
HAL Id: hal-04168830
https://hal.science/hal-04168830v1

Submitted on 22 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bivariate Estimation-of-Distribution Algorithms Can
Find an Exponential Number of Optima

Benjamin Doerr, Martin S Krejca

To cite this version:
Benjamin Doerr, Martin S Krejca. Bivariate Estimation-of-Distribution Algorithms Can
Find an Exponential Number of Optima. Theoretical Computer Science, 2023, pp.114074.
�10.1016/j.tcs.2023.114074�. �hal-04168830�

https://hal.science/hal-04168830v1
https://hal.archives-ouvertes.fr


Bivariate Estimation-of-Distribution Algorithms Can Find
an Exponential Number of Optima

Benjamin Doerr, Martin S. Krejca∗

Laboratoire d’Informatique (LIX), CNRS, Ecole Polytechnique, Institut Polytechnique de
Paris, Palaiseau, France

Abstract

Finding a large set of optima in a multimodal optimization landscape is a
challenging task. Classical population-based evolutionary algorithms typically
converge only to a single solution. While this can be counteracted by applying
niching strategies, the number of optima is nonetheless trivially bounded by the
population size. Estimation-of-distribution algorithms (EDAs) are an alternative,
maintaining a probabilistic model of the solution space instead of a population.
Such a model is able to implicitly represent a solution set far larger than any
realistic population size.

To support the study of how optimization algorithms handle large sets of
optima, we propose the test function EqualBlocksOneMax (EBOM). It
has an easy fitness landscape with exponentially many optima. We show that
the bivariate EDA mutual-information-maximizing input clustering, without
any problem-specific modification, quickly generates a model that behaves very
similarly to a theoretically ideal model for EBOM, which samples each of the
exponentially many optima with the same maximal probability. We also prove
via mathematical means that no univariate model can come close to having this
property: If the probability to sample an optimum is at least inverse-polynomial,
there is a Hamming ball of logarithmic radius such that, with high probability,
each sample is in this ball.

Keywords: estimation-of-distribution algorithms, probabilistic model building,
multimodal optimization

1. Introduction

A key feature of evolutionary algorithms (EAs) is their applicability to a wide
range of optimization problems. EAs require little problem-specific knowledge
and generally provide the user with a good solution. Since many real-world
optimization problems are multimodal [1–3], it is desirable for an EA to return

∗Corresponding author
Email address: martin.krejca@polytechnique.edu (Martin S. Krejca)

Preprint submitted to Elsevier July 22, 2023



multiple solutions. This way, the user also gains precious insight into their
problem.

Unfortunately, classical population-based EAs tend to converge to a single
solution, due to strong selection operators and due to a long-known phenomenon
called genetic drift [4]. In order to counteract this behavior, different techniques
have been introduced, commonly subsumed under the term niching [3, 5, 6].
These techniques maintain diversity in the population and assist in finding and
keeping multiple good solutions. While this approach is useful for increasing
the number of different solutions, it still limits the insights gained about the
underlying problem, as the only information the EA returns is the solutions
themselves. As such, it only provides information about areas of the search space
that it has visited and does not propose further promising regions.

A different algorithmic approach that aims to additionally incorporate in-
formation about the entire search space is the framework of estimation-of-
distribution algorithms (EDAs; [7]). Instead of an explicit set of solutions, EDAs
maintain a probabilistic model of the search space. This model acts as a solution-
generating mechanism and reflects information about which parts of the search
space seem more favorable than others. An EDA evolves its model based on
samples drawn from it. This way, the model is refined such that it generates
better solutions with higher probability. In the end, an EDA returns the best
solutions found as well as its model.

EDAs are commonly classified by the power of their model [7, 8]. This results
in the following trade-off: an EDA with a simple model performs an update
quickly but may be badly suited to accurately represent the distribution of
good solutions. In contrast, the update of an EDA with a complex model is
computationally expensive, but the model is better capable of representing good
solutions. The complexity of a model is determined by how many dependencies
it can detect among different problem variables. For example, a univariate EDA
assumes independence of all problem variables, whereas a bivariate EDA can
represent dependencies among pairs of variables. We go into detail about these
types of EDAs in Section 1.1.

