Kais Klai
email: kais.klai@lipn.univ-paris13.fr

Mohamed Taha Bennani
email: taha.bennani@fst.utm.tn

Jaime Arias
email: jaime.arias@lipn.univ-paris13.fr

Jörg Desel
email: joerg.desel@fernuni-hagen.de

Hanen Ochi
email: hanen.ochi@efrei.fr

Symbolic Observation Graph-Based Generation of Test Paths

Keywords: Model-based testing, transition coverage, Petri nets

The paper introduces a theoretical foundation for generating abstract test paths related to Petri net specifications. Based on the structure of the Petri net model of the system, we first define the notion of unobservable transition. Unless such a transition is unreachable, we prove that its firing is necessarily ensured by the firing of another transition (namely observable transition) of the Petri net. We show that the set of observable transitions is the smallest set that guarantees the coverage of all the transitions of the Petri net model, i.e., any set of firing sequences of the model, namely observable traces, involving all the observable transitions passes eventually through the unobservable transitions as well. If some unobservable transitions are mandatory to trigger the execution of a test sub-sequence, observable traces are completed with such transitions to enhance the controllability of the test scenario. In addition to structurally identifying observable (and unobservable) transitions, we mainly propose two algorithms: the first allows to generate a set of observable paths ensuring full coverage of all the system transitions. It is based on an on-the-fly construction of a hybrid graph called the symbolic observation graph. The second algorithm completes the observable paths in order to explicitly cover the whole set of system's transitions. The approach is implemented within an available prototype, and the preliminary experiments are promising.

Introduction

Model-based testing automates a set of processes, namely the generation of test cases from models, the derivation of executable scripts, and the execution of test cases or test scripts [45]. The cornerstone of model-based testing is the generation of test inputs from the behavioural model of the system under test. Several techniques have been introduced for test inputs generation, such as solvers [START_REF] Meng | Understanding the impact of solver choice in model-based test generation[END_REF], constrained logic programming [START_REF] Martin-Lopez | Black-box and whitebox test case generation for restful apis: Enemies or allies?[END_REF], search-based algorithms [START_REF] Nosrati | Test data generation using genetic programming[END_REF] and model checking [START_REF] Fraser | Testing with model checkers: a survey[END_REF]. Except for some educational systems, the number of input data is often infinite. Therefore, testing cannot be exhaustive. Thus, these techniques seek to reduce the number of test inputs by modelling sets of similar behaviours through coverage criteria. As a result, an abstract test path would characterize a sequence of actions or events a system must perform to achieve a certain behaviour, represented by a set of requirements of a coverage criterion.

Test inputs generation satisfying structural or behaviour coverage criteria suffers from the well known state space explosion problem [START_REF] Pelánek | Fighting state space explosion: Review and evaluation[END_REF]. Several approaches have offered solutions to cope with this problem such as symmetry reduction [START_REF] Emerson | Dynamic symmetry reduction[END_REF], live variable reduction [START_REF] Fernandez | State space reduction based on live variables analysis[END_REF], cone of influence [START_REF] Darvas | Formal verification of complex properties on PLC programs[END_REF], slicing [START_REF] Chariyathitipong | Dynamic slicing of time petri net based on MTL property[END_REF], transition merging [START_REF] Zhang | A regular expression matching algorithm using transition merging[END_REF], partial order reduction [START_REF] Van Der Sanden | Partial-order reduction for supervisory controller synthesis[END_REF], τ -confluence [START_REF] Mateescu | Sequential and distributed on-the-fly computation of weak tau-confluence[END_REF], and simultaneous reachability analysis [START_REF] Teodorov | Past-free[ze] reachability analysis: reaching further with dag-directed exhaustive state-space analysis[END_REF]. Symbolic Observation Graph (SOG) [START_REF] Haddad | Design and evaluation of a symbolic and abstractionbased model checker[END_REF][START_REF] Klai | Modular construction of the symbolic observation graph[END_REF] represents an efficient technique to reduce the state space graph based on the observation of the pertinent atomic propositions of a temporal formula to be verified. In this paper, we adopt the SOG technique for the input generation perspective. Given a finite system modelled with a Petri net [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF], our goal is to generate a set of firing sequences that ensure the coverage of the whole set of the model transitions. A Petri net structure-based solution to identify the set of significant transitions, which we call observable, is first proposed. We show that the choice of the test inputs that allow the system behaviour to cover this set of transitions guarantees the coverage of all the model transitions of the system to be tested. Unobservable transitions are then guaranteed to be covered by observable transitions unless they belong to an unobservable cycle in the model (i.e., cycles with unobservable transitions only), in which case the transitions of such a cycle are proven to be dead. Such cycles can be detected and removed by a simple browsing of the Petri net model. This discrimination allows us to build, on-the-fly, the SOG w.r.t. the observable transitions, reducing considerably the state space to be traversed to cover all the transitions of the system. During the construction of the SOG, we aim to find paths that cover all the observable transitions. As soon as this goal is reached, the construction of the SOG is stopped. If necessary, the obtained paths can be completed by backtracking with unobservable transitions to obtain complete abstract sequences involving all the transitions of the system. The rest of this paper is organized as follows: in Section 2, required concepts and formalisms are presented. Section 3 and Section 4 are the core of the paper, where the proposed approach is presented. In the former, we show how to use the structure of the Petri net model to partition the transitions into two subsets: observable and unobservable transitions, and we establish underlying theoretical results. In the latter, we show how to check the coverage of all Petri net model's transitions by exploiting the SOG. The different algorithms were implemented in a software tool, and the obtained results of our experiments are reported in Section 5. Before concluding and presenting directions for future work in Section 7, we discuss related work and give their pros and cons in Section 6.

Preliminaries

2.1 Labelled Transition Systems (LTS) Definition 1 (Labelled Transition Systems). A labelled transition system (LTS for short) T is a 4-tuple (S, Act, →, s 0) where:

-S is a (finite) set of states; -Act is a (finite) set of actions; -→∈ S × Act × S is a transition relation; and s 0 is the initial state.

The set of actions of an LTS could be divided into two disjoint subsets of observable (namely Obs) and unobservable transitions (namely UnObs). Determining which transitions are observable, and which ones are not, depends on the approach/objective/domain. In our approach, the precise (unique) definition of unobservable/observable transitions is presented in Section 3. For instance, Fig. 1 shows an LTS where transitions t 7 , t 8 , t 10 and t 11 (coloured) are observable. -P is a finite set of places; -T is a finite set of transitions; -F ⊆ (P × T) ∪ (T × P) is a set of arcs (as one-way arrows) connecting places to transitions and transitions to places; and -W : (P × T) ∪ (T × P) → N represents arcs' weight.

For the sake of simplicity and without loss of generality, we assume, in this paper, that the weight of the edges are all equal to 1. A marking of a Petri net N is a function m : P → N assigning a number of tokens to each place. A Petri net model is generally associated with an initial marking, denoted by m 0 , that represents the initial state of the underlying system. Fig. 2 illustrates a Petri net example where the places are represented by circles and transitions by rectangles. The initial marking is such that place p 1 contains one token and all the other places are empty. Each node x ∈ P ∪ T of the net has a pre-set and a post-set defined respectively as follows:

• x = {y ∈ P ∪ T | (y, x) ∈ F }, and x • = {y ∈ P ∪T | (x, y) ∈ F }. Adjacent nodes are then denoted by • x • = • x∪x • .

Semantics and Notation

(p) = m(p)-W (p, t)+W (t, p). For a finite sequence of transitions σ = t 1 . . . t n ∈ T * , m 0 σ -→ denotes the fact that σ is enabled by m 0 , i.e., ∃m 0 , . . . m n s.t., m 0 t1 -→ m 1 t2 -→ . . . tn -→ m n . m σ
-→ m denotes the fact that the firing of σ from marking m leads to marking m . σ denotes the set of transitions occurring in σ.

The language of finite firing sequences associated with a marked Petri net (N , m 0) is then defined as L((N , m 0)) = {σ ∈ T * | m 0 σ -→ }. Given a set of markings S, we denote by Enable(S) the set of transitions enabled by elements of S. The set of markings reachable from a marking m in N is denoted by R(N , m). A transition t is said to be a dead transition in (N , m 0) if it is enabled in no marking in R(N , m 0). The set of markings reachable from a marking m, by firing transitions of a subset T only, is denoted by Sat(m, T). By extension, given a set of markings S and a set of transitions T , Sat(S, T) = m∈S Sat(m, T). The graph of reachable markings of a marked Petri net (N , m 0), denoted G(N , m 0), is an LTS whose nodes S are the set of markings R(N , m 0), and the arcs are labelled with the transitions of N . The initial node is the initial marking m 0 , and a node (marking) m is the successor of a node m iff ∃t ∈ T s.t. m t -→ m . The previous notations on markings of a Petri net are extended (and used in the rest of the paper) for states of an LTS . The LTS of Fig. 1 represents the reachability graph corresponding to the Petri net of Fig. 2.

Symbolic Observation Graph (SOG)

The SOG induced by a given LTS with transitions partitioned into observable and unobservable ones is defined as an LTS where nodes, called aggregates, are sets of single states connected by unobservable transitions, and compactly encoded by decision diagram techniques (e.g., BDDs [START_REF] Jr | Binary decision diagrams[END_REF]). The edges of the SOG are however labelled with observable transitions only.

Definition 3 (Aggregate). Let T = (S, Act, →, s 0) be an LTS , where Act = Obs ∪ UnObs (with Obs ∩ UnObs = ∅). An aggregate a is a non-empty subset of S satisfying s ∈ a ⇔ Sat(s, UnObs) ⊆ a.

Definition 4 (Symbolic Observation Graph (SOG)). A symbolic observation graph associated with an LTS T = (S, Act, →, s 0) is an LTS G = (S , Act , → , a 0) such that:

-S is a finite set of aggregates satisfying:

∀a ∈ S , ∀t ∈ Act , ∃(s, s) ∈ a × S : s t -→ s ⇔ ∃a ∈ S : a = Sat({s ∈ S | ∃s ∈ a ∧ s t -→ s }, UnObs) ∧ (a, t, a) ∈→ ; -Act = Obs; -→ ⊆ S × Act × S
is the transition relation, obtained by applying ; and a 0 is the initial aggregate s.t. a 0 = Sat(s 0 , UnObs).

Point of the previous definition deserves explanation. By Definition 3, an aggregate contains the maximal set (fix-point computation with Sat function) of states linked by unobservable transitions. An arc (a, t , a), connecting an aggregate a to an aggregate a , labelled with an observable transition t , must exist in the SOG iff the set of states in a enabling t is not empty, and any state that is reachable by any sequence t .σ, where σ ∈ UnObs * , is necessarily in a .

The SOG construction algorithm is presented in [START_REF] Haddad | Design and evaluation of a symbolic and abstractionbased model checker[END_REF]. Despite the exponential theoretical complexity of its construction (a single state could belong to different aggregates), the SOG has in practice a rather moderate size comparing to the explicit representation of the corresponding LTS (see [START_REF] Haddad | Design and evaluation of a symbolic and abstractionbased model checker[END_REF][START_REF] Klai | MC-SOG: an LTL model checker based on symbolic observation graphs[END_REF][START_REF] Klai | Modular construction of the symbolic observation graph[END_REF] for experimental results). Fig. 3 shows the SOG related to the LTS example of Fig. 1 based on the observation of transitions t 7 , t 8 , t 10 and t 11 . Notice that, in this figure, the aggregate internal sub-graphs as well as the connection between explicit states belonging to different aggregates, are showed for the readability purpose. The internal set of states is represented by a binary decision diagram (BDD) [START_REF] Jr | Binary decision diagrams[END_REF], while for observable transition labels, only one solid edge connects two aggregates.

Test Coverage Criteria

Since the evaluation of all system's inputs values is not possible, testers must rely on measurements' features to argue the trust they can place in the system under test. Coverage criteria define test objectives or requirements that test entries (deduced from test cases) strive to satisfy. Therefore, if the test inputs meet the test objectives, the confidence placed by a tester in the system will match the exigency of the coverage criterion.

Several coverage criteria related to Petri nets are defined in [START_REF] Offutt | Testing concurrent user behavior of synchronous web applications with petri nets[END_REF], e.g., Structural and Behavioural Analysis Coverage (SBAC), and Concurrent Session Behaviour Coverage Criteria (CSBCC). This paper deals with the transition coverage criterion. That is, a test suite (i.e., a set of firing sequences) that covers this criterion must fire any transition of a Petri net at least once.

Definition 5 (Transition Coverage).

Let N = (P, T, F, W) be a Petri net, and In this section, we illustrate how covering a reduced set of transitions can lead to the coverage of all the system's transitions. To reach this goal, we propose an original approach based on the identification of a specific structural pattern in a Petri net model. Such a pattern allows to deduce behavioural information related to the firing of the transitions of the model. Definition 6. The coverage relation, denoted by is the transitive relation defined as follows: : T → T s.t. ∀t ∈ T, t t implies that any firing sequence containing t contains necessarily t.

T s = {σ 1 , σ 2 , . . . , σ n } be a test suite. T s satisfies transition coverage criterion iff ∀t ∈ T , ∃σ ∈ T s , t ∈ σ. s1(p1) s2(p2) s3(p3, p4) s5(p3, p6) s4(p5, p4) s6(p3, p8) s8(p5, p6) s7(p7, p4) s9(p5, p8) s10(p7, p6) s11(p7, p8)
In the following, we define unobservable transitions. Informally (see Fig. 4), an unobservable transition t is a transition having, at least, one unmarked output place p such that no other transition can produce tokens in p (• p = {t}). Thus, p being initially unmarked, the firing of any output transition of p is impossible before firing t. For this reason, any firing sequence containing any transition t ∈ p • contains necessarily t (i.e., t t).

Definition 7. A transition t in a marked Petri net (N , m 0) is said to be unob- servable ⇐⇒ ∃ p ∈ t • , • p = {t} ∧ p • = ∅ ∧ m 0 (p) = 0.
Example 1. Consider the marked Petri net of Fig. 2. The set of unobservable transitions is {t 1 , t 2 , t 3 , t 4 , t 5 , t 6 , t 9 }. Transitions t 7 , t 8 , t 10 and t 11 are not. Indeed, each of the transitions t 7 , t 8 and t 10 has a single output place that has another input transition, while t 11 is not unobservable since place p 1 is initially marked.

In the rest of the paper, each transition that is not unobservable is said to be observable. Given a marked Petri net (N , m 0), the set T of its transitions can then be divided into the two disjoint subsets Obs and UnObs that represent the observable and the unobservable transitions, respectively.

Next, we establish some theoretical results about the fireability of a transition depending on its type (observable or unobservable). The proof is in Appendix A.

Lemma 1. Given a marked Petri net (N , m 0) and a transition t, t ∈ U nObs =⇒ ∀p ∈ t ∼ , ∀t ∈ p • , t t. Corollary 1. Given a marked Petri net (N , m 0) and a transition t ∈ U nObs. Then, t is dead =⇒ ∀p ∈ t ∼ , ∀t ∈ p • , t is dead.
The proof of the previous corollary is immediate from Lemma 1. In fact, if an unobservable transition t is dead (i.e., there is no firing sequence σ.t from the initial marking m 0), none of the output places in t ∼ will be marked, preventing to fire their output transitions. In the following lemma, an unobservable cycle denotes a cycle in the Petri net model that contains unobserved transitions only. The proof is presented in Appendix B.

Lemma 2. Let (N , m 0) be a marked Petri net. Then, ∀t ∈ UnObs, ∃t ∈ Obs : t t, or t belongs to an unobservable cycle.

Our ultimate goal is to generate a set of traces that cover all the transitions of the system (represented by a Petri net). Instead of considering all the transitions of the system, we consider only the observable transitions (Obs) and look for sequences that cover these transitions. In general, covering observable transitions implies the covering of the unobservable ones. However, as established in the previous lemma, this does not hold when the Petri net model contains unobservable cycles. In this case, all the transitions of an unobservable cycle are dead. The proof is presented in Appendix C. Lemma 3. Given a marked Petri net (N , m 0), all the transitions belonging to an unobservable cycle are dead.

Next, we present the main result of our approach: if there exists a set of firing sequences σ 1 . . . σ n covering Obs, then all the transitions of the Petri net are covered by these sequences except those belonging to unobservable cycles. Theorem 1. Let (N , m 0) be a marked Petri net. Let Obs be the set of observable transitions (i.e. any transition not satisfying Definition 7)

. If ∃σ 1 . . . σ n ∈ L((N , m 0)) s.t. Obs ⊆ n i=1
σi , then ∀t ∈ T one of the two following holds:

1. ∃i ∈ {1 . . . n} s.t. t ∈ σi .

t belongs to an unobservable cycle.

Proof. The proof is trivial using Lemma 2.

In the following theorem, we state that the set of observable transitions Obs is the smallest set ensuring the coverage of all the transitions of a Petri net (except those belonging to an unobservable cycle whose transitions are necessarily dead). The proof is presented in Appendix D.

Theorem 2. ∀Obs ⊆ Obs, Obs satisfies Theorem 1 =⇒ Obs = Obs.

Limit cases: It is worth noting that there are two limit cases to our approach:

1. Obs = ∅. This happens when the whole set of transitions of the Petri net is involved in a dead cycle. 2. Obs = T (i.e., all the transitions are observable). This happens, for instance, when none of the places has one input transition only. Such a case is obviously not favourable to our approach.

Test Specification Computation

The main theoretical result of the previous section is that covering the structurally computed observable transitions ensures the coverability of the whole set of system's transitions. It is then sufficient to find a collection of firing sequences with all observable transitions to cover all system's transitions. In this section, we propose a SOG-based approach to generate traces of the system that pass through the observable transitions. Such traces are first generated as the projection of full traces of the system on observable transitions only (called observable traces/paths). The construction of the SOG is revisited in our work in order to generate these observable traces on-the-fly (i.e., the construction is stopped as soon as all the observable transitions are covered). Once the observable traces are generated, the full traces (called abstract paths) are generated using a symbolic algorithm (BDD-based operations) based on a backward traversal of the SOG's nodes involved by these observable traces. Without loss of generality, we assume in this section that the system has no unobservable cycles. Indeed, one can detect (and remove) them using a structural analysis of the Petri net model.

On-The-Fly SOG-Based Generation of Observable Traces

The purpose of Algorithm 1 is to extract the observable traces during the construction of the SOG. Given the system model and the set of observable transitions, the goal of the algorithm is to collect a test suite T s = {σ 1 , σ 2 , . . . , σ n } such that, for any observable transition o, there exists an observable trace σ i containing an occurrence of o. Algorithm 1 is based on a depth-first search (DFS) traversal during the construction of the SOG. It takes as input the Petri net N , its initial marking m 0 , and the set of observable transitions Obs. The main used data structures are: (1) a stack "st" containing the aggregates "a" not yet completely treated, associated with the not yet treated observable transitions fireable from "a" and computed with the function EnableObs; (2) a set of sequences T s to be calculated (the output of the algorithm); (3) the current trace curT ; and (4) the set of covered observable transitions Cov. The initialization step of the algorithm (lines 4-6) computes the SOG's first aggregate using function InitialAggregate. It also initializes stack "st" with the first aggregate, and its fireable observable transitions are identified with function EnableObs. An iteration of the main loop (lines 7-28) picks and processes an item (a, f) from the stack. The algorithm ends in two cases: (1) the set of observable transitions Obs is fully covered, and (2) the stack is empty i.e., the SOG is completely built without covering the dead observable transitions. At each step of the main loop, we pick up the top couple (a, f). If the set of enabled transitions is not empty (line 9), then we choose (and remove from f) a transition to fire using the function chooseTransition that favours transitions that have not been covered yet, if any. Such a function could be more sophisticated to rely on some objective function (e.g., the length and/or the number of generated observable traces). If the selected transition o is the last observable transition to be covered, we save the current trace in T s before leaving the loop (lines [START_REF] Darvas | Formal verification of complex properties on PLC programs[END_REF][START_REF] Desel | Validation of information system models: Petri nets and test case generation[END_REF][START_REF] Ding | Evaluating test adequacy coverage of high level petri nets using spin[END_REF]. Then, we push back the couple (a, f) to the stack and compute the successor a of a by transition o (lines [START_REF] Ding | Petri net based test case generation for evolved specification[END_REF][START_REF] Emerson | Dynamic symmetry reduction[END_REF]. If the successor already exists (lines 18-20), we add the current trace to T s and then remove the last transition from the current path. In fact, we just finished traversing a path leading to a where the last transition is o (such a trace has to be saved in T s), and we are going in the next iteration to come back to aggregate a to explore another path (o must be removed from the current trace). In case the aggregate a is a new aggregate, we push it on the stack with the corresponding set of enabled observable transitions (line 22). Finally, in case the picked aggregate is completely treated (lines 24-26), we add the current trace to T s and then remove the last transition from the current path. The reason is the same as when the compute successor aggregate exists. Notice that the current trace curT is added to T s only if there exists at least one transition in curT that is newly covered.

Example 2. When Algorithm 1 gets the Petri net of Fig. 2 as a first parameter N , an initial marking m 0 where only p 1 contains a token, and a set of observed transitions Obs = {t 7 , t 8 , t 10 , t 11 }, the initialization operation (line 5) generates the aggregate a 0 of Fig. 3. As there are two outgoing transitions, t 7 and t 8 , identified by EnableObs (line 6), when the algorithm picks one of them in line 10, the statement of line 17 will create a 1 . Aggregate a 1 has two outgoing transitions: t 10 and t 11 , where the former conducts to a 2 . The last created aggregate leads to a previously created one a 1 through t 7 or t 8 . At this step, line 19 inserts the variable curT containing < t 8 , t 10 , t 7 > into the set of observed traces identified by the variable T s . Using the backtracking mechanism implemented in lines 20 and 26, the algorithm goes back to the aggregate a 1 to explore the last uncovered transition t 11 leading to a previously explored aggregate a 0 . Therefore, line 19 generates a new observed trace < t 8 , t 11 >. In this final iteration, the stack st is empty, and all transitions are covered.

Extracting Abstract Traces

The set of observable traces could be important to trigger particular executions of the system. However, in case we need to have complete executions involving the totality of the system transitions, we can extract such traces from the observable ones. Therefore, we will insert a sequence of unobserved transitions between two observed ones generated by the previous algorithm, starting from the initial marking state. Several criteria could be used to choose the unobserved sequence, such as test feasibility, balanced combinations, and sequence length. In our case, we aim to minimize the sequence's length traversing an aggregate. Algorithm 2 takes as input the observable path obsPath, the SOG built earlier SOG, and the set of unobservable transitions UnObs, and it returns the ab-stract path abs path. During the first phase (lines 5-7), the algorithm extracts the observed path's last transition, identifies the aggregates' entry points set, and initializes the abstract path. The function research entry points calculates and stores in the stack (entry points) the list of aggregates traversed along the observable path obsPath, each associated with the set of its input states (i.e., the set of states reached by the previous observable transition in the trace starting from the previous aggregate). As long as there are items in the stack (aggregates and their entry points), the second phase (lines 8-16) uses a backtracking traversal of the current aggregate (at the top of the stack) in order to build a trace of unobservable transitions linking the source set of states (i.e., the ending points in an aggregate that will lead to the next aggregate while traversing the path) to the target set of states (i.e. entry points of the same aggregate). The above process is done by the function sub path aggregate. The last function uses a BFS strategy to provide the shortest unboservable path linking the entry and exit points of the aggregate.

Algorithm 2: Generation of abstract path

Example 3. To apply Algorithm 2 to our illustrative example, the first parameter obsP ath contains one of the two observed paths provided by the previous algorithm: < t 8 , t 10 , t 7 > and < t 8 , t 11 >. If the second parameter is described by Fig. 3, the third one, called U nObs, contains all transitions of the Petri net of Fig. 2, except the observed transitions t 7 , t 8 , t 10 , and t 11 . For the first unobserved path < t 8 , t 10 , t 7 >, the variable trans stores t 7 , and line 6 computes the entry points of the aggregates a 0 , a 1 , and a 2 , that is, {s 1 }, {s 12 , s 13 , s 14 }, and {s 16 , s 17 , s 20 }, respectively. The entry points stack holds three couples, where (a 2 , {s 16 , s 17 , s 20 }) is on the top. After removing the pair from the stack, lines [START_REF] Beyer | Generating tests from counterexamples[END_REF][START_REF] Chariyathitipong | Dynamic slicing of time petri net based on MTL property[END_REF] isolate the set of entry points and the aggregate. The former is stored in the target variable, and the latter in the agr variable. Then, line 12 computes the states' set in the aggregate a 2 that can fire the transition t 7 . For our example, source variable contains {s 18 , s 21 , s 23 }. Before extracting the next unobserved transition t 10 and proceeding to the next iteration, line 13 identifies the path from the entry point of the aggregate a 2 to the observed transition t 7 . The generated path is extended, in line 14, by adding the transition t 7 and an empty abstract path, as we are at the first iteration. In this case, we have three different alternatives: < t 5 , t 7 >, < t 3 , t 5 , t 7 >, or < t 3 , t 4 , t 5 , t 7 >. Our function sub path aggregate chooses the first state that can fire t 7 . The actual implementation generates the first abstract path. After two iterations successively processing t 10 and t 8 and the aggregates a 1 and a 0 , respectively, the algorithm returns the abstract path < t 1 , t 2 , t 6 , t 8 , t 10 , t 5 , t 7 >.

Experiments

In this section, we compare the performance of our approach with that of two state-of-the-art tools: MISTA 5 and NModel 6 . This choice is based on the tools presented in the reviews [START_REF] Shafique | A systematic review of state-based test tools[END_REF][START_REF] Bernardino | Systematic mapping study on MBT: tools and models[END_REF][START_REF] Micskei | Model-based testing (MBT)[END_REF][START_REF] Villalobos-Arias | Model-based testing areas, tools and challenges: A tertiary study[END_REF]. We selected those that are [START_REF] Ahmad | Scenario based functional regression testing using petri net models[END_REF] open-source, (2) available and maintained, (3) take as input either an FMS or a Petri net, (4) support the transition coverage criteria, and (5) generate all the paths.

Our approach has been implemented in the open-source tool sogMBT [START_REF] Arias | sogMBT: Symbolic observation graph-based generator of test paths[END_REF], that is written in C++ and has been integrated to the user-friendly web platform CosyVerif7 . A total of 8 models from the Model Checking Contest8 were used in our experiments: Philosophers (philo), Referendum (referendum), SafeBus (sbus), ServersAndClients (servers), SharedMemory (smemory), Sudoku (sudoku), CircularTrains (train), and TokenRing (tring). The biggest model in terms of state space size is philo20 (3.49E+09 reachable states). We were limited in our choice to Place-Transition 1-safe Petri nets because generalized Petri nets are not supported by MISTA. We ran all the experiments on a Dell Precision Tower 3430 with a processor Intel Xeon E-2136 6-cores @ 3.3GHz, 64 GiB memory, and Ubuntu 20.04. We used a timeout of 1 hour. The reader can find in the repository [START_REF] Klai | sogMBT benchmarks[END_REF] all the files needed to reproduce the benchmarks and the figures.

Table 1 summarizes our results. For each model, we indicate the number of transitions (column 3), the number of observable transitions obtained by our structural analysis of the model (column 4), the number of obtained covering firing sequences (column 5) and their average size (column 6), and the execution time of the three tested tools (column 7) where T1, T2 and T3 refer to our approach (namely sogMBT), MISTA and NModel, respectively. could not compete with the other two tools. Amongst the 24 situations, MISTA outperformed sogMBT in 9 cases, while the reverse was true 7 times. It is worth noting that we do not expect our approach to be efficient when the number of observable transitions is high. This is the case for three out of 8 of the selected models: referendum (all the transitions, except one, are observable), and both sudoku and tring models where all the transitions are observable. If we focus on the testing effort that we can deduce from the two penultimate columns, which can be measured by the product of the number of paths and the average path size, we see that amongst 16 situations, the testing effort related to sogMBT is lower in 7 (resp. MISTA in 6) while three cases show perfect equality. MISTA uses a DFS strategy, leading to an average size of the generated paths longer than the computed by our approach. 4) extraction of abstract paths from observable ones. It is clear that for small models, the initialization time is prevailing while for medium to large models, the generation time of the observed paths is more important since the construction of the aggregates is realized during the exploration. The last phase is not very time-consuming.

To summarize these preliminary results, the sogMBT, as a proof of concept prototype, is competitive w.r.t. existing tools. This is promising, and the approach can be improved from different perspectives. For instance, more sophisticated heuristics can be elaborated to decide which path to follow during the DFS-based construction/exploration of the SOG, in order to cover the observ-able transitions with less effort. Another improvement would be to parallelize the initialization phase (e.g., following [START_REF] Klai | Hybrid parallel model checking of hybrid LTL on hybrid state space representation[END_REF]), among others.

Related work

Given the widespread use of Petri nets in the specification of critical systems, several works have aimed at developing approaches for generating test inputs from models described with them. Many research projects have combined the reachability graph and standard search algorithms from graph theory to produce test inputs [START_REF] Li | A test cases generation method for atp[END_REF]. Other approaches have used the same structure to build a transition tree representing the test inputs. This transition tree is rooted in the initial state of the marking graph, and each path leading to a leaf is a sequence of firing transitions from the Petri net [START_REF] Wang | Using a petri net model approach to objectoriented class testing[END_REF]. Dianxiang et al. [START_REF] Xu | Automated security test generation with formal threat models[END_REF] have shown that this data structure is helpful to have provided a strategy for robustness testing. Dianxiang [START_REF] Xu | A tool for automated test code generation from high-level petri nets[END_REF] published an integrated development environment for automated test generation and execution two years earlier.

Identifying the change related to a specification modification has been the subject of two research projects on regression testing [START_REF] Ahmad | Scenario based functional regression testing using petri net models[END_REF][START_REF] Ding | Petri net based test case generation for evolved specification[END_REF]. Their main goal was to identify test inputs which are no longer relevant due to the removal of some transitions. Besides, they propose new entries or modify old ones to cover the new transitions added to the model. The test quality measurement of the interactions between agents was introduced by Miller et al. [START_REF] Miller | Test coverage criteria for agent interaction testing[END_REF]. Authors have modified an existing debugging tool to measure the coverage rate of various protocol-based criteria related expressed using Petri nets. Several coverage criteria have been formalized for high-level Petri nets [START_REF] Zhu | A methodology of testing high-level petri nets[END_REF][START_REF] Liu | Test coverage for collaborative workflow application based on petri net[END_REF]. The work of [START_REF] Desel | Validation of information system models: Petri nets and test case generation[END_REF] uses the cause-effect network's concept for the generation of test inputs, while [START_REF] Ding | Evaluating test adequacy coverage of high level petri nets using spin[END_REF] uses the execution potential of the model by the simulation to measure the coverage rate of the generated test inputs. Most of these approaches face the problem of state space explosion when aiming to test systems with a marking graph containing thousands of states. From the work of Chusho [START_REF] Chusho | Test data selection and quality estimation based on the concept of esssential branches for path testing[END_REF], which introduces the notion of the essential branch, to that of Bardin et al. [START_REF] Bardin | Specify and measure, cover and reveal: A unified framework for automated test generation[END_REF], which defines a unified framework to identify essential test objectives, several works and theories have emerged to address this problem. They rely on graph theory, dynamic symbolic execution, weakest calculus, model-checking, proof, constraint-based techniques, and value analysis. Based on the notion of the decision-to-decision path (dd-path) [START_REF] Huang | Error detection through program testing[END_REF], Chusho [START_REF] Chusho | Test data selection and quality estimation based on the concept of esssential branches for path testing[END_REF] introduced the essential branch measure, which represents the cornerstone to transform a control flow graph (CFG), representing the target code, into a reduced graph called an inheritor-reduced graph. Following this reduction, covering essential branches implies the coverage of all branches. In the same vein, Bertolino and Marré [START_REF] Bertolino | Automatic generation of path covers based on the control flow analysis of computer programs[END_REF] have used the relations of dominance and implication among the arcs of a ddgraph, which allowed the deduction of unconstrained arcs. The deduced set constitutes a minimal set of the ddgraph's arcs such that the paths which cover them are a path cover. These approaches cannot identify infeasible structural objectives without human assistance to tune the selection strategy. Also, these approaches are suitable to handle CFG but do not scale up to handle large systems with thousands of nodes. A broader perspective of our work includes the generation of test paths such as those proposed by Li et al. [START_REF] Li | Better algorithms to minimize the cost of test paths[END_REF]. They have used search-based approaches, whereas the one proposed by Hallé revolves around Cayley graph and triaging function. The latter defines a unified method to handle different coverage criteria, and the Cayley graph gathers the test paths into equivalence classes. As a result, this approach reduces the number of test paths. However, it does not offer a solution to identify the unfeasible objectives and the subsumed elementary components (transitions).

Offutt and Pan [START_REF] Offutt | Automatically detecting equivalent mutants and infeasible paths[END_REF] encode the test objectives under constraints that are extracted from the program under test. Unresolved constraints represent infeasible objectives. By associating properties to the structural test objects, the use of model-checking [START_REF] Beyer | Generating tests from counterexamples[END_REF] verifies whether the test object is verifiable or not. If the first approach shows limits when the constraints are non-linear [START_REF] Anand | An orchestrated survey of methodologies for automated software test case generation[END_REF] or when the program uses aliases [START_REF] Kosmatov | All-paths testgeneration for programs with internal aliases[END_REF], model-checking faces the problem of scaling.

Other techniques use the weakest precondition to remedy the scaling problem. This technique allows [START_REF] Beckman | Proofs from tests[END_REF] to identify infeasible instructions while [START_REF] Baluda | Bidirectional symbolic analysis for effective branch testing[END_REF] determines infeasible branches. Since these first two criteria are the most basic, Bardin et al. [START_REF] Bardin | Sound and quasi-complete detection of infeasible test requirements[END_REF] use the weakest precondition to address more advanced structural test objectives. Marcozzi et al. [START_REF] Marcozzi | Time to clean your test objectives[END_REF] unfold this technique to identify polluting test targets that do not stop at infeasible targets. Blending the identification of infeasible test objectives with symbolic or even concolic execution accelerates the generation of test inputs and refines the coverage measures.

Conclusion

Unlike verification, which can show that software is fault-free, testing discloses the presence of faults in the software only. Although researchers are not unanimous about the ability of test inputs that meet the coverage criteria to expose flaws, these criteria can help to evaluate the quality of the tests generated. We have formalized the separation of a Petri net's transitions into two disjoint sets: Obs and UnObs. We have shown that an UnObs transition is either unreachable or subsumed by another transition. Also, we have shown that the coverage of all the Obs transitions meets the transition coverage criterion of a given Petri net. Then, we have proposed a structural manner to extract the set of observable transitions from a Petri net. The construction of the Obs test paths was presented through an algorithm based on the partial building of a SOG. Yet, we have introduced the final algorithm, which builds abstract test paths from Obs tests. Since it is not mandatory to build the whole SOG's aggregates, our approach shows potential signs to improve the performance of test path generation. This has been confirmed by our preliminary experimental results. As future work, we plan to use linear programming and machine learning approaches in order to minimize the number and the length of the test sequences during the SOG construction. Also, we aim to extend our approach to other types of coverage criteria related to Petri nets and to evaluate the potential of fault identification using mutation testing.

A Proof of Lemma 1

Proof. Let t be an unobservable transition, p be a place in t ∼ and t ∈ p • . Assume that there exists a firing sequence σ.t . Given that place p is not marked initially and that no transition, except t, can produce a token in p, t must be fired before t to produce the necessary token in p.

B Proof of Lemma 2

Proof. Let (N , m 0) be a marked Petri net, t 0 ∈ UnObs be an unobservable transition, p ∈ t ∼ 0 be an output place of t 0 having t 0 as unique input transition, and t 1 ∈ p • be an output transition of p. Then, by Lemma 1, t 1 t 0 . If t 1 is observable, then the lemma is proved. Else, by an iterative application of this reasoning, by the transitivity of the coverage relation and by the fact that the number of transitions in a Petri net is finite, we end on two possible cases: (1) there exists a transition t n ∈ Obs s.t. t n t n-1 • • • t 0 , or (2) t 0 belongs to an unobservable cycle, which proves the Lemma.

C Proof of Lemma 3

Proof. Let t be a transition of the cycle, and p ∈ • t be the input place of t that belongs to the cycle. p is initially empty because the (unique) transition t ∈ • p belongs to the cycle and hence is unobservable. Thus, place p will never be marked because t is dead by a successive application of Corollary 1 from t.

D Proof of Theorem 2

Proof. Assume that Obs ⊂ Obs is the smallest subset of transitions satisfying Theorem 1. Let t ∈ Obs \ Obs , there exists then a transition t ∈ Obs s.

Fig. 2 .

 2 Fig. 1. An LTS

Fig. 3 .

 3 Fig. 3. SOG related to the LTS of Fig. 1 under the observation of {t7, t8, t10, t11}

Fig. 4 .

 4 Fig. 4. Unobservable transition t

Algorithm 1 : 4 Cov ← ∅; 5 a

 145 Generation of observable traces Data: N , m0, Obs Result: Ts 1 Stack<aggregate, set<transition>> st; Set of traces Ts; aggregate a, a ; 2 Current observable trace curT ; Set of covered observable transitions Cov; 3 begin ← InitialAggregate((N , m0)) ;6 st.push(a, EnableObs(a)); 7 while (st = ∅ ∧ Cov ⊂ Obs) do 8 st.pop(a,f); 9 if (f = ∅) then 10 o ← chooseTransition(f , Cov); 11 Cov = Cov ∪ {o}; 12 curT ← curT.o; 13 if (Cov == Obs) then 14 Ts ← Ts ∪ {curT } 15 end 16 st.push(a,f);

17 a←

 17 Succ(a, o); 18 if (a already exist) then 19 Ts ← Ts ∪ {curT } 20 curT ← curT -curT.last;

Fig. 5 .

 5 Fig.5. Times for each step in the computation of observable traces. Some bars do not reach the 100% because some times are very small, thus accumulating precision errors.

Fig. 5

 5 Fig.5is given in order to have a detailed analysis of the distribution of the execution time of sogMBT among the different phases of our approach: (1) initialization of data structure (BDD staff); (2) computation of the observable transitions; (3) computation of observable paths; and (4) extraction of abstract paths from observable ones. It is clear that for small models, the initialization time is prevailing while for medium to large models, the generation time of the observed paths is more important since the construction of the aggregates is realized during the exploration. The last phase is not very time-consuming.To summarize these preliminary results, the sogMBT, as a proof of concept prototype, is competitive w.r.t. existing tools. This is promising, and the approach can be improved from different perspectives. For instance, more sophisticated heuristics can be elaborated to decide which path to follow during the DFS-based construction/exploration of the SOG, in order to cover the observ-

 A transition t is said to be enabled by a marking m (denoted by m

t -→) iff ∀p ∈ • t, W (p, t) ≤ m(p). If

a transition t is enabled by a marking m, then its firing leads to a new marking m (denoted by m t -→ m) s.t. ∀p ∈ P : m

Table 1 .

 1 It is clear that NModel Experimental results (timeout 1 hr)

	model	instance	# trans.	# obs. trans.	T1	# paths T2	T3	Average size of paths T1 T2 T3	Time (ms) T1 T2	T3
	example	example	11	4	2	3	4	8.00	7.00	9.00	0.95	1.0	100.0
		philo10	50	30	14	2	TO	39.07	73.00	TO	1344.970	1668.0	TO
	philo	philo20	100	TO TO TO	TO	TO	TO	TO	TO	MO	TO
		philo5	25	15	9	2	150	12.44	33.50	8.77	7.57	6.0	337.0
	referendum	referendum10 referendum15	21 31	20 TO TO TO 19 10	TO TO	10.53 TO	11.00 TO	TO TO	2622.98 1785.0 TO MO	TO TO
	sbus	sbus3 sbus6	91 451	85 TO TO TO 20 24	415 267.70 TO TO	97.67 TO	80.82 TO	314.93 TO	179.0 23522.0 MO TO
		servers100-20	4200	2100 2000 2000	1	3.05	3.05 8000.00	335988.00 1640.0 34303.0
	servers	servers100-40	8200	4100 4000 4000	TO	3.03	3.03	TO 1300630.00 6054.0	TO
		servers100-80	16200	TO TO TO	TO	TO	TO	TO	TO	MO	TO
		smemory10	210	100	100	100	TO	8.75	45.20	TO	11475.00	269.0	TO
	smemory	smemory20	820	TO TO TO	TO	TO	TO	TO	TO	MO	TO
		smemory5	55	25	25	15	193	5.56	99.67	71.75	38.49	72.0	4271.0
		sudokuA-1	1	1	1	1	1	1.00	1.00	1.00	0.68	9.0	85.0
	sudoku	sudokuA-2 sudokuA-3	8 27	8 27	4 17	3 11 19494 32	3.00 7.26	3.00 5.73	3.00 6.06	0.919 197.47	0.0 113.000 416.0 52540.0
		sudokuA-4	64	TO TO TO	TO	TO	TO	TO	TO	MO	TO
		train12	12	4	1	1	21	12.00	17.00	29.52	2.40	16.0	215.0
	train	train24	24	8	1 TO	TO	24.00	TO	TO	330.64	MO	TO
		train48	48	TO TO TO	TO	TO	TO	TO	TO	MO	TO
		tring10	1111	1111	106	46	TO	18.36 142.54	TO	68507.90 9743.0	TO
	tring	tring15	3616	TO TO TO	TO	TO	TO	TO	TO	MO	TO
		tring5	156	156	11	11	100	10.18	59.27	6.87	9.89	5.0	261.0
	T1: sogMBT; T2: MISTA; T3: NModel										

 t. t t, i.e., ∀ firing sequence t 1 . . . t n .t (for n ≥ 1), ∃i ∈ {1, . . . , n} s.t., t = t i . Let p ∈ t • ∩ • t . Then, by Definition 7, p is necessarily not marked, otherwise the sequence t i+1 . . . t n .t is a firing sequence that does not contain t. Also, there exists a transition t i = t in • p, otherwise t is unobservable. If t i is observable, then there exists a firing sequence β.t i which makes the sequence β.t i .t i+1 . . . t n .t a firing sequence not involving t, and that is not possible. If t i is unobservable, then, by using Lemma 2, there exists a transition t i ∈ Obs s.t. t i t i . By hypothesis, there exists a sequence α.t i .γ.t i . Thus, the sequence α.t i .t i+1 . . . t n .t covers t but not t, which is impossible. To conclude, such a transition t could not exist and Obs is necessarily equal to Obs.

https://github.com/dianxiangxu/MISTA

https://github.com/juhan/NModel

https://cosyverif.lipn.univ-paris13.fr/

https://mcc.lip6.fr