
HAL Id: hal-04168937
https://hal.science/hal-04168937v1

Submitted on 22 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic Observation Graph-Based Generation of Test
Paths

Kais Klai, Mohamed Taha Bennani, Jaime Arias, Jörg Desel, Hanen Ochi

To cite this version:
Kais Klai, Mohamed Taha Bennani, Jaime Arias, Jörg Desel, Hanen Ochi. Symbolic Observation
Graph-Based Generation of Test Paths. 7th International Conference on Tests and Proofs (TAP
2023) Held as Part of STAF 2023, Jul 2023, Leicester, United Kingdom. pp.127-146, �10.1007/978-3-
031-38828-6_8�. �hal-04168937�

https://hal.science/hal-04168937v1
https://hal.archives-ouvertes.fr

Symbolic Observation Graph-Based Generation
of Test Paths

Kais Klai1 , Mohamed Taha Bennani2 , Jaime Arias1� , Jörg Desel3, and
Hanen Ochi4

1 Université Sorbonne Paris Nord, LIPN UMR CNRS 7030, Villetaneuse, France
{kais.klai, jaime.arias}@lipn.univ-paris13.fr

2 University of Tunis El Manar, Faculty of Sciences of Tunis, Tunis, Tunisia
taha.bennani@fst.utm.tn

3 Fern Universität in Hagen, Hagen, Germany
joerg.desel@fernuni-hagen.de

4 EFREI Paris, EFREI Research Lab,Villejuif, France
hanen.ochi@efrei.fr

Abstract. The paper introduces a theoretical foundation for generating
abstract test paths related to Petri net specifications. Based on the struc-
ture of the Petri net model of the system, we first define the notion of
unobservable transition. Unless such a transition is unreachable, we prove
that its firing is necessarily ensured by the firing of another transition
(namely observable transition) of the Petri net. We show that the set of
observable transitions is the smallest set that guarantees the coverage of
all the transitions of the Petri net model, i.e., any set of firing sequences
of the model, namely observable traces, involving all the observable tran-
sitions passes eventually through the unobservable transitions as well. If
some unobservable transitions are mandatory to trigger the execution
of a test sub-sequence, observable traces are completed with such tran-
sitions to enhance the controllability of the test scenario. In addition
to structurally identifying observable (and unobservable) transitions, we
mainly propose two algorithms: the first allows to generate a set of ob-
servable paths ensuring full coverage of all the system transitions. It is
based on an on-the-fly construction of a hybrid graph called the sym-
bolic observation graph. The second algorithm completes the observable
paths in order to explicitly cover the whole set of system’s transitions.
The approach is implemented within an available prototype, and the
preliminary experiments are promising.

Keywords: Model-based testing, transition coverage, Petri nets.

1 Introduction

Model-based testing automates a set of processes, namely the generation of test
cases from models, the derivation of executable scripts, and the execution of test
cases or test scripts [45]. The cornerstone of model-based testing is the gener-
ation of test inputs from the behavioural model of the system under test. Sev-
eral techniques have been introduced for test inputs generation, such as solvers

https://orcid.org/0000-0001-5494-913X
https://orcid.org/0000-0001-6693-6352
https://orcid.org/0000-0003-3019-4902
https://orcid.org/0000-0002-6364-1302

2 K. Klai et al.

[34], constrained logic programming [32], search-based algorithms [38] and model
checking [19]. Except for some educational systems, the number of input data
is often infinite. Therefore, testing cannot be exhaustive. Thus, these techniques
seek to reduce the number of test inputs by modelling sets of similar behaviours
through coverage criteria. As a result, an abstract test path would character-
ize a sequence of actions or events a system must perform to achieve a certain
behaviour, represented by a set of requirements of a coverage criterion.

Test inputs generation satisfying structural or behaviour coverage criteria suf-
fers from the well known state space explosion problem [41]. Several approaches
have offered solutions to cope with this problem such as symmetry reduction
[17], live variable reduction [18], cone of influence [13], slicing [11], transition
merging [50], partial order reduction [42], τ -confluence [33], and simultaneous
reachability analysis [44]. Symbolic Observation Graph (SOG) [20,25] represents
an efficient technique to reduce the state space graph based on the observation
of the pertinent atomic propositions of a temporal formula to be verified. In this
paper, we adopt the SOG technique for the input generation perspective.

Given a finite system modelled with a Petri net [37], our goal is to generate
a set of firing sequences that ensure the coverage of the whole set of the model
transitions. A Petri net structure-based solution to identify the set of significant
transitions, which we call observable, is first proposed. We show that the choice
of the test inputs that allow the system behaviour to cover this set of transitions
guarantees the coverage of all the model transitions of the system to be tested.
Unobservable transitions are then guaranteed to be covered by observable tran-
sitions unless they belong to an unobservable cycle in the model (i.e., cycles with
unobservable transitions only), in which case the transitions of such a cycle are
proven to be dead. Such cycles can be detected and removed by a simple brows-
ing of the Petri net model. This discrimination allows us to build, on-the-fly, the
SOG w.r.t. the observable transitions, reducing considerably the state space to
be traversed to cover all the transitions of the system. During the construction of
the SOG, we aim to find paths that cover all the observable transitions. As soon
as this goal is reached, the construction of the SOG is stopped. If necessary, the
obtained paths can be completed by backtracking with unobservable transitions
to obtain complete abstract sequences involving all the transitions of the system.

The rest of this paper is organized as follows: in Section 2, required concepts
and formalisms are presented. Section 3 and Section 4 are the core of the paper,
where the proposed approach is presented. In the former, we show how to use
the structure of the Petri net model to partition the transitions into two subsets:
observable and unobservable transitions, and we establish underlying theoretical
results. In the latter, we show how to check the coverage of all Petri net model’s
transitions by exploiting the SOG. The different algorithms were implemented in
a software tool, and the obtained results of our experiments are reported in Sec-
tion 5. Before concluding and presenting directions for future work in Section 7,
we discuss related work and give their pros and cons in Section 6.

Symbolic Observation Graph-Based Generation of Test Paths 3

2 Preliminaries

2.1 Labelled Transition Systems (LTS)

Definition 1 (Labelled Transition Systems). A labelled transition system
(LTS for short) T is a 4-tuple (S,Act ,→, s0) where:

– S is a (finite) set of states;
– Act is a (finite) set of actions;
– →∈ S ×Act × S is a transition relation; and
– s0 is the initial state.

The set of actions of an LTS could be divided into two disjoint subsets of
observable (namely Obs) and unobservable transitions (namely UnObs). Deter-
mining which transitions are observable, and which ones are not, depends on the
approach/objective/domain. In our approach, the precise (unique) definition of
unobservable/observable transitions is presented in Section 3. For instance, Fig. 1
shows an LTS where transitions t7, t8, t10 and t11 (coloured) are observable.

s1

s2

s3

s5s4 s6

s8s7 s9 s12

s10 s11 s13

s14

s15

t1

t2

t3 t5
t6

t4 t5

t6 t3 t7 t3

t8

t5

t6 t4 t7 t4

t8
t3

t7 t8 t4

t10

t10

t9

t10

t11

Fig. 1. An LTS

p1

t1

p2

t2
p3

t3

p5t11

t4

p7

p4

t5

p6

t7

t6

p8

t8

t10

p9

t9

p10

Fig. 2. A Petri net

2.2 Petri Nets

Definition 2 (Syntax). A Petri net is a tuple N = (P, T, F,W), where:

– P is a finite set of places;
– T is a finite set of transitions;

4 K. Klai et al.

– F ⊆ (P ×T)∪ (T ×P) is a set of arcs (as one-way arrows) connecting places
to transitions and transitions to places; and

– W : (P × T) ∪ (T × P)→ N represents arcs’ weight.

For the sake of simplicity and without loss of generality, we assume, in this
paper, that the weight of the edges are all equal to 1. A marking of a Petri
net N is a function m : P → N assigning a number of tokens to each place.
A Petri net model is generally associated with an initial marking, denoted by
m0, that represents the initial state of the underlying system. Fig. 2 illustrates
a Petri net example where the places are represented by circles and transitions
by rectangles. The initial marking is such that place p1 contains one token and
all the other places are empty. Each node x ∈ P ∪T of the net has a pre-set and
a post-set defined respectively as follows: •x = {y ∈ P ∪ T | (y, x) ∈ F}, and
x• = {y ∈ P∪T | (x, y) ∈ F}. Adjacent nodes are then denoted by •x• = •x∪x•.

Semantics and Notation A transition t is said to be enabled by a marking m
(denoted by m t−→) iff ∀p ∈ •t, W (p, t) ≤ m(p). If a transition t is enabled by a

marking m, then its firing leads to a new marking m′ (denoted by m t−→m′) s.t.
∀p ∈ P : m′(p) = m(p)−W (p, t)+W (t, p). For a finite sequence of transitions σ =
t1 . . . tn ∈ T ∗, m0

σ−→ denotes the fact that σ is enabled by m0, i.e., ∃m0, . . .mn

s.t., m0
t1−→m1

t2−→ . . . tn−→mn. m σ−→m′ denotes the fact that the firing of σ from
marking m leads to marking m′. σ̄ denotes the set of transitions occurring in σ.

The language of finite firing sequences associated with a marked Petri net
(N ,m0) is then defined as L((N ,m0)) = {σ ∈ T ∗ |m0

σ−→}. Given a set of
markings S, we denote by Enable(S) the set of transitions enabled by elements of
S. The set of markings reachable from a marking m in N is denoted by R(N ,m).
A transition t is said to be a dead transition in (N ,m0) if it is enabled in no
marking in R(N ,m0). The set of markings reachable from a marking m, by firing
transitions of a subset T ′ only, is denoted by Sat(m,T ′). By extension, given a
set of markings S and a set of transitions T ′, Sat(S, T ′) =

⋃
m∈S Sat(m,T

′). The
graph of reachable markings of a marked Petri net (N ,m0), denoted G(N ,m0),
is an LTS whose nodes S are the set of markings R(N ,m0), and the arcs are
labelled with the transitions of N . The initial node is the initial marking m0,
and a node (marking) m′ is the successor of a node m iff ∃t ∈ T s.t. m t−→m′.
The previous notations on markings of a Petri net are extended (and used in
the rest of the paper) for states of an LTS . The LTS of Fig. 1 represents the
reachability graph corresponding to the Petri net of Fig. 2.

2.3 Symbolic Observation Graph (SOG)

The SOG induced by a given LTS with transitions partitioned into observable
and unobservable ones is defined as an LTS where nodes, called aggregates,
are sets of single states connected by unobservable transitions, and compactly
encoded by decision diagram techniques (e.g., BDDs [22]). The edges of the SOG
are however labelled with observable transitions only.

Symbolic Observation Graph-Based Generation of Test Paths 5

Definition 3 (Aggregate). Let T = (S,Act ,→, s0) be an LTS, where Act =
Obs ∪ UnObs (with Obs ∩ UnObs = ∅). An aggregate a is a non-empty subset
of S satisfying s ∈ a⇔ Sat(s,UnObs) ⊆ a.

Definition 4 (Symbolic Observation Graph (SOG)). A symbolic observa-
tion graph associated with an LTS T = (S,Act ,→, s0) is an LTS G = (S′,Act ′,→′
, a0) such that:

– S′ is a finite set of aggregates satisfying:
? ∀a ∈ S′, ∀t ∈ Act ′, ∃(s, s′) ∈ a× S : s t−→s′ ⇔ ∃a′ ∈ S′ : a′ = Sat({s′ ∈
S | ∃s ∈ a ∧ s t−→s′},UnObs) ∧ (a, t, a′) ∈→′;

– Act ′ = Obs;
– →′⊆ S′ ×Act ′ × S′ is the transition relation, obtained by applying ?; and
– a0 is the initial aggregate s.t. a0 = Sat(s0,UnObs).

Point ? of the previous definition deserves explanation. By Definition 3, an
aggregate contains the maximal set (fix-point computation with Sat function)
of states linked by unobservable transitions. An arc (a, t′, a′), connecting an
aggregate a to an aggregate a′, labelled with an observable transition t′, must
exist in the SOG iff the set of states in a enabling t′ is not empty, and any state
that is reachable by any sequence t′.σ, where σ ∈ UnObs∗, is necessarily in a′.

The SOG construction algorithm is presented in [20]. Despite the exponential
theoretical complexity of its construction (a single state could belong to different
aggregates), the SOG has in practice a rather moderate size comparing to the
explicit representation of the corresponding LTS (see [20,26,25] for experimental
results). Fig. 3 shows the SOG related to the LTS example of Fig. 1 based on
the observation of transitions t7, t8, t10 and t11. Notice that, in this figure, the
aggregate internal sub-graphs as well as the connection between explicit states
belonging to different aggregates, are showed for the readability purpose. The in-
ternal set of states is represented by a binary decision diagram (BDD) [22], while
for observable transition labels, only one solid edge connects two aggregates.

2.4 Test Coverage Criteria

Since the evaluation of all system’s inputs values is not possible, testers must rely
on measurements’ features to argue the trust they can place in the system under
test. Coverage criteria define test objectives or requirements that test entries
(deduced from test cases) strive to satisfy. Therefore, if the test inputs meet the
test objectives, the confidence placed by a tester in the system will match the
exigency of the coverage criterion.

Several coverage criteria related to Petri nets are defined in [40], e.g., Struc-
tural and Behavioural Analysis Coverage (SBAC), and Concurrent Session Be-
haviour Coverage Criteria (CSBCC). This paper deals with the transition cov-
erage criterion. That is, a test suite (i.e., a set of firing sequences) that covers
this criterion must fire any transition of a Petri net at least once.

Definition 5 (Transition Coverage). Let N = (P, T, F,W) be a Petri net,
and Ts = {σ1, σ2, . . . , σn} be a test suite. Ts satisfies transition coverage criterion
iff ∀t ∈ T , ∃σ ∈ Ts, t ∈ σ̄.

6 K. Klai et al.

s1(p1)

s2(p2)

s3(p3, p4)

s5(p3, p6)s4(p5, p4) s6(p3, p8)

s8(p5, p6)s7(p7, p4) s9(p5, p8)

s10(p7, p6) s11(p7, p8)

t1

t2

t3
t5 t6

t4
t5

t6

t5

t6

t3

t3

t4

t4

a0

s12(p3, p9)

s13(p5, p9)

s14(p7, p9)

s15(p10)

t3

t4

t9

a1

s16(p3, p4)

s18(p3, p6)s17(p5, p4) s19(p3, p8)

s21(p5, p6)s20(p7, p4) s22(p5, p8)

s23(p7, p6) s24(p7, p8)

t3
t5 t6

t4
t5

t6

t5

t6

t3

t3

t4

t4

a2

t11

t8

t8

t8

t8

t8

t8

t7

t7

t7

t7

t7

t7

t10
t10

t10

Fig. 3. SOG related to the LTS of Fig. 1 under the observation of {t7, t8, t10, t11}

3 Structure-Based Coverage Relation for Petri Nets

In this section, we illustrate how covering a reduced set of transitions can lead
to the coverage of all the system’s transitions. To reach this goal, we propose
an original approach based on the identification of a specific structural pattern
in a Petri net model. Such a pattern allows to deduce behavioural information
related to the firing of the transitions of the model.

Definition 6. The coverage relation, denoted by . is the transitive relation de-
fined as follows: . : T → T s.t. ∀t′ ∈ T, t′ . t implies that any firing sequence
containing t′ contains necessarily t.

Symbolic Observation Graph-Based Generation of Test Paths 7

In the following, we define unobservable transitions.

Definition 7. A transition t in a marked Petri net (N ,m0) is said to be unob-
servable ⇐⇒ ∃ p ∈ t•, •p = {t} ∧ p• 6= ∅ ∧m0(p) = 0. For a given transition
t, the set of such places is denoted by t∼.

t
p

t′

p′

Fig. 4. Unobservable transition t

Informally (see Fig. 4), an unobservable transition t is a transition having,
at least, one unmarked output place p such that no other transition can produce
tokens in p (•p = {t}). Thus, p being initially unmarked, the firing of any output
transition of p is impossible before firing t. For this reason, any firing sequence
containing any transition t′ ∈ p• contains necessarily t (i.e., t′ . t).

Example 1. Consider the marked Petri net of Fig. 2. The set of unobservable
transitions is {t1, t2, t3, t4, t5, t6, t9}. Transitions t7, t8, t10 and t11 are not. Indeed,
each of the transitions t7, t8 and t10 has a single output place that has another
input transition, while t11 is not unobservable since place p1 is initially marked.

In the rest of the paper, each transition that is not unobservable is said to
be observable. Given a marked Petri net (N ,m0), the set T of its transitions can
then be divided into the two disjoint subsets Obs and UnObs that represent the
observable and the unobservable transitions, respectively.

Next, we establish some theoretical results about the fireability of a transition
depending on its type (observable or unobservable). The proof is in Appendix A.

Lemma 1. Given a marked Petri net (N ,m0) and a transition t, t ∈ UnObs =⇒
∀p ∈ t∼, ∀t′ ∈ p•, t′ . t.

Corollary 1. Given a marked Petri net (N ,m0) and a transition t ∈ UnObs.
Then, t is dead =⇒ ∀p ∈ t∼, ∀t′ ∈ p•, t′ is dead.

The proof of the previous corollary is immediate from Lemma 1. In fact, if an
unobservable transition t is dead (i.e., there is no firing sequence σ.t from the
initial marking m0), none of the output places in t∼ will be marked, preventing
to fire their output transitions. In the following lemma, an unobservable cycle
denotes a cycle in the Petri net model that contains unobserved transitions only.
The proof is presented in Appendix B.

8 K. Klai et al.

Lemma 2. Let (N ,m0) be a marked Petri net. Then, ∀t ∈ UnObs, ∃t′ ∈ Obs :
t′ . t, or t belongs to an unobservable cycle.

Our ultimate goal is to generate a set of traces that cover all the transitions
of the system (represented by a Petri net). Instead of considering all the transi-
tions of the system, we consider only the observable transitions (Obs) and look
for sequences that cover these transitions. In general, covering observable tran-
sitions implies the covering of the unobservable ones. However, as established
in the previous lemma, this does not hold when the Petri net model contains
unobservable cycles. In this case, all the transitions of an unobservable cycle are
dead. The proof is presented in Appendix C.

Lemma 3. Given a marked Petri net (N ,m0), all the transitions belonging to
an unobservable cycle are dead.

Next, we present the main result of our approach: if there exists a set of
firing sequences σ1 . . . σn covering Obs, then all the transitions of the Petri net
are covered by these sequences except those belonging to unobservable cycles.

Theorem 1. Let (N ,m0) be a marked Petri net. Let Obs be the set of observ-
able transitions (i.e. any transition not satisfying Definition 7). If ∃σ1 . . . σn ∈
L((N ,m0)) s.t. Obs ⊆

n⋃
i=1

σ̄i, then ∀t ∈ T one of the two following holds:

1. ∃i ∈ {1 . . . n} s.t. t ∈ σ̄i.
2. t belongs to an unobservable cycle.

Proof. The proof is trivial using Lemma 2.

In the following theorem, we state that the set of observable transitions Obs is
the smallest set ensuring the coverage of all the transitions of a Petri net (except
those belonging to an unobservable cycle whose transitions are necessarily dead).
The proof is presented in Appendix D.

Theorem 2. ∀Obs ′ ⊆ Obs, Obs ′ satisfies Theorem 1 =⇒ Obs ′ = Obs.

Limit cases: It is worth noting that there are two limit cases to our approach:

1. Obs = ∅. This happens when the whole set of transitions of the Petri net is
involved in a dead cycle.

2. Obs = T (i.e., all the transitions are observable). This happens, for instance,
when none of the places has one input transition only. Such a case is obviously
not favourable to our approach.

4 Test Specification Computation

The main theoretical result of the previous section is that covering the struc-
turally computed observable transitions ensures the coverability of the whole set
of system’s transitions. It is then sufficient to find a collection of firing sequences

Symbolic Observation Graph-Based Generation of Test Paths 9

with all observable transitions to cover all system’s transitions. In this section,
we propose a SOG-based approach to generate traces of the system that pass
through the observable transitions. Such traces are first generated as the projec-
tion of full traces of the system on observable transitions only (called observable
traces/paths). The construction of the SOG is revisited in our work in order to
generate these observable traces on-the-fly (i.e., the construction is stopped as
soon as all the observable transitions are covered). Once the observable traces
are generated, the full traces (called abstract paths) are generated using a sym-
bolic algorithm (BDD-based operations) based on a backward traversal of the
SOG’s nodes involved by these observable traces. Without loss of generality, we
assume in this section that the system has no unobservable cycles. Indeed, one
can detect (and remove) them using a structural analysis of the Petri net model.

4.1 On-The-Fly SOG-Based Generation of Observable Traces

The purpose of Algorithm 1 is to extract the observable traces during the con-
struction of the SOG. Given the system model and the set of observable tran-
sitions, the goal of the algorithm is to collect a test suite Ts = {σ1, σ2, . . . , σn}
such that, for any observable transition o, there exists an observable trace σi
containing an occurrence of o.

Algorithm 1 is based on a depth-first search (DFS) traversal during the con-
struction of the SOG. It takes as input the Petri net N , its initial marking m0,
and the set of observable transitions Obs. The main used data structures are: (1)
a stack “st” containing the aggregates “a” not yet completely treated, associated
with the not yet treated observable transitions fireable from “a” and computed
with the function EnableObs; (2) a set of sequences Ts to be calculated (the
output of the algorithm); (3) the current trace curT ; and (4) the set of covered
observable transitions Cov. The initialization step of the algorithm (lines 4-6)
computes the SOG’s first aggregate using function InitialAggregate. It also
initializes stack “st” with the first aggregate, and its fireable observable transi-
tions are identified with function EnableObs. An iteration of the main loop (lines
7-28) picks and processes an item (a, f) from the stack. The algorithm ends in
two cases: (1) the set of observable transitions Obs is fully covered, and (2) the
stack is empty i.e., the SOG is completely built without covering the dead ob-
servable transitions. At each step of the main loop, we pick up the top couple
(a, f). If the set of enabled transitions is not empty (line 9), then we choose (and
remove from f) a transition to fire using the function chooseTransition that
favours transitions that have not been covered yet, if any. Such a function could
be more sophisticated to rely on some objective function (e.g., the length and/or
the number of generated observable traces). If the selected transition o is the
last observable transition to be covered, we save the current trace in Ts before
leaving the loop (lines 13-15). Then, we push back the couple (a, f) to the stack
and compute the successor a′ of a by transition o (lines 16-17). If the successor
already exists (lines 18-20), we add the current trace to Ts and then remove the
last transition from the current path. In fact, we just finished traversing a path
leading to a′ where the last transition is o (such a trace has to be saved in Ts),

10 K. Klai et al.

Algorithm 1: Generation of observable traces

Data: N , m0, Obs
Result: Ts

1 Stack<aggregate, set<transition>> st; Set of traces Ts; aggregate a, a′;
2 Current observable trace curT ; Set of covered observable transitions Cov;
3 begin
4 Cov ← ∅;
5 a← InitialAggregate((N ,m0)) ;
6 st.push(a, EnableObs(a));
7 while (st 6= ∅ ∧ Cov ⊂ Obs) do
8 st.pop(a,f);
9 if (f 6= ∅) then

10 o← chooseTransition(f , Cov);
11 Cov = Cov ∪ {o};
12 curT ← curT.o;
13 if (Cov == Obs) then
14 Ts ← Ts ∪ {curT}
15 end
16 st.push(a,f);
17 a′ ← Succ(a, o);
18 if (a′ already exist) then
19 Ts ← Ts ∪ {curT}
20 curT ← curT − curT.last;

21 else
22 st.push(a′, EnableObs(a′));
23 end

24 else
25 Ts ← Ts ∪ {curT}
26 curT ← curT − curT.last;

27 end

28 end

29 end

and we are going in the next iteration to come back to aggregate a to explore
another path (o must be removed from the current trace). In case the aggregate
a′ is a new aggregate, we push it on the stack with the corresponding set of
enabled observable transitions (line 22). Finally, in case the picked aggregate is
completely treated (lines 24-26), we add the current trace to Ts and then remove
the last transition from the current path. The reason is the same as when the
compute successor aggregate exists. Notice that the current trace curT is added
to Ts only if there exists at least one transition in curT that is newly covered.

Example 2. When Algorithm 1 gets the Petri net of Fig. 2 as a first parameter
N , an initial marking m0 where only p1 contains a token, and a set of observed
transitions Obs = {t7, t8, t10, t11}, the initialization operation (line 5) generates
the aggregate a0 of Fig. 3. As there are two outgoing transitions, t7 and t8,

Symbolic Observation Graph-Based Generation of Test Paths 11

identified by EnableObs (line 6), when the algorithm picks one of them in line 10,
the statement of line 17 will create a1. Aggregate a1 has two outgoing transitions:
t10 and t11, where the former conducts to a2. The last created aggregate leads
to a previously created one a1 through t7 or t8. At this step, line 19 inserts the
variable curT containing < t8, t10, t7 > into the set of observed traces identified
by the variable Ts. Using the backtracking mechanism implemented in lines 20
and 26, the algorithm goes back to the aggregate a1 to explore the last uncovered
transition t11 leading to a previously explored aggregate a0. Therefore, line 19
generates a new observed trace < t8, t11 >. In this final iteration, the stack st is
empty, and all transitions are covered.

4.2 Extracting Abstract Traces

The set of observable traces could be important to trigger particular executions of
the system. However, in case we need to have complete executions involving the
totality of the system transitions, we can extract such traces from the observable
ones. Therefore, we will insert a sequence of unobserved transitions between two
observed ones generated by the previous algorithm, starting from the initial
marking state. Several criteria could be used to choose the unobserved sequence,
such as test feasibility, balanced combinations, and sequence length. In our case,
we aim to minimize the sequence’s length traversing an aggregate.

Algorithm 2: Generation of abstract path

Data: obsPath, SOG, UnObs
Result: abs path

1 sequence<transition> abs path, path agr; aggregate agr; Set exitpts source;
2 transition trans; Pair<aggregate, Set entrypts> arg entry;
3 Stack<pair<aggregate, Set entrypts>> entry points; Set entrypts target;
4 begin
5 trans=obsPath.pop();
6 entry points = research entry points(obsPath, SOG);
7 abs path=Null ; /*entry marking of next aggregate*/

8 while (entry points not empty) do
9 agr entry = entry points.pop();

10 target = agr entry.second;
11 agr = agr entry.first;
12 source = FirableObs(agr, trans); /*exit points of agr*/

13 path agr = sub path aggregate(source, target, agr, UnObs);
14 abs path = path agr + trans + abs path;
15 trans = obsPath.pop();

16 end

17 end

Algorithm 2 takes as input the observable path obsPath, the SOG built
earlier SOG, and the set of unobservable transitions UnObs, and it returns the ab-

12 K. Klai et al.

stract path abs path. During the first phase (lines 5-7), the algorithm extracts
the observed path’s last transition, identifies the aggregates’ entry points set,
and initializes the abstract path. The function research entry points calcu-
lates and stores in the stack (entry points) the list of aggregates traversed along
the observable path obsPath, each associated with the set of its input states
(i.e., the set of states reached by the previous observable transition in the trace
starting from the previous aggregate). As long as there are items in the stack
(aggregates and their entry points), the second phase (lines 8-16) uses a back-
tracking traversal of the current aggregate (at the top of the stack) in order to
build a trace of unobservable transitions linking the source set of states (i.e., the
ending points in an aggregate that will lead to the next aggregate while travers-
ing the path) to the target set of states (i.e. entry points of the same aggregate).
The above process is done by the function sub path aggregate. The last func-
tion uses a BFS strategy to provide the shortest unboservable path linking the
entry and exit points of the aggregate.

Example 3. To apply Algorithm 2 to our illustrative example, the first param-
eter obsPath contains one of the two observed paths provided by the previous
algorithm: < t8, t10, t7 > and < t8, t11 >. If the second parameter is described
by Fig. 3, the third one, called UnObs, contains all transitions of the Petri net
of Fig. 2, except the observed transitions t7, t8, t10, and t11. For the first unob-
served path < t8, t10, t7 >, the variable trans stores t7, and line 6 computes the
entry points of the aggregates a0, a1, and a2, that is, {s1}, {s12, s13, s14}, and
{s16, s17, s20}, respectively. The entry points stack holds three couples, where
(a2, {s16, s17, s20}) is on the top. After removing the pair from the stack, lines
(10-11) isolate the set of entry points and the aggregate. The former is stored
in the target variable, and the latter in the agr variable. Then, line 12 com-
putes the states’ set in the aggregate a2 that can fire the transition t7. For our
example, source variable contains {s18, s21, s23}. Before extracting the next un-
observed transition t10 and proceeding to the next iteration, line 13 identifies
the path from the entry point of the aggregate a2 to the observed transition t7.
The generated path is extended, in line 14, by adding the transition t7 and an
empty abstract path, as we are at the first iteration. In this case, we have three
different alternatives: < t5, t7 >, < t3, t5, t7 >, or < t3, t4, t5, t7 >. Our function
sub path aggregate chooses the first state that can fire t7. The actual imple-
mentation generates the first abstract path. After two iterations successively
processing t10 and t8 and the aggregates a1 and a0, respectively, the algorithm
returns the abstract path < t1, t2, t6, t8, t10, t5, t7 >.

5 Experiments

In this section, we compare the performance of our approach with that of two
state-of-the-art tools: MISTA5 and NModel6. This choice is based on the tools
5 https://github.com/dianxiangxu/MISTA
6 https://github.com/juhan/NModel

https://github.com/dianxiangxu/MISTA
https://github.com/juhan/NModel

Symbolic Observation Graph-Based Generation of Test Paths 13

presented in the reviews [43,8,35,46]. We selected those that are (1) open-source,
(2) available and maintained, (3) take as input either an FMS or a Petri net, (4)
support the transition coverage criteria, and (5) generate all the paths.

Our approach has been implemented in the open-source tool sogMBT [3], that
is written in C++ and has been integrated to the user-friendly web platform
CosyVerif7. A total of 8 models from the Model Checking Contest8 were used
in our experiments: Philosophers (philo), Referendum (referendum), SafeBus
(sbus), ServersAndClients (servers), SharedMemory (smemory), Sudoku (sudoku),
CircularTrains (train), and TokenRing (tring). The biggest model in terms of
state space size is philo20 (3.49E+09 reachable states). We were limited in our
choice to Place-Transition 1-safe Petri nets because generalized Petri nets are
not supported by MISTA. We ran all the experiments on a Dell Precision Tower
3430 with a processor Intel Xeon E-2136 6-cores @ 3.3GHz, 64 GiB memory,
and Ubuntu 20.04. We used a timeout of 1 hour. The reader can find in the
repository [24] all the files needed to reproduce the benchmarks and the figures.

Table 1 summarizes our results. For each model, we indicate the number of
transitions (column 3), the number of observable transitions obtained by our
structural analysis of the model (column 4), the number of obtained covering
firing sequences (column 5) and their average size (column 6), and the execution
time of the three tested tools (column 7) where T1, T2 and T3 refer to our ap-
proach (namely sogMBT), MISTA and NModel, respectively. It is clear that NModel

model instance # trans.
obs. # paths Average size of paths Time (ms)
trans. T1 T2 T3 T1 T2 T3 T1 T2 T3

example example 11 4 2 3 4 8.00 7.00 9.00 0.95 1.0 100.0

philo
philo10 50 30 14 2 TO 39.07 73.00 TO 1344.970 1668.0 TO
philo20 100 TO TO TO TO TO TO TO TO MO TO
philo5 25 15 9 2 150 12.44 33.50 8.77 7.57 6.0 337.0

referendum
referendum10 21 20 19 10 TO 10.53 11.00 TO 2622.98 1785.0 TO
referendum15 31 TO TO TO TO TO TO TO TO MO TO

sbus
sbus3 91 85 20 24 415 267.70 97.67 80.82 314.93 179.0 23522.0
sbus6 451 TO TO TO TO TO TO TO TO MO TO

servers
servers100-20 4200 2100 2000 2000 1 3.05 3.05 8000.00 335988.00 1640.0 34303.0
servers100-40 8200 4100 4000 4000 TO 3.03 3.03 TO 1300630.00 6054.0 TO
servers100-80 16200 TO TO TO TO TO TO TO TO MO TO

smemory
smemory10 210 100 100 100 TO 8.75 45.20 TO 11475.00 269.0 TO
smemory20 820 TO TO TO TO TO TO TO TO MO TO
smemory5 55 25 25 15 193 5.56 99.67 71.75 38.49 72.0 4271.0

sudoku

sudokuA-1 1 1 1 1 1 1.00 1.00 1.00 0.68 9.0 85.0
sudokuA-2 8 8 4 3 32 3.00 3.00 3.00 0.919 0.0 113.000
sudokuA-3 27 27 17 11 19494 7.26 5.73 6.06 197.47 416.0 52540.0
sudokuA-4 64 TO TO TO TO TO TO TO TO MO TO

train
train12 12 4 1 1 21 12.00 17.00 29.52 2.40 16.0 215.0
train24 24 8 1 TO TO 24.00 TO TO 330.64 MO TO
train48 48 TO TO TO TO TO TO TO TO MO TO

tring
tring10 1111 1111 106 46 TO 18.36 142.54 TO 68507.90 9743.0 TO
tring15 3616 TO TO TO TO TO TO TO TO MO TO
tring5 156 156 11 11 100 10.18 59.27 6.87 9.89 5.0 261.0

T1: sogMBT; T2: MISTA; T3: NModel

Table 1. Experimental results (timeout 1 hr)

could not compete with the other two tools. Amongst the 24 situations, MISTA

7 https://cosyverif.lipn.univ-paris13.fr/
8 https://mcc.lip6.fr

https://cosyverif.lipn.univ-paris13.fr/
https://mcc.lip6.fr

14 K. Klai et al.

outperformed sogMBT in 9 cases, while the reverse was true 7 times. It is worth
noting that we do not expect our approach to be efficient when the number of
observable transitions is high. This is the case for three out of 8 of the selected
models: referendum (all the transitions, except one, are observable), and both
sudoku and tring models where all the transitions are observable. If we focus on
the testing effort that we can deduce from the two penultimate columns, which
can be measured by the product of the number of paths and the average path
size, we see that amongst 16 situations, the testing effort related to sogMBT is
lower in 7 (resp. MISTA in 6) while three cases show perfect equality. MISTA uses
a DFS strategy, leading to an average size of the generated paths longer than
the computed by our approach.

exam
ple

philo10

philo5

referendum
10

sbus3

servers100-20

servers100-40

sm
em

ory10

sm
em

ory5

sudokuA-1

sudokuA-2

sudokuA-3

train12

train24

tring10

tring5

0

20

40

60

80

100 Algorithm steps
obs. transitions(%)
initialization(%)
obs. paths(%)
abstract paths(%)

instance

Pe
rc

en
ta

ge
 in

 r
el

at
io

n
to

 to
ta

l t
im

e
(%

)

Fig. 5. Times for each step in the computation of observable traces. Some bars do not
reach the 100% because some times are very small, thus accumulating precision errors.

Fig. 5 is given in order to have a detailed analysis of the distribution of
the execution time of sogMBT among the different phases of our approach: (1)
initialization of data structure (BDD staff); (2) computation of the observable
transitions; (3) computation of observable paths; and (4) extraction of abstract
paths from observable ones. It is clear that for small models, the initialization
time is prevailing while for medium to large models, the generation time of the
observed paths is more important since the construction of the aggregates is
realized during the exploration. The last phase is not very time-consuming.

To summarize these preliminary results, the sogMBT, as a proof of concept
prototype, is competitive w.r.t. existing tools. This is promising, and the ap-
proach can be improved from different perspectives. For instance, more sophis-
ticated heuristics can be elaborated to decide which path to follow during the
DFS-based construction/exploration of the SOG, in order to cover the observ-

Symbolic Observation Graph-Based Generation of Test Paths 15

able transitions with less effort. Another improvement would be to parallelize
the initialization phase (e.g., following [23]), among others.

6 Related work

Given the widespread use of Petri nets in the specification of critical systems,
several works have aimed at developing approaches for generating test inputs
from models described with them. Many research projects have combined the
reachability graph and standard search algorithms from graph theory to pro-
duce test inputs [29]. Other approaches have used the same structure to build a
transition tree representing the test inputs. This transition tree is rooted in the
initial state of the marking graph, and each path leading to a leaf is a sequence
of firing transitions from the Petri net [47]. Dianxiang et al. [49] have shown that
this data structure is helpful to have provided a strategy for robustness testing.
Dianxiang [48] published an integrated development environment for automated
test generation and execution two years earlier.

Identifying the change related to a specification modification has been the
subject of two research projects on regression testing [1,16]. Their main goal was
to identify test inputs which are no longer relevant due to the removal of some
transitions. Besides, they propose new entries or modify old ones to cover the new
transitions added to the model. The test quality measurement of the interactions
between agents was introduced by Miller et al. [36]. Authors have modified an
existing debugging tool to measure the coverage rate of various protocol-based
criteria related expressed using Petri nets. Several coverage criteria have been
formalized for high-level Petri nets [51,30]. The work of [14] uses the cause-effect
network’s concept for the generation of test inputs, while [15] uses the execution
potential of the model by the simulation to measure the coverage rate of the
generated test inputs. Most of these approaches face the problem of state space
explosion when aiming to test systems with a marking graph containing thou-
sands of states. From the work of Chusho [12], which introduces the notion of the
essential branch, to that of Bardin et al. [6], which defines a unified framework
to identify essential test objectives, several works and theories have emerged to
address this problem. They rely on graph theory, dynamic symbolic execution,
weakest calculus, model-checking, proof, constraint-based techniques, and value
analysis. Based on the notion of the decision-to-decision path (dd-path) [21],
Chusho [12] introduced the essential branch measure, which represents the cor-
nerstone to transform a control flow graph (CFG), representing the target code,
into a reduced graph called an inheritor-reduced graph. Following this reduction,
covering essential branches implies the coverage of all branches. In the same vein,
Bertolino and Marré [9] have used the relations of dominance and implication
among the arcs of a ddgraph, which allowed the deduction of unconstrained arcs.
The deduced set constitutes a minimal set of the ddgraph’s arcs such that the
paths which cover them are a path cover. These approaches cannot identify
infeasible structural objectives without human assistance to tune the selection
strategy. Also, these approaches are suitable to handle CFG but do not scale

16 K. Klai et al.

up to handle large systems with thousands of nodes. A broader perspective of
our work includes the generation of test paths such as those proposed by Li et
al. [28]. They have used search-based approaches, whereas the one proposed by
Hallé revolves around Cayley graph and triaging function. The latter defines a
unified method to handle different coverage criteria, and the Cayley graph gath-
ers the test paths into equivalence classes. As a result, this approach reduces
the number of test paths. However, it does not offer a solution to identify the
unfeasible objectives and the subsumed elementary components (transitions).

Offutt and Pan [39] encode the test objectives under constraints that are ex-
tracted from the program under test. Unresolved constraints represent infeasible
objectives. By associating properties to the structural test objects, the use of
model-checking [10] verifies whether the test object is verifiable or not. If the
first approach shows limits when the constraints are non-linear [2] or when the
program uses aliases [27], model-checking faces the problem of scaling.

Other techniques use the weakest precondition to remedy the scaling problem.
This technique allows [7] to identify infeasible instructions while [4] determines
infeasible branches. Since these first two criteria are the most basic, Bardin et
al. [5] use the weakest precondition to address more advanced structural test
objectives. Marcozzi et al. [31] unfold this technique to identify polluting test
targets that do not stop at infeasible targets. Blending the identification of in-
feasible test objectives with symbolic or even concolic execution accelerates the
generation of test inputs and refines the coverage measures.

7 Conclusion

Unlike verification, which can show that software is fault-free, testing discloses
the presence of faults in the software only. Although researchers are not unani-
mous about the ability of test inputs that meet the coverage criteria to expose
flaws, these criteria can help to evaluate the quality of the tests generated. We
have formalized the separation of a Petri net’s transitions into two disjoint sets:
Obs and UnObs. We have shown that an UnObs transition is either unreachable
or subsumed by another transition. Also, we have shown that the coverage of all
the Obs transitions meets the transition coverage criterion of a given Petri net.
Then, we have proposed a structural manner to extract the set of observable
transitions from a Petri net. The construction of the Obs test paths was pre-
sented through an algorithm based on the partial building of a SOG. Yet, we have
introduced the final algorithm, which builds abstract test paths from Obs tests.
Since it is not mandatory to build the whole SOG’s aggregates, our approach
shows potential signs to improve the performance of test path generation. This
has been confirmed by our preliminary experimental results. As future work,
we plan to use linear programming and machine learning approaches in order
to minimize the number and the length of the test sequences during the SOG
construction. Also, we aim to extend our approach to other types of coverage
criteria related to Petri nets and to evaluate the potential of fault identification
using mutation testing.

Symbolic Observation Graph-Based Generation of Test Paths 17

References

1. Ahmad, F., Qaisar, Z.H.: Scenario based functional regression testing using petri
net models. In: ICMLA (2). pp. 572–577. IEEE (2013)

2. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodolo-
gies for automated software test case generation. J. Syst. Softw. 86(8), 1978–2001
(2013)

3. Arias, J., Bennani, M.T., Desel, J., Klai, K., Ochi, H.: sogMBT: Symbolic observa-
tion graph-based generator of test paths (2023), https://depot.lipn.univ-paris13.
fr/PMC-SOG/sogMBT

4. Baluda, M., Denaro, G., Pezzè, M.: Bidirectional symbolic analysis for effective
branch testing. IEEE Trans. Software Eng. 42(5), 403–426 (2016)

5. Bardin, S., Delahaye, M., David, R., Kosmatov, N., Papadakis, M., Traon, Y.L.,
Marion, J.: Sound and quasi-complete detection of infeasible test requirements. In:
ICST. pp. 1–10. IEEE Computer Society (2015)

6. Bardin, S., Kosmatov, N., Marcozzi, M., Delahaye, M.: Specify and measure, cover
and reveal: A unified framework for automated test generation. Sci. Comput. Pro-
gram. 207, 102641 (2021)

7. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J., Tetali, S., Thakur,
A.V.: Proofs from tests. IEEE Trans. Software Eng. 36(4), 495–508 (2010)

8. Bernardino, M., Rodrigues, E.M., Zorzo, A.F., Marchezan, L.: Systematic mapping
study on MBT: tools and models. IET Softw. 11(4), 141–155 (2017)

9. Bertolino, A., Marré, M.: Automatic generation of path covers based on the control
flow analysis of computer programs. IEEE Trans. Software Eng. 20(12), 885–899
(1994)

10. Beyer, D., Chlipala, A., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating tests
from counterexamples. In: ICSE. pp. 326–335. IEEE Computer Society (2004)

11. Chariyathitipong, P., Vatanawood, W.: Dynamic slicing of time petri net based on
MTL property. IEEE Access 10, 45207–45218 (2022)

12. Chusho, T.: Test data selection and quality estimation based on the concept of
esssential branches for path testing. IEEE Trans. Software Eng. 13(5), 509–517
(1987)

13. Darvas, D., Adiego, B.F., Vörös, A., Bartha, T., Viñuela, E.B., Suárez, V.M.G.:
Formal verification of complex properties on PLC programs. In: FORTE. LNCS,
vol. 8461, pp. 284–299. Springer (2014)

14. Desel, J., Oberweis, A., Zimmer, T., Zimmermann, G.: Validation of information
system models: Petri nets and test case generation. In: ICSMC. vol. 4, pp. 3401–
3406. IEEE (1997)

15. Ding, J., Argote-Garcia, G., Clarke, P.J., He, X.: Evaluating test adequacy coverage
of high level petri nets using spin. In: AST. pp. 71–78. ACM (2008)

16. Ding, Z., Jiang, M., Chen, H., Jin, Z., Zhou, M.: Petri net based test case generation
for evolved specification. Sci. China Inf. Sci. 59(8), 1–25 (2016)

17. Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: TACAS. LNCS,
vol. 3440, pp. 382–396. Springer (2005)

18. Fernandez, J., Bozga, M., Ghirvu, L.: State space reduction based on live variables
analysis. Sci. Comput. Program. 47(2-3), 203–220 (2003)

19. Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey. Softw.
Test. Verification Reliab. 19(3), 215–261 (2009)

https://depot.lipn.univ-paris13.fr/PMC-SOG/sogMBT
https://depot.lipn.univ-paris13.fr/PMC-SOG/sogMBT

18 K. Klai et al.

20. Haddad, S., Ilié, J., Klai, K.: Design and evaluation of a symbolic and abstraction-
based model checker. In: ATVA. LNCS, vol. 3299, pp. 196–210. Springer (2004)

21. Huang, J.C.: Error detection through program testing. Current Trends in Pro-
gramming Methodology II, 16–43 (1977)

22. Jr., S.B.A.: Binary decision diagrams. IEEE Trans. Computers 27(6), 509–516
(1978)

23. Klai, K., Abid, C.A., Arias, J., Evangelista, S.: Hybrid parallel model checking of
hybrid LTL on hybrid state space representation. In: VECoS. LNCS, vol. 13187,
pp. 27–42. Springer (2021)

24. Klai, K., Bennani, M.T., Arias, J., Desel, J., Ochi, H.: sogMBT benchmarks (2023),
https://depot.lipn.univ-paris13.fr/PMC-SOG/experiments/test-paths

25. Klai, K., Petrucci, L.: Modular construction of the symbolic observation graph. In:
ACSD. pp. 88–97. IEEE (2008)

26. Klai, K., Poitrenaud, D.: MC-SOG: an LTL model checker based on symbolic
observation graphs. In: Petri Nets. LNCS, vol. 5062, pp. 288–306. Springer (2008)

27. Kosmatov, N.: All-paths testgeneration for programs with internal aliases. In: IS-
SRE. pp. 147–156. IEEE Computer Society (2008)

28. Li, N., Li, F., Offutt, J.: Better algorithms to minimize the cost of test paths. In:
ICST. pp. 280–289. IEEE Computer Society (2012)

29. Li, Y., Zhang, X., Zhang, Y., Guo, J., Rao, C.: A test cases generation method for
atp. In: RSVT. pp. 21–26. ACM (2021)

30. Liu, Z., Liu, T., Cai, L., Yang, G.: Test coverage for collaborative workflow appli-
cation based on petri net. In: CSCWD. pp. 213–218. IEEE (2010)

31. Marcozzi, M., Bardin, S., Kosmatov, N., Papadakis, M., Prevosto, V., Correnson,
L.: Time to clean your test objectives. In: ICSE. pp. 456–467. ACM (2018)

32. Martin-Lopez, A., Arcuri, A., Segura, S., Ruiz-Cortés, A.: Black-box and white-
box test case generation for restful apis: Enemies or allies? In: ISSRE. pp. 231–241.
IEEE (2021)

33. Mateescu, R., Wijs, A.: Sequential and distributed on-the-fly computation of weak
tau-confluence. Sci. Comput. Program. 77(10-11), 1075–1094 (2012)

34. Meng, Y., Gay, G.: Understanding the impact of solver choice in model-based test
generation. In: ESEM. pp. 22:1–22:11. ACM (2020)

35. Micskei, Z.: Model-based testing (MBT), http://mit.bme.hu/∼micskeiz/pages/
modelbased testing.html#tools

36. Miller, T., Padgham, L., Thangarajah, J.: Test coverage criteria for agent interac-
tion testing. In: AOSE. LNCS, vol. 6788, pp. 91–105. Springer (2010)

37. Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

38. Nosrati, M., Haghighi, H., Vahidi-Asl, M.: Test data generation using genetic pro-
gramming. Inf. Softw. Technol. 130, 106446 (2021)

39. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible
paths. Softw. Test. Verification Reliab. 7(3), 165–192 (1997)

40. Offutt, J., Thummala, S.: Testing concurrent user behavior of synchronous web
applications with petri nets. Softw. Syst. Model. 18(2), 913–936 (2019)

41. Pelánek, R.: Fighting state space explosion: Review and evaluation. In: FMICS.
LNCS, vol. 5596, pp. 37–52. Springer (2008)

42. van der Sanden, B., Geilen, M., Reniers, M.A., Basten, T.: Partial-order reduction
for supervisory controller synthesis. IEEE Trans. Autom. Control. 67(2), 870–885
(2022)

43. Shafique, M., Labiche, Y.: A systematic review of state-based test tools. Int. J.
Softw. Tools Technol. Transf. 17(1), 59–76 (2015)

https://depot.lipn.univ-paris13.fr/PMC-SOG/experiments/test-paths
http://mit.bme.hu/~micskeiz/pages/modelbased_testing.html#tools
http://mit.bme.hu/~micskeiz/pages/modelbased_testing.html#tools

Symbolic Observation Graph-Based Generation of Test Paths 19

44. Teodorov, C., Leroux, L., Drey, Z., Dhaussy, P.: Past-free[ze] reachability analysis:
reaching further with dag-directed exhaustive state-space analysis. Softw. Test.
Verification Reliab. 26(7), 516–542 (2016)

45. Utting, M., Legeard, B., Bouquet, F., Fourneret, E., Peureux, F., Vernotte, A.:
Recent Advances in Model-Based Testing, vol. 101 (2016)

46. Villalobos-Arias, L., Quesada-López, C., Mart́ınez, A., Jenkins, M.: Model-based
testing areas, tools and challenges: A tertiary study. CLEI Electron. J. 22(1) (2019)

47. Wang, C.C., Pai, W., Chiang, D.J.: Using a petri net model approach to object-
oriented class testing. In: ICSMC. vol. 1, pp. 824–828. IEEE (1999)

48. Xu, D.: A tool for automated test code generation from high-level petri nets. In:
Petri Nets. LNCS, vol. 6709, pp. 308–317. Springer (2011)

49. Xu, D., Tu, M., Sanford, M., Thomas, L., Woodraska, D., Xu, W.: Automated
security test generation with formal threat models. IEEE Trans. Dependable Secur.
Comput. 9(4), 526–540 (2012)

50. Zhang, J., Zhang, D., Huang, K.: A regular expression matching algorithm using
transition merging. In: PRDC. pp. 242–246. IEEE Computer Society (2009)

51. Zhu, H., He, X.: A methodology of testing high-level petri nets. Inf. Softw. Technol.
44(8), 473–489 (2002)

20 K. Klai et al.

A Proof of Lemma 1

Proof. Let t be an unobservable transition, p be a place in t∼ and t′ ∈ p•.
Assume that there exists a firing sequence σ.t′. Given that place p is not marked
initially and that no transition, except t, can produce a token in p, t must be
fired before t′ to produce the necessary token in p.

B Proof of Lemma 2

Proof. Let (N ,m0) be a marked Petri net, t0 ∈ UnObs be an unobservable
transition, p ∈ t∼0 be an output place of t0 having t0 as unique input transition,
and t1 ∈ p• be an output transition of p. Then, by Lemma 1, t1 . t0. If t1 is
observable, then the lemma is proved. Else, by an iterative application of this
reasoning, by the transitivity of the coverage relation . and by the fact that the
number of transitions in a Petri net is finite, we end on two possible cases: (1)
there exists a transition tn ∈ Obs s.t. tn . tn−1 . · · · . t0, or (2) t0 belongs to an
unobservable cycle, which proves the Lemma.

C Proof of Lemma 3

Proof. Let t be a transition of the cycle, and p ∈ •t be the input place of t
that belongs to the cycle. p is initially empty because the (unique) transition
t′ ∈ •p belongs to the cycle and hence is unobservable. Thus, place p will never
be marked because t′ is dead by a successive application of Corollary 1 from t.

D Proof of Theorem 2

Proof. Assume that Obs ′ ⊂ Obs is the smallest subset of transitions satisfying
Theorem 1. Let t ∈ Obs \ Obs ′, there exists then a transition t′ ∈ Obs ′ s.t.
t′ . t, i.e., ∀ firing sequence t1 . . . tn.t

′ (for n ≥ 1), ∃i ∈ {1, . . . , n} s.t., t = ti.
Let p ∈ t• ∩ •t′. Then, by Definition 7, p is necessarily not marked, otherwise
the sequence ti+1 . . . tn.t

′ is a firing sequence that does not contain t. Also, there
exists a transition t′i 6= t in •p, otherwise t is unobservable. If t′i is observable, then
there exists a firing sequence β.t′i which makes the sequence β.t′i.ti+1 . . . tn.t

′ a
firing sequence not involving t, and that is not possible. If t′i is unobservable, then,
by using Lemma 2, there exists a transition t′′i ∈ Obs s.t. t′′i . t

′
i. By hypothesis,

there exists a sequence α.t′i.γ.t
′′
i . Thus, the sequence α.t′i.ti+1 . . . tn.t

′ covers t′

but not t, which is impossible. To conclude, such a transition t could not exist
and Obs ′ is necessarily equal to Obs.

	Symbolic Observation Graph-Based Generation of Test Paths