While increasing the complexity of an EDA’s model is useful for finding
optima in a larger class of problems [9], it is not evident that an increased
model complexity is also useful for finding multiple optima or representing them
adequately in the model. In fact, EDAs have been designed specifically with the
intention of being used for multimodal optimization. Peña et al. [10] introduce
the unsupervised estimation of Bayesian network algorithm (UEBNA), which
uses unsupervised learning in order to generate the Bayesian network of its
model. The algorithm is tested against other EDAs and evaluated (mostly) on
bisection problems on graphs with many symmetries that only have a low number
of optima (two to six). Interestingly, for the larger problems, even UEBNA is
not able to find all optima. Thus, the test functions seem to be hard, and the
experiments do not only show how many optima the algorithm can find but also
how well it copes with hard problems.

A similar setting has been considered by Chuang and Hsu [11], who intro-
duce an EDA that is also specifically tailored toward multimodal optimization.

2



However, they evaluate their results only on trap functions with a low number
of optima (two to four). Thus, the focus of their work is arguably also more on
the hardness of the problem than on finding many optima.

Hauschild et al. [12] consider the hierarchical Bayesian optimization algorithm
and analyze how well its model reflects the problem structure of two hard test
functions. They show that the structure is best reflected during the middle of
the run and that it is then simplified toward the end. This makes sense, as the
model aims to reflect best how to generate optimal solutions. This does not
need to coincide with how the entire structure can be reflected. For example,
if the problem has a single solution, it suffices to have a simple model that
only generates this solution in a straightforward way. Again, the focus of the
authors is rather based on the hardness of the problem (its structure) instead of
representing many optima.

Overall, to the best of our knowledge, all results dedicated to finding many
different optima consider functions for which finding an optimum at all is already
a challenge. We note though that Echegoyen et al. [13] thoroughly analyze
how the probabilistic model of the EDA called estimation of Bayesian network
algorithm (EBNA [14]) evolves on unimodal and on hard problems, such as traps
or MaxSat—a task related to what we set out to analyze in this article.

We introduce the test function EqualBlocksOneMax (EBOM, Sec-
tion 2.3), which has an exponential number of optimal solutions. It is easy
in the sense that all local optima are also global optima. We are interested in
how well the underlying structure of the optima can be detected by an algorithm.2

Univariate EDAs apparently are not suitable to return a model that represents
the exponential number of optima of EBOM. We make this intuitive statement
precise in Section 4, where we show that any univariate model with an at least
moderate probability to sample an optimum of EBOM has the property that its
samples are highly concentrated in a Hamming ball of only logarithmic radius
(Theorem 2).

In contrast, we show that mutual-information-maximizing input clustering
(MIMIC; [16]), arguably the simplest bivariate EDA, represents the structure of
EBOM well. It builds a model that behaves very similarly to an ideal model
for EBOM, which creates all optimal solutions with the maximal probability
possible. Our experiments (Section 3) show that, for almost all input sizes we
consider, MIMIC samples about 1 · 104 to 4.5 · 104 optima per run and never
samples an optimum twice. As EBOM can be described by a bivariate model,
our results suggest that bivariate EDAs are well suited to reasonably capture
the set of all optima for functions they can optimize.

Following, we discuss different types of EDAs in order to explain how com-
mon probabilistic models look like and why univariate models are unsuited for
representing multiple optima. In Section 2, we present MIMIC, the definition of
EBOM, and what an ideal model for EBOM is. In Section 3, we explain our
test setup and discuss our results. We complement our findings in Section 4,

2Our code is available on GitHub [15].

3



where we show that univariate EDAs are not capable of representing such a large
number of optima. We conclude our paper in Section 5. This paper extends our
prior work [17] via the results from Section 4.

