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Abstract

Due to their high predictive performance and flexibility, machine learning models are an
appropriate and efficient tool for ecologists. However, implementing a machine learning model
is not yet a trivial task and may seem intimidating to ecologists with no previous experience in
this area. Here we provide a series of tips to help ecologists in implementing machine learning
models. We focus on classification problems as many ecological studies aim to assign data
into predefined classes such as ecological states or biological entities. Each of the nine tips
identifies a common error, trap or challenge in developing machine learning models and provides
recommendations to facilitate their use in ecological studies.

Introduction

Ecological datasets are generally characterised by complex interactions between variables, non-
linearity, missing values, dependence in the observations and/or a continuously expanding size [1–3],
especially since the recent increase in the use of remote sensing and automatic recorders [4]. A
growing number of those datasets cannot be effectively processed by humans anymore and require
methods that can deal with high number of variables and complex data structures [3, 5, 6]. Because
of their ability to process large and complicated datasets, machine learning models are expected to
become a standard framework in the analysis of ecological data [3, 7, 8]. Over the last few years,
machine learning algorithms have become increasingly popular due to their high performance and
flexibility [8]. In ecology, they have been successfully applied to perform various tasks such as
identifying species from images or sounds [9], monitoring animal behaviour [10] or modelling species
distribution [11] and new innovative studies and perspectives keep being regularly documented [3,12].

However, implementing a machine learning model is not yet a trivial task and may seem intimi-
dating to ecologists with no previous experience in this area. In this paper, we aim to share nine
tips to help ecologists avoid some of the most common errors and incorrect practices in machine
learning. We focused our tips on classification problems as a substantial number of ecological
studies aim to assign data into predefined classes such as ecological states or biological entities.
Some typical examples of classification include species identification through pictures [9] or sound
recordings [13–15], distinction of different phenological phases in plant life cycle [16, 17], description
of animal behaviour [18] and detection of disease in plants [19]. Each tip presented in this paper
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identifies a common error or challenge in developing machine learning models and provides recom-
mendations to facilitate the use of machine learning methods in ecological studies.

Tip 1: Adopt the machine learning mindset

The concept behind machine learning refers to the use of a certain type of model that can discover
and learn patterns in data to generate predictions or detect patterns automatically without having to
follow explicit instructions. Without machine learning, humans have to provide data and instructions;
with machine learning, humans have to provide data.

The learning phase can happen in two different ways, with or without supervision (see [8] for
an introductory review). In unsupervised learning, the model automatically discovers patterns
and similarities in unlabelled data (e.g. data for which we do not have a label indicating the
associated class, given by the user). Unsupervised learning is often used in data exploration to find
the underlying structure of the dataset, reduce its dimensions or cluster/group similar data together.
The state-of-the-art methods include PCA, k-means and hierarchical clustering, or the more recent
methods t-SNE [20] and UMAP [21] that are particularily popular in this context. The latter was
for instance used to compare soundscapes from a variety of ecosystems [22]. In supervised learning,
a labelled dataset is initially provided to the model: those labelled data include input variables
and output variables (e.g. class labels). These data play the role of a supervisor that teaches the
model how to correctly predict the output by finding a function that maps the explanatory input
variables with the output. Depending on whether the output is a discrete category or a quantity,
the problem is called a classification or a regression problem respectively. Random forests, XGBoost
and neural networks are leading options in this framework. In ecology, a classical example of a
supervised learning task is the classification of individuals in different categories based on a set
of explanatory variables. This problem can be solved using a wide range of models from logistic
models to complex deep learning models.

The machine learning mindset can be presented by revisiting a classification problem (see a
concrete example in Box 1). Before being able to predict to which category a new individual belongs,
the model (logistic regression in Box 1) has to enter a learning phase that consists in finding the
optimal parameters describing the relationship between the variables and the labelled output. How
does the model find those optimal parameters? By minimizing a loss function. This function (e.g.
mean squared error function), the keystone of a supervised learning approach, evaluates how far from
the correct answers/outputs are the model predictions. The learning phase consists in minimizing
this loss function numerically, such that the optimal parameters (i.e., those that lead to the lowest
predictive error) are the ones chosen for the final model. This final model can then be used to
predict the labels of a new set of individuals.

Tip 2: Create your data sets (very) carefully

Here, we focus on classification tasks but the following principles are also applicable to regression
problems. The general approach to solve a classification problem in machine learning is to: (i)
develop different versions of a method of classification (a classifier) and train them on a dataset;
(ii) evaluate and compare the models’ predictive performance using an evaluation metric (see Tip
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6) and (iii) select the best performing model to carry out the final predictions on a sample of new
unseen dataset (Fig. 1). Before entering the learning process, the collected data should be composed
of three separate sets: the training set, the validation set and the test set. This partitioning is
necessary because the data used to train and evaluate the model need to remain independent in
order to obtain reliable performance measure [23,24].

Train the model on

the training set

Evaluate the model
performance on the

validation set

Modify the model configuration

based on the model performance

Choose most performant model

Get final unbiased measure
of model performance on the

test set

Fig 1. Illustration of the different steps of developing a machine learning model involving three
separate sets of data.

The three separate data sets. Training. Only the training data set is used to train the model
(Fig. 1). Ideally, this training set should include a various set of inputs to train the model under
as many situations as possible in order to predict any unseen data sample that may appear in the
future. Validation. The trained model is simultaneously used to predict the classes from the
observations in the separate validation set to evaluate the model predictive performance (Fig. 1).
Evaluating the model on a separate validation set prevents the model from overfitting, i.e., when the
model memorizes the pattern in the training data to such an extent that it fails to generalize and
to make accurate predictions on unseen data [25,26]. As an example, imagine a model developed
to detect the presence of dogs in pictures. The model performance obtained on the training set
is high, indicating the model is doing a good job classifying the pictures with and without dogs.
However, when tested on the separate validation set, its performance drops. This indicates that the
model was overfitting; it memorized specific patterns of the dogs from the training set instead of
learning general patterns common to dogs. This issue would not have been detected if the model
was evaluated on the same data it was trained on. During the training (or tuning) phase, different
models or set of variables may be tested and hyperparameters optimised (e.g., the number of trees
in a random forest or the number of layers in a neural network). The simultaneous validation phases
provide information about how those different model configurations affect the model predictive
performance. Training and validation phases are repeated until a desirable predictive performance
is reached on the validation set. Test. In a final step, the best performing model is run on the test
set to obtain an unbiased measure of the model predictive performance (Fig. 1). It is critical that
the test set (sometimes called out-of-sample, [27]) remains out of the development phase until the
final predictions are made for the performance measure to be reliable [24,28,29].

The good, the bad and the ugly data sets ? The validation set is used to confirm the training
process is correct, and that the model choice is satisfying. The main issue with this validation set is to
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avoid data leakage (see Tip 4) that can lead to over-optimistic model evaluation. However, it should
not be used to claim that the trained model will perform well when deployed in real scenarios. This
is the role of the test dataset. Test sets must be representative of the target data, i.e. data in real
life for which the model was built. The key recommendation to obtain a reliable measure of model
performance, is to keep the test data set as independent as possible. For example, using camera trap
data from different locations independently, or continuous sections of longitudinal data from dates
beyond the end of the training set [2]. A random splitting of dataset into train/validation/test sets
is therefore strongly discouraged.

If the training data is an unbiased sample of the underlying distribution, then the learned
classification function will generalize well and will make accurate predictions for new samples [8,23,25].
If not, the distribution of the target data may differ from the distribution of the training data
and the classification function will perform poorly [30]. This issue, called distribution or domain
shift [31], is a common cause of a well-known scenario in machine learning: a seemingly impressive
model (as evaluated on validation data) that completely fails when used on a test set of new data [8].
In species identification for example, a model trained on pictures with clean weather conditions will
likely fail on a test set of pictures with adverse weather conditions (e.g., rain, fog, snow [31]). The
solution often consists in enlarging the training set with new data covering the complete distribution
expected for the data in real conditions.

Choosing appropriate validation and test sets is one of the most important step in a machine
learning project. We cannot stress this enough. A poor choice of validation and test sets will lead to
a disconnect between the results in development and the ones obtained when deploying the model
on new data [24].

Tip 3: Get the right amount of data

The amount of data needed to capture the relationship between the explanatory variables and the
output data varies depending on the complexity of the problem and model. While there is no general
rule for determining the quantity of data required in machine learning models, three concepts should
be kept in mind when gathering data for the training, validation and test steps.

First, machine learning models, especially deep learning models [32], often need a significant
amount of training data. This is because the number of parameters in those models can be
tremendous (tens of millions for most convolutional neural networks (CNN)). Therefore, complex
models will need significantly more data than simpler ones (e.g. thousands or millions of pictures
to train a model for species identification [9, 18, 33]). Second, a model can only capture what it
is trained on. For instance, a model trained on daytime images will not work on night images; a
species distribution model trained on mountains will not work on wetlands. Therefore, the training
set should include as much diversity/variability and edge cases as possible to enable the model to
learn and predict various scenarios. Note that a large dataset does not necessarily include sufficient
variability in the data to guarantee good model performance [34]. For instance, a dataset might
contain millions of pictures of a given species, but only in sunny conditions. Using this dataset to
identify that species during rainy or snowy days would likely produce poor predictions (see Tip 7).
Therefore, we recommend to pay a greater attention to the variability/diversity available, not to only
focus on the raw amount of data. Third, if there is not enough data to build correct validation and
test sets, the model evaluation metric will have a greater variance which will (i) prevent a proper
tuning of the model and (ii) make it hard to assess how well the model will perform on new data
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and generalize.
If more data is needed, we suggest to make use of existing methods to increase the sample size.

This includes data augmentation techniques to generate heterogeneous data from existing training
data [35], crowd sourcing to maximize data sources [36] or creation of large consortium to gather
more data [33]). It can also consist in going back to the field to collect more labelled data (when
possible).

In deep learning specifically, an alternative approach is to limit the amount of training data
required by (re-)using existing pre-trained models as a starting point for new models using a transfer
learning approach [37]. Recently developed self-supervised learning methods [38] are also another
option to solve the challenges posed by the needs of large labelled data. They consists in learning
from the similarity between close images (e.g. two sub-parts of the same image, two successive
camera trap images [38]) and can cope with the limited availability of some categories (e.g. rare
species).

Tip 4: Be mindful of data leakage

Data leakage is one of the leading machine learning errors ( [29]). It happens when a model is trained
using data that contain some information that would not be available at the time of predictions [39].
It is a serious problem as it can create overly optimistic, if not completely invalid, predictive models
with very poor generalization.

In practice, data leakage often occurs subtly and inadvertently, making it hard to detect and
eliminate [39]. A common example of data leakage is when the pre-processing of data is done on the
whole combination of training, validation and test sets. Knowledge of the full data distribution is
included in the processed data and used by the model (see Fig. 2 for an example on standardisation).
A non-leaky way of processing the data would be to create the training, validation and test sets
first and process the data within each set. However, it is important to keep in mind that only
parameters computed from the training set can be used for transforming the data in the validation
and test sets (Fig. 2). In time series data, a temporal cutoff may be useful in preventing leaking
any information about the future, to ensure that any data used for training does not include records
with a timestamp later than the cutoff value.
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Fig 2. Data standardisation computed with and without data leakage

Another common error leading to leakage is data duplication, when the dataset contains identical
or near identical data ( [29]). For example, when working on sequences of pictures from camera traps,
duplicates may correspond to images from the same temporal sequence (Figure 3). In this case, data
leakage may happen because the training and validation sets contain the same information even
though they correspond to different observations, i.e., different pictures from the same temporal
sequence.
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Fig 3. Example of data leakage due to data duplication. In case A, pictures in training and
validation sets are from the same temporal sequence and look near identical. In that case, the model
will work artifactually well on the validation set. In case B however, the validation set is informative
since training and validation sets are independent (no duplication). Source: Vincent Miele

As a general rule, if the model is “too good to be true” (e.g. with over-excellent evaluation
metrics), we should get suspicious and check for potential data leakage. Again, we advise using a
holdout dataset (i.e., test set) as a final sanity check for model performance and generality.

Tip 5: Treat imbalanced datasets with care

In ecological data, it is common for one or several classes to be more frequent than other(s)
(e.g. sporadic distribution vegetation types, apex predators in camera trap images). Imbalance
distribution in data can lead to poor predictive performance in minority classes as conventional
classification models tend to be biased towards majority classes (e.g. in deep learning [40]). In those
cases, it is challenging for models to learn the characteristics of the observations from the minority
class and to differentiate those observations from the others [41]. Indeed, by construction, the rarest
classes are under-represented in the loss function and its numerical minimization tend to be driven
by the frequent classes. Ignoring data imbalance while building a classification model generally lead
to poor predictive performance on the minority class (see Box 2). This is problematic as minority
class(es) are often the class(es) of interest (e.g. rare species [42]) or rare habitats) and reliable model
performance in predicting those instances is therefore particularly critical.

Often, collecting more data will not solve the issue as minority classes are by nature difficult
to sample (rare species, rare habitat, rare event) and data imbalance will persist. In these cases,
multiple methods have been developed to handle the imbalanced data problem [40,43]. A common
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technique is to use resampling approaches (see Box 2). These techniques work at the data level by
modifying the number of instances in majority and minority classes to balance the data distribution
independently of the learning algorithm [44]. With undersampling, the most abundant classes are
down-sampled. On the contrary, with oversampling, the rarest classes are over-sampled. In the later
case, data augmentation is the leading method (instead of duplication). It consists of generating new
data from existing observations by using some disruptions and changes (e.g. changing orientation
or colors in images; drawing a small subset of variables from random distributions in ecological
studies). Another option is to assign different weights in the loss function to the observations
belonging to the majority or minority class [45]. However, this approach is very empirical since
it remains challenging to select the optimal weights. Finally, it is also possible to calibrate the
classification scores given by a model: the user can try to rescale the scores of each class to improve
the classification performance [46].

Tip 6: Choose evaluation metrics carefully

An important step before making any prediction on a sample of unseen data is to make sure the
model consistently achieves a desirable performance. Various metrics exist to do so and the choice
of the metric(s) to use depends on the type of model considered and the problem to solve. Using the
wrong metric may lead to select poorly performing models ultimately altering the predictions [47].
Evaluation metrics can also provide deeper insights into the results as they weight the importance
of different characteristics in the predictions (Box 2). The confusion matrix, while not an evaluation
metric, is also a useful tool that compares the model predictions to the actual classes and provide
valuable information about the type of errors the model is making (see Box 3 for an example).
Imbalanced classification problems also complicate the evaluation of predictive performance as
popular classification metrics generally assume a balanced class distribution and may be misleading
when data are imbalanced [48,49].

Therefore, which metrics should the user choose? Top-k accuracy? Sensitivity/specificity?
Precision/recall? There is no general answer here. Depending on the problem, some predictive errors
may be more serious than others. For instance, in some applications, it could be more important
to reduce the number of false positives to zero, while a trade-off between a small amount of false
positives and false negatives could be preferable in other cases. We recommend to move beyond
textbook examples and take the time to convert the objectives of the machine learning approach
into the appropriate metrics.

Tip 7: Look out for shortcut learning

Due to the black box nature of some algorithms (e.g., neural networks, see Tip 8), it is often
difficult to understand why those models are successful and, in particular, which part of the data
and decision rules they choose to focus on when making predictions [6]. Shortcuts is a particular
group of decision rules based on unintended correlations and other biases in data that the model
uses to make predictions. While superficially successful (i.e. perform well on standard benchmarks),
these shortcut strategies typically lack generalisation and cause the model to fail unexpectedly
(i.e., make inaccurate predictions) when transferring to slightly different data [6]. In Figure 4, we
show an example of data that could lead to a shortcut opportunity. In this example, the data used
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by the model to learn how to differentiate two species, the wild boar and the white-tailed deer,
included only nocturnal pictures of wild boar and diurnal pictures of deer. In that scenario, the
model may learn to recognize species by focusing on image timestamps rather than by learning more
complex shapes and patterns of the animals themselves. The variable day/night may be used as an
unintended predictor for the species identification.

Several approaches can be used to limit shortcut opportunities. First, many shortcuts are a
consequence of natural relationships (e.g., between a species and its typical surrounding landscapes
[5, 50]) and can be avoided by modifying the training data to restrict the model’s access to shortcut
features. In our example in Figure 4, including both nocturnal and diurnal pictures of each species
would block the model from learning the shortcut feature day/night as a predictor to recognize
the species. Adding noise to the training data with data augmentation may also be a solution to
discourage the model from learning unintended relationships with the output. In photo-identification,
a common practice is to crop the picture around the area of interest (e.g., face or individual pattern)
in order to promote the training of the model on the zone of interests only [33, 51]. Another
recommendation is, again, to use on an out-of-sample test set to evaluate the model and test its
generalisation beyond the narrowly learned settings [6].

Fig 4. Example of shortcut learning opportunity in a neural network that aims to classify species
in images. During training, white-tailed deer pictures were always taken in daylight; wild boar
pictures in the nightime. This pattern is still present in test set 1 (middle row) but not in test set 2
(bottom row), exposing the shortcut: the model has learned to associate the picture timestamp to
the species. On test set 2, the predictions are therefore erroneous.

Tip 8: Add some transparency in your black box models

Machine learning models lie on a continuum of interpretability and complexity and high predictive
performance may come with a loss in interpretability [52–55]. Highly performing but complex models
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generally offer less visibility on how predictions are made, how the explanatory input variables
impact the output and what the relationships between variables are [53, 56]. They are therefore
often considered to be black box models, hard to understand and communicate to a target audience.
On the other side of the continuum, models like regressions or shallow decision trees (i.e., small trees
with low depth) are simple and easy to understand when used with a few variables but may not be
optimal for prediction. Random forests also offer the possibility to inspect variables importance,
to enhance interpretability. Ecologists should be aware of this continuum before choosing which
machine learning model to use. A model that is appropriate for a study focusing on prediction is
unlikely to be optimal if the aim of the study is to understand the impact and directionality of the
relationships between the explanatory input variables and the output.

However, regardless of the end goal of the study, some level of interpretability remains indis-
pensable to validate and improve models [57] and to avoid dangerous traps (e.g., shortcut learning,
see Tip 7). Increasing research has been aiming at helping to explain predictions made by complex
models [53] and various methods are now available (e.g., SHAP [58], LIME [59]). If the selected
model is not interpretable per se (e.g. a neural network), there is still a path to gain transparency on
the underlying process. For example, in deep learning for images classification, heatmaps have been
used to highlight the image zones that were selected/activated by the model [60] (e.g. the curved
tail for baboons identification [61]). In Box 3, we show how two other methods could improve the
transparency of models usually considered to be black box models.

Tip 9: Make sure you do not learn from errors

Real-world data contain redundancy, duplicates and mislabelled classes that can significantly reduce
machine learning efficiency [62]. This is a particularly known issue in data collected from various
citizen science programs [63,64] or in datasets that have been merged from different sources before
being fed into a model. To avoid a loss in model performance, an important effort must be made to
curate, clean and prepare the data before training any model. This task may be time-consuming
and hectic but often provides a greater payoff than experimenting with any advanced modelling
approaches.

We suggest to consider machine learning as a tool to facilitate and automate the data cleaning
process. In Box 4, we showed how a cross-validation approach could be used to flag observations
in the training set that were likely to be mislabelled. In this example, we only used the model
prediction probabilities to identify the observations that required our attention. However, more
elaborate tools that implement a family of theory and algorithms called confident learning have
recently been developed [65]. They can detect flaws in datasets, characterize label noises, find label
errors, fix datasets and improve the model performance by training on cleaned data with just a few
lines of code (see open-source package cleanlab [65]).

Conclusion

To face pressing challenges such as climate change and biodiversity loss, precise ecological predictions
are critically needed by policy makers and ecosystems managers [66]. Due to their high predictive
performance and flexibility, machine learning models are an appropriate and efficient tool for ecolo-
gists. In this paper, we shared a few tips to help ecologists that are getting started with machine
learning to avoid the common mistakes and traps and overcome some of the known challenges of
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those models. We believe that the use of machine learning by ecologists could result in important
advances in ecology. Machine learning approaches also have the potential to be used for more than
just model building and prediction, e.g. data cleaning, hypothesis creation and testing and discovery
of new patterns in unlabelled data, making these approaches a powerful and valuable tool in the
ecologist’s toolbox.
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Koumba Pambo, Marek Rogala, Laila Bahaa-el din, Kelly Boekee, Stephanie Brittain, An-
abelle W Cardoso, et al. Robust ecological analysis of camera trap data labelled by a machine
learning model. Methods in Ecology and Evolution, 12(6):1080–1092, 2021.

[28] Max Kuhn, Kjell Johnson, et al. Applied predictive modeling, volume 26. Springer, 2013.

[29] Sayash Kapoor and Arvind Narayanan. Leakage and the reproducibility crisis in ml-based
science. arXiv preprint arXiv:2207.07048, 2022.

[30] Wouter M Kouw and Marco Loog. An introduction to domain adaptation and transfer learning.
arXiv preprint arXiv:1812.11806, 2018.

[31] Amrutha Machireddy, Ranganath Krishnan, Nilesh Ahuja, and Omesh Tickoo. Continual active
adaptation to evolving distributional shifts. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3444–3450, 2022.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

[33] Noa Rigoudy, Abdelbaki Benyoub, Aurelien Besnard, Carole Birck, Yoann Bollet, Yoann Bunz,
Nina De Backer, Gerard Caussimont, Anne Delestrade, Lucie Dispan, et al. The deepfaune
initiative: a collaborative effort towards the automatic identification of the french fauna in
camera-trap images. bioRxiv, 2022.

[34] Georg Volk, Stefan Müller, Alexander Von Bernuth, Dennis Hospach, and Oliver Bringmann.
Towards robust cnn-based object detection through augmentation with synthetic rain variations.
In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 285–292. IEEE,
2019.

[35] Alhassan Mumuni and Fuseini Mumuni. Data augmentation: A comprehensive survey of
modern approaches. Array, page 100258, 2022.

13



[36] Eric Luis Uhlmann, Charles R Ebersole, Christopher R Chartier, Timothy M Errington,
Mallory C Kidwell, Calvin K Lai, Randy J McCarthy, Amy Riegelman, Raphael Silberzahn,
and Brian A Nosek. Scientific utopia iii: Crowdsourcing science. Perspectives on Psychological
Science, 14(5):711–733, 2019.

[37] Lindsay C Todman, Alex Bush, and Amelia SC Hood. ‘small data’for big insights in ecology.
Trends in Ecology & Evolution, 2023.

[38] Omiros Pantazis, Gabriel J Brostow, Kate E Jones, and Oisin Mac Aodha. Focus on the
positives: Self-supervised learning for biodiversity monitoring. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10583–10592, 2021.

[39] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. Leakage in data mining:
Formulation, detection, and avoidance. ACM Transactions on Knowledge Discovery from Data
(TKDD), 6(4):1–21, 2012.

[40] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class
imbalance problem in convolutional neural networks. Neural networks, 106:249–259, 2018.
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Box 1: Logistic regression in the machine learning mindset

We tackle here a binary classification problem using a logistic regression. We want to estimate
the parameter of the model using a machine learning approach.

## Sepal/Petal length as predictors ,

## binary class (being or not Setosa) as response

## coded with 0="non setosa" and 1=" setosa"

> data(iris)

> full.set <- data.frame(Sepal.Length=iris$Sepal.Length ,
Petal.Length=iris$Petal.Length ,
Setosa=as.integer(iris$Species =="setosa"))

Sepal.Length Petal.Length Setosa

1 5.1 1.4 1

2 4.9 1.4 1

...

149 6.2 5.4 0

150 5.9 5.1 0

## Building a train and a validation dataset

## with a random split (for simplicity; see drawbacks in Tip 2)

> idx <- sample (1:150)

> train.set <- full.set[idx [1:120] ,]

> val.set <- full.set[idx [121:150] ,]

## Loss function measuring the gap between true class and prediction

> loss <- function(par){

a <- par[1]

b <- par[2]

c <- par[3]

proba <- 1/(1+exp(-(a + b*train.set$Petal.Length+ c*train.set$
Sepal.Length)))

loss <- sum(-train.set$Setosa*log(proba) - (1-train.set$Setosa)*
log(1-proba)) / length(train.set$Setosa)

print(loss)

return(loss)

}

## Training the model by minimizing the loss

## to find the optimal parameters using train data set

> bestpar <- optim(

par = c(a = 0, b = 0, d=0),

fn = loss

)$par

[1] 0.8425373

[1] 0.8421624

[1] 0.6474087
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...

[1] 4.880504e-08

> cat("Best params are:", bestpar ,"\n")

Best params are: 2.407035 -23.63244 10.78046

> cat("Minimal train loss is:", loss(bestpar),"\n")

Best train loss is: 4.742235e-08

## Building a predictor

## that predicts a binary class (being or not Setosa)

> predict <- function(data.set){

a = bestpar [1]

b = bestpar [2]

c = bestpar [3]

proba <- 1/(1+exp(-(a + b*data.set$Petal.Length+ c*data.set$Sepal.
Length)))

return(as.integer(proba >0.5))

}

## Checking prediction on validation data set

> head(data.frame(prediction=predict(val.set), truth=val.set$Setosa))

prediction truth

1 0 0

2 1 1

3 1 1

...

## Predicting on a new test data set

> test.set <- data.frame(Petal.Length=c(2 ,3.5),

Sepal.Length=c(5.5 ,6),

Setosa=c(NA,NA))

Petal.Length Sepal.Length Setosa

1 2.0 5.5 NA

2 3.5 6.0 NA

> test.set$Setosa <- predict(test.set)

Petal.Length Sepal.Length Setosa

1 2.0 5.5 1

2 3.5 6.0 0
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Box 2: Unbalanced data and metrics to estimate risk of collision with vehicles in Lynx

We used animal-vehicle collision data collected on the Eurasian Lynx in the French Jura
Mountains to predict animals at high risk of collision in the Swiss Jura Mountains. Data
on collisions were collected from 1982 to 2018, in France by OFB (the French Biodiversity
Agency https://www.ofb.gouv.fr/en) and in Switzerland by KORA Carnivore Ecology
and Wildlife Management (https://www.kora.ch/en/). A grid of 1 km2 cells was
overlaid on the Swiss-French road network taken from Open Street Map. Explanatory
variables were urban land use cover (from the Corine Land Cover 2012 data base
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012), distance
to major road segments, human density, road class (proximal measure of traffic intensity,
split into highways, main, local and regional roads), and total length of road segments.
We also used lynx presence that we summarised over the study period by the cumulated
number of times a cell was occupied (data were provided by the French Biodiversity Agency
https://carmen.carmencarto.fr/38/Lynx.map).

Origin dataset No Collisions Collisions

France 11238 80
Switzerland 9472 69

Table 1. Number of individuals in each class for French and Swiss datasets.

This dataset is characterised by a strong imbalance in the response variable (Table 1). We
modelled the data using random forest. Our results showed that the classifier not accounting
for the imbalance in data (first row in Table2) was unable to recognize any instance from
the minority class (i.e. high risk individuals). We therefore used resampling methods: 1)
undersampling, 2) oversampling, 3) combined under and oversampling and 4) SMOTE [67].
However, implementing resampling methods in the random forest barely improved the model
predictive power in the minority class (Table 2 and Fig. 5).

Model TP TN FP FN

No sampling 0 9472 0 69
Oversampling 1 9469 3 68

Undersampling 63 3198 6274 6
Combined 1 9466 6 68
SMOTE 1 9468 4 68

Table 2. Predictive performance computed from the confusion matrix obtained for each
model. Abbreviations: TP: True Positive; TN: True Negative; FP: False Positive; FN: False
Negative

This study also highlighted the importance of choosing an appropriate evaluation metric
as the classification accuracy suggested outstanding model performance in most models
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despite their inability to predict the class of interest. While the undersampling model
predicted significantly more positive instances (i.e., higher recall), the number of false
positives increased substantially (i.e. very low precision, low F-scores). Therefore, none of
those models seemed to be informative for the end-user (i.e., low F-Score for all models). To
improve the model predictive performance and handle the imbalance in data, other options
should be considered in this particular case (see tip 5).
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Fig 5. Accuracy, precision, recall and F-scores for the model without and with resampling
methods

R scripts to reproduce this study are provided in Supplementary Material.

Box 3: Explaining predictions in species distribution modeling.

We used the dataset available in the supplementary material of Zurell et al. [68] that
recorded information about the presence or absence of the Ring Ouzel associated with 52
environmental predictors and investigated the drivers of the predictions in each model. We
used two different machine learning models, a random forest and an artificial neural network,
to predict the presence of the Ring Ouzel (Turdus torquatus) in Switzerland. Both model
predicted the presence or absence of the Ring Ouzel with a high accuracy, 0.90 for the neural
network and 0.92 for the random forest respectively.

To investigate which variables played an important role in those predictions, we generated
the features importance for each model. In random forests, features importance are directly
provided during the training and validation step. The variable ranks are based on the Gini
importance score [69] (Fig. 6) or permutation importance measure [70] (not shown).
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Fig 6. Variable importance according to the Gini importance measure generated by the
random forest model

With neural networks, generating feature importance is not as straightforward. Feature
importance can be determined by calculating the permutation importance but the implemen-
tation needs to be done by the user himself. In our example, we used another technique, the
LIME approach [59], to provide a local model interpretability instead of interpretability
from the perspective of the entire dataset. The output of LIME explains the contribution of
each feature to the prediction of a data sample (Fig. 7). For example, in our study, low val-
ues of the variable ‘ddeg5’ correlated with the presence (positive cases in Fig. 7) of Ring Ouzel.
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Fig 7. Visualization of the 5 most important variables driving the predictions in the neural
network model for 10 data points (the case number) using the LIME method . Features that
have positive correlations with the output are shown in blue, negatively correlated features
are shown in red.

R scripts to reproduce this study are provided in Supplementary Material.

Box 4: Flagging label errors in vegetation surveys

We used a simulated set of vegetation surveys reporting the abundance of 100 species for
300 locations. Each survey was simulated accorded to three vegetation classes, using three
different species assembly schemes that we called A, B and C (response variable). Surveys
1-100 were simulated with type A, 101-250 with type B and 251-300 with type C.

The classification information for three surveys (1, 101 and 251) was intentionally
modified to introduce labelling errors: survey 1 was labelled as belonging to class B in-
stead of true class A, survey 101 to class C instead of B, and survey 251 to class A instead of C.

We trained an XGBoost model [71] to classify surveys in classes A,B or C. We observed the
predictive probabilities obtained from the XGBoost model on the training set (see Fig. 8)
using a 3-fold cross-validation approach. Survey 251 was labelled as A but the predictive
probabilities obtained from the model were close to 0.0 for that particular class. However,
the probability was close to 1.0 for class C (Fig. 8). This suggested that survey 251 was
wrongly labelled as class A and actually belonged to class C. Similarly, the model successfully
flagged the class of surveys 1 and 101 as labelling errors (survey 1 being labelled B while
actually belonging to class A and survey 101 classified in class C while being an instance
from class C).
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Fig 8. XGBoost predictive probabilities obtained for each observation and vegetation class.
Labels reported in the training data for each observation (i.e., vegetation classes A, B and C)
are represented by different symbols and colors (see legend on graph). The three mislabeled
training observations were highlighted in red.

R scripts to reproduce this study are provided in Supplementary Material.
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