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Abstract
The fundamental law of parsimony in science, which is colloquially referred to as Occam’s razor,

gives precedence to simplicity in the development of a theory. We wish to illustrate this principle
by revisiting the issue related to the long-lasting continuous experimental measurement of a Rabi-
driven qubit (Z. Minev et al. Nature 2019, 570, 200). We propose a simple and basic explanation of
the results that proceeds from the variance property of the Hamiltonian in the case of a weak Rabi
drive. This variance provides a large statistical time-dependent range of available values for the
qubit energy (namely, its standard deviation) that spreads out about Rabi’s well-known harmonic
state-flipping mean value. In the presence of a long-lasting continuous measurement process like
in Minev et al experiment, the resulting “quantum Zeno freezing” of the observed system keeps its
energy frozen in its initial state as long as this remains possible within the standard deviation of
the energy. Otherwise the system suddenly experiences a quantum jump between the two energy
levels —dubbed a quantum Zeno jump— in order to resume its state-freezing dynamics. Some link
is made with the dynamics of swapping gates in quantum information processing.

PACS numbers: 02.60.Lj 12.20.Ds 73.21.La

∗Electronic address: Gilbert.Reinisch@oca.eu

1



I. INTRODUCTION

According to the quantum Zeno effect (QZE), frequent (almost continuous) measurements
would inhibit the decay of unstable quantum systems [1]. It is usually explained by the
property that the system evolves from the same initial state after every measurement [2].
Indeed, in agreement with the quantum measurement theory, the wave-function collapse
takes place as a consequence of observation and, consequently, the density matrix of the
system loses its off-diagonal components. [3]. This “state freezing effect” has been beautifully
verified more than thirty years ago by use of a Rabi driven two-level (or quantum bit:
“qubit”) system [4] —namely, a ground state |G> and an excited state |D>— with the
addition of a 3rd “ancilla” state |B> that actually plays the role of the continuously-operating
ground-state population measurement [5]. Specifically, this latter state |B> is connected by
a strongly allowed transition to level |G> and it can decay only to |G>. The continuous
state measurement is carried out by resonantly (Rabi) driving the G → B transition with
an appropriately designed optical pulse. This measurement causes a collapse of the wave
function. If the system is projected into the ground-state level |G> at the beginning of
the pulse, it cycles between |G> and |B> and emits a series of photons —hence the label
|B> for “bright”— until the pulse is turned off. If it is projected into the excited level |D>
(for “dark”), it scatters no photons. Therefore the wave-function collapse is due to a null
measurement [6] [7]. That is, the absence of scattered photons when the optical pulse is
applied is enough to cause a collapse of the wave function to level |D> [4].

A recent remarkable experiment has reproduced this experimental set-up while using it
for a much longer observation time than that of [4]. The authors observed a series of sharp
quantum jumps between both qubit energy levels and provide a theoretical explanation
based on quantum trajectories [8]. Here we wish to show that these sharp quantum jumps
—which we dub Quantum Zeno Jumps (QZJs) for reason that are explained below— actually
proceed from three basic quantum properties:
i) The commonly used rotating wave approximation (RWA) is discarded: the high-frequency
terms in the transition dynamics become essential.
ii) These high-frequency terms define the variance property of the qubit’s Hamiltonian.
iii) This variance property defines the energy range in which QZE state freezing occurs.
Therefore we claim that the QZJs are generic and we illustrate this assertion by the example
of a local energy fluctuation that is a quantum-drift alternative to the standard model of a
quantum jump in quantum information processing (QIP) [9] [10].

II. VARIANCE OF A QUANTUM SYSTEM

Let us first review some variance properties of the Hamiltonian H in a two-state quantum
system defined by its time-dependent normalized spinor wavefunction Ψ(t) = {ψa(t), ψb(t)}.
One simple heuristic way to proceed is to consider the Hermitian variance operator [11]:

V = [H− ⟨H⟩I]2, (1)

that is directly extrapolated from standard statistical physics (I is the identity matrix). Since
V commutes with H, it contains nothing that cannot be already obtained from measuring
the energy in the sense of recontructing the statistics of the observable. Therefore it is a
mainly pragmatic quantum tool that shows how energy is spread out across its expectation
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FIG. 1: The quantum standard deviations (4) —dotted profiles— about the harmonic Rabi flipping
defined by the time-dependent energy expectation value (continuous profile) in the case of the weak
drive E(τ) = A sin τ with A = 0.008.

value ⟨H⟩ = ⟨Ψ|H|Ψ⟩. The standard deviation d =
√
⟨V⟩ is directly deduced from the

variance expectation value ⟨V⟩ = ⟨Ψ|V|Ψ⟩.
We define the Hamiltonian of the system (with its two respective Pauli matrices Eσz for

the drive and Kσx with K constant in time for the free Hamiltonian) as:

H(t) =

(
E(t) K
K −E(t)

)
. (2)

We use the dimensionless time τ = Ωt where Ω = 2K/~. This means that we assume in the
present work:

K = 1 ~ = 2 Ω = 1. (3)
Ω is the Larmor frequency of a spin 1

2
with a time-dependent magnetic drive along the z-axis

and spiraling about the x-axis that is parallel with the constant magnetic field −K/µ in
model (2), the spin magnetic moment being µ = e~/mc. Figure 1 illustrates the “dressing”
of the well-known harmonic Rabi oscillation ⟨H(τ)⟩ (continuous profile) by its

±d(τ) = ±
√

⟨V⟩ = ±
√

E2 − ⟨H⟩2 + 1 ∼ ±
√

1− ⟨H⟩2, (4)

standard deviation [11] in the case of the weak resonant drive E(τ) = A sin τ with A = 0.008
(dotted profiles). It defines a wide statistical time-dependent range of available energy values
about ⟨H(τ)⟩. Hence the following natural question: since the energy values can be scattered
so widely over the whole region statistically bounded by the dashed profiles in Fig. 1, why
haven’t they been observed ? The purpose of the present paper is to show that they have
been actually observed in [8].
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III. CLASSICAL CANONICAL TRANSFORMATION OF A DRIVEN QUBIT

The mathematics have already been described in [12] [13]. They consist in a mere canoni-
cal transformation from the Hamiltonian Schrödinger description (2) to that classical Hamil-
tonian dynamical system (HDS) which is defined by the following Hamilton equations:

d

dτ
α = −∂H

∂δ
=

√
1− α2 sin δ ;

d

dτ
δ =

∂H
∂α

= − α√
1− α2

cos δ + E(τ). (5)

H =
√
1− α2 cos δ + αE(τ). (6)

The two conjugate canonical variables δ(τ) and α(τ) are defined by the spinor components:

ψa(τ) =

√
1 + α(τ)

2
eiΘ(τ) ; ψb(τ) =

√
1− α(τ)

2
ei[Θ(τ)+δ(τ)]. (7)

Therefore α(τ) = 2|ψa(τ)|2 − 1 = 1 − 2|ψb(τ)|2 = |ψa(τ)|2 − |ψb(τ)|2 is a direct measure of
the qubit’s normalized state probabilities. Hamiltonian (6) yields:

H(τ) = ⟨H(τ)⟩ = ⟨Ψ|H|Ψ⟩, (8)

with Ψ(t) = {ψa(t), ψb(t)} is defined by Eqs (7) while H(τ) is given by Eqs (2-3). It
provides the necessary physical link between both Hamiltonian descriptions; namely the
quantum Schrödinger one and the classical HDS one. The dynamics of the time-dependent
global —or Berry [14]— phase Θ(τ) in (7) is defined by:

d

dτ
Θ = −1

2

[√1− α

1 + α
cos δ + E(τ)

]
. (9)

Note: it cannot be discarded in the above canonical transformation (5-6). Indeed, if one
wishes to do so —i.e. to assume Θ ≡ constant in (7)—, the vanishing r.h.s. of (9) would
create the arbitrary and clearly non-physical constraint H(τ) + E(τ) = 0. Consequently
Rabi’s smooth harmonic RWA state flipping (continuous oscillation in Fig. 1) would simply
disappear! Moreover, the existence of the global phase dynamics (9) in Eq. (7) yields a real
physical observable effect: it defines the famous 4π symmetry of spinor wave functions (i.e.
the sign reversal of the wave function under a 2π rotation [12]) which has been experimen-
tally observed in both division-of-amplitude [15][16] and division-of-wave-front [17] neutron
interferometry experiments (see also [18]).

The above HDS classical Hamiltonian description of the driven qubit’s dynamics is a mere
mathematical protocol aimed to stress the role of the very-high-frequency (VHF) components
Ea,b(τ) present in the energy variance of the system. Indeed these latter are defined by [12]:

⟨H(τ)⟩ = H(τ) = |ψa(τ)|2Ea(τ) + |ψb(τ)|2Eb(τ), (10)
where by use of Eqs (5), (7) and (9):

Ea =
H + E
1 + α

= −2
d

dτ
Θ ; Eb =

H− E
1− α

= −2
d

dτ
(Θ + δ). (11)

The VHF energy components Ea,b are the qubit’s state energies as clearly suggested by Eq.
(10). Their respective variances are:

σ2
a,b(τ) = |ψa,b(τ)|2[Ea,b(τ)−H(τ)]2. (12)
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FIG. 2: A = 810−3. The colored energy ranges display the VHF standard deviation ±σa,b(τ)

defined by Eq. (12) about one Rabi period 4π/A = 1571 (thick black plot). Dotted black plot: the
quantum standard deviations ±d(τ) reproduced from Fig. 1.
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FIG. 3: Fig. 2 zoomed about the onset of the Rabi flipping in order to detail the VHF standard-
deviation components σa(τ) (continuous) and σb(τ) (dotted).

Figures 2 and 3 display the corresponding standard deviations σa,b(τ) by superimposing
them on the quantum standard deviations ±d(τ) shown by Fig. 1 (dotted black points).
The quite dense colored patterns are built from the VHF oscillatory standard deviations
(12) whose corresponding HDS orbit period ∼ 2π ≪ 1571 is extremely small at the scale of
the Rabi period 4π/A = 1571 [12]. The agreement with Fig. 1 is spectacular. It numerically
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FIG. 4: The QZE-vs-Rabi competition sketched inside the energy patterns reproduced from Figs 1-
3 for A = 810−3. The step-like energy transitions due to the QZE repetitive energy measurements
are illustrated by arrows. The thick arrow path displays the abrupt energy jump occuring at
τ = 1183 (at H = 0) from the ground state E = −1 to the excited level E = +1. The thiner one
displays the reverse de-excitation process.

demonstrates that the quantum standard deviation (4) is quite close to ±σa,b (12) and that
it is actually due to the VHF state energy components (10-11).

IV. QUBIT VARIANCE STATE FREEZING

This property allows us to determine the ad-hoc experimental conditions required to
observe the effect of these VHF energy components in the energy variance range of a driven
qubit. It has been shown in [12] that the mean value of Ea,b(τ) over one HDS orbit period
∼ 2π is equal to ⟨H(τ)⟩. This property yields the 4π symmetry related to the global
phase Θ(τ) of the spinor wavefunction by use of Eqs (11) [12]. Therefore any measurement
of the qubit energy that lasts more than 2π (in our reduced units (3)) will restore the
well-known energy expectation value ⟨H(τ)⟩: nothing will be changed with respect to the
well-known low-frequency RWA description of the Rabi harmonic flipping. To the contrary,
any high-frequency sequence of energy measurements (e.g. a quasi-continuous series of
measurements like in experiment [8]) must be sensitive to the standard-deviation dispersion
of the energy values about ⟨H(τ)⟩. This is precisely what happened in [8]: its continuous
energy measurement process forces the system to explore through QZE state freezing the
variance regions displayed by Figs 1-3. Once their boundaries is reached, the system burns
out all of a sudden that very Rabi-flipping energy amount which has been stored during its
ground state QZE frozen stage. It jumps to the next excited energy level, thus resuming its
QZE state-freezing trajectory on this new level as shown by Fig. 4 [11].

Actually, the above sketch is oversimplified. Indeed the standard deviation boundary
(say, at τ = 1183 ∼ 1200 in Fig. 4) is only statistical: it has no precise definite value.
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FIG. 5: The quasi-stochastic energy input ∆H = αE in Eq. (6) over half a Rabi period 2π/A when
the origin of time is now taken at τ = 785 in Fig. 4. Its seemingly two-dimensional dense pattern
results from its extremely fast oscillations at the scale of the Rabi period and will be regarded as
the uncertainty in the energy input at a given time τ . The star indicates the maximum at τ = 393

(or H = 0 in Fig. 4) that scales this uncertainty in Eq. (13).

Therefore the above-described quantum Zeno jump (QZJ) may actually occur at any time
within an interval ∆τ about this boundary (e.g. about τ = 1183). When trying to evaluate
∆τ , one should regard the driving term ∆H = αE in Hamiltonian (6) as a quasi-stochastic
(in fact quasi-uniformly dense) energy input pattern as shown by Fig. 5. Therefore it yields
in our units (3) an estimate of the uncertainty ∆τ :