1.1. Types of EDAs
A common way of classifying EDAs is with respect to how they decompose a

problem [7]. Such a decomposition is typically based on representing a probability
distribution over the search space as a product of various probabilities that may
share dependencies. One possible and commonly applied way of doing so dates
back to Henrion [18], who suggested to store this information compactly by a
probabilistic graphical model (PGM; [19]). As the name suggests, PGMs use
graphs for storing information about probability distributions, where variables
are represented as nodes and dependencies as edges. The arguably best known
type of PGM are Bayesian networks (BNs).

A BN can be represented as a directed acyclic graph. A directed edge from x
to y represents that y is dependent on (at least) x. Consequently, two nodes that
cannot reach each other mutually are conditionally independent with respect to
their common predecessors. Further, each node stores a probability distribution
conditional on the outcomes of all of its predecessors. This is usually done via a
probability table for each node, where the probability for each possible value is
stored for each possible combination of the outcomes of the predecessors.

A solution according to the probability distribution of a BN can be sampled by
traversing the graph in a topological order, always determining the outcome of an
input variable based on the outcome of its predecessors, utilizing the probability
tables. The larger the in-degree of a node in a BN can become, the more costly
it is to represent the model, as the conditional probability distribution for each
node can grow quite large. Thus, the number of dependencies in the models of
EDAs are usually restricted.

1.1.1. Univariate EDAs
The BN of a univariate EDA is an independent set. That is, each node

represents a probability distribution based solely on a single variable. Hence
the name uni-variate. Examples of univariate EDAs are the compact genetic
algorithm [20] and the univariate marginal distribution algorithm [21].

When optimizing functions over bit strings, the probability of each binary
input variable tends to either 0 or 1 rather quickly [22, 23], forcing the model to
put its probability mass onto a single solution. Thus, univariate EDAs are ill-
suited to represent multiple solutions at once. For more theoretical investigations
on this topic, please refer to a recent survey by Krejca and Witt [24].

1.1.2. Bivariate EDAs
In a bivariate EDA, each problem variable can be dependent on at most one

other variable. Examples of bivariate EDAs are mutual-information-maximizing
input clustering [16] and the bivariate marginal distribution algorithm [25].

4



Recently, Lehre and Nguyen [26] showed that MIMIC may have a huge
advantage over univariate EDAs on deceptive functions, but this may be a
consequence of a suboptimal parameter choice [27].

Since a bivariate model can store simple dependencies, it is capable to repre-
sent multiple solutions at once. Further, the model can still be built somewhat
efficiently, as there is at most a quadratic number of possible dependencies to
consider when building the model. Thus, we focus on bivariate EDAs in this
work.

1.1.3. Multivariate EDAs
This type is used as an umbrella term for any type of EDA that is able to rep-

resent some form of dependency. While the models of such EDAs can perform well
on deceptive, hard functions, creating a model can be computationally expensive,
as potentially many dependencies need to be checked. Examples of multivariate
EDAs are the extended compact genetic algorithm [28], the factorized distribution
algorithm which learns a factorization [29], the aforementioned EBNA [14], as
well as the Bayesian optimization algorithm [30] and the hierarchical Bayesian
optimization algorithm [31].

2. Preliminaries

In this section, we introduce some notation that we use throughout the paper
as well as the algorithm and the test function that we consider in our analysis in
Section 3.

2.1. Notation
Let N denote the set of all natural numbers, including 0. For a, b ∈ N, let

[a..b] := [a, b] ∩N denote the set of all natural numbers from a to b (including
both bounds). As a special case of that notation, for b ∈ N, let [b] := [1..b]
denote the set of all positive natural numbers up to b. For an n ∈ N, let idn
denote the identity function over [n].

For a logical proposition A, let 1{A} denote the indicator function of the
truth value of A, that is, 1{A} = 1 if A is true, and it is 0 otherwise.

We consider pseudo-Boolean optimization, that is, optimization of functions
f : {0, 1}n → R, where n ∈ N. We call such a function fitness function. We call
a bit string x ∈ {0, 1}n an individual and f(x) the fitness of x. If not stated
otherwise, let f always denote a fitness function, and let n always denote its
dimension.

