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q νq (n)+2 -1 q νq (n)+2 -q for a superabundant number n > 5040, where νp(n) is the p-adic order of n, qk is the largest prime factor of n and Nr = r i=1 qi is the largest primorial number of order r such that Nr 6 < q 2 k . In this note, we prove that the Riemann hypothesis is true when Pn ≥ Q holds for all large enough superabundant numbers n, where

Q = 1.2•(2-1 8 )•(3-1 3 ) (2-1 2 19 )•(3-1 1 

Introduction

The hypothesis was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of twenty-three unsolved problems. As usual σ(n) is the sum-of-divisors function The Riemann hypothesis

of n d|n d,
where d | n means the integer d divides n. Define f (n) as σ(n) n . We say that Robin(n) holds provided that

f (n) < e γ • log log n,
where γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The Ramanujan's Theorem states that if the Riemann hypothesis is true, then the previous inequality holds for large enough n [START_REF] Nicolas | Highly Composite Numbers by Srinivasa Ramanujan[END_REF]. Next, we have the Robin's Theorem: In 1997, Ramanujan's old notes were published where it was defined the generalized highly composite numbers, which include the superabundant and colossally abundant numbers [START_REF] Nicolas | Highly Composite Numbers by Srinivasa Ramanujan[END_REF]. Let q 1 = 2, q 2 = 3, . . . , q k denote the first k consecutive primes, then an integer of the form k i=1 q ai i with a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 is called a Hardy-Ramanujan integer [3, pp. 367]. A natural number n is called superabundant precisely when, for all natural numbers m < n f (m) < f (n).

We know the following properties for the superabundant numbers: A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n) n 1+ϵ ≥ σ(m) m 1+ϵ for (m > 1).
There is a close relation between the superabundant and colossally abundant numbers.

Proposition 5 Every colossally abundant number is superabundant [4, pp. 455].

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. However, there are some implications in case of the Riemann hypothesis might be false. The following is a key Corollary.

Corollary 1 If the Riemann hypothesis is false, then there are infinitely many superabundant numbers n such that Robin(n) fails.

Proof This is a direct consequence of Propositions 1, 5 and 6. □

In number theory, the p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted ν p (n). Equivalently, ν p (n) is the exponent to which p appears in the prime factorization of n.

Proposition 7 Robin(n) holds for all natural numbers n > 5040 such that ν 2 (n) ≤ 19 and ν 3 (n) ≤ 12 [5, Theorem 1 pp. 2, Theorem 2 pp. 2].

Proposition 8 [4, Theorem 5 pp. 452]. Let n be a superabundant number such that νq(n) = t, p is the largest prime factor of n, 2 ≤ q ≤ p and q < (log p) α , where α is a constant, then

log q t+2 -1 q t+2 -q < log q p • log p • 1 + O (log log p) 2 log p • log q .
This is the main insight.

Lemma 1 Let n be a large enough superabundant number such that p > 3 is the largest prime factor of n, then p < 2 ν2(n)-19 and p < 3 ν3(n)-12 . The Riemann hypothesis Let P n be equal to q| Nr 6 q νq (n)+2 -1 q νq (n)+2 -q for a superabundant number n > 5040, where q k is the largest prime factor of n and N r = r i=1 q i is the largest primorial number of order r such that Nr 6 < q 2 k . Putting all together yields the main theorem:

Theorem 1 The Riemann hypothesis is true when Pn ≥ Q holds for all large enough superabundant numbers n, where

Q = 1.2•(2-1 8 )•(3-1 3 ) (2-1 2 19 )•(3-1 3 12
) ≈ 1.0000015809. In particular, the inequality Pn ≥ Q holds when q|m σ( m q νq (n)+1 ) ⪆ σ(m) • log Q also holds such that m = q|Nr q νq(n)+1 since σ(. . .) is multiplicative.

Proof of the Lemma 1

Proof Let q ∈ {2, 3} and νq(n) = t. For every large enough superabundant number n, there is a constant α such that q < (log p) α . For example, we can take α = 2.5 since (log p) 2.5 ≥ (log 5) 2.5 > 3. We will use the following inequality u u + 1 < log(1 + u), (u > 0).

From the previous inequality, we notice that log q t+2 -1 q t+2 -q = log 1 + q -1 q t+2 -q > q-1 q t+2 -q q-1 q t+2 -q + 1 = q -1 (q t+2 -q) • ( q-1 q t+2 -q + 1) = q -1 (q -1) + (q t+2 -q) = q -1 q t+2 -1

> 1 3 • q t+1 .
Hence, there is a constant C > 0 such that

q t > C • p • log p log q
by Proposition 8. Putting c = C log q , then we obtain that

c • p • log p < q t ,
where c is a positive constant. We deduce that

c • log p > 3 12
by Proposition 3 for large enough n. Therefore, the proof is done. □

Proof of the Theorem 1

Proof There are infinitely many superabundant numbers by Proposition 4. Let n > 5040 be a large enough superabundant number. Let k i=1 q ai i be the representation of this superabundant number n as the product of the first k consecutive primes q 1 < . . . < q k with the natural numbers a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 as exponents, since n must be a Hardy-Ramanujan integer by Proposition 2. Let Pn be equal to q| Nr 6 q νq (n)+2 -1 q νq (n)+2 -q for n > 5040, where Nr = r i=1 q i is the largest primorial number of order r such that Nr 6 < q 2 k . Suppose that Robin(n) fails and Pn ≥ Q, where

Q = 1.2•(2-1 8 )•(3-1 3 ) (2-1 2 19 )•(3-1 3 12 ) ≈ 1.0000015809. So, f (n) ≥ e γ • log log n.
We know that

f (n) = f (2 ν2(n) • 3 ν3(n) ) • f ( n 2 ν2(n) • 3 ν3(n) ) < 3 • f ( n 2 ν2(n) • 3 ν3(n) ) = f (2 3 • 3 • 5) • f ( n 2 ν2(n) • 3 ν3(n) ) ≤ f 2 19 • 3 12 • n • Nr 6 2 ν2(n) • 3 ν3(n) = f n • Nr 6 2 ν2(n)-19 • 3 ν3(n)-12 since Pn ≥ Q, qi qi-1 > q a i +1 i -1 q a i i •(qi-1) = f (q ai i ) and f (. . .) is multiplicative, where f (2 3 • 3 • 5) = 3 = 2 • 3 2 > f (2 ν2(n) ) • f (3 ν3(n) ) = f (2 ν2(n) • 3 ν3(n)
). This is true because of

f (2 3 • 3 • 5) • f ( n 2 ν2(n) • 3 ν3(n) ) ≤ f 2 19 • 3 12 • n • Nr 6 2 ν2(n) • 3 ν3(n) is equivalent to say that f (2 3 • 3 • 5) f (2 19 • 3 12 ) ≤ q| Nr 6 f (q νq(n)+1 ) f (q νq(n) ) .
Certainly, we know that

f (2 3 • 3 • 5) f (2 19 • 3 12 ) = Q and q| Nr 6 f (q νq(n)+1 ) f (q νq(n) ) = q| Nr 6 q νq(n)+2 -1 q νq(n)+2 -q = Pn.
Consequently, that is true under the supposition that Pn ≥ Q. We have

f n • Nr 6 2 ν2(n)-19 • 3 ν3(n)-12 < e γ • log log n • Nr 6 2 ν2(n)-19 • 3 ν3(n)-12
by Proposition 7. Therefore, we obtain that

e γ • log log n • Nr which is the same as n • q 2 k 2 ν2(n)-19 • 3 ν3(n)-12 > n • Nr 6 2 ν2(n)-19 • 3 ν3(n)-12 > n
using the inequality Nr 6 < q 2 k . However, we know that 2 ν2(n)-19 > q k and 3 ν3(n)-12 > q k by Lemma 1, due to n is large enough. So, we can see that necessarily,

n • q 2 k 2 ν2(n)-19 • 3 ν3(n)-12 < n.
In this way, we obtain a contradiction under the assumption that Robin(n) fails and

Pn ≥ Q, where Q = 1.2•(2-1 8 )•(3-1 3 ) (2-1 2 19 )•(3-1 3 
12 ) ≈ 1.0000015809. To sum up, the study of this arbitrary large enough superabundant number n reveals that Robin(n) holds whenever Pn ≥ Q. Accordingly, Robin(n) holds for all large enough superabundant numbers n when Pn ≥ Q holds. This contradicts the fact that there are infinitely many superabundant numbers n, such that Robin(n) fails when the Riemann hypothesis is false according to Corollary 1. By reductio ad absurdum, we prove that the Riemann hypothesis is true when Pn ≥ Q holds for all large enough superabundant numbers n. From the proof of the Lemma 1, we show that log q νq (n)+2 -1 q νq (n)+2 -q > q-1 q νq (n)+2 -1

, where we know that q-1 q νq (n)+2 -1

= 1 σ(q νq (n)+1 )
. Thus, the inequality Pn ≥ Q holds when q| Nr 6 σ( n ′ q νq (n)+1 ) ≥ σ(n ′ ) • log Q also holds such that n ′ = q| Nr 6 q νq(n)+1 since σ(. . .) is multiplicative. However, the inequality q| Nr 6 σ( n ′ q νq(n)+1 ) ≥ σ(n ′ ) • log Q is the same as q| Nr 6 σ( m q νq(n)+1 ) ≥ σ(m) • log Q after multiplying both sides by σ(2 ν2(n)+1 • 3 ν3(n)+1 ) such that m = n ′ • 2 ν2(n)+1 • 3 ν3(n)+1 . That would be the same as

q|m σ( m q νq(n)+1 ) ≥ σ(m) • log Q + σ(m) σ(2 ν2(n)+1 ) + σ(m) σ(3 ν3(n)+1 ) = σ(m) • log Q + 1 σ(2 ν2(n)+1 ) + 1 σ(3 ν3(n)+1 ) ⪆ σ(m) • log Q
and thus, the proof is done. □

Proposition 6

 6 If the Riemann hypothesis is false, then there are infinitely many colossally abundant numbers n > 5040 such that Robin(n) fails (i.e. Robin(n) does not hold) [2, Proposition pp. 204].

  Proposition 1 Robin(n) holds for all natural numbers n > 5040 if and only if the Riemann hypothesis is true [2, Theorem 1 pp. 188].

12 ) ≈ 1.0000015809. In particular, the inequality Pn ≥ Q holds when q|m σ(

2 ν2(n)-19 • 3 ν3(n)-12 > e γ • log log n