∆H∆τ ≥ ~
2
= 1, (13)

during which any step-like QZJ illustrated by Fig. 4 can statistically occur. We recover
Bohr’s undeterministic picture of an instantaneous quantum transition in agreement with
the Heisenberg uncertainy principle. Since this QZJ formely appears at half the gap defined
by H = 0, we take the corresponding value ∆H = ∆Hmax = 410−3 in (13): see the star
in Fig. 5. Therefore ∆τmin ∼ 1/∆Hmax ∼ 250. This time interval is pictured by the
two vertical bars about H = 0 in Fig. 6 where the experimental data given in [8] are
reproduced by use of red circles, using for the normalization of our τ -axis the experimental
Rabi period TRabi = 50µs given there (the ∼ 13% deviation from the excited eigenvalue +1
is due, the authors say, to imperfections, mostly excitations to higher levels). We see that
∆τmin ∼ 250 ∼ 2∆mid agrees fairly well with the so-called “time-of-flight” value ∼ 2∆mid of
experiment [8]. Moreover, ∆τmin is also in good agreement with HDS action quantization
when the system crosses the separatrix of the system at H = 0 [19]. Recall that Heisenberg’s
l.h.s. of inequality (13) has indeed the dimension of an action.
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FIG. 6: Second (r.h.s.) part of Fig. 2 illustrating the actual QZE-vs-Rabi competition sketched in
Fig. 4 by use of the experimental data provided in [8]. Blue plot: Rabi’s mean energy ⟨H(τ)⟩ =
H(τ). Circles: the quantum jump reproduced from Fig. 3b of Ref. [8], using its TRabi = 50µs Rabi
period for the normalization of the τ -axis. The two vertical bars display the minimum duration
∆τmin of the transition obtained as the consequence of the uncertainty principle (13) when the
driving ∆H illustrated by Fig. 5 is maximum (star). These bars fit quite well with the duration
of the so-called “time-of-flight” value ∼ 2∆mid given in [8].

V. CONCLUSION: THE GENERIC QUANTUM ZENO JUMP

We have shown that the “’time-of-flight” values obtained by the continuous measurement
routine in experiment [8] can be obtained by a first-principle consequence of both the en-
ergy variance shown in Figs 1-3 and the quantum Zeno effect (QZE) displayed in Fig. 4.
They proceed from a generic quantum process and do not depend on the specific repetitive
measurement procedure provided this latter is long-lasting enough. Any such measurement
yields QZE freezing of the corresponding quantum states in their initial configuration [1]
[20]. And any such QZE freezing lasts as long as the continuous measurement allows the
resulting “frozen” qubit dynamics to lie inside of its energy variance range. Since energy
is continuously fed into the system by the external driving, this energy excess with respect
to the frozen energy state must sooner or later be burnt out. The proposal of the present
paper is that this occurs at the very last time, when the variance properties of the system
no longer allows it to stay within the statistical time-dependent standard deviation range of
available energy about the well-kown RWA Rabi energy mean value. Then the system expe-
riences all of a sudden a quantum jump between the two energy levels in order to resume its
state freezing trajectory and stay further in the new frozen state. Due to its simplicity, this
approach is in the spirit of Occam’s razor description [21]. It stresses the generic importance
of the QZE freezing vs Rabi flipping competition resulting in the existence of quantum
Zeno jumps (QZJs) in experiment [8] as shown by Fig. 6.

In quantum information processing (QIP), a phase transition can be described as a func-
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tion of a given control parameter —e.g. an empirical ”friction coefficient”— by a non-
analytic behavior of the ground state energy in the quantum dynamics of a Rabi-oscillating
system tunneling coherently between two levels [22]. This Rabi oscillatory dynamics is shown
to “freeze” when the interaction with the quantum environment exceeds a certain critical
strength. A resulting ”frozen phase transition” appears as a consequence of a dynamical
QZE where the transition is from an isolated system that is weakly perturbed to a state in
which the effect of the environment is no longer perturbative. The link with the present
work is illuminating. Indeed a series of repetitive measurements of the ground state energy
similarly yields, above a given threshold of the measurement frequency [4], a non-analytic
—since non-perturbative— QZE “freezing” quantum dynamics in the variance range of the
Rabi-oscillating system. Therefore any external energy feeding will result in the same kind
of QZE freezing vs Rabi flipping competition as in the present work.

This process can also be regarded as a model for decoherence in time-dependent transport
described by a dynamical formulation of the Landauer-Büttiker equations [23]. It yields a
form of wave function which undergoes a smooth stochastic drift of the phase in a local basis.
This latter is nothing else but a local energy fluctuation that is a quantum-drift alternative
in QIP to the standard model of a quantum jump. It resembles the QZJ process, as shown
by the stroboscopic representation of the inhomogeneous system-environment interaction [9]
[10]. The authors introduce a fictitiously homogenized interaction rate in the dynamics of a
swapping gate, showing a quantum dynamical phase transition where the dynamical behavior
changes from a swapping phase to an overdamped phase. Here again, this last regime can be
associated with QZE since frequent projective measurements prevent the quantum evolution.
This dynamical Zeno effect is produced by interactions with the environment and freezes
the oscillations of the system like in the present work.
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