2.2. Mutual-Information-Maximizing Input Clustering (MIMIC)
Mutual-information-maximizing input clustering (MIMIC; [16]) is a bivariate

estimation-of-distribution algorithm (EDA). The Bayesian network of the prob-
abilistic model of MIMIC can be represented as a directed path over n nodes,
where each of the nodes corresponds to one of the n bit positions of f . Further,

5



Algorithm 1: MIMIC [16] with parameters µ and λ, µ ≤ λ, and a
selection scheme selectµ, optimizing a fitness function f : {0, 1}n → R

with n ≥ 2.
1 t← 0;
2 π(t) ← idn;
3 P (t) ← ( 12 )i∈[n],b∈{0,1};
4 repeat
5 O(t) ← ∅;
6 for i ∈ [λ] do
7 x(i) ∼ sampleπ(t)

(
P (t)

)
;

8 O(t) ← O(t) ∪ {x(i)};
9 S(t) ← selectµ(O

(t), f);
10 I ← [n];
11 π(t+1)(1)← argmini∈I h[S

(t); i];
12 I ← I \ {π(t+1)(1)};
13 for b ∈ {0, 1} do P

(t+1)

π(t+1)(1),b
← γ1[S

(t);π(t+1)(1)];
14 for j ∈ [2..n] do
15 π(t+1)(j)← argmini∈I h[S

(t); i | π(t+1)(j − 1)];
16 I ← I \ {π(t+1)(j)};
17 for b ∈ {0, 1} do P

(t+1)

π(t+1)(j),b
← γ1b[S

(t);π(t+1)(j) | π(t+1)(j − 1)];

18 restrict all values of P (t+1) to the interval [ 1n , 1−
1
n ];

19 t← t+ 1;
20 until termination criterion met;

MIMIC has two parameters, λ, µ ∈ N with λ ≥ µ, that represent how many
individuals are generated and selected each iteration, respectively.

Initially, the model represents the uniform distribution. It is rebuilt each
iteration in the following way: first, λ individuals are generated according to
the current model, and µ individuals are selected according to some selection
mechanism. We call the resulting (multi-)set S. A path is constructed greedily
based on the entropy of the distribution of the bits at the different positions
in S.

The first node of the new path is a position with the lowest entropy, that is,
a position with the largest number of 1s or 0s. Each subsequent node is chosen
with respect to the lowest entropy conditional on the distribution of the current
last node in the path. This way, the new path represents a model that best
reflects the distributions of pairs of positions observed in S. We now go into
detail about our implementation of MIMIC (Algorithm 1).

6



2.2.1. Probabilistic model and sampling
For our implementation of MIMIC, we describe the probabilistic model via a

permutation π (over [n]) and an n× 2 matrix of probabilities. Bit strings are
sampled bit by bit in the order of π. For a position i ∈ [2..n] and a bit value
b ∈ {0, 1}, an entry Pπ(i),b denotes the probability to sample a 1 at position π(i),
given that the bit at position π(i− 1) is b. Note that entries in P always denote
the probability to sample a 1. For the position π(1) (which does not have
a predecessor in π), we set Pπ(1),0 = Pπ(1),1. Thus, either entry denotes the
probability to sample a 1 without a prior.

For a bit string x ∈ {0, 1}n, we write x ∼ sampleπ(P ) to denote that x is
being sampled with respect to the probabilistic model consisting of π and P .
More formally the sampling procedure creates x such that, for any bit string
y ∈ {0, 1}n,

Pr[x = y] = (Pπ(1),0)
yπ(1) · (1− Pπ(1),0)

1−yπ(1)

·
∏

i∈[2..n] :
yπ(i)=0

(1− Pπ(i),yπ(i−1)
) ·

∏
i∈[2..n] :
yπ(i)=1

Pπ(i),yπ(i−1)
.

2.2.2. Selection
Given a population O ⊆ {0, 1}n of individuals and a fitness function f , we

write selectµ(O, f) to denote a selection mechanism that selects µ individuals
from O. In this paper, we use truncation selection, that is, we sort the individuals
in O by fitness and then select the µ best individuals (breaking ties uniformly at
random).

2.2.3. Building the probabilistic model
When constructing a new probabilistic model, MIMIC makes use of the

unconditional and conditional (empirical) entropy of a set of bit strings. These
mathematical functions make use of the relative occurrences of bit values. To this
end, for a population S ⊆ {0, 1}n, a position i ∈ [n], and a bit value b ∈ {0, 1},
let the frequency of b at position i in S be

γb[S; i] =
1

|S|
∑
x∈S

1{xi = b}.

Further, for a population S ⊆ {0, 1}n, two positions i, j ∈ [n], and two bit
values b1, b2 ∈ {0, 1}, we define the conditional frequency of b1 at position i in O
conditional on the value b2 at position j by

γb1b2 [S; i | j] ={
1
2 if γb2 [S; j] = 0,

1
|S|·γb2

[S;j]

∑
x∈S 1{xi = b1 ∧ xj = b2} else.

Note that the case γb2 [S; j] = 0 means that the event we condition on has a
probability of 0, which is not well defined. In order to represent our lack of

7



knowledge in this case, we choose 1
2 as the value for the respective probability,

which corresponds to a uniform distribution.
We now define the (empirical) entropy functions that MIMIC utilizes. To

this end, we define that 0 · log2(0) = 0. For a population S ⊆ {0, 1}n and a
position i ∈ [n], the entropy at position i in S is

h[S; i] = −
∑

b∈{0,1}

γb[S; i] · log2(γb[S; i]).

Further, for a population S ⊆ {0, 1}n and two positions i, j ∈ [n], the entropy at
position i in O conditional on position j is

h[S; i | j] = −
∑

(b1,b2)∈{0,1}2

γb1b2 [S; i | j] · γb2 [S; j] · log2(γb1b2 [S; i | j]).

Given these definitions and a population S ⊆ {0, 1}n of selected individuals,
MIMIC builds a new model by constructing a new permutation π′ and updating
the probabilities in P with respect to π′. The permutation π′ is built in the
following iterative and greedy fashion, breaking ties uniformly at random: for the
first position, an index with the lowest entropy in S is chosen. Each subsequent
position is determined by an index with the lowest entropy in S conditional on
the previous index in π′.

Each time that a new position i is determined for π′, the probabilities Pi,0

and Pi,1 are updated. If i = π′(1), both Pi,0 and Pi,1 are set to the relative
number of 1s at position i in S, that is γ1[S; i]. If i ̸= π′(1), that is, there is
a preceding position j in π′, for a bit value b, the probability Pi,b is set to the
relative number of 1s at position i in S that also have a value of b at position j.
Note that this is equivalent to setting Pi,b to γ1b[S; i | j].

In order to circumvent the model from sampling only 0s or only 1s at some
position, we make sure that no probability is 0 or 1. We enforce this after
building π′ and updating P by increasing probabilities less than 1

n to 1
n and by

decreasing probabilities greater than 1− 1
n to 1− 1

n . We may also say that we
restrict P to the interval [ 1n , 1−

1
n ].

Note that restricting the probabilities makes it necessary to define a value for
the first case in the definition of γb1b2 , since it can happen that γb2 [S; j] = 0 in S,
but the corresponding probability is not 0, as it is restricted to [ 1n , 1−

1
n ]. In

such a case, it is possible to sample b2 with the new model, making it necessary
to define the probability Pi,b2 .

2.3. EqualBlocksOneMax (EBOM)
Many benchmark functions test an algorithm’s capability of finding an optimal

solution at all. Hence, they are commonly composed of deceptive or otherwise
hard landscapes with many dependencies. In order to reduce the probability
of finding an optimal solution by pure chance, the number of optima of such
a function is usually small. For EDAs, it is not only interesting how fast they
find good solutions but also how well their probabilistic model represents the
distribution of good solutions in the search space.

8



To this end, we introduce the test function EBOM. It represents a fairly
simple hill-climbing landscape, similar to that of the well-known OneMax
function (the sum of all bit values in an individual), but features an exponential
number of optima. Thus, finding a single optimal solution is easy, but exploiting
the structure of EBOM and being able to generate a large number of different
optima is challenging.

2.3.1. Definition
Given a bit string of length n, EBOM operates on blocks of size 2 and

returns the number of blocks that are either 00 or 11. Let n be even. For each
j ∈ [n2 ], let the pair of positions 2j − 1 and 2j denote block j. For an individual
x ∈ {0, 1}n, we say that block j is correct if the bits in block j have identical
values. The objective of EBOM is to maximize the number of correct blocks.
Formally, for all x ∈ {0, 1}n,

EBOM(x) =
∑

j∈[n/2]

1{x2j−1 = x2j}.

Consequently, EBOM has a maximal fitness of n
2 and 2n/2 different optima,

since there are two possibilities for each of the n
2 blocks to be correct.

2.4. An Ideal Model of MIMIC for EBOM

We are interested in a model of MIMIC that generates each optimal solution
of EBOM with the same maximal probability. We call such a model ideal.

The permutation π of an ideal model is such that, for each block j ∈ [n2 ] of
EBOM, the positions 2j − 1 and 2j are adjacent in π (but in any order). In
the following, assume without loss of generality that π(2j − 1) < π(2j), that is,
position 2j − 1 occurs before 2j in π. For the probability matrix P of an ideal
model, the probabilities of position 2j − 1 are both 1

2 , and the probabilities of
position 2j are 1− 1

n (conditional on a prior 1) and 1
n (conditional on a prior 0).

Note that, when sampling a solution with an ideal model, the bit sampled at
position 2j is sampled conditional on the bit at position 2j−1. Due to the choice
of P , this probability is maximized. Choosing 1

2 as the value of both probabilities
of position 2j − 1 further ensures two things: (1) The bit at position 2j − 1 is
sampled independently of the bit at position 2j − 2.3 (2) Block j is 00 or 11
with equal probability. Overall, an ideal model has maximal equal probability
to sample an optimum. We now discuss features that help in assessing whether
a model is close to an ideal model or not.

In an ideal model, the probability that a generated bit string is one of the 2n/2

optima is 2n/2
(
1
2 (1−

1
n )

)n/2
=

(
(1− 1

n )
n
)1/2. Using that limn→∞(1− 1

n )
n = 1

e ,
the probability of MIMIC to sample an optimal solution, given an optimal
model, is roughly 1/

√
e ≈ 60.65%. However, note that the probability of 1/

√
e

3For this to hold, it suffices that both probabilities of position 2j − 1 are the same; they do
not have to be 1

2
.

9



of sampling an optimum is, by itself, not indicative of an ideal model. This
probability is also achieved by any other model which is like an ideal model but
has the following difference: for each block j (defined as above), the probabilities
at position 2j − 1 are equal but not necessarily 1

2 . Given such a model, the
probability to sample any optimum is still 1/

√
e. However, the probability to

sample a specific optimum may differ from optimum to optimum. Consequently,
we also consider a second indicator for an ideal model.

The property of an ideal model that each optimum has the same probability
of being sampled makes it unlikely that such a model creates duplicate solutions
in m ∈ N+ independent tries. More formally, for an optimal model, since each
optimum is equally likely, the probability that all optima are distinct when
sampling m optimal solutions is (2n/2)!/

(
2mn/2 · (2n/2 −m)!

)
, by the birthday

paradox. This probability is at least (1−m/2n/2)m ≥ 1−m2/2n/2, by Bernoulli’s
inequality, which is close to 1 as long as m2 = o(2n/2).

We conclude from these insights that a good model of MIMIC should sample
optima with a probability of roughly 1/

√
e and that it should not sample

duplicates, with high probability.

3. Results

In this section, we show that MIMIC creates models in reasonable time that
behave similarly to an ideal model for EBOM. We first explain our setup, then
we discuss our results.

3.1. Algorithm Setup
We use MