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There are two classical very different extensions of the well-known Gaussian fractional Brownian motion to non-Gaussian frameworks of heavy-tailed stable distributions: the harmonizable fractional stable motion (HFSM) and the linear fractional stable motion (LFSM). As far as we know, while several articles in the literature, some of which appeared a long time ago, have proposed statistical estimators for parameters of LFSM, no estimator has yet been proposed in the framework of HFSM. Among other things, what makes statistical estimation of parameters of HFSM to be a difficult problem is that, in contrast to LFSM, HFSM is not ergodic. The main goal of our work is to propose a new strategy for dealing with this problem and constructing strongly consistent and asymptotically normal statistical estimators for both parameters of HFSM. The keystone of our new strategy consists in the construction of new transforms of HFSM which allow to obtain, at any dyadic level and also at any two consecutive dyadic levels, sequences of independent stable random variables. This new strategy might allow to make statistical inference for more general non-ergodic hamonizable stable processes and fields than HFSM. Moreover, it could turn out to be useful in study of other issues related to them.

Introduction and statement of the main results

A real-valued harmonizable fractional stable motion 1 (HFSM), denoted by {X(t)} t∈R , is a paradigmatic example of a continuous symmetric stable self-similar stochastic process with stationary increments. It was introduced, about 35 years ago, by Cambanis and Maejima in 1 Notice that the HFSM is sometimes called harmonizable fractional stable process.

1 [START_REF] Cambanis | Two classes of self-similar stable processes with stationary increments[END_REF]. Basically, it depends on two parameters: the Hurst parameter H belonging to the open interval (0, 1), and the stability parameter α belonging to the interval (0, 2]. Among other things, the parameter H governs roughness of sample paths of {X(t)} t∈R and its self-similarity property:

a -H X(at) t∈R d = {X(t)} t∈R , for any fixed a ∈ (0, +∞), where d = means that the equality holds in the sense of the finite-dimensional distributions. While the parameter α determines, for each t = 0 (notice that X(0) a.s. = 0), heaviness of the tail of the distribution of the random variable X(t), whose characteristic function Φ X(t) satisfies Φ X(t) (λ) = exp -σ(X(t)) α |λ| α , for all λ ∈ R, where σ(X(t)) > 0 is the scale parameter of X(t). Indeed, except in the very particular Gaussian case α = 2 in which the probability P |X(t)| ≥ z vanishes exponentially fast when z → +∞, for any other value of α, one has, for some finite constants 0 < c (t) < c (t),

c (t)z -α ≤ P |X(t)| ≥ z ≤ c (t)z -α , for all z ∈ [1, +∞),
which in particular implies that E |X(t)| γ ) < +∞ only when γ ∈ (-1, α).

The HFSM {X(t)} t∈R is defined, for all t ∈ R, through the stable stochastic integral in the frequency domain:

X(t) := Re R e itξ -1 |ξ| H+1/α d M α (ξ) , (1.1) 
where M α is a complex-valued rotationally invariant α-stable random measure with Lebesgue control measure. A detailed presentation of such a random measure and the corresponding stable stochastic integral and related topics can for instance be found in Chapter 6 of the well-known book [START_REF] Samorodnitsky | Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance[END_REF]. The following remark, which provides two very important properties of this stochastic integral, will play a fundamental role in our work.

Remark 1.1

(i) The stable stochastic integral R • d M α is a linear map on the Lebesgue space L α (R) such that, for any deterministic function g ∈ L α (R), the real part Re R N g(ξ) d M α (ξ) is a real-valued Symmetric α-Stable (SαS) random variable with a scale parameter satisfying

σ Re R g(ξ) d M α (ξ) α = R g(ξ)
α dξ.

(1.

2)

The equality (1.2) is reminiscent of the classical isometry property of stochastic Wiener integrals; it implies that Re R g n (ξ) d M α (ξ) converges to Re R g(ξ) d M α (ξ) in probability, when a sequence (g n ) n converges to g in L α (R).

(ii) Let m ∈ N be arbitrary and let f 1 , . . . , f m be arbitrary functions of L α (R) whose supports are disjoint up to Lebesgue negligible sets, then the real-valued SαS random variables Re R f 1 (ξ) d M α (ξ) , . . . , Re R f m (ξ) d M α (ξ) are independent.

In the very particular Gaussian case where the stability parameter α = 2, the HFSM represented by (1.1) 

reduces to the very classical Gaussian fractional Brownian motion (FBM) with

Hurst parameter H, denoted by {B H (t)} t∈R . It is well-known that, up to a deterministic multiplicative constant, the Gaussian process {B H (t)} t∈R can also be represented as a moving average stochastic Wiener integral in the time domain, whose integrand is no longer the complexvalued function ξ → e itξ -1 |ξ| H+1/2 but the real-valued function s → (t -s)

H-1/2 + -(-s) H-1/2 + .
One recalls, in passing, the usual convention that, for all (x, β) ∈ R 2 , one has (x) β + := x β if x > 0 and (x) β + := 0 else. When the stability parameter α = 2, the HFSM in (1.1) can no longer be represented as a moving average stable stochastic integral in the time domain. Actually, it is very different from the real-valued linear fractional stable motion (LFSM) {L(t)} t∈R defined, for each t ∈ R, by

L(t) := R (t -s) H-1/α + -(-s) H-1/α + dM α (s), (1.3) 
where M α is a real-valued α-stable random measure. The large differences between the two processes {X(t)} t∈R and {L(t)} t∈R can be explained by several reasons. Two important ones of them are: (i) in contrast to the process {L(t)} t∈R the process {X(t)} t∈R is not ergodic, (ii) behavior of sample paths of {L(t)} t∈R and {X(t)} t∈R is far from being the same. Indeed, sample paths of {L(t)} t∈R are multifractal functions (see [START_REF] Balança | Fine regularity of Lévy processes and linear (multi)fractional stable motion[END_REF]), which become discontinuous when H ≤ 1/α and even unbounded on any interval when H < 1/α (see for example [START_REF] Samorodnitsky | Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance[END_REF][START_REF] Embrechts | Selfsimilar Processes[END_REF]). While those of {X(t)} t∈R are, on each compact interval, Hölder continuous of any order strictly less than H, for every value of H ∈ (0, 1) (see [START_REF] Kôno | Self-similar stable processes with stationary increments[END_REF][START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF][START_REF] Samorodnitsky | Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance[END_REF][START_REF] Embrechts | Selfsimilar Processes[END_REF]); namely, for each fixed δ > 0 and T > 0, one has almost surely sup

-T ≤t <t ≤T X(t ) -X(t ) |t -t | H-δ < +∞ . (1.4) 
Moreover, sample paths of {X(t)} t∈R are monofractal functions; the latter fact results from their Hölderianity property combined with Corollary 4.4 in [START_REF] Ayache | Harmonizable fractional stable fields: local nondeterminism and joint continuity of the local times[END_REF]. Also, for later purposes, one mentions that as regards their behavior at infinity, one can derive from Corollary 4.2 in [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF], that, for all fixed δ > 0, one has, almost surely, sup |t|≥1 X(t) |t| H+δ < +∞ .

(1.5)

Let us now present the main motivations behind our present work and its main contributions. Statistical estimators for the parameters H and α of the LFSM {L(t)} t∈R and related moving average stable processes have been proposed in several articles in the literature (see for instance [START_REF] Stoev | Estimation of the self-similarity parameter in linear fractional stable motion[END_REF][START_REF] Pipiras | Bounds for the covariance of functions of infinite variance stable random variables with applications to central limit theorems and wavelet-based estimation[END_REF][START_REF] Ayache | Linear mutifractional stable motion: wavelet estimation of H(•) and α parameters[END_REF][START_REF] Ayache | Uniformly and strongly consistent estimation for the Hurst function of a linear multifractional stable motion[END_REF][START_REF] Dang | Estimation of the Hurst and the stability indices of a H-selfsimilar stable process[END_REF][START_REF] Mazur | Estimation of the linear fractional stable motion[END_REF][START_REF] Ljungdahl | A minimal contrast estimator for the linear fractional stable motion[END_REF][START_REF] Ljungdahl | Multidimensional parameter estimation of heavy-tailed moving averages[END_REF]), some of which appeared a long time ago. However, as far as we know, in the framework of the HFSM {X(t)} t∈R and related harmonizable stable processes and fields no statistical estimator for any one of these two parameters has yet been proposed in the literature. Also, according to what is mentioned in Remark 1.2 (D) and on page 2 of the very recent preprint (arXiv:2302.14034v1) by A. Basse-O'Connor and M. Podolskij entitled "Asymptotic theory for quadratic variation of harmonizable fractional stable processes", their statistical estimation in such a framework is far from being an obvious problem due to the fact that HFSM and related harmonizable stable processes and fields are not ergodic. The main idea behind our strategy for dealing with the latter problem is to construct new transforms of HFSM which allow to obtain, at any dyadic level j ∈ N, a sequence {Y j,k } k∈N of independent real-valued SαS random variables whose scale parameters σ(Y j,k ), k ∈ N, are closely connected to the unknown parameters H and α of HFSM through simple formulas which are rather easy to handle. Also, we emphasize that the two sequences of random variables {Y j,2p-1 } p∈N and {Y j+1,2p-1 } p∈N are independent. Roughly speaking, these new transforms Y j,k , (j, k) ∈ N 2 , of HFSM are at the same time inspired by discrete wavelet transforms W j,k , (j, k) ∈ N 2 , of HFSM and significantly different from them. Indeed, while W j,k is defined (see e.g. [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF][START_REF] Meyer | Wavelets and Operators[END_REF]), sometimes up to normalizing factor, as the pathwise Lebesgue integral

W j,k := R ψ j,k (t)X(t) dt, where ψ j,k (t) := ψ(2 j t -k), for all t ∈ R, (1.6) 
with ψ being a "nice" real-valued function; we define Y j,k as the pathwise Lebesgue integral

Y j,k := 2 2π R Re ψ j,k (t) X(t) dt, (1.7) 
where ψ j,k is the Fourier transform of ψ j,k .

Remark 1.2 Throughout our work, we use the very classical convention that, for any function f ∈ L 1 (R), the Fourier transform f , also denoted by F(f ), is defined as

F(f )(t) = f (t) := R e -itξ f (ξ) dξ, for all t ∈ R. (1.8) 
While, the inverse Fourier transform of f , denoted by F -1 (f ), is defined as

F -1 (f )(ξ) := 1 2π R e iξt f (t) dt, for all ξ ∈ R. (1.9) 
It is well-known that the two maps F and F -1 can be extended to L 2 (R), and satisfy

F -1 F(g) = F F -1 (g) = g, for every g ∈ L 2 (R). (1.10)
We always assume that the function ψ in (1.6) and (1.7) satisfies the two general assumptions (A 1 ) and (A 2 ) that we are now going to give.

(A 1 ) ψ is an even (i.e. ψ(-ξ) = ψ(ξ) for all ξ ∈ R), real-valued, continuous function on R, with a compact non-empty support, denoted by I, such that .11) Observe that this assumption (A 1 ) implies that ψ (the Fourier transform of ψ) is a real-valued, even, continuous function on R. Thus, it follows from (1.6), (1.7) and elementary properties of Fourier transform that

I := supp ψ := ξ ∈ R, ψ(ξ) = 0 ⊆ -4 -1 , 4 -1 . ( 1 
Y j,k = 2 1-j 2π R cos(2 -j k t) ψ(2 -j t)X(t) dt , for all (j, k) ∈ N 2 .
(1.12)

In view of (1.5) and continuity on R of sample paths of the HFSM {X(t)} t∈R , in order to guarantee the existence and finiteness of the Lebesgue pathwise integral in (1.12), we impose the following assumption (A 2 ) to the Fourier transform of ψ:

(A 2 ) There exists a constant c such that

ψ(t) ≤ c 1 + |t| -2
, for every t ∈ R.

(1.13) Remark 1.3 Observe that there are many functions satisfying the two general assumptions (A 1 ) and (A 2 ), as for instance the piecewise linear triangle function:

ψ(ξ) := 1l [-1,1] * 1l [-1,1] )(8ξ) = 2 -|8ξ| 1l [-4 -1 ,4 -1 ] (ξ), for all ξ ∈ R,
where " * " denotes the usual convolution product. Also, observe that there is no need to impose to ψ to have any vanishing moment, while such a condition on moment(s) of ψ plays a crucial role in the case of the discrete wavelet transform W j,k .

Before stating the first main theorem of our work, one needs to make the following remark.

Remark 1.4 For all α ∈ (0, 2], one denotes by W (α) an arbitrary real valued SαS random variable with scale parameter equals to 1; thus, its characteristic function Φ W (α) satisfies, for all λ ∈ R, Φ W (α) (λ) = exp(-|λ| α ). Notice that in the very special Gaussian case α = 2, the random variable W (2) has a centered Gaussian distribution with standard deviation equals to 2 1/2 (and not 1). One knows from Theorem 3 in [START_REF] Shanbhag | On certain self-decomposable distributions[END_REF] and from the classical equality

E |W (2) | ρ = 2 ρ Γ (1 + ρ)/2 /Γ(1/2) that, for every α ∈ (0, 2], M(ρ, α -1 ) := E |W (α) | ρ = 2 ρ Γ (1 + ρ)/2 Γ 1 -ρα -1 Γ(1/2)Γ 1 -ρ/2 , for all ρ ∈ (-1, α), (1.14) 
where α -1 = 1/α and Γ is the usual "Gamma" function. Moreover, denoting by log 2 the binary logarithm (that is log 2 (x) := log(x)/ log(2), for all x ∈ (0, +∞), where log the Napierian logarithm) and by ∂ ρ the partial derivative operator with respect to the variable ρ, one has, for all α ∈ (0, 2], that

log(2) E log 2 |W (α) | = (∂ ρ M)(0, α -1
) and log(2) 

2 E log 2 |W (α) | 2 = (∂ 2 ρ M)(0, α -1 ); (1.15) since ρ → |W (α) | ρ log |W (α) | and ρ → |W (α) | ρ log |W (α) | 2 ,
G(α -1 ) := 2 Var log 2 |W (α) | -1/2
, for all α -1 ∈ [2 -1 , +∞).

(1.16)

Theorem 1.5 For every n ∈ N, one sets

α -1 n,log 2 := 1 n   n p=1 log 2 |Y 1,2p-1 | -log 2 |Y 2,4p-1 |   , (1.17) 
where Y 1,2p-1 and Y 2,4p-1 are defined through (1.12). Then, the following two results hold.

(i) α -1 n,log 2 is a strongly consistent (almost surely convergent) estimator of the inverse α -1 of the stability parameter α of HFSM.

(ii) For all n ∈ N, the random variable D 2,n,log 2 is defined as

D 2,n,log 2 := G max{ α -1 n,log 2 , 2 -1 n 1/2 α -1 n,log 2 -α -1 , (1.18) 
where the positive continuous function G is as in (1.16). When n goes to +∞, the random variable D 2,n,log 2 converges in distribution to a random variable having a N (0, 1) Gaussian distribution.

In order to state the second and the third main theorems of our work, one needs the following definition. Definition 1.6 For every (j, m) ∈ N 2 , the statistics V m j,log 2 and V m j,γ , γ being a fixed positive real number, are defined as

V m j,log 2 := m k=1 log 2 |Y j,2p-1 (1.19)
and

V m j,γ := m p=1 Y j,2p-1 γ , (1.20) 
where Y j,2p-1 is defined through (1.12).

Theorem 1.7 For every n ∈ N, one sets

H n,log 2 := 1 n V n 2,log 2 -V n 1,log 2 , (1.21) 
where V n 1,log 2 and V n 2,log 2 are defined through (1.19). Then, the following two results hold.

(i) H n,log 2 is a strongly consistent (almost surely convergent) estimator of the Hurst parameter H of HFSM.

(ii) For all n ∈ N, the random variable D 1,n,log 2 is defined as

D 1,n,log 2 := G max{ α -1 n,log 2 , 2 -1 n 1/2 H n,log 2 -H , (1.22) 
where G and α -1 n,log 2 are as in (1.16) and (1.17). When n goes to +∞, the random variable D 1,n,log 2 converges in distribution to a random variable having a N (0, 1) Gaussian distribution.

Theorem 1.8 One assumes that α ∈ [α, 2], where the lower bound α ∈ (0, 2] is known. Also, one assumes that γ ∈ (0, 4 -1 α) is arbitrary and fixed. Let (m j ) j∈N be an arbitrary nondecreasing sequence (that is m j ≤ m j+1 , for all j ∈ N) of integers larger than 2 which satisfy the condition m j ≥ j , for all j ∈ N.

(1.23) For all j ∈ N, one sets

H j,γ := γ -1 log 2 V m j 2,γ V m j 1,γ (1.24) 
and

α -1 j,γ := γ -1 1 -log 2 V m j+1 2,γ V m j 1,γ , (1.25) 
where

V m j 1,γ , V m j 2,γ and V m j+1 2,γ
are defined through (1.20). Then, the following two results hold.

(i) H j,γ is a strongly consistent (almost surely convergent) estimator of the Hurst parameter H of HFSM.

(ii) Under the condition

lim j→+∞ log 2 m j+1 m j = 1, (1.26) 
α -1 j,γ is a strongly consistent (almost surely convergent) estimator of the inverse α -1 of the stability parameter α of HFSM.

Before stating the fourth and the last main theorem of our work, one needs to make the following remark.

Remark 1.9 Let α ∈ (0, 2] be as in Theorem 1.8 and let γ be arbitrary and such that

0 < γ < α 2α + 2 , (1.27) 
which implies that 2γ(H + 1/α) < 1, for all (H, α)

∈ [0, 1] × [α, 2]. (1.28) For every (H, α -1 ) ∈ [0, 1] × [2 -1 , α -1 ], one sets F γ (H, α -1 ) := E |W (α) | γ 1 -2γ(H + α -1 ) 1/2 Var |W (α) | γ 1/2 1 -γ(H + α -1 ) , (1.29) 
where W (α) denotes an arbitrary real-valued SαS random variable with scale parameter equals to 1. One can derive from (1.29), (1.28) and (1.14) that the positive function F γ can be expressed in an explicit way in terms of the "Gamma" function, which allows to show that F γ is continuous on the compact rectangle

[0, 1] × [2 -1 , α -1 ].
The following theorem provides Central Limit Theorems for the two estimators introduced in Theorem 1.8. Theorem 1.10 Let (m 1,j ) j∈N and (m 2,j ) j∈N be two arbitrary non-decreasing sequences of integers larger than 2 which satisfy the condition (1.23). Also, one assumes that (m 2,j ) j∈N satisfies the following strengthened version of the condition (1.26):

lim j→+∞ (m 2,j ) 1/2 log 2 m 2,j+1 m 2,j -1 = 0 . (1.30)
Let α be as in Theorem 1.8 and let γ ∈ (0, 4 -1 α) be arbitrary and such that (1.27) holds. For each j ∈ N, one denotes by H 1,j,γ the strongly consistent estimator of the Hurst parameter H of HFSM defined through (1.24) with m j = m 1,j , and one denotes by α -1 2,j,γ the strongly consistent estimator of the inverse α -1 of the stability parameter α of HFSM defined through (1.25) with m j = m 2,j and m j+1 = m 2,j+1 . For all j ∈ N, the two random variables D 1,j,γ and D 2,j,γ are defined as

D 1,j,γ := 2 -1/2 log(2) γF γ τ 1 ( H 1,j,γ ), τ 2 ( α -1 2,j,γ ) (m 1,j ) 1/2 H 1,j,γ -H (1.31) and D 2,j,γ := (2/3) 1/2 log(2) γF γ τ 1 ( H 1,j,γ ), τ 2 ( α -1 2,j,γ ) (m 2,j ) 1/2 α -1 2,j,γ -α -1 , (1.32)
where F γ is the positive continuous function on

[0, 1] × [2 -1 , α -1
] defined in Remark 1.9, and τ 1 and τ 2 are the two continuous "truncation" functions defined, for all x ∈ R, as

τ 1 (x) := max 0, min x, 1 and τ 2 (x) := max 2 -1 , min x, α -1 . (1.33)
When j goes to +∞, the two random variables D 1,j,γ and D 2,j,γ converge in distribution to a random variable having a N (0, 1) Gaussian distribution.

Remark 1.11

(i) We believe that the new strategy introduced in our present work would open the door to statistical estimation of parameters of harmonizable stable processes and fields extending the HFSM, as for instance the harmonizable fractional stable field studied in e.g. [START_REF] Ayache | Harmonizable fractional stable fields: local nondeterminism and joint continuity of the local times[END_REF], or the harmonizable fractional stable sheet studied in e.g. [START_REF] Ayache | Wavelet series representation and geometric properties of harmonizable fractional stable sheets[END_REF].

(ii) In our present work, the four estimators α -1 j,log 2 , H j,log 2 , H j,γ and α -1 j,γ , are obtained from the observation of a sample path of the HFSM X in continuous time, we believe that it would be possible to extend our estimation procedures and the associated Central Limit Theorems to frameworks where only a discretized sample path of X is observed.

We intend to study these two issues (i) and (ii) in future works.

The remaining of our present work is organized in the following way. In Section 2, basically we show that the real-valued SαS random variables Y j,k , (j, k) ∈ N 2 , defined in (1.12), can be represented in terms of the stable stochastic integral R • d M α (see Lemma 2.1); two important consequences, for any fixed j ∈ N, of this representation are: the independence property of the random variables Y j,k , k ∈ N, and the independence property of two sequences of random variables {Y j,2p-1 } p∈N and {Y j+1,2p-1 } p∈N . Section 3 is devoted to the proofs of Theorems 1.5 and 1.7, Section 4 to that of Theorem 1.8, and Section 5 to that of Theorem 1.10.

The keystone

Lemma 2.1 For all (j, k) ∈ N 2 , Y j,k (defined in (1.12)) is a real-valued SαS random variable which can almost surely be expressed as

Y j,k = Re R ψ j,k (ξ) |ξ| H+1/α d M α (ξ) , (2.1) 
where

ψ j,k (ξ) := ψ(2 j ξ + k) + ψ(2 j ξ -k), for every ξ ∈ R. (2.2)
Remark 2.2 One knows from (2.2) and the assumption (A 1 ) on ψ (see Section 1) that, for all (j, k) ∈ N 2 , ψ j,k is a real-valued even continuous function on R with compact support, denoted by I j,k , such that (see (1.11))

I j,k := supp ψ j,k ⊆ -2 -j-2 -k2 -j , 2 -j-2 -k2 -j ∪ -2 -j-2 + k2 -j , 2 -j-2 + k2 -j . (2.3)
Then, in view of the fact that k ≥ 1, it turns out that the function ξ → |ξ| -H-1/α ψ j,k (ξ) belongs to the Lebesgue space L α (R), which guarantees that the SαS stochastic integral in (2.1) is well-defined.

The following lemma, whose proof relies on Lemma 2.1, is very fundamental.

Lemma 2.3 For each fixed j ∈ N, the following three results hold:

(i) Y j,k k∈N is a sequence of independent random variables.

(ii) The two sequences of random variables Y j,2p-1 p∈N and Y j+1,2p-1 p∈N are independent. One points out that the latter fact implies, for all (m , m ) ∈ N 2 , that the two random variables V m j,log 2 and V m j+1,log 2 (see (1.19)) are independent, and also that the two random variables V m j,γ and V m j+1,γ (see (1.20)) are independent; actually the sums in (1. [START_REF] Samorodnitsky | Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance[END_REF]) and (1.20) have been restricted to odd integers for having this independence property with respect to j.

(iii) The two sequences of random variables {Y j,k k∈N and 2 (j-1)H Y 1,k k∈N have the same distribution.One points out that the latter fact entails, for every m ∈ N, that the two random variables V m j,log 2 and V m 1,log 2 + m(j -1)H have the same distribution, and also that the two random variables V m j,γ and 2 (j-1)γH V m 1,γ have the same distribution.

Proof

Part (i) of the lemma follows from (2.3), which clearly implies that the compact supports of the functions ψ j,k , k ∈ N, are disjoint. Indeed, in view of (2.1) and of Remark 1.1 (ii), the latter fact entails that the SαS random variables Y j,k , k ∈ N, are independent.

For proving Part (ii) of the lemma, one has to show that for each two finite non-empty sets P 0 ⊂ N and P 1 ⊂ N and for any two finite collections of real numbers (λ 0,p ) p∈P 0 and (λ 1,p ) p∈P 1 , the two real-valued SαS random variables

p∈P 0 λ 0,p Y j,2p-1 = Re R |ξ| -H-1/α p∈P 0 λ 0,p ψ j,2p-1 (ξ) d M α (ξ) (2.4)
and

p∈P 1 λ 1,p Y j+1,2p-1 = Re R |ξ| -H-1/α p∈P 1 λ 1,p ψ j+1,2p-1 (ξ) d M α (ξ) (2.5)
are independent. Thus, in view of Remark 1.1 (ii), it is enough to prove that the compact supports of the functions p∈P 0 λ 0,p ψ j,2p-1 and p∈P 1 λ 1,p ψ j+1,2p-1 are disjoint. One knows from Remark 2.2 that supp p∈P 0 λ 0,p ψ j,2p-1 ⊆ p∈P 0 I j,2p-1 and supp

p∈P 1 λ 1,p ψ j+1,2p-1 ⊆ p∈P 1 I j+1,2p-1 .
Then, for proving that these two supports are disjoint, one has to show that

I j,2p 0 -1 ∩ I j+1,2p 1 -1 = ∅ , for all (p 0 , p 1 ) ∈ P 0 × P 1 . (2.6)
One knows from (2.3) that

I j,2p 0 -1 ∩I j+1,2p 1 -1 = x ∈ R, |x|-(2p 0 -1)2 -j ≤ 2 -j-2 and |x|-(2p 1 -1)2 -j-1 ≤ 2 -j-3 .
(2.7) Suppose ad absurdum that, for some (p 0 , p 1 ) ∈ P 0 ×P 1 , there exists some x ∈ I j,2p 0 -1 ∩I j,2p 1 -1 . Then one can derive from (2.7) and the triangle inequality that

(2p 0 -1)2 -j -(2p 1 -1)2 -j-1 ≤ (2p 0 -1)2 -j -|x| + |x| -(2p 1 -1)2 -j-1 ≤ 3 • 2 -j-3 , which implies that 2(2p 0 -1) -(2p 1 -1) ≤ 3/4 < 1 .
This cannot happen since 2(2p 0 -1) is an even integer while 2p 1 -1 is an odd integer.

For proving Part (iii) of the lemma, one has to show that for each finite non-empty set P ⊂ N and for any finite collection of real numbers (λ k ) k∈P , the two real-valued SαS random variables k∈P λ k Y j,k and 2 (j-1)H k∈P λ k Y 1,k have the same distribution, which, in view of Remark 3.1 in Section 4, amounts to prove that their scale parameters are equal. One can derive from (2.1), (2.2) and Remark 1.1 (i) that these scale parameters satisfy

σ k∈P λ k Y j,k α = R |ξ| -αH-1 k∈P ψ(2 j ξ + k) + ψ(2 j ξ -k) α dξ and σ 2 (j-1)H k∈P λ k Y 1,k α = 2 (j-1)αH R |η| -αH-1 k∈P ψ(2η + k) + ψ(2η -k) α dη.
Thus, it results from the change of variable η = 2 j-1 ξ that

σ k∈P λ k Y j,k = σ 2 (j-1)H k∈P λ k Y j,k .
Proof of Lemma 2.1 Throughout the proof the positive integers j and k are arbitrary and fixed. First observe that, one can derive from (2.2) and standard calculations that the Fourier transform of ψ j,k is given by ψ j,k (t) = 2 1-j cos(2 -j kt) ψ(2 -j t) for all t ∈ R.

(2.8) Thus, (1.12) reduces to

Y j,k = 1 2π R ψ j,k (t)X(t) dt .
(2.9)

Moreover, it follows from (2.8) and (1.13), that, for some finite deterministic constant c 1 (j) > 0, only depending on j, one has

ψ j,k (t) ≤ c 1 (j) 1 + |t| -2 , for every t ∈ R. (2.10)
For all (n, m) ∈ N × Z, the dyadic number d n,m := 2 -n m. Having introduced the latter notation, for each n ∈ N, the random variable Y n j,k is defined as the finite sum:

Y n j,k := 1 2π |m|≤4 n X(d n,m ) d n,m+1
dn,m

ψ j,k (t) dt (2.11) = Re   R |ξ| -H-1/α   1 2π |m|≤4 n d n,m+1 dn,m e idn,mξ -1 ψ j,k (t) dt   d M α (ξ)   ,
where the last equality results from (1.1).

First step: we show that, when n goes to +∞, the SαS random variable Y n j,k converges almost surely to the random variable Y j,k defined through (2.9).

Let N be an arbitrary fixed positive integer. One sets

Y N j,k := 1 2π N -N ψ j,k (t)X(t) dt = 1 2π N 2 n -1 m=-N 2 n d n,m+1
dn,m

X(t) ψ j,k (t) dt (2.12)
and, for every integer n ≥ N ,

Y N,n j,k := 1 2π N 2 n -1 m=-N 2 n X(d n,m ) d n,m+1
dn,m ψ j,k (t) dt.

(2.13)

Then, using (1.4) with T = N , and the fact that

d n,m ∈ [-N, N ] when -N 2 n ≤ m ≤ N 2 n -1,
one gets, on an event of probability 1 depending only on N and denoted by Ω * N , that

Y N j,k -Y N,n j,k ≤ N 2 n -1 m=-N 2 n d n,m+1 dn,m X(t) -X(d n,m ) ψ j,k (t) dt ≤ C * N,δ N 2 n -1 m=-N 2 n d n,m+1 dn,m |t -d n,m | H-δ ψ j,k (t) dt ≤ C * N,δ R ψ j,k (t) dt 2 -n(H-δ) , (2.14) 
where δ is an arbitrarily small fixed positive real number, and C * N,δ is a positive finite random variable, only depending on N and δ. Next, let Ω * be the event of probability 1 defined as

Ω * := N ∈N Ω * N . One can derive from (2.14) that lim n→+∞ Y N j,k (ω) -Y N,n j,k (ω) = 0, for all N ∈ N and ω ∈ Ω * . (2.15)
On another hand, it follows from (1.5) that there are Ω * * an event of probability 1 and C * * δ a positive finite random variable only depending on δ, such that 

X(t, ω) ≤ C * * δ (ω)
Y n j,k (ω) -Y N,n j,k (ω) ≤ +∞ m=N 2 n X(d n,m , ω) d n,m+1
dn,m

ψ j,k (t) dt + -N 2 n -1 m=-∞ X(d n,m , ω) d n,m+1
dn,m

ψ j,k (t) dt ≤ C * * δ (ω) +∞ m=N 2 n d n,m H+δ d n,m+1
dn,m

ψ j,k (t) dt + -N 2 n -1 m=-∞ d n,m H+δ d n,m+1
dn,m

ψ j,k (t) dt ≤ C * * δ (ω) +∞ m=N 2 n d n,m+1 dn,m |t| H+δ ψ j,k (t) dt + -N 2 n -1 m=-∞ d n,m+1 dn,m 1 + |t| H+δ ψ j,k (t) dt ≤ 2c 1 (j)C * * δ (ω) +∞ N 1 + t H+δ-2 dt ≤ 2(1 -H -δ) -1 c 1 (j)C * * δ (ω)N -(1-H-δ) . (2.17) 
Putting together (2.9), (2.12), (2.16) and (2.10), it follows that, for all ω ∈ Ω * * and positive integers N , one has

Y j,k (ω) -Y N j,k (ω) ≤ {|t|≥N } ψ j,k (t) X(t, ω) dt ≤ 2c 1 (j)C * * δ (ω) +∞ N 1 + t H+δ-2 dt ≤ 2(1 -H -δ) -1 c 1 (j)C * * δ (ω)N -(1-H-δ) . (2.18) 
Finally, observe that, for all positive integers N and n ≥ N , and for each ω ∈ Ω * ∩ Ω * * (the event Ω * ∩ Ω * * is clearly of probability 1), using the triangle inequality, (2.17) and (2.18), one gets that

Y j,k (ω) -Y n j,k (ω) ≤ Y j,k (ω) -Y N j,k (ω) + Y N j,k (ω) -Y N,n j,k (ω) + Y N,n j,k (ω) -Y n j,k (ω) ≤ 4(1 -H -δ) -1 c 1 (j)C * * δ (ω)N -(1-H-δ) + Y N j,k (ω) -Y N,n j,k (ω) .
Thus, one can derive from (2.15) that, for all positive integers N and for each ω 

∈ Ω * ∩ Ω * * , lim sup n→+∞ Y j,k (ω) -Y n j,k (ω) ≤ 4(1 -H -δ) -1 c 1 (j)C * * δ (ω)N -(1-H-δ) . ( 2 
Y j,k (ω) -Y n j,k (ω) = 0, for all ω ∈ Ω * ∩ Ω * * ,
which shows that Y n j,k converges almost surely to Y j,k , when n tends to +∞.

Second step: we show that for each fixed γ ∈ (0, α), when n goes to +∞, the SαS random variable Y n j,k (see (2.11)) converges in L γ (Ω) (Ω being the underlying probability space) to the SαS random variable Yj,k defined as

Yj,k := Re R ψ j,k (ξ) |ξ| H+1/α d M α (ξ) .
(2.20)

Observe that, since ψ j,k is a continuous function on R (see (2.2) and the assumption (A 1 ) in Section 1) belonging to

L 1 (R) ∩ L 2 (R) whose Fourier transform ψ j,k belongs to L 1 (R) ∩ L 2 (R)
as well (see (2.10)), one knows from Remark 1.2, and more particularly from (1.10) in it, that the function ψ j,k can be expressed as

ψ j,k (ξ) = 1 2π R e iξt ψ j,k (t) dt, for all ξ ∈ R. (2.21)
Thus combining (2.21) with (2.3) and the fact that the integer k ≥ 1, one obtains that 

1 2π R ψ j,k (t) dt = ψ j,k (0) = 0. ( 2 
R n j,k := Y n j,k -Yj,k
is a SαS random variable which can be expressed as

R n j,k = 1 2π Re R |ξ| -H-1/α |m|≤4 n d n,m+1
dn,m e idn,mξ -e itξ ψ j,k (t) dt It follows from Remark 1.1 (i), (2.24) and the inequality |a + b| α ≤ 2 α |a| α + |b| α , for all complex numbers a and b, that, for every n ∈ N,

+ {t / ∈[-2 n ,2 n +2 -n )} e itξ -1 ψ j,k (t) dt d M α (ξ) . ( 2 
σ(R n j,k ) α ≤ 2 α U n j,k + V n j,k , (2.26) 
where

U n j,k := R |ξ| -αH-1 |m|≤4 n d n,m+1
dn,m e i(dn,m-t)ξ -1 ψ j,k (t) dt α dξ (2.27) and

V n j,k := R |ξ| -αH-1 {|t|≥2 n } e itξ -1 ψ j,k (t) dt α dξ.
(2.28)

For deriving appropriate upper bounds for U n j,k and V n j,k , we will make use of the inequality

e iθ -1 β ≤ min |θ| β , 2 β
, for all θ ∈ R and β ∈ (0, +∞).

(2.29)

Let B 0 := [-1, 1] and B 1 := R \ B 0 . For l ∈ {0, 1}, one sets U n,l j,k := B l |ξ| -αH-1 |m|≤4 n d n,m+1
dn,m

e i(dn,m-t)ξ -1 ψ j,k (t) dt α dξ (2.30) and V n,l j,k := B l |ξ| -αH-1 {|t|≥2 n } e itξ -1 ψ j,k (t) dt α dξ. (2.31) 
In view of (2.27) and (2.28), one clearly has that

U n j,k = U n,0 j,k + U n,1 j,k and V n j,k = V n,0 j,k + V n,1 j,k . (2.32) 
Let us now bound U n,0 j,k and V n,0 j,k . To this end, one introduces the positive finite constant c 2 defined as 

c 2 := B 0 |ξ| α2 -1 (1-H)-1 dξ. ( 2 
U n,0 j,k ≤ c 2 2 2 -1 (1-H) R ψ j,k (t) dt α 2 -nα2 -1 (1+H) (2.35) and V n,0 j,k ≤ c 2 2 2 -1 (1-H) {|t|≥2 n } t 2 -1 (1+H) ψ j,k (t) dt α .
(2.36) Moreover, it follows from (2.10) that

c 3 (j, k) := c 2 2 2 -1 (1-H) R ψ j,k (t) dt α < +∞ (2.37)
and that

{|t|≥2 n } t 2 -1 (1+H) ψ j,k (t) dt (2.38) ≤ 2c 1 (j) +∞ 2 n 1 + t 2 -1 (H-3) dt ≤ 4(1 -H) -1 c 1 (j)2 -n2 -1 (1-H) . Setting c 4 (j) := c 2 2 2 -1 (1-H) 4(1 -H) -1 c 1 (j) α
, and putting together (2.35), (2.36), (2.37) and (2.38), one obtains, for all n ∈ N, that

U n,0 j,k ≤ c 3 (j, k)2 -nα2 -1 (1+H) and V n,0 j,k ≤ c 4 (j)2 -nα2 -1 (1-H) .
(2.39)

Let us now bound U n,1 j,k and V n,1 j,k . To this end, one introduces the two positive finite constants c 5 and c 6 defined as

c 5 := B 1 |ξ| -α2 -1 H-1 dξ and c 6 := B 1 |ξ| -αH-1 dξ.
(2.40)

One can derive from (2.40), (2.29) with β = 2 -1 H (for U n,1 j,k ) and β = 1 (for V n,1 j,k ), (2.30) and (2.31) with l = 1, and the inequality (2.34), that one has, for every n ∈ N, Conclusion: combining the main result obtained in the first step with the main one derived in the second step, it turns out that the almost sure equality (2.1) is valid.

U n,1 j,k ≤ c 5 2 (1-2 -1 H) R ψ j,k (t) dt α 2 -nα2 -1 H = c 5 (j, k)2 -nα2 -1 H (2.41) and V n,1 j,k ≤ c 6 2 {|t|≥2 n } ψ j,k (t) dt α ≤ c 6 (j)2 -nα , (2.42 
3 Proofs of Theorems 1.5 and 1.7

For proving Theorems 1.5 and 1.7, one needs the following three preliminary results. Remark 3.1 For any arbitrary α ∈ (0, 2], let W be an arbitrary real-valued SαS random variable with scale parameter equals to 1. Then, for each real-valued SαS random variable Z with scale parameter σ(Z), one has Z d = σ(Z)W (equality in distribution). This equality is a straightforward consequence of the fact that Φ Z and Φ W , the characteristic functions of Z and W , satisfy (see e.g. [START_REF] Samorodnitsky | Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance[END_REF]), for all λ ∈ R, Φ Z (λ) = exp -σ(Z) α |λ| α and Φ W (λ) = exp -|λ| α . Lemma 3.2 For all (j, k) ∈ N 2 , the scale parameter of the real-valued SαS random variable Y j,k (see (1.12) and (2.1)) satisfies

σ(Y j,k ) = 2 jH+1/α 4 -1 -4 -1 ψ(η) α (η + k) αH+1 dη 1/α , (3.1) 
which clearly implies (see (1.11)) that

ψ L α (R) 2 jH+1/α k + 4 -1 -(H+1/α) ≤ σ(Y j,k ) ≤ ψ L α (R) 2 jH+1/α k -4 -1 -(H+1/α) , (3.2) 
where

ψ L α (R) := R ψ(η) α dη 1/α = 4 -1 -4 -1 ψ(η) α dη 1/α .
Proof One knows from (2.1), (2.2), Remark 1.1 (i) and (1.11) that, for all (j, k) ∈ N 2 , one has

σ(Y j,k ) α = 2 -j (-k+4 -1 ) 2 -j (-k-4 -1 ) ψ(2 j ξ + k) α |ξ| αH+1 dξ + 2 -j (k+4 -1 ) 2 -j (k-4 -1 ) ψ(2 j ξ -k) α |ξ| αH+1 dξ.
Then, using the fact that ψ is an even function (see the assumption (A 1 ) in Section 1) and the change of variable η = 2 j ξ -k i.e. ξ = 2 -j (η + k), one gets that

σ(Y j,k ) α = 2 2 -j (k+4 -1 ) 2 -j (k-4 -1 ) ψ(2 j ξ -k) α (ξ) αH+1 dξ = 2 jαH+1 4 -1 -4 -1 ψ(η) α (η + k) αH+1 dη.
Lemma 3.3 For any fixed positive real number γ, there exists a finite constant c = c(γ), such that, for all p ∈ N, one has

4 -1 -4 -1 ψ(η) α 1 + (2p) -1 (η -1) αH+1 dη γ/α -ψ γ L α (R) ≤ c p -1 . (3.3) 
Proof For each p ∈ N, one sets

r p := 4 -1 -4 -1 ψ(η) α 1 + (2p) -1 (η -1) αH+1 dη - 4 -1 -4 -1 ψ(η) α dη . (3.4)
Using the fact that there exists a positive finite constant c 1 such that one has

(1 + x) -αH-1 -1 ≤ c 1 |x| , for every x ∈ [-5/8, 5/8],
one gets, for all p ∈ N and η ∈ [-1/4, 1/4], that

1 + (2p) -1 (η -1) -αH-1 -1 ≤ c 1 (2p) -1 |η -1| ≤ c 1 p -1 ,
and consequently (see (3.4)) that

|r p | ≤ c 2 p -1 , for all p ∈ N, (3.5) 
where the finite constant c

2 := c 1 4 -1 -4 -1 ψ(η) α dη = c 1 ψ α L α (R) .
Next, one notices that, since ψ L α (R) > 0, there are two positive finite constants y 0 and c 3 such that

ψ α L α (R) + y γ/α -ψ γ L α (R) ≤ c 3 |y| , for every y ∈ [-y 0 , y 0 ]. (3.6) 
Moreover, one knows from (3.5) that there exists p 0 ∈ N such that, for all p ≥ p 0 , one has |r p | ≤ y 0 . Thus, one can derive from (3.4), (3.6) with y = r p , and (3.5) that, for all p ≥ p 0 ,

4 -1 -4 -1 ψ(η) α 1 + (2p) -1 (η -1) αH+1 dη γ/α -ψ γ L α (R) = ψ α L α (R) + r p γ/α -ψ γ L α (R) ≤ c 3 |r p | ≤ c 3 c 2 p -1 , which shows that sup p∈N p × 4 -1 -4 -1 ψ(η) α 1 + (2p) -1 (η -1) αH+1 dη γ/α -ψ γ L α (R)
< +∞, which means that (3.3) is satisfied.

Proof of Theorem 1.5 One knows from Lemma 3.2 that the scale parameters of the SαS random variables Y j,k are strictly positive. For each p ∈ N, the two SαS random variables with scale parameters equal to 1, W 1,2p-1 and W 2,4p-1 , are defined (see Remark 3.1) as

W 1,2p-1 = Y 1,2p-1 σ(Y 1,2p-1 )
and

W 2,4p-1 = Y 2,4p-1 σ(Y 2,4p-1 ) = Y 2,4p-1 2 H σ(Y 1,4p-1 ) . (3.7)
Observe that the equality σ(Y 2,4p-1 ) = 2 H σ(Y 1,4p-1 ) results from (3.1). Next, it follows from (1.17) and (3.7) that, for all n ∈ N, one has

α -1 n,log 2 -α -1 = 1 n n p=1 log 2 |Y 1,2p-1 | -log 2 |Y 2,4p-1 | -log 2 2 1/α (3.8) = 1 n n p=1 log 2 |W 1,2p-1 | -log 2 |W 2,4p-1 | + log 2 σ(Y 1,2p-1 ) 2 H+1/α σ(Y 1,4p-1 )
.

Observe that one knows from the very fundamental Lemma 2.3 and (3.7) that

log 2 |W 1,2p-1 | -log 2 |W 2,4p-1 |
p∈N is a sequence of independent, identically distributed, centered and square integrable random variables. Thus, one can derive from the very classical strong law of large numbers that

1 n n p=1 log 2 |W 1,2p-1 | -log 2 |W 2,4p-1 | a.s.
----→ j→+∞ 0.

(3.9)

Moreover, one can derive from the very classical Central Limit Theorem that

1 2Var log 2 |W (α) | n 1/2 n p=1 log 2 |W 1,2p-1 | -log 2 |W 2,4p-1 | d ----→ j→+∞ N (0, 1), (3.10)
where W (α) is as in Remark 1.4, and where d ----→ j→+∞ N (0, 1) denotes the convergence in distribution to a random variable having a N (0, 1) Gaussian distribution. Thus, in view of (3.8), (3.9) and (3.10), it turns out that for proving the theorem it is enough to show that 

lim n→+∞ 1 n 1/2 n p=1 log 2 σ(Y 1,2p-1 ) 2 H+1/α σ(Y 1,4p-1 ) = 0. ( 3 
|W (α) | 1/2 α -1 n,log 2 -α -1 d ----→ j→+∞ N (0, 1). (3.13)
Therefore, combining (3.13) with the fact that

G max{ α -1 n,log 2 , 2 -1 2Var log 2 |W (α) | 1/2 a.s. ----→ j→+∞ 1, (3.14) 
one gets Part (ii) of the theorem. Notice that (3.14) results from (3.12) and Remark 1.4.

From now on, one focuses on the proof of (3.11). Observe that (3.1) implies, for all p ∈ N,

that σ(Y 1,2p-1 ) 2 H+1/α σ(Y 1,4p-1 ) -1 = 2 -(H+1/α) 4 -1 -4 -1 ψ(η) α 4p + η -1 αH+1 dη -1/α ×   4 -1 -4 -1 ψ(η) α 2p + η -1 αH+1 dη 1/α -2 H+1/α 4 -1 -4 -1 ψ(η) α 4p + η -1 αH+1 dη 1/α   = (2p) H+1/α 4 -1 -4 -1 ψ(η) α 1 + (4p) -1 (η -1) αH+1 dη -1/α ×   (2p) -(H+1/α) 4 -1 -4 -1 ψ(η) α 1 + (2p) -1 (η -1) αH+1 dη 1/α -(2p) -(H+1/α) 4 -1 -4 -1 ψ(η) α 1 + (4p) -1 (η -1) αH+1 dη 1/α   = 4 -1 -4 -1 ψ(η) α 1 + (4p) -1 (η -1) αH+1 dη -1/α (3.15) ×   4 -1 -4 -1 ψ(η) α 1 + (2p) -1 (η -1) αH+1 dη 1/α - 4 -1 -4 -1 ψ(η) α 1 + (4p) -1 (η -1) αH+1 dη 1/α   .
On another hand, for all p ∈ N, one has

4 -1 -4 -1 ψ(η) α 1 + (4p) -1 (η -1) αH+1 dη ≥ 4 -1 -4 -1 ψ(η) α 1 + 4 -1 |η -1| αH+1 dη ≥ 16 21 αH+1 ψ α L α (R) .
Thus, one can derives from (3.15) and the triangle inequality that there exists a positive finite constant c 1 such that, for all p ∈ N,

σ(Y 1,2p-1 ) 2 H+1/α σ(Y 1,4p-1 ) -1 (3.16) ≤ c 1 4 -1 -4 -1 ψ(η) α 1 + (2p) -1 (η -1) αH+1 dη 1/α -ψ L α (R) +c 1 4 -1 -4 -1 ψ(η) α 1 + (4p) -1 (η -1) αH+1 dη 1/α -ψ L α (R) .
Then, combining (3.16) and (3.3) (with γ = 1), one gets, for some positive finite constant

c 2 that σ(Y 1,2p-1 ) 2 H+1/α σ(Y 1,4p-1 ) -1 ≤ c 2 p -1 , for all p ∈ N,
which in turn implies that there exists a positive finite constant c 3 such that

log 2 σ(Y 1,2p-1 ) 2 H+1/α σ(Y 1,4p-1 ) ≤ c 3 p -1 , for every p ∈ N.
Therefore, one obtains, for all n ∈ N, that

n p=1 log 2 σ(Y 1,2p-1 ) 2 H+1/α σ(Y 1,4p-1 ) ≤ c 3 n p=1 p -1 ≤ c 3 1 + n 1 x -1 dx ≤ c 3 1 + log(n) . (3.17)
Then, one can derive from (3.17) that (3.11) holds.

Proof of Theorem 1.7 One knows from Lemma 3.2 that the scale parameters of the SαS random variables Y j,k are strictly positive. For each p ∈ N, the two SαS random variables with scale parameters equal to 1, W 1,2p-1 and W 2,2p-1 are defined (see Remark 3.1) as

W 1,2p-1 = Y 1,2p-1 σ(Y 1,2p-1 )
and

W 2,2p-1 = Y 2,2p-1 σ(Y 2,2p-1 ) = Y 2,2p-1 2 H σ(Y 1,2p-1 ) . (3.18)
Observe that the equality σ(Y 4 Proof of Theorems 1.8

H n,log 2 -H = 1 n n p=1 log 2 |Y 2,2p-1 | -log 2 |Y 1,2p-1 | -log 2 2 H = 1 n n p=1 log 2 |W 2,2p-1 | -log 2 |W 1,2p-1 | + log 2 σ(Y 2,2p-1 ) -log 2 2 H σ(Y 1,2p-1 ) = 1 n n p=1 log 2 |W 2,2p-1 | -log 2 |W 1,2p-1 | . ( 3 
n 2Var log 2 |W (α) | 1/2 H n,log 2 -H d ----→ j→+∞ N (0, 1), ( 3 
The two main ingredients of the proof of Theorem 1.8 are the following two lemmas.

Lemma 4.1 Under the sole condition (1.23) on the sequence (m j ) j∈N , one has, for all fixed γ ∈ (0, 4 -1 α),

lim j→+∞ V m j 1,γ E(V m j 1,γ ) = lim j→+∞ V m j 2,γ E(V m j 2,γ ) = 1, (4.1) 
where the convergences hold almost surely.

Lemma 4.2 Let α ∈ (0, 2] be as in Theorem 1.8 and let γ be arbitrary and such that

0 < γ < α α + 1 , (4.2) 
which clearly implies that

γ(H + 1/α) < 1, for all (H, α) ∈ [0, 1] × [α, 2]. (4.3) 
When the stability parameter α of the HFSM belongs to [α, 2], there exists a finite constant c such that, for all (j, m, n) ∈ N 3 , one has

∆ m,n j (γ, H, α) ≤ c m γ(H+1/α)-1 + n γ(H+1/α)-1 , (4.4) 
where

∆ m,n j (γ, H, α) := log 2 E V n j+1,γ E V m j,γ -γH -1 -γ(H + 1/α) log 2 n m . (4.5) 
For proving Lemmas 4.1 and 4.2 one needs two preliminary results. The following remark is a straightforward consequence of Remark 3.1 and of Lemma 3.2. Remark 4.3 Let γ ∈ (0, α) be arbitrary. For all (j, p) ∈ N 2 , one has

E |Y j,2p-1 | γ = E |W (α) | γ 2 γ(jH+1/α) 4 -1 -4 -1 ψ(η) α (η + 2p -1) αH+1 dη γ/α (4.6) = E |W (α) | γ 2 (j-1)γH p -γ(H+1/α) 4 -1 -4 -1 ψ(η) α 1 + (2p) -1 (η -1) αH+1 dη γ/α
, where W (α) denotes an arbitrary real-valued SαS random variable with scale parameter equals to 1.

Lemma 4.4

Let γ be such that (4.2) holds. When the stability parameter α of the HFSM belongs to [α, 2], there exists a finite constant c such that one has, for all (j, m)

∈ N 2 , 2 -(j-1)γH m γ(H+1/α)-1 E(V m j,γ ) -A(γ, H, α) ≤ c m γ(H+1/α)-1 , (4.7) 
where the finite positive constant

A(γ, H, α) := E |W (α) | γ 1 -γ(H + 1/α) -1 ψ γ L α (R) . (4.8) 
As usual, W (α) denotes an arbitrary real-valued SαS random variable with scale parameter equals to 1.

Proof It follows from (1.20), (4.6), the triangle inequality, (3.3) and the fact that, for every m ∈ N,

m p=1 p -γ(H+1/α)-1 < +∞ p=1 p -γ(H+1/α)-1 < +∞ , (4.9) 
that there is a finite constant c 1 such that, for all (j, m)

∈ N 2 , 2 -(j-1)γH m γ(H+1/α)-1 E(V m j,γ ) -E |W (α) | γ ψ γ L α (R) 2 (j-1)γH m p=1 p -γ(H+1/α) ≤ E |W (α) | γ m γ(H+1/α)-1 × m p=1 p -γ(H+1/α) 4 -1 -4 -1 ψ(η) α 1 + (2p) -1 (η -1) αH+1 dη γ/α -ψ γ L α (R) ≤ c 1 m γ(H+1/α)-1 . (4.10) 
Moreover, using the triangle inequality, the mean value theorem, (4.3) and (4.9), one gets, for every m ∈ N, that

m γ(H+1/α)-1 m p=1 p -γ(H+1/α) - (m+1)/m 1/m x -γ(H+1/α) dx ≤ m p=1 (p+1)/m p/m p/m -γ(H+1/α) -x -γ(H+1/α) dx ≤ m -2 m p=1 p/m -γ(H+1/α)-1 ≤ c 2 m γ(H+1/α)-1 , (4.11) 
where c 2 is a finite constant not depending m. Also, notice that, in view of (4.3), one has, for all m ∈ N, that

(m+1)/m 1/m x -γ(H+1/α) dx -(1 -γ(H + 1/α) -1 = 1 -γ(H + 1/α) -1 1 + m -1 1-γ(H+1/α) -1 -m γ(H+1/α)-1 ≤ 2 1 -γ(H + 1/α) -1 m γ(H+1/α)-1 . (4.12) 
Next, observe that, one can derive from the triangle inequality that, for all (j, m)

∈ N 2 , 2 -(j-1)γH m γ(H+1/α)-1 E(V m j,γ ) -E |W | γ (α) 1 -γ(H + 1/α) -1 ψ γ L α (R) ≤ 2 -(j-1)γH m γ(H+1/α)-1 E(V m j,γ ) -E |W (α) | γ ψ γ L α (R) 2 (j-1)γH m p=1 p -γ(H+1/α) +E |W (α) | γ ψ γ L α (R) m γ(H+1/α)-1 m p=1 p -γ(H+1/α) - (m+1)/m 1/m x -γ(H+1/α) dx +E |W (α) | γ ψ γ L α (R) (m+1)/m 1/m x -γ(H+1/α) dx -(1 -γ(H + 1/α) -1 . (4.13) 
Finally, putting together (4.10), (4.11), (4.12) and (4.13), one gets (4.7).

Proof of Lemma 4.2 Observe that, one knows from Part (iii) of Lemma 2.3 that, for all (j, m, n) ∈ N 3 , one has

log 2 E V n j+1,γ E V m j,γ = log 2 2 jγH E V n 1,γ 2 (j-1)γH E V m 1,γ = log 2 2 γH E V n 1,γ E V m 1,γ . 
Thus, letting A -1 (γ, H, α) be the inverse of the positive constant A(γ, H, α) (see (4.8)), and using (4.5) and standard calculations, one obtains, for every (j, m, n

) ∈ N 3 , that ∆ m,n j (γ, H, α) = log 2 A -1 (γ, H, α)n γ(H+1/α)-1 E V n 1,γ A -1 (γ, H, α)m γ(H+1/α)-1 E V m 1,γ which implies that ∆ m,n j (γ, H, α) ≤ log 2 A -1 (γ, H, α)n γ(H+1/α)-1 E V n 1,γ (4.14) 
+ log 2 A -1 (γ, H, α)m γ(H+1/α)-1 E V m 1,γ
.

Next observe that one knows from (4.7) and (4.3) that

lim m→+∞ A -1 (γ, H, α)m γ(H+1/α)-1 E V m 1,γ -1 = 0. (4.15) 
Moreover, it can easily be seen that one has, for some finite constant c 1 ,

log 2 (1 + x) ≤ c 1 |x|, for every x ∈ [-2 -1 , +∞). (4.16) 
Thus, one can derive from (4.15), (4.16) and (4.7) that there exists m 0 ∈ N and a finite constant c 2 > 0, such that for all m ≥ m 0 ,

log 2 A -1 (γ, H, α)m γ(H+1/α)-1 E V m 1,γ ≤ c 1 A -1 (γ, H, α)m γ(H+1/α)-1 E V m 1,γ -1 ≤ c 2 m γ(H+1/α)-1 , which entails that sup m∈N m 1-γ(H+1/α) log 2 A -1 (γ, H, α)m γ(H+1/α)-1 E V m 1,γ < +∞. (4.17) 
Finally, it follows from (4.14) and (4.17) that (4.4) is satisfied.

Proof of Lemma 4.1 One will only show that

lim j→+∞ V m j 1,γ E(V m j 1,γ ) = 1 (almost surely), (4.18) 
since the proof of the fact that

lim j→+∞ V m j 2,γ E(V m j 2,γ ) = 1 (almost surely),
can be done in the same way. First notice that using Markov inequality, for each j ∈ N, one has

P V m j 1,γ E(V m j 1,γ ) -1 ≥ m -ρ j = P V m j 1,γ -E(V m j 1,γ ) ≥ m -ρ j E(V m j 1,γ ) ≤ m 4ρ j × E V m j 1,γ -E(V m j 1,γ ) 4 E(V m j 1,γ ) 4 , (4.19) 
where ρ is a fixed positive constant small enough, which will be chosen more precisely later.

Let us now provide an appropriate upper bound for the expectation E V

m j 1,γ -E(V m j 1,γ ) 4 ,
which is finite because of the assumption α ∈ (0, 4 -1 α). In view of Remark 3.1, for each (j, p) ∈ N 2 and for all q ∈ {1, 2}, one has

E |Y j,2p-1 | γ -E(|Y j,2p-1 | γ ) 2q = c q σ(Y j,2p-1 ) 2qγ , (4.20) 
where the positive finite constant

c q := E |W | γ -E(|W | γ ) 2q
does not depend on (j, p). Then, one can derive from (1.20), (4.20), and the fact that, for any fixed j ∈ N, the centered random variables |Y j,2p-1 | γ -E(|Y j,2p-1 | γ ), p ∈ N, are independent (see Part (i) of the very fundamental Lemma 2.3), and from the second inequality in (3.2) that 

E V m j 1,γ -E(V m j 1,γ ) 4 = m j p 1 ,..., p 4 =1 E 4 l=1 |Y 1,2p l -1 | γ -E(|Y 1,2p l -1 | γ ) ≤ m j p=1 E |Y 1,2p-1 | γ -E(|Y 1,2p-1 | γ ) 4 + 6 m j p=1 E |Y 1,2p-1 | γ -E(|Y 1,2p-1 | γ )
m 4ρ j × E V m j 1,γ -E(V m j 1,γ ) 4 E(V m j 1,γ ) 4 ≤ c 7 m -4(1-ρ+γ(H+1/α)) j 1 + 1l {1} 2γ(H + 1/α) log m j + m 1-2γ(H+1/α) j 2 (4.23) ≤ c 7 m -2(1-ρ+γ(H+1/α)) j + 1l {1} 2γ(H + 1/α) m -2(1-ρ+γ(H+1/α)) j log m j + m -(1-2ρ) j 2 ≤ 3c 7 m -4(1-ρ+γ(H+1/α)) j + 1l {1} 2γ(H + 1/α) m -4(1-ρ+γ(H+1/α)) j log 2 m j + m -2(1-2ρ) j
.

Next, notice that, since 4 1 -γ(H + 1/α) > 4 1 -4 -1 α(H + 1/α) > 1, the positive constant ρ can be chosen small enough so that one has 

P V m j 1,γ E(V m j 1,γ ) -1 ≥ m -ρ j < +∞.
Therefore, (4.18) results from Borel-Cantelli Lemma.

We are now in position to complete the proof of Theorem 1.8.

End of the proof of Theorem 1.8 It follows from (1.24), (1.25), (4.5), the equalities

V m j 2,γ V m j 1,γ = V m j 2,γ E(V m j 2,γ ) • E(V m j 2,γ ) E(V m j 1,γ ) • E(V m j 1,γ ) V m j 1,γ and V m j+1 2,γ V m j 1,γ = V m j+1 2,γ E(V m j+1 2,γ ) • E(V m j+1 2,γ ) E(V m j 1,γ ) • E(V m j 1,γ ) V m j 1,γ
and standard calculations that, for all j ∈ N, one has

γ H j,γ -γH = log 2 V m j 2,γ E(V m j 2,γ ) -log 2 V m j 1,γ E(V m j 1,γ ) + ∆ m j ,m j 1 (γ, H, α). (4.25) 
and that

γ α -1 j,γ -γα -1 = log 2 V m j 1,γ E(V m j 1,γ ) -log 2 V m j+1 2,γ E(V m j+1 2,γ ) (4.26) -∆ m j ,m j+1 1 (γ, H, α) + 1 -γ(H + 1/α) 1 -log 2 m j+1 m j .
Then, one can derive from (4.25), Lemmas 4.1 and 4.2, the inequality γ(H + 1/α) -1 < -1/4 and (1.23) that H j,γ -H a.s.

----→ j→+∞ 0.

Moreover, it follows from (4.26), Lemmas 4.1 and 4.2, the inequality γ(H + 1/α) -1 < -1/4, (1.23) and (1.26) that α -1 j,γ -α -1 a.s.

----→ j→+∞ 0.

5 Proof of Theorem 1.10

For proving Theorem 1.10 one needs several preliminary results.

Proposition 5.1 Let γ be arbitrary and such that (1.27) holds. For every (j, m) ∈ N 2 , let V m j,γ be as in Definition 1.6. The random variable R m j,γ is defined as

R m j,γ := V m j,γ -E(V m j,γ ) Var(V m j,γ ) 1 2 = E(V m j,γ ) Var(V m j,γ ) 1 2 V m j,γ E(V m j,γ ) -1 . (5.1)
Let (m j ) j∈N be an arbitrary non-decreasing sequence of integers larger than 2 which satisfies the condition (1.23). When j goes to +∞, the random variables R m j

1,γ and R m j 2,γ converge in distribution to a random variable having a N (0, 1) Gaussian distribution.

Proof

First notice that it follows from Lemma 2.3 (iii) and (5.1) that, for every j ∈ N, R

m j 1,γ d = R m j
2,γ . Thus, we give the proof only in the case of R m j 1,γ . In view of (5.1), (1.20) and of the fact that the random variables Y 1,2p-1 γ , p ∈ N, are independent, one knows from the Lyapunov Central Limit Theorem (see for instance Theorem 7.3 on page 44 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]) that it is enough to show that, for some fixed δ > 0 small enough so that γ(2 + δ) < α, one has

lim j→+∞ Var(V m j 1,γ ) -2+δ 2 m j p=1 E Y 1,2p-1 γ -E Y 1,2p-1 γ 2+δ = 0 . (5.2)
The independence property of the random variables Y 1,2p-1 γ , p ∈ {1, . . . , m j }, implies that Var(V

m j 1,γ ) = m j p=1 Var Y 1,2p-1 γ . (5.3) 
Then, one can derive from (5.3) and Remark 3.1 that Var(V

m j 1,γ ) = Var W γ m j p=1 σ(Y 1,2p-1 ) 2γ . (5.4) Also, Remark 3.1 entails that m j p=1 E Y 1,2p-1 γ -E Y 1,2p-1 γ 2+δ = E W γ -E W γ 2+δ m j p=1 σ(Y 1,2p-1 ) γ(2+δ) . (5.5)
Next notice that it follows from (5.4), the first inequality in (3.2) and (1.28), that one has for some constant c 1 > 0 and, for every j ∈ N,

Var(V m j 1,γ ) -2+δ 2 ≤ c 1 m (2+δ)
2 (2γ(H+1/α)-1) j .

(5.6) Also notice that it results from (5.5) and the second inequality in (3.2), that one has for some constant c 2 > 0 and, for every j ∈ N,

m j p=1 E Y 1,2p-1 γ -E Y 1,2p-1 γ 2+δ ≤ c 2 log(m j ) + m (1-γ(H+1/α)(2+δ)) j . ( 5.7) 
Finally, combining (5.6) and (5.7) one obtains, for some constant c 3 > 0 and for all j ∈ N, that Var(V

m j 1,γ ) -2+δ 2 m j p=1 E Y 1,2p-1 γ -E Y 1,2p-1 γ 2+δ ≤ c 3 m (2+δ) 2 (2γ(H+1/α)-1) j log(m j ) + m -δ 2 j .
Thus, one can derive from (1.28) and (1.23) that (5.2) is satisfied.

The following remark is a straightforward consequence of Remark 3.1 and of Lemma 3.2.

Remark 5.2 Let γ ∈ (0, 2 -1 α) be arbitrary and let W (α) be an arbitrary real-valued SαS random variable with scale parameter equals to 1. For all (j, p) ∈ N 2 , one has

Var |Y j,2p-1 | γ = Var |W (α) | γ 2 2γ(jH+1/α) 4 -1 -4 -1 ψ(η) α (η + 2p -1) αH+1 dη 2γ/α (5.8) = Var |W (α) | γ 2 (j-1)2γH p -2γ(H+1/α) 4 -1 -4 -1 ψ(η) α 1 + (2p) -1 (η -1)
αH+1 dη 2γ/α . Lemma 5.3 Let γ be arbitrary and such that (1.27) holds, and let W (α) be an arbitrary realvalued SαS random variable with scale parameter equals to 1. There is a finite constant c such that, for all (j, m) ∈ N 2 , one has

2 -(j-1)2γH m 2γ(H+1/α)-1 Var(V m j,γ )-Var |W (α) | γ 1-2γ(H+1/α) -1 ψ 2γ L α (R) ≤ c m 2γ(H+1/α)-1 .
(5.9)

Proof For proving (5.9), one uses the equality

Var(V m j,γ ) = m p=1
Var Y j,2p-1 γ , the second equality in (5.8) and arguments similar to those which allowed to obtain (4.7).

Proposition 5.4 Let γ be arbitrary and such that (1.27) holds. For all (j, m) ∈ N 2 , the random variable R m j,γ is defined as

R m j,γ := F γ (H, α -1 ) m 1/2 V m j,γ E(V m j,γ ) -1 , (5.10) 
where H ∈ (0, 1) and α ∈ [α, 2] are the unknown Hurst parameter and stability parameter of the HFSM {X(t)} t∈R , and F γ is the positive continuous function introduced in Remark 1.9. Let (m j ) j∈N be an arbitrary non-decreasing sequence of integers larger than 2 which satisfies the condition (1.23). When j goes to +∞, the random variables R m j 1,γ and R m j 2,γ converge in distribution to a random variable having a N (0, 1) Gaussian distribution.

Proof First notice that it follows from Lemma 2.3 (iii) and (5.10) that, for every j ∈ N, R 

R m j 1,γ -R m j 1,γ = ν j m 1/2 j V m j 1,γ E(V m j j,γ ) -1 , (5.12) 
where Moreover, using (5.12) one has that

ν j := E(V m j 1,γ ) m j Var(V m j 1,γ ) 1 2 - E |W (α) | γ 1 -2γ(H + 1/α) 1/2 Var |W (α) | γ 1/2 1 -γ(H + 1/α) . ( 5 
E R m j 1,γ -R m j 1,γ 2 = ν 2 j × m j Var(V m j 1,γ ) E(V m j 1,γ ) 2 .
(5.15)

Finally, putting together (5.13), (5.14) and (5.15), one obtains (5.11).

Corollary 5.5 Let γ ∈ (0, 4 -1 α) be arbitrary and such that (1.27) holds. For all (j, m) ∈ N 2 , the random variable Λ m j,γ is defined as

Λ m j,γ := log(2)F γ (H, α -1 )m 1/2 log 2 V m j,γ E(V m j,γ ) , (5.16) 
where H ∈ (0, 1) and α ∈ [α, 2] are the unknown Hurst parameter and stability parameter of the HFSM {X(t)} t∈R , and F γ is the positive continuous function introduced in Remark 1.9. Let (m j ) j∈N be an arbitrary non-decreasing sequence of integers larger than 2 which satisfies the condition (1.23). When j goes to +∞, the random variables Λ m j 1,γ and Λ m j 2,γ converge in distribution to a random variable having a N (0, 1) Gaussian distribution.

Proof First notice that it follows from Lemma 2.3 (iii) and (5.16) that, for every j ∈ N, Λ 

≤ P Λ m j 1,γ -R m j 1,γ ≥ ε ∩ V m j 1,γ E(V m j 1,γ ) ≥ 2 -1 + P V m j 1,γ E(V m j 1,γ ) < 2 -1 .
Moreover, one knows from Lemma 4.1 that

lim j→+∞ P V m j 1,γ E(V m j 1,γ ) < 2 -1 = 0 .
Thus, for proving (5.17 -1 that

P Λ m j 1,γ -R m j 1,γ ≥ ε ∩ V m j 1,γ E(V m j 1,γ ) ≥ 2 -1 ≤ P c 2 (m j ) 1/2 V m j 1,γ E(V m j 1,γ ) -1 2 ≥ ε ∩ V m j 1,γ E(V m j 1,γ ) ≥ 2 -1 ≤ P (m j ) 1/2 V m j 1,γ E(V m j 1,γ ) -1 2 ≥ c -1 2 ε ≤ c 2 ε -1 (m j ) 1/2 Var(V m j 1,γ ) E(V m j 1,γ ) 2 ,
(5.20)

where the last inequality follows from Markov inequality. Recall that for two sequences (a j ) j∈N and (b j ) j∈N of non vanishing real numbers, the notation a j ∼ b j means that lim We are now in position to complete the proof of Theorem 1.10

End of the proof of Theorem 1.10 One can derive from Theorem 1.8 and from the continuity property of the functions F γ , τ 1 and τ 2 (see Remark 1.9 and (1.33)) that lim j→+∞ F γ τ 1 ( H 1,j,γ ), τ 2 ( α -1 2,j,γ ) F γ (H, α -1 ) -1 = 1 , (almost surely).

Thus, for proving the theorem it is enough to show that 2 -1/2 log(2) γF γ H, α -1 (m 1,j ) 1/2 H 1,j,γ -H where (m 1,j ) j∈N , (m 2,j ) j∈N , H 1,j,γ and α -1 2,j,γ are as in the statement of Theorem 1.10. One knows from (4.25) and (5.16) that, for all j ∈ N, 2 -1/2 log(2) γF γ H, α -1 (m 1,j ) 1/2 H 1,j,γ -H (5.30)

Finally, putting together (5.27), (5.28), (5.29) and (5.30), one gets (5.23).

  .24) Thus, in view of Remark 3.1 in Section 4, for proving that lim n→+∞ E |R n j,k | γ = 0, for each fixed γ ∈ (0, α), it is enough to show that the scale parameter of the SαS random variable R n

. 20 )

 20 where W (α) is as in Remark 1.4. Finally combining (3.20) with(3.14), one gets Part (ii) of the theorem.

2 ≤ c 4 ( 4 / 3 ) 1 2x - 5 / 4 - 2 ≤ c 5 1 + 2 , ( 4 . 21 ) where c 3 , c 4 and c 5 4 =

 2443154212421354 2γ(H+1/α) + m j 2γ(H+1/α) 1l {1} 2γ(H + 1/α) log m j + m 1-2γ(H+1/α) j are three positive finite constants not depending on j. On another hand, observe that, in view of the fact that γ ∈ (0, 4 -1 α) ⊆ (0, 4 -1 α), one knows from (4A 4 (γ, H, α) > 0, which implies that there exists a constant c 6 > 0 such that, for all j ≥ 1, 21) with (4.22), one gets, for some finite constant c 7 and for all j ∈ N, that

11 )

 11 . Thus, we give the proof only in the case of R m j 1,γ . In view of Proposition 5.1, it is enough to show that lim j→+∞ It follows from (5.1), (5.10) and (1.29) that, for all j ∈ N,

. 13 )

 13 Observe that (5.13), (1.23), (1.28) and Lemmas 4.4 and 5.

  . Thus, we give the proof only in the case of Λ m j 1,γ . In view of Proposition 5.4, it is enough to show that Λ in probability. Let ε be an arbitrary fixed positive real number. One clear has, for all j ∈ N, that

  ) it is enough to show that lim j→+∞ be shown that one has, for some deterministic constantc 1 > 0, that log(2)log 2 (1 + x) -x ≤ c 1 x 2 , for all x ∈ [-2 -1 , +∞). (5.19)Then, in view of (5.10) and (5.16), setting c 2 := c 1 F γ (H, α -1 ) > 0, one can derive from(5.19) 

j→+∞ a j /b j = 1 . 2 E

 12 One can derive from (4.7), (5.9), (1.28) and (1Var|W (α) | γ 1 -2γ(H + 1/α) -1 ψ 2γ L α (R) m 2-2γ(H+1/α) j E(|W (α) | γ ) 2 1 -γ(H + 1/α) -2 ψ 2γ L α (R) = (m j ) -1 Var |W (α) | γ 1 -γ(H + 1/α) (|W (α) | γ ) 2 1 -2γ(H + 1/α) . (5.21) Finally, combining (5.20) and (5.21), one obtains (5.18).

1 d-

 1 3) 1/2 log(2) γF γ H, α -1 (m 2,j ) 1/2 α -1 2,j,γ -α -

1 ( 1 (-log( 2 ) 1 ( 2

 11212 + log[START_REF] Ayache | Uniformly and strongly consistent estimation for the Hurst function of a linear multifractional stable motion[END_REF] γF γ H, α -1 (m 1,j ) 1/2 ∆ m 1,j ,m 1,j 1 (γ, H, α) .Moreover, it follows from (4.4), (1.28) and (1.23) that the deterministic quantity 2 -1/2 log(2) γF γ H, α -1 (m 1,j ) 1/2 ∆ m 1,j ,m 1,j another hand, Corollary 5.5 and the fact that, for all j ∈ N, the two random variables Λ m 1,j 1,γ and Λ m 1,j 2,γ are independent (see(5.16) and the fundamental Lemma 2.3 (ii)) imply that 2 (5.25) and (5.26), one obtains(5.22). Let us now prove that (5.23) holds. It follows from (4.26) and (5.16) that, for all j ∈ N,(2/3) 1/2 log(2) γF γ H, α -1 (m 2,j ) 1/2 α -1 2,j,γ -α -γF γ H, α -1 (m 2,j ) 1/2 ∆ m 2,j ,m 2,j+11(γ, H, α)+ log(2) γF γ H, α -1 1 -γ(H + 1/α) (m 2,j ) 1/2 1 -log 2 m 2,j+1 m 2,j.Moreover, (4.4), (1.28), (1.23) and the inequality m 2,j ≤ m 2,j+1 imply that the deterministic quantity log(2) γF γ H, α -1 (m 2,j ) 1/2 ∆ m 2,j ,m 2,j+1 30) entails that the deterministic quantity log(2) γF γ H, α -1 1 -γ(H + 1/α) (m 2,j ) 1/2 1 -log 2 m , it results from Corollary 5.5, (1.30) and from the fact that, for all j ∈ N, the two random variables Λ
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