directly from the incompressible Navier-Stokes equations and, with notations U ± i ≡ U i (x ± r/2), u ± i ≡ u i (x±r/2) and δp ≡ p(x+r/2, t)-p(x-r/2, t) where p is the fluctuating pressure field, reads as follows:
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where the brackets ⟨•⟩ denote the averaging operation on which the Reynolds decomposition is based. The KHMH equation includes the following terms:

• A t = ∂⟨|δu| 2 ⟩ ∂t
is the time derivative term.

• A = U + i +U - i 2 ∂⟨|δu| 2 ⟩ ∂xi
is the mean advection term.

• Π = ∂⟨δui|δu| 2 ⟩ ∂ri is the nonlinear interscale transfer rate of |δu| 2 by turbulent fluctuations in scale space and thus directly linked to the energy cascade.

• Π U = ∂δUi⟨|δu| 2 ⟩ ∂ri is the linear interscale transfer rate of |δu| 2 in scale space by mean velocity differences.

• P = -2⟨δu i δu j ⟩ ∂δUj ∂ri -⟨(u + i + u - i )δu j ⟩ ∂δUj ∂xi is the two-point production of |δu| 2 by the mean shear.

• T u = ∂⟨ u + i +u - i 2 |δu| 2 ⟩ ∂xi
is the turbulent transport of |δu| 2 in physical space.

• T p = 2 ∂⟨δuiδp⟩ ∂xi is the pressure-velocity term.

• D x = ν 2 ∂ 2 ⟨|δu| 2 ⟩ ∂x 2 i
is the viscous diffusion in physical space.

• D r = 2ν ∂ 2 ⟨|δu| 2 ⟩ ∂r 2
i is the viscous diffusion in scale space.

• ε = 2ν⟨ ∂u - j /∂ξ - i 2 ⟩ + 2ν⟨ ∂u + j /∂ξ + i 2 ⟩ is the two-point averaged turbulence
pseudo-dissipation rate which is very close to the actual turbulence dissipation rate (e.g. see [START_REF] Pope | Turbulent Flows[END_REF].

At this stage we specialise this equation to FD TCF by chosing the averaging operation ⟨•⟩ to be over the streamwise and spanwise homogeneous directions, i.e. over coordinates

x ≡ x 1 (streamwise) and z ≡ x 3 (spanwise), and over time. The wall normal coordinate is y ≡ x 2 . Note that U 2 = U 3 = 0 and that this averaging operation implies A t = 0 = A. In non-homogeneous and non-isotropic turbulent flows (such as FD TCF) energy transfers and exchanges, including the turbulence cascade, are anisotropic. This equation has been studied extensively in FD TCF by [START_REF] Marati | Energy cascade and spatial fluxes in wall turbulence[END_REF]; [START_REF] Cimarelli | Anisotropic dynamics and sub-grid energy transfer in wall-turbulence[END_REF]; [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF][START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF]; [START_REF] Gatti | An efficient numerical method for the generalised Kolmogorov equation[END_REF]. In this paper we concentrate our interest on the directionally-averaged energy transfers by applying to each term of the KHMH 

Π v + Π v U = P v + T v u + T v p + D v x + D v r -ε v (2.2)
where (following [START_REF] Zhou | Energy cascade at the turbulent/nonturbulent interface[END_REF] and section 2 of Chen & Vassilicos (2022))

every term is obtained from its analogue in equation 2.1 by the application of the normalised 3D integral 3 4πr 3 S(r) d 3 r, S(r) being the sphere of radius r in r-space; for example

Π v ≡ 3 4πr 3 S(r) Πd 3 r, Π v U ≡ 3 4πr 3 S(r) Π U d 3 r, P v ≡ 3 4πr 3 S(r) Pd 3 r, etc.
This approach averages over and therefore ignores length-scale anisotropies and replaces r by its modulus r = |r| as a single measure of length-scale. However, the fundamental anisotropy responsible for correlations between streamwise and wall-normal directions remains in the turbulence production term. Every term in equation 2.2 is a function of only y (spatial non-homogeneity variable) and r (length-scale variable).

In the following section we describe the data from Direct Numerical Simulations (DNS)

of FD TCF that we use in this paper. We describe this DNS data before starting our analysis of equation 2.2 in order to be able to test against this data certain aspects of our analysis as it proceeds. a third-order semi-implicit Runge-Kutta method with CFL = 0.5 was chosen for time advancement. A comparison of the two datasets can be found in Table 1 (the superscript + refers to non-dimensionalisation with wall units δ ν ≡ ν/u τ for length and δ ν /u τ for time). We focus our DNS data analysis on the wall-normal locations that correspond to the region where the average production rate of turbulent kinetic energy roughly balances the average turbulence dissipation rate as identified by [START_REF] Apostolidis | Scalings of turbulence dissipation in space and time for turbulent channel flow[END_REF], i.e. We now examine equation 2.2 in the region of FD TCF, where the average one-point turbulence production rate is in approximate equilibrium with the average turbulence dissipation rate at a given y. This is a region of distances y from the bottom wall (where y = 0) such that δ ν ≪ y ≪ δ (in the limit Re τ = δ/δ ν ≫ 1) and where, classically, the mean flow velocity U = (U 1 , 0, 0) is expected to be logarithmic (e.g. see [START_REF] Pope | Turbulent Flows[END_REF]. Whilst previous works have suggested some not insignificant deviations from a log dependence on y of U 1 (e.g. see [START_REF] Vassilicos | The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow[END_REF], in this work we assume that the log law accounts for most of U 1 which implies that

DNS data
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Π U = ∂ ∂r1 (δU 1 ⟨|δu| 2 ⟩) is close to 0 in the region δ ν ≪ y ≪ δ if r 2 ≪ 2y because δU 1 = uτ κ ln 1+r2/y
1-r2/y ≈ 0 (κ is the von Kármán dimensionless coefficient and note that wall blocking implies that r 2 is necessarily smaller or equal to 2y.) The DNS data confirm the prediction that Π v U is close to zero, see figure 1(c,d). We also make the assumption that turbulence is well mixed in this region and therefore assume that the physical-space divergence term T v u + T v p is negligible. Whilst the DNS data support this assumption, see figure 1 We therefore neglect both Π v U and T v u + T v p from equation 2.2 and are left with

Π v ≈ P v + D v x + D v r -ε v (4.1)
for r 2 ≪ 2y in the intermediate layer δ ν ≪ y ≪ δ.

By application of the Gauss divergence theorem, the interscale transfer rate takes the form

Π v = 3 4π ⟨ δu • r r |δu| 2 ⟩dΩ r ≡ S 3 (r, y) r (4.2)
where Ω r is the solid angle in r space and r ≡ r/|r|. By distinguising between radial and solid angle integrations in r-space, the viscous diffusion terms become

D v x + D v r = 3ν 8πr 3 r 0 ρ 2 d 2 S 2 dy 2 (ρ, y)dρ + 3ν πr dS 2 dr (r, y) (4.3)
where S 2 (r, y) ≡ ⟨|δu| 2 ⟩dΩ r .

(4.4)

In FD TCF the production term P v is obtained by applying the integral operation

3 4πr 3 S(r) d 3 r on -2⟨δu 2 δu 1 ⟩ ∂δU1 ∂r2 -⟨(u + 2 +u - 1 )δu 1 ⟩ ∂δU1 ∂y .
Targeting again the intermediate region δ ν ≪ y ≪ δ where the log law dU1 dy ≈ uτ κy might be considered to be a good approximation in the limit δ/δ ν ≫ 1 (κ is the von Kármán dimensionless coefficient), the two-point production term becomes

P v ≈ - u 3 τ κy 3 4πr 3 r 0 ρ 2 S 12 (ρ, y) u 2 τ - S 1×2 (ρ, y) u 2 τ dρ (4.5)
in this intermediate region, where

S 12 (r, y) ≡ 2 ⟨δu 2 δu 1 ⟩ 1 - r 2 2y 2 -1 dΩ r (4.6)
and

S 1×2 (r, y) ≡ ⟨(u + 2 + u - 2 )δu 1 ⟩(r 2 /y) 1 - r 2 2y 2 -1 dΩ r . (4.7)
We expect S 1×2 (r, y) to be much smaller in magnitude than S 12 (r, y), in fact even close to vanishing, because of the expected decorrelation between wall-normal velocity fluctuations effectively larger than r (i.e. u + 2 + u - 2 ) and streamwise velocity fluctuations effectively smaller than r (i.e. δu 1 ). This is confirmed by the DNS data in figure 2, which also show that S 12 (r, y) is negative for all r ⩽ 2y irrespective of y (because of wall blocking, r cannot be larger than 2y, and because of the integrand's singularity in the definitions of S 1×2 (r, y) and S 12 (r, y) we plot them for r ⩽ 2y -8δ ν throughout the paper). In the intermediate region where the log law of the wall might be expected to hold we therefore have a positive two-point production term given, to good approximation, by In this equation, the first term on the left-hand side is the interscale transfer rate, the second and third terms on the left-hand side are the viscous diffusion terms and the second term on the right-hand side is the two-point turbulence production rate. Before making use of this equation in the section after next, we look closer into the positive sign of the two-point turbulence production.

P v ≈ - u 3 τ κy 3 4πr 3 r 0 ρ 2 S 12 (ρ,

Two-point turbulence production

P v represents the rate with which turbulent kinetic energy is gained or lost by scales smaller than r if P v is respectively positive or negative. Of course, we may expect energy to be gained in some r directions and lost in some other r directions: P v represents the rate with which the aggregate energy averaged over all directions is gained or lost at scales smaller than r by the linear effects of mean flow gradients on the turbulence. This is not a non-linear interscale mechanism relating to a turbulence cascade which is, in fact, represented by Π v .

Turbulence production results from the interplay of non-isotropy in the form of nonzero Reynolds shear stresses with the mean flow gradient. In FD TCF the one-point Reynolds shear stress is ⟨u 1 u 2 ⟩ and it interacts with the mean flow gradient dU1 dx2 = dU1 dy to give the one-point turbulence production rate -⟨u 1 u 2 ⟩ dU1 dy which is positive (i.e. creation of turbulent kinetic energy) because ⟨u 1 u 2 ⟩ is negative. The negative sign of ⟨u 1 u 2 ⟩ results from the predominance of turbulent transport towards the wall of forward streamwise fluctuating velocities and of turbulent transport away from the wall of backward streamwise fluctuating velocities. These turbulent momentum fluxes are partly caused by sweeps in the case of transport towards the wall and ejections in the case of transport away from the wall [START_REF] Wallace | Quadrant Analysis in Turbulence Research: History and Evolution[END_REF][START_REF] Kline | Quasi-coherent structures in the turbulent boundary layer. i-status report on a community-wide summary of the data[END_REF]) and lead to the well-known increase by turbulence of wall shear stress and skin friction drag.

The two-point Reynolds shear stress ⟨δu 1 δu 2 ⟩ results from anisotropies at scales comparable to r and smaller and relates to the one-point shear stress by

⟨δu 1 δu 2 ⟩ = (⟨u + 1 u + 2 ⟩ -⟨u + 1 u - 2 ⟩) + (⟨u - 1 u - 2 ⟩ -⟨u - 1 u + 2 ⟩).
(5.1)

One can expect the two-point Reynolds shear stress to have the same sign as the onepoint shear stresses at ξ + and ξ -(which are known to be negative in FD TCF) if the magnitudes of the two-point correlations ⟨u and we therefore define, for initial simplicity of interpretation, a two-point Reynolds shear stress integrated over the solid angle in r-space as follows: S 12 (r, y) ≡ ⟨δu 2 δu 1 ⟩dΩ r . Inheriting the sign of the one-point Reynolds shear stress means for the two-point Reynolds shear stress that sweeps and ejections are contributing to its negative sign.

Defining additionally ⟨u

+ 2 u + 1 ⟩dΩ r = ⟨u - 2 u - 1 ⟩dΩ r ≡ R 12 (y, r) and ⟨u + 2 u - 1 ⟩dΩ r = ⟨u - 2 u + 1 ⟩dΩ r ≡ C 12 (r, y), relation 5.1 leads to S 12 (r, y) = 2 R 12 (y, r) -2 C 12 (r, y) (5.
However the two-point correlation C 12 (r, y) reduces the proportion of this contribution. and for all wall distances tested, the conditional correlations are increasing functions of r but positive when the condition is anti-alignement and negative when the condition is alignment. Anti-alignment, which is not so expected within sweeps and ejections (but may be linked to sweep-ejection pairs), increases the magnitude of the negative value of S 12 (r, y), particularly at the larger separations r, whereas alignment, presumably more present within sweeps and ejections, actually contributes to reduce the magnitude of the negative value of S 12 (r, y). As a result, the part of -S 12 (r, y) that is conditional on aligned fluctuating velocities is smaller than the part of -S 12 (r, y) which is conditional on anti-aligned fluctuating velocities, particularly at values of r larger than the Taylor length-scale (see figure 4). The actual role of the Taylor length appears in the following section.

The two-point Reynolds shear stress determines two-point turbulence production via S 12 (r, y) in the intermediate y-region (see equation 4.8). Our results on S 12 (r, y), R 12 (y, r) and C 12 (r, y) and their signs carry over qualitatively to S 12 (r, y), R 12 ≡ 

2 ⟨u + 2 u + 1 ⟩[1 -( r2 2y ) 2 ] -1 dΩ r and C 12 (r, y) ≡ 2 ⟨u + 2 u - 1 ⟩[1 -( r2 2y ) 2 ] -1 dΩ r (with

Interscale transfer rate

Having analysed the production term in the scale-by-scale turbulence energy balance 4.1

we now turn our attention to the interscale transfer rate 4.2 and the viscous diffusion terms 4.3. We adapt to the scale-by-scale turbulence energy balance 4.9 (which we derived from 4.1) the matched asymptotic expansion approach that [START_REF] Lundgren | Kolmogorov two-thirds law by matched asymptotic expansion[END_REF] used to study freely decaying homogeneous isotropic turbulence, a very different flow from FD TCF.

The starting point is the hypothesis that S 2 , S 3 and S 12 have similarity forms, namely

S 2 (r, y) = v 2 (y)s 2 (r/l(y), y) (6.1) S 3 (r, y) = v 3 (y)s 3 (r/l(y), y) (6.2) S 12 (r, y) = v 2 (y)s 12 (r/l(y), y) (6.3)
in terms of a characteristic velocity v and a characteristic length l both of which depend on wall-normal distance y. In the following two subsections, this hypothesis is made for small scales r ≪ l o in terms of an inner characteristic velocity v = v i and an inner characterisitic length l = l i and is also made for large scales r ≫ l i in terms of an outer characteristic velocity v = v o and outer characteristic length l = l o .

From the one-point balance between average turbulence production -⟨u 1 u 2 ⟩ dU1 dy and average turbulence dissipation in the intermediate range δ ν ≪ y ≪ δ it is classically claimed, by assuming validity of the log law for the mean flow and its consequence on the one-point Reynolds shear stress, that the turbulence dissipation rate equals u 3 τ /(κy) (e.g. see [START_REF] Pope | Turbulent Flows[END_REF]. Even though there are deviations from both the log law and this dissipation scaling (e.g. [START_REF] Dallas | Stagnation point von Kármán coefficient[END_REF]; [START_REF] Vassilicos | The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow[END_REF]), we use here the relation ε v = 4u 3 τ /(κy) as an acceptable approximation (in all figures, however, ε v is computed from the numerical data).

With ε v = 4u 3 τ /(κy) and similarity forms 6.1, 6.2 and 6.3, the balance 4.9 becomes κ 4

v 3 (y) u 3 τ s 3 (r/l(y)) r/y - 3κy 2 32πr 3 y + r 0 ρ 2 d 2 [ v 2 (y) u 2 τ s 2 (ρ/l(y))] dy 2 dρ - 3κy 2 4πry + d dr v 2 (y) u 2 τ s 2 (r/l(y)) ≈ -1 - 3 16πr 3 r 0 ρ 2 v 2 (y) u 2 τ s 12 (ρ/l(y))dρ (6.4)
where y + ≡ y/δ ν = u τ y/ν is a naturally appearing local Reynolds number. The functions s 2 , s 3 and s 12 have also explicit dependencies on y in equations (6.4), (6.5) and (6.10) which are omitted to lighten notation.

In the limit y + ≫ 1 within the intermediate range δ ν ≪ y ≪ δ, which of course also requires the limit Re τ = δ/δ ν ≫ 1, we consider separately outer similarity with outer variables v = v o and l = l o for r ≫ l i and inner similarity with inner variables v = v i and l = l i for r ≪ l o .

Outer similarity

For r large enough, i.e. r ≫ l i (y) (where the inner length-scale l i is to be determined), the most natural choice for outer variables is v = v o = u τ and l = l o = y given that the distance to the wall should somehow determine the size of large eddies and that their characteristic velocity should scale with the skin friction velocity. With these outer variables, equation 6.4 becomes

κ 4 s 3 (r/y) r/y - 3κy 2 32πr 3 y + r 0 ρ 2 d 2 [s 2 (ρ/y)] dy 2 dρ - 3κy 2 4πry + d dr [s 2 (r/y)]
≈ -1 -3 16πr 3 r 0 ρ 2 s 12 (ρ/y)dρ (6.5)

In the limit y + ≫ 1, viscous diffusion (the second and third terms on the left hand side) tends to 0 as 1/y + compared to the other terms. This equation therefore suggests outer asymptotic expansions in integer powers of 1 y + , which means that the outer similarity functions s 2 , s 3 and s 12 may be approximated as

s o 2 (r/y, y + ) = s o,0 2 + 1 y + s o,1 2 + ... (6.6) s o 3 (r/y, y + ) = s o,0 3 + 1 y + s o,1 3 + ... (6.7) s o 12 (r/y, y + ) = s o,0 12 + 1 y + s o,1 12 + ... (6.8)
with leading orders obeying κ 4

s o,0 3 (r/y) r/y ≈ -1 - 3 16πr 3 r 0 ρ 2 s o,0
12 (ρ/y)dρ. (6.9)

The leading order outer scale-by-scale energy balance is therefore a balance between interscale transfer, turbulence dissipation and two-point turbulence production. (Turbulence dissipation appears in this outer balance essentially because the scale-by-scale energy balance that we consider concerns the sphere-averaged second order structure function which is cumulative with increasing r.)

Inner similarity

For r small enough, i.e. r ≪ l o = y, we seek inner variables of the form

v 2 i = v 2 o ( 1 y + ) a = u 2 τ ( 1 y + ) a and l i = l o ( 1 y + ) b = y( 1 y + ) b
where the exponents a, b are positive because inner variables should tend to 0 relative to outer ones in the limit where the local Reynolds number y + tends to infinity. With such variables, equation 6.4 becomes

κ 4 1 y + 3a 2 -b s 3 (r/l i ) r/l i -O 1 y + a+3-2b - 3κ 4π 1 y + a+1-2b s ′ 2 (r/l i ) r/l i ≈ -1 - 3 16πr 3 r 0 ρ 2 1 y + a s 12 (ρ/l i )dρ (6.10)
where s ′ 2 (r/l i ) is the derivative of s 2 with respect to r/l i . In the limit y + ≫ 1, the twopoint turbulence production rate tends to 0 as (1/y + ) a compared to the dissipation rate which is represented in this equation by -1 on the right hand side. At inner scales, the leading order scale-by-scale turbulence energy balance must therefore involve interscale energy transfer and viscous diffusion to balance dissipation, which implies 3a 2 -b = 0 = a+ 1-2b and therefore a = 1/2 and b = 3/4. In the limit y + → ∞, i.e. y + ≫ 1, this equation therefore suggests inner asymptotic expansions in integer powers of ( 1

y + ) a = ( 1 y + ) 1/2 ,
which means that the inner similarity functions s 2 , s 3 and s 12 may be approximated as

s i 2 (r/l i , y + ) = s i,0 2 + 1 y + 1/2 s i,1 2 + ... (6.11) s i 3 (r/l i , y + ) = s i,0 3 + 1 y + 1/2 s i,1 3 + ... ( 6 
.12)

s i 12 (r/l i , y + ) = s i,0 12 + 1 y + 1/2 s i,1 12 + ... (6.13)
with leading orders obeying κ 4

s i,0 3 (r/l i ) r/l i ≈ -1 - 3κ 4π s i,0 ′ 2 (r/l i ) (6.14)
where s i,0 ′ 2 (r/l i ) is the derivative of s i,0 2 with respect to r/l i . The leading order inner scaleby-scale energy balance is therefore a balance between interscale transfer, turbulence dissipation and viscous diffusion.

The values a = 1/2 and b = 3/4 that we derived imply that the inner variables are in fact Kolmogorov inner variables, i.e. v i = u η ≡ (νε v ) 1/4 and l i = η ≡ (ν 3 /ε v ) 1/4 (using

ε v = u 3 τ /(κy)).

Intermediate matching

Starting with the second order structure function S 2 , matching the leading term u 2 τ s o,0 2 (r/y) of its outer expansion for r ≫ η with the leading term u 2 τ ( 1 y + ) 1/2 s i,0 2 (r/η) of its inner expansion for r ≪ y leads to

S 0 2 ∼ (ε v r) 2/3 (6.15)
as overlapping part of the leading order in the intermediate range η ≪ r ≪ y.

Similarly,

S 0 12 ∼ (ε v r) 2/3 (6.16)
is the overlapping part of the leading order in the intermediate range η ≪ r ≪ y for S 12 .

It may be interesting to note, in passing, the difference compared to turbulence nonhomogeneities with negligible turbulence production but non-negligible spatial turbulence transport such as in certain turbulent wake regions where [START_REF] Chen | Scalings of scale-by-scale turbulence energy in nonhomogeneous turbulence[END_REF] have

shown that a second order structure function scales as ∼ K(r/L) 2/3 where K is the onepoint kinetic energy, L is an integral length scale, and turbulence dissipation does not scale as K 3/2 /L. Note that the K 3/2 /L scaling is effectively the scaling assumed here for ε v because, in the range δ ν ≪ y ≪ δ considered here, the turbulent kinetic energy scales as u 2 τ plus logarithmic corrections in y (see [START_REF] Townsend | The Structure of Turbulent Shear Flow[END_REF][START_REF] Dallas | Stagnation point von Kármán coefficient[END_REF]) which we neglect, and because there are integral length scales in FD TCF which are proportional to y, see [START_REF] Apostolidis | Scalings of turbulence dissipation in space and time for turbulent channel flow[END_REF]. The types of non-homogeneity considered by [START_REF] Chen | Scalings of scale-by-scale turbulence energy in nonhomogeneous turbulence[END_REF] are opposite to the ones considered here where spatial turbulence transport is negligible but turbulence production is not.

To obtain the leading order of S 3 , and therefore of the interscale transfer rate Π v via equation 4.2, we use equations 6.9 and 6.14. From the leading order outer balance 6.9

follows

S o,0 3 ≈ -ε v r(1 -A(r/y) 2/3 ) (6.17)
where A is a dimensionless constant, and from the leading order inner balance 6.14 follows

S i,0 3 ≈ -ε v r(1 -B(r/η) -4/3 ) (6.18)
where B is another dimensionless constant. The composite leading order (see [START_REF] Van Dyke | Perturbation Methods in Fluid Mechanics[END_REF][START_REF] Cole | Perturbation Methods in Applied Mathematics[END_REF][START_REF] Hinch | Perturbation Methods[END_REF] written directly for the interscale transfer

Π v = S 3 /r is S o,0 3 /r plus S i,0 3 /r minus their common part -ε v , i.e. Π v ≈ -ε v (1 -A(r/y) 2/3 -B(r/η) -4/3 ) (6.19)
where we now omit superscripts for ease of notation.

This last equation has the following two verifiable implications, both of which are relatively easy to verify with the DNS data at our disposal: firstly it implies that the value of r where Π v /ε v is minimal and closest to the Kolmogorov equilibrium value -1 is

r min ∼ δ ν y ∼ λ (6.20)
based on the definition λ 2 ≡ 10νK/ε (already used by [START_REF] Dallas | Stagnation point von Kármán coefficient[END_REF] in the context of FD TCF), and on K ∼ u 2 τ and ε ∼ u 3 τ /y being good enough approximations in the present context for δ ν ≪ y ≪ δ. Conclusions such as 6.19 and 6.20 have recently been obtained by Zimmerman et al. (2022) for the centreline of FD TCF and central axis of turbulent pipe flow where turbulence production is effectively absent.

Secondly, 6.19 also implies that the value (

Π v /ε v ) min of Π v /ε v at r = r min obeys 1 + (Π v /ε v ) min ∼ y + -1/3 ∼ Re -2/3 λ (6.21)
where Re λ = √ Kλ/ν. Consistently with our averages over spheres in r-space, these definitions of λ and Re λ ignore some anisotropies of FD TCF. It is possible to define different

Taylor lengths for different directions so as to take explicit account of anisotropies, which is an approach we have taken in another study [START_REF] Yuvaraj | Analysis of energy cascade in wall-bounded turbulent flows[END_REF]). It may be noteworthy that the Corrsin length [START_REF] Sagaut | Homogeneous Turbulence Dynamics[END_REF] does not appear spontaneously from our analysis whereas the Kolmogorov and Taylor lengths do. The reason for this absence of the Corrsin length is that it equals κy at the approximation level of our theory in the intermediate layer δ ν ≪ y ≪ δ and is therefore comparable to the outer bound of the range r ⩽ 2y considered here.

In conclusion, the non-homogeneous but statistically stationary case of FD TCF in the intermediate layer δ ν ≪ y ≪ δ is such that Kolmogorov equilibrium is achieved asymptotically around λ and therefore not quite in an inertial range given that λ depends on viscosity and that there is a systematic departure from equilibrium when moving away from λ, both towards L and towards η, see equation 6.19. (Note, however, that the nonzero deviation from Kolmogorov equilibrium as Reynolds number tends to infinity for a fixed small value of r/y or for a fixed large value of r/η (necessarily smaller than λ/η in the limit) is small). This is the same conclusion that the analysis of Lundgren ( 2002) reached for freely decaying, i.e. non-stationary, but statistically homogeneous and isotropic turbulence far from initial conditions. Two-point turbulence production (which increases with r as confirmed in the following section) and its variation with wall-normal distance play a similar role in FD TCF as the rate of decay of the second order velocity structure function (which increases with r because unsteadiness increases with r) and its variation with time.

Comparison with DNS data for FD TCF

In this section we compare the theory of the previous sections with the DNS data described in section 3.

In figure 5(a,b) we plot the two-point turbulence production rate P v and the interscale transfer rate Π v , both normalised by the turbulence dissipation rate ε v . We plot them versus r/λ because of our prediction that the value of r, where Π v /ε v is minimal scales with λ. The maximum values of r in the plots are bounded by 2y because of wall-blocking.

We see that the normalised two-point turbulence production rate P v /ε v increases from close to 0 to a little under 1 as r increases from 0 to 2y. This is evidenced for a wide range of wall-normal distances y and for both Reynolds numbers at our disposal. It makes sense that the two-point turbulence production acts as a generation of turbulent kinetic energy at the larger r scales but decreasingly so at smaller and smaller scales till it vanishes at the very smallest ones.

It is also clear from figure 5(a,b) that Π v is negative for all scales and wall-distances, indicating a forward, on average, energy cascade for r < 2y. Furthermore, Π v /ε v has a minimum at r min close to λ for a wide range of y within δ ν ≪ y ≪ δ and for both Reynolds numbers. This confirms our prediction 6.20 as can be seen in figure 6(a) where we plot, in blue, r min /λ versus y + for both Reynolds numbers and find that r min ≈ 1.2λ. One also The imbalance seen in figure 5 between Π v and ε v is clear indication that other processes in the scale-by-scale energy budget are active. The theoretical arguments of subsections 6.1 and 6.2 concluded that the scale-by-scale balance is approximately Π v -P v ≈ -ε v at the outer scales and Π v -D v r ≈ -ε v at the inner scales. This prediction is made in the limit Re τ = δ/δ ν ≫ 1 and δ ν ≪ y ≪ δ and, as the values of Re λ suggest, the Reynolds numbers in the DNS data we are using may not be high enough. Nevertheless, figure 7(a,b) does reveal some tendency for (Π v -P v )/ε v to collapse as a function of r/y and tend towards -1 at the higher values of r/y as y + grows, in particular for the higher of our two Reynolds numbers Re τ . Furthermore, figure 7(c,d) reveals some tendency for (Π v -D v r )/ε v to collapse as a function of r/η as y + grows and even to tend towards -1 at the smallest values of r/η.

Finally, we compare the high Reynolds number predictions 6.15, 6.16 and 6.19 with the DNS data. In figure 8(a, b) we plot S 2 /u 2 τ (r/y) 2/3 and S 12 /u 2 τ (r/y) 2/3 versus r/y to test outer scalings and in figure 8(c,d) we plot the same quantities versus r/η to test inner scalings. Note that we use u 3 τ /y as an estimate of ε v . Our DNS data lend more support to our r 2/3 prediction for S 12 than for S 2 , and a better outer collapse in terms of r/y of S 12 /u 2 τ (r/y) 2/3 than S 2 /u 2 τ (r/y) 2/3 . However the inner collapse in terms of r/η appears better for S 2 /u 2 τ (r/y) 2/3 than S 12 /u 2 τ (r/y) 2/3 . At any rate, the values of Re λ are quite low in the DNS data used here for a conclusive comparison between these data and theoretical predictions made in the double limit Re τ → ∞, y + → ∞ (i.e. Re λ ∼ λ/δ ν ∼ (y + ) 1/2 → ∞) with the constraint y ≪ δ. In fact, even at the very lowest/leading order, our predictions 6.15, 6.16 are incomplete as they should have 

Interscale transfer decompositions

The two main conclusions of the previous sections concern (i) the importance of the Wall-normal distance is increased from light to dark colors.

namely

Π v = Π v ⇒ + Π v ⇄ = 3 4π ⟨ δu • r r |δu| 2 ⟩ ⇒ dΩ r + 3 4π ⟨ δu • r r |δu| 2 ⟩ ⇄ dΩ r (8.1)
where Π v ⇒ and Π v ⇄ are respectively equal to the first and second terms on the left hand side which are calculated using averages ⟨...⟩ ⇒ conditional on u + • u -> 0 and averages skewness diminishes with increasing r irrespective of wall distance y and, consistently, ⟨δu • r⟩ ⇄ dΩ r tends to 0 with increasing r. Note, finally, that it is far more likely to find aligned (u + • u -> 0) than anti-aligned (u + • u -< 0) pairs as figure 11 shows.

⟨...⟩ ⇄ conditional on u + • u -< 0.
The third observation in figure 10 Future studies of interscale transfers in FD TCFs will need to take these anisotropies into account for a finer description of the physics.

Finally, comparing the plots of Π v in figure 5 with those of Π v ⇒ and Π v ⇄ in figure 13 shows that Π v ⇄ dominates over Π v ⇒ at scales of the order of λ and larger and is mostly responsible for the value of Π v . At smaller scales, however, Π v ⇒ becomes equally important and of the same negative sign as Π v ⇄ so that the actual negative value of Π v cannot be accounted for by only one or the other: the interscale turbulence energy transfers of both aligned and anti-aligned fluctuations matter.

Homogeneous/Inhomogeneous energy transfer decomposition

As already mentioned at the start of sub-section 8.1, the right hand side 3 4π ⟨ 

∂ ∂r i δu i |δu| 2 = ∂ ∂r i δu i |u + | 2 + |u -| 2 -2 ∂ ∂r i δu i u -• u + (8.3)
where the first term on the right hand side can be rigorously recast into a gradient in centroid x-space leading to

∂ ∂r i δu i |δu| 2 = 1 2 ∂ ∂x i u + i |u + | 2 + u - i |u -| 2 -u - i |u + | 2 -u + i |u -| 2 -2 ∂ ∂r i δu i u -• u + .
(8.4) the average ⟨Π I ⟩ is indeed zero and the interscale turbulent energy transfer rate is only

Π I ≡ 1 2 ∂ ∂xi u + i |u + | 2 + u - i |u -| 2 -u - i |u + | 2 -u + i |u -| 2 is
Π v /ε v , Π v I /ε v , Π v H /ε v ( 
accountable to Π H ≡ -2 ∂ ∂ri (δu i u -• u + ) on average.
Integrating Π, Π I and Π H over the sphere of radius r in r-space to obtain Π v , Π v I and Π v H respectively and then applying the Gauss divergence theorem we obtain

Π v = Π v I + Π v H = 3 4π ⟨ δu • r r (|u + | 2 + |u -| 2 )⟩dΩ r -2 ⟨ δu • r r (u -• u + )⟩dΩ r . (8.5)
This decomposition is partly related to the one of sub-section 8.1 because Π v H is linearly dependent on correlations between δu • r and u -• u + , and the sign of u -• u + indicates whether velocity fluctuation pairs are aligned or anti-aligned which is the basis of decomposition 8.1. Whilst it follows immediately from equation 8.4 that Π v I = 0 if the term inside the x-gradient in that equation is statistically homogeneous, equation 8.5

shows that

Π v I = 0 if δu • r and (|u + | 2 + |u -| 2 ) are uncorrelated and if (|u + | 2 + |u -| 2 )
is statistically homogeneous. Of course this is not the only and necessary way for Π v I to vanish. In particular, there may be cases of non-homogeneity for which Π v I vanishes too, for example cases where Π v I vanishes but Π I does not.

In figure 14 we plot the terms Π v I and Π v H in 8.5 normalised by the volume integral of the dissipation. For both Reynolds numbers, we observe that Π v H dominates and describes almost perfectly the full interscale transfer Π v for all scales r ⩽ 2y in the intermediate range of the channel (y between multiples of δ ν and about half δ). The average interscale transfer from large to small scales is nearly fully described by the negative value of Π v H and the inhomogeneity-related interscale transfer rate Π v I is close to zero. In a different non-homogenous turbulent flow, the turbulent wake of a square prism, Alves Portela et al. (2020) found a significant contribution of the inhomogeneityrelated interscale transfer rate to the total interscale transfer rate. It is therefore not trivial that in FD TCF Π v I is negligible compared to Π v H in spite of the statistical nonhomogeneity of the FD TCF. However, this is partly an artifact of the integration over spheres in r-space which we apply to Π I to obtain Π v I . If we lift this integration and use the DNS data to compute Π I (y, r 1 , r 2 , r 3 ) as a function of r 2 /y for various values of wall- normal distance y and various values of r 1 and r 3 , we find (figure 15) that Π I (y, r 1 , r 2 , r 3 ) is close to 0 and negligible in most cases except for "attached eddies", i.e. for values of r 2 relatively close to 2y (wall blocking implies r 2 ⩽ 2y) where it is positive, thereby potentially reflecting interscale transfer from small to large scales (similarly to [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF][START_REF] Cho | Scale interactions and spectral energy transfer in turbulent channel flow[END_REF]) except for r 2 near-equal to 2y where it is negative. The non-vanishing inhomogeneity-related interscale transfer of "attached eddies" is averaged out when we integrate Π I to obtain Π v I .

y + • Π/ε, Π I /ε, Π H /ε r 2 /y
Returning to Π v H and the fact that it has very similar dependencies on r and y as Π v , we note in particular that Π v H has a minimum at the near same r ≈ r min where Π v has a minimum, and even that the minimum value of Π v H closely obeys the same relation 6.21 that Π v min obeys (see figure 16). As seen in section 6, the two-point separation scale r = r min demarcates between smaller values of r where Π v is balanced by dissipation and viscous diffusion and larger values of r where Π v is balanced by dissipation and two-point turbulence production. However, the theory of section 6, which is conclusive for Π v , has no say on Π v H and can therefore not explain our observation that Π v H behaves very much like Π v . We therefore adopt a different point of view from the one of section 6 and look at PDFs of instantaneous (in time) and local (in (x, z) planes) interscale transfer rates

π v ≡ 3 4π δu•r r |δu| 2 dΩ r , π v H ≡ -3 2π δu•r r (u -•u + )dΩ r and π v I ≡ 3 4π δu•r r (|u + | 2 +|u -| 2 )dΩ r . Clearly, Π v = ⟨π v ⟩, Π v H = ⟨π v H ⟩ and Π v I = ⟨π v I ⟩.
In figure 17 However, the skewnesses of the PDFs of π v and of π v H grow from negative values close to -10 at the smallest separations r to values between -1 and even slightly positive as r grows (see plots (a), (b), (e) and (f) in figure 18). This evolution of the skewnesses of these two PDFs counteracts their overall drift towards increasingly negative values and acts to bring Π v and Π v H back towards zero as r increases. The minima of Π v and Π v H occur as a result of these two counteracting tendencies, the overall drift dominating at scales r smaller than r min and causing Π v and Π v H to decrease, the decreasingly skewed PDF dominating at scales larger than r min and causing Π v and Π v H to increase.

r min(•) /λ (a) Π v ε v Π v H ε v 10 2 Re λ 10 0 1 + (Π (•) /ε) min (b) Π v ε v Π v H ε v ∼ Re -2/3 λ
The PDF of the inhomogeneity-related interscale transfer rates π v I is radically different as far as skewness is concerned (see figure 18). Whilst the PDFs of both π v and π v H are skewed towards forward cascade events at small r and evolve with increasing r towards not being skewed or even being slightly skewed towards inverse cascade events, the PDF of π v I is highly skewed towards inverse cascade events at small r and evolves very quickly with increasing r towards not being very skewed. It remains only slightly skewed (positively or negatively) for all permissible r larger than about 2λ (the word "permissible" refers to r ⩽ 2y). The difference is not only that the PDF of π v I is oppositely skewed to the PDFs of π v and π v H at small r, the equally if not even more important difference is that, as r increases, the skewness of π v I evolves much faster towards small absolute values (which it actually reaches at r ≈ 2λ) than the skewnesses of π v H and π v which evolve much more gradually towards values around and larger than -1.

On the other hand, the PDF of π v I is similar to the PDFs of π v and π v H in that they all have an overall drift to the left, i.e. towards forward cascading negative values, as the separation scale r increases (see inserts of plots in figure 17). In the case of the inhomogeneity-related interscale energy transfer rate, this overall PDF drift towards forward cascade events is counteracted at small separations r by the significant PDF skewness towards inverse cascade events leading to small values of Π v I . As r increases, the drift slows down, and the skewness quickly drops to small absolute values keeping values of Π v I small. In conclusion, the statistics of the inhomogeneity-related interscale transfer rate π v I are very different from those of π v H and π v . The PDFs of π v I are characterised by a skewness towards inverse cascade events at the small scales in particular, whereas the PDFs of both π v H and π v are characterised by a skewness towards forward cascade events at most scales.

These PDFs result in relatively small values of Π v I and in very similar dependencies on relative motions (sub-section 8.1). The drift of the PDFs of π v H and π v towards inverse cascades is in fact, a recentering of the PDFs so that their peak values move towards zero and is mostly present in the r-range where Π v is balanced by turbulent dissipation rate and viscous diffusion (see section 6). At these small scales comparable to λ and below, both aligned and anti-aligned fluctuation pairs contribute significantly to Π v (see end of sub-section 8.1) and this may be related to the recentering of the PDFs around zero interscale transfer rate.

Π v,p /ε v , Π v,p I /ε v , Π v,p H /ε v (c)

Conclusions

In this paper, we have considered fully developed turbulent channel flow (FD TCF) and have made theoretical predictions concerning its scale-by-scale energy balance averaged over spheres in r-space in the double limit Re τ → ∞, y + → ∞ (i.e. Re λ ∼ λ/δ ν ∼ (y + ) 1/2 → ∞) with the constraint y ≪ δ. At leading order, both the inner and the outer scale-by-scale energy balances involve interscale turbulence energy transfer and turbulence dissipation, but the inner balance is completed with viscous diffusion, whereas the outer balance is completed with two-point turbulence production.

Previous studies already analysed the Kármán-Howarth-Monin-Hill (KHMH) equa-tion for FD TCF. For example, [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF][START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF] examined the energy flux path in reduced spaces r 1 , r 3 and y with r 2 = 0 and r 2 , r 3 and y with r 1 = 0 (or r 1 = Const in the case of [START_REF] Gatti | An efficient numerical method for the generalised Kolmogorov equation[END_REF]). The omission of one scale-space direction prevents this approach from accessing the full interscale transfer picture. Our methodology is different and complementary as it does not omit any scale-space direction but integrates over spheres in full 3D scale space. Whilst we lose the ability to distinguish between directions in scale space, we gain the capability to access decisive information on interscale energy transfer and forward/inverse cascade which occur normal to the sphere's surface in scale space.

The . Viscous diffusion is negligible on the large r side of this peak whereas turbulence production is negligible on the small r side of the peak. A similar peak (where production's role is played by the time derivative term defined in section 2) and similar scalings hold in freely decaying homogeneous isotropic turbulence far from initial conditions [START_REF] Lundgren | Kolmogorov two-thirds law by matched asymptotic expansion[END_REF][START_REF] Obligado | The non-equilibrium part of the inertial range in decaying homogeneous turbulence[END_REF][START_REF] Meldi | Analysis of lundgren's matched asymptotic expansion approach to the k ármán-howarth equation using the eddy damped quasinormal markovian turbulence closure[END_REF]) but for slightly different though related quantities given that, here, all the terms in the scale-by-scale turbulence energy budget are averaged over spheres of radius r in r-space.

The DNS data show that two-point turbulence production is positive for all r ⩽ 2y and all y in the intermediate layer, and that it increases with two-point separation distance r and decreases with increasing y. The two-point turbulence production is positive mainly because one-point turbulence production is positive even though two-point correlations conditioned on more or less aligned fluctuating velocities act to reduce this positivity.

Interestingly, pairs of aligned fluctuating velocities may be expected mostly within sweeps and ejections, which are regions with a major contribution to the positivity of onepoint turbulence production [START_REF] Wallace | Quadrant Analysis in Turbulence Research: History and Evolution[END_REF][START_REF] Kline | Quasi-coherent structures in the turbulent boundary layer. i-status report on a community-wide summary of the data[END_REF][START_REF] Pope | Turbulent Flows[END_REF]. The positivity of two-point turbulence production is in fact enhanced by two-point correlations conditioned on more or less anti-aligned fluctuating velocities, particularly at larger separations r.

The two-point production rate is a functional (see 4.8) of the second order anisotropic structure function S 12 defined by 4.6. This structure function is identically zero in homogeneous isotropic turbulence, but in the intermediate layer of FD TCF the present theory predicts a leading order (ε v r) 2/3 ∼ u 2 τ (r/y) 2/3 behaviour for S 12 in the range η ≪ r ≪ y. The DNS data provide some, though not entirely conclusive, confirmation for this high Reynolds number scaling but the values of Re λ are probably not high enough (between 50 and 120) in the DNS data used here for which Re τ is about 2000 in one case and about 1000 in the other.

The present asymptotically high Reynolds number theory also leads to a leading order scaling for the second order structure function S 2 which is similar to the centreline region of some turbulent wakes in terms of the r 2/3 part of the scaling but different in terms of the prefactor which is not proportional to the 2/3 power of a turbulence dissipation rate in the centreline region of those turbulent wakes (see [START_REF] Chen | Scalings of scale-by-scale turbulence energy in nonhomogeneous turbulence[END_REF]. Different types of non-homogeneity may lead to some important differences in Declaration of interests. The authors report no conflict of interest.

For

  our analysis we utilize the DNS data of[START_REF] Lozano-Durán | Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascades[END_REF] for FD TCF at Re τ = 932 and 2003, (Re τ ≡ u τ δ/ν where ν is the kinematic viscosity, δ is the channel half-width, and u τ is the skin friction velocity obtained by averaging over time and over streamwise coordinate x and spanwise coordinate z at the channel's solid wall y = 0). The domain size for both simulations is L x = 2πδ in the streamwise and L z = πδ in the spanwise directions. The Navier-Stokes equations have been solved by integrating the evolution equations in terms of the wall-normal vorticity and the Laplacian of the wall-normal velocity for an incompressible fluid. The Fourier spectral method was used for the spatial discretization in the wall parallel directions. For the discretisation in the wall-normal direction, Chebyshev polynomials were used in the Re τ = 932 case whereas a seven-point compact finite difference scheme was used in the Re τ = 2003 case. Finally,

Figure 1 .

 1 Figure 1. (a) Turbulent transport Tu plus pressure-velocity term Tp, integrated over the volume of sphere with radius r, normalised by the volume integral of the two point dissipation rate ε as a function of r/λ for Reτ = 932, (b) T v u /ε v for Reτ = 2003 (Tp is unavailable from the recorded DNS data at Reτ = 2003), (c) volume integral of linear interscale transfer term divided with ε v Π v U /ε v for Reτ = 932, (d) for Reτ = 2003. Wall-normal distance is increased from light to dark colors (y + = 59 to 377 for Reτ = 932, y + = 82 to 665 for Reτ = 2003). The normalisation by the Taylor length λ (defined in subsection 6.3) is arbitrary in these plots.

  4. Scale-by-scale turbulent energy balance in the one-point average equilibrium range of FD TCF

  (a,b), it must be stressed that pressure plays an important redistributive role and that spatial energy transfer is not fully absent in the intermediate layer (e.g. Lozano-Durán & Jiménez 2014; Cimarelli et al. 2016; Lee & Moser 2019). The numerical details behind our calculations of normalised 3D integrals 3 4πr 3 S(r) d 3 r, and in particular of terms such as T v u = 3 4πr 3 S(r) T u d 3 r and T v p = 3 4πr 3 S(r) T p d 3 r, are given in the Appendix.
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 2 Figure 2. Ratios of S1×2 in orange colors and S2 in marine colors over S12 for different normalised scales r/y. Wall-normal distance is increased from light to dark colors as in figure 1. (a) Reτ = 932, (b) Reτ = 2003.

Figure 3 .

 3 Figure 3. (a, b) C12/| R12| integrated over the whole sphere in black lines, conditionally integrated over anti-aligned pairs in blue lines, and conditionally integrated over aligned pairs in red lines. (a) Reτ = 932, (b) Reτ = 2003. (c, d) Similarly for C12/|R12|. Wall-normal distance is increased from light to dark colors as in figure 1.

  2) in terms of solid angle-integrated one-point Reynolds shear stress R 12 (y, r) and solid angle-integrated two-point correlation C 12 (r, y). In figure 3(a,b) we use the DNS data to plot C 12 (r, y)/| R 12 (y)| versus r (black lines) for the two Reynolds numbers available and for different values of wall distance y. In all cases C 12 (r, y)/| R 12 (y, r)| is a monotonically increasing function of r, from C 12 (r, y)/| R 12 (y, r)| = -1 at r = 0 towards 0 with increasing r. It follows from 5.2 that the solid angle-integrated two-point Reynolds stress inherits the negative sign of the solid angle-integrated one-point Reynolds shear stress but with reduced magnitude because of the negative two-point correlation C 12 (r, y) which is smaller in magnitude than R 12 (y, r) for all y and all r ̸ = 0.

Figure 4 .

 4 Figure 4. (a, b) S12 integrated over the whole sphere in black lines, conditionally integrated over anti-aligned pairs in blue lines, and conditionally integrated over aligned pairs in red lines. (a) Reτ = 932, (b) Reτ = 2003. (c, d) Similarly for S12. Wall-normal distance is increased from light to dark colors as in figure 1. The Taylor length λ is defined in subsection 6.3.

  differences only at values of r close to 2y because of the factor [1 -( r2 2y ) 2 ] -1 in the integrands which tends to infinity for r 2 → 2y, see figures 3(c,d) and 4(c,d) and compare them, respectively, with figures 3(a,b) and 4(a,b)). The two-point turbulence production is therefore positive for all r ⩽ 2y and all y in the intermediate range mainly because one-point turbulence production is positive even though two-point correlations conditioned on aligned fluctuating velocities act to reduce this positivity. Two-point correlations conditioned on anti-aligned fluctuating velocities enhance the positive two-point turbulence production particularly at the larger separations r.

Figure 5 .

 5 Figure 5. Interscale transfer rate Π (blue lines) and production rate P (red lines), integrated over the volume of sphere with radius r, normalised by the volume integral of the two point dissipation rate ε as a function of r/λ. Wall-normal distance is increased from light to dark colors. (a) for Reτ = 932 and (b) for Reτ = 2003.

Figure 6 .

 6 Figure 6. (a) Values of r/λ where minima of Π v /ε v are observed as function of wall distance y + . (b) Values of 1 + (Π v /ε v )min in blue, as a function of Re λ . Dashed line shows a scaling of Re -2/3 λ . Circle markers for Reτ = 932, Square markers for Reτ = 2003.

Figure 7 .

 7 Figure 7. (a, b) (Π v -P v )/ε v as a function of r/y. (a) for Reτ = 932 and (b) for Reτ = 2003. (c, d) (Π v -D v )/ε v as a function of r/η for Reτ = 932 in (c) and Reτ = 2003 in (d). Wall-normal distance is increased from light to dark colors.

  Taylor length in defining the scale where the normalised interscale transfer rate Π v /ε v has a minimum and is closest to the equilibrium value Π v /ε v = -1 and (ii) the importance of sweeps and ejections but also of aligned and anti-aligned pairs of fluctuating velocities in determining the sign and magnitude of the two-point turbulence production rate P v . Looking at equation 4.2, we start this section by asking whether aligned and anti-aligned pairs of fluctuating velocities also directly affect the interscale transfer rate Π v . 8.1. Aligned/anti-aligned decomposition Equation 4.2 shows that a scale-space flux and a cascade from large to small or from small to large scales correspond to a negative or positive 3 4π ⟨ r•δu r |δu| 2 ⟩dΩ r and contributes a growth or decrease of TKE at scales r and smaller (see Chen & Vassilicos 2022). Local compression, i.e. δu•r < 0, causes local forward cascade and local stretching, i.e. δu•r > 0, causes local inverse cascade. Our observation that Π v is negative at all scales means that local compressions prevail at all scales, but are they mostly caused by aligned or antialigned pairs of fluctuating velocities? This question introduces our first decomposition,

Figure 8 .

 8 Figure 8. S12 in orange colors (multiplied by a factor of 3 for ease of comparison) and S2 in marine colors normalised with u 2 τ (r/y) 2/3 as a function of r/y in the first row (a, b) and of r/η in second row (c, d). Left column (a, c) is for Reτ = 932, right column (b, d) is for Reτ = 2003. Wall-normal distance is increased from light to dark colors.

Figure 9 .

 9 Figure 9. Rearrangement of equation 6.19 versus r/y. (a) for Reτ = 932, (b) for Reτ = 2003.Wall-normal distance is increased from light to dark colors.

Figure 10 .

 10 Figure 10. ⟨δu• r⟩dΩr integrated over the whole sphere in black lines, conditionally integrated over anti-aligned pairs in marine colors, and conditionally integrated over aligned pairs in orange colors. Wall-normal distance is increased from light to dark colors. (a) Reτ = 932, (b) Reτ = 2003. (c) r/λ positions of the minima/maxima observed in (a) as a function of wall-distance y + for Reτ = 932, similarly in (d) for Reτ = 2003.

Figure 11 .

 11 Figure 11. Joint probability distribution functions (JPDFs) of δu • r/|δu| and u -u + / |u + | 2 |u -| 2 . (a) For Reτ = 932 and wall-distance y + = 257, four different JPDFs with increasing scale r/λ = 0.38, 0.57, 1.05 and 2.91. (b) Similarly for Reτ = 2003 and wall-distance y + = 456, the JPDFs correspond to scales r/λ = 0.35, 0.56, 1.10 and 3.43. The joint PDFs are normalised with their maximum value. Above each JPDF, we also plot the conditional PDF of δu • r/|δu|, conditioned on aligned (red lines) and anti-aligned (blue lines) pairs.

Figure 12 .Figure 13 .

 1213 figure 10 versus wall distance for both DNS Reynolds numbers at our disposal. It is quite striking that, for all wall distances and both Reynolds numbers tried, ⟨δu • r⟩ ⇄ dΩ r and ⟨δu • r⟩ ⇒ dΩ r peak at r = r m close to the value r = r min where Π v /ε v peaks and is closest to the equilibrium -1 value. Even though r m drifts slightly from r min ≈ 1.2λ at relatively high wall-normal distances, the suggestion is that, in the layer δ ν ≪ y ≪ δ of FD TCF, Kolmogorov-like equilibrium may be achieved at those length scales r where aligned fluctuating velocities are stretching with their difference δu maximally or nearmaximally aligned with the separation vector r and where anti-aligned fluctuations are maximally or near-maximally skewed towards large negative values of δu • r. This is

  interpreted as an inhomogeneityrelated interscale turbulent energy transfer rate. In statistically homogeneous turbulence,

Figure 14 .

 14 Figure 14. Interscale transfer rate (blue lines), inhomogeneous part Π v I (red lines), and homogeneous part Π v H (green lines), all integrated over the volume of sphere and normalised by the dissipation rate integrated over the volume of the sphere as a function of r/λ. Wall-normal distance is increased from light to dark colors. (a) for Reτ = 932 and (b) for Reτ = 2003.

Figure 15 .

 15 Figure 15. Π (blue markers), ΠI (red lines) and ΠH (green lines) normalised with the two point dissipation rate ε versus the wall-normal scale r2 divided with y. (a) Reτ = 932, from left to right we increase the streamwise scale r1 and from top to bottom the spanwise scale r3. (b) Similarly for Reτ = 2003. Wall-normal distance is increased from light to dark colors.

  we plot examples of PDFs of π v , π v H and π v I for a couple of wall distances y within the intermediate range δ ν ≪ y ≪ δ and for different values of separation scale r in order to see how these PDFs evolve with varying r. As pointed out by Alves Portela et al.(2020), at r = 0 we haveΠ v = Π v H = Π v I = 0.As r progressively increases, the PDFs of

Figure 16 .

 16 Figure 16. (a) Values of r/λ where minima of Π v /ε v and minima of Π v H /ε v are observed as functions of wall distance y + . (b) Values of 1 + (Π v /ε v )min (in blue) and of 1 + (Π v H /ε v )min (in green), as functions of Re λ . Dashed line shows a scaling of Re -2/3 λ . Circle markers for Reτ = 932, square markers for Reτ = 2003.

Figure 17 .

 17 Figure 17. Probability density functions (PDFs) of (a, b): π v , (c, d): π v I and (e, f ): π v H normalised with their respective maximum probability. The values of the terms are normalised with their own standard deviation. From light to dark colors the scale r is increased. Left column: Reτ = 932, right column: Reτ = 2003. Inset is a zoom of the area close to the maximum probability in lin-lin axes.

Figure 18 .

 18 Figure 18. Skewness factor of π v in blue colors, πI v in red colors and of π v H in green colors as a function of r/λ, for different wall-normal locations. From light to dark colors the wall-distance y is increased. (a) for Reτ = 932 and (b) for Reτ = 2003.

Figure 19 .

 19 Figure 19. (a, b) Π v,e (blue lines), Π v,e I (red lines) and Π v,e H (green lines): averages of most intense events accounting for 1% of all events. (c, d) Π v,p (blue lines), Π v,p I (red lines) and Π v,p H (green lines): averages of most probable events accounting for 20% of all events. Left column (a, c) for Reτ = 932, right column (b, d) for Reτ = 2003. Wall-normal distance is increased from light to dark colors.

  second order structure function scalings, an issue which merits future attention. The nonhomogeneity in the intermediate layer of FD TCF is characterised by significant two-point turbulence production and negligible two-point turbulent transport and pressure-velocity terms, whereas the non-homogeneity on the centreline of turbulent wakes is inverse, i.e. turbulent production is negligible but turbulent transport and pressure-velocity terms are not. Future attempts at a physically meaningful classification of non-homogeneous turbulent flows may need to start from this paragraph's observations. The opposing roles played by more or less aligned and more or less anti-aligned pairs of fluctuating velocities in shaping two-point turbulence production have motivated the second part of our DNS study concerning their roles in shaping interscale turbulence energy transfer in the intermediate layer of FD TCF. The interscale turbulence energy is determined by stretching relative motions responsible for inverse transfer from small to large scales and by compressing relative motions responsible for forward transfer from large to small scales. It turns out that more or less aligned fluctuation pairs are stretching relative motions on average whereas more or less anti-aligned fluctuation pairs are on average compressive relative motions. The relative motions of more or less aligned fluctuation pairs are stretching on average as a result of δu having a tendency to be directed in the same direction as the separation vector r for pairs of aligned fluctuating velocities, a tendency which weakens with increasing r irrespective of wall distance y. The relative motions of more or less anti-aligned fluctuation pairs are compressive on average because the fluctuations of δu • r are skewed towards negative values for such fluctuation pairs. This skewness diminishes with increasing r irrespective of y. Incidentally, more or less aligned fluctuation pairs are much more likely than more or less anti-aligned fluctuation pairs. Relative motions of more or less aligned fluctuation pairs are maximally stretching on average, and relative motions of more or less anti-aligned fluctuation pairs are maximally compressing on average at a separation length r = r m which, for all y, is very close to r min , the separation length where Π v /ε v has its minimum. Combining the first and second parts of the present study, it appears that, in the layer δ ν ≪ y ≪ δ of FD TCF, an approach to Kolmogorov-like equilibrium with increasing local Reynolds number may be achieved at those length scales r where aligned fluctuating velocities are stretching with their difference δu maximally or near-maximally aligned with the separation vector r and where anti-aligned fluctuations are maximally or near-maximally skewed towards large negative values of δu • r. Even though more or less aligned fluctuation pairs are on average stretching and are more frequent than more or less anti-aligned fluctuation pairs, they do not dominate interscale turbulence energy transfer, which is nevertheless forward on average, i.e. from large to small scales. This is an effect of small-scale anisotropies. At scales of the order of the Taylor length and larger the interscale turbulence energy transfer is, in fact, dominated by more or less anti-aligned fluctuations. However, at scales smaller than the Taylor length, the actual value of the interscale turbulence energy transfer rate results from interscale turbulence energy transfers by both aligned (local inverse cascades) and anti-aligned (local forward cascades) fluctuations, both of which are significant and cannot be ignored. Finally, correlations between stretching/compression relative motions and alignment/antialignment of fluctuation pairs determine the spherically averaged (in r-space) homogeneous part of the interscale turbulence energy transfer rate introduced by Alves Portela et al. (2020). The DNS data of FD TCF used here, show that this homogeneous part accounts almost completely for the total spherically averaged interscale turbulence energy transfer rate in the intermediate layer for all separation scales r ⩽ 2y, including the scaling with the Taylor length of the separation r = r minwhere it peaks and the scaling with Re λ of its peak value, i.e. scalings 6.20 and 6.21. The spherically averaged inhomogeneous part of the interscale turbulence energy transfer is negligible even though the turbulence is significantly non-homogeneous in FD TCF in contrast with the centerline of a turbulent wake which is also non-homogeneous, but differently, and where Alves Portela et al. (2020) found a similarly averaged inhomogeneous interscale turbulence energy transfer to be significant and in fact quite important in the scale-by-scale physics. However, when the spherical average is lifted, the average inhomogeneous interscale transfer rate remains close to zero except for separation components r 2 characterising attached eddies.By lifting the average over x, z, t, we obtain PDFs of spherically averaged interscale turbulence energy transfer rates and of their homogeneous and inhomogeneous parts.The PDFs of the spherically averaged interscale turbulence energy transfer rates and of their homogeneous part are very similar and vary with r in a very similar way.Their dependence on r is governed by counteracting effects of overall PDF drift towards forward cascade values and of diminishing skewness towards forward cascade events with increasing r. The approach towards Kolmogorov equilibrium occurs at those scales r near the Taylor length where these two counteracting effects balance. The PDFs of spherically averaged inhomogeneous interscale turbulence energy transfer rates are significantly different as they are characterised by a skewness towards inverse rather than forward cascade events at small scales. As a final comment, one area that may reveal more information on energy transfer in wall-turbulence should be the application of the present paper's framework to individual structural elements of the flow such as intense Reynolds shear stress structures (Lozano-Durán & Jiménez 2014), vortex clusters (del Álamo et al. 2006) and uniform mementum zones and vortical fissures (Bautista et al. 2019). Acknowledgements. This work was supported by the European Community, the French Ministry for Higher Education and Research and the Hauts de France Regional Council in connection with CNRS Research Foundation on Ground Transport and Mobility as part of the ELSAT2020 project. The work was granted access to the HPC resources of IDRIS under the allocation 2021-021741 made by GENCI (Grand Equipement National de Calcul Intensif). We are also grateful A. Lozano-Durán and J. Jiménez for making their datasets available and to Marcello Meldi for suggesting the plot (b) in figure 6 as a check.Funding. This work was directly supported by JCV's Chair of Excellence CoPreFlo funded by I-SITE-ULNE (grant number R-TALENT-19-001-VASSILICOS), MEL (grant number CON-VENTION 219 ESR 06) and Region Hauts de France (grant number 20003862); and by ERC Advanced Grant NoStaHo funded by the European Union. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or of the European Research Council Executive Agency (ERCEA). Neither the European Union nor the granting authority can be held responsible for them.

Table 1 .

 1 Name Reτ Lx/δ Lz/δ ∆x + ∆z + Ny dt + Nt DNS databases equation an additional average over spheres in r-space. We therefore work with

	LJ950 932 2π	π	11.5 5.7 385 8 3151
	LJ2000 2003 2π	π	12.3 6.2 633 25 462

  intermediate layer (δ ν ≪ y ≪ δ) of FD TCF is a non-homogeneous but statistically stationary turbulent flow region where interscale turbulence energy transfer has properties similar to interscale turbulence energy transfer in freely decaying (i.e. non-stationary) homogeneous turbulence far from initial conditions. This paper's theory predicts that for any wall-normal distance y in the intermediate layer, Kolmogorov equilibrium is achieved asymptotically only around the Taylor length λ (i.e. for scales which are taken to remain a constant multiple of λ in the asymptotic limit) which is not an inertial length given that it depends on viscosity and turbulent kinetic energy at y. A similar conclusion was reached in previous studies of freely decaying homogeneous turbulence far from initial

	-2/3 λ

conditions

[START_REF] Lundgren | Kolmogorov two-thirds law by matched asymptotic expansion[END_REF][START_REF] Obligado | The non-equilibrium part of the inertial range in decaying homogeneous turbulence[END_REF][START_REF] Meldi | Analysis of lundgren's matched asymptotic expansion approach to the k ármán-howarth equation using the eddy damped quasinormal markovian turbulence closure[END_REF] 

where, as shown here by equation 6.19 for the intermediate layer of FD TCF, there are systematic departures from Kolmogorov equilibrium for scales moving away from λ both towards the large eddy size (here y) and towards the local (here in y) Kolmogorov length η. DNS data for FD TDF confirm these conclusions and also confirm the specific scaling predictions 6.20 and 6.21: namely, the interscale transfer rate has a forward cascade peak at r min ∼ λ where it tends with increasing Reynolds number towards minus turbulence dissipation, i.e. Kolmogorov-type equilibrium, as Re
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Appendix A.

We use two methods for the numerical computation of the normalised 3D integrals of equation 2.2. The volume integrals that involve divergence in r space are simplified using the Gauss divergence theorem and therefore transformed into surface integrals of the flux across the sphere's surface. We insert a triangulated sphere of 5120 triangles and radius r at each x, y, z point of the DNS grid, corresponding to the centre of the sphere, and interpolate the velocity and its derivatives, using a trilinear interpolation, at the centres of the triangles. Finally, we compute the two-point quantities of interest between the antipodal triangles on our sphere, multiply them with the corresponding surface area of the triangle, sum all the triangles and divide the result with the volume of the discretised sphere.

For the quantities that we cannot apply the Gauss divergence theorem, we make a local cartesian grid of n x l = 41, n y l = 81, n z l = 41 points centred at each x, y, z point in space, corresponding to the centre of the sphere, and extending from -r to r in all directions.

We then interpolate (with trilinear interpolation) the velocity and its derivatives at every point, which satisfies x 2 l + y 2 l + z 2 l ⩽ r (x l , y l , z l are the local coordinates), compute the two-point quantities and multiply them with the local volume unit dV l = dx l dy l dz l , sum and divide with the volume of the discretised sphere.

2022 Approach to the 4/3 law for turbulent pipe and channel flows examined through a 971 reformulated scale-by-scale energy budget. Journal of Fluid Mechanics 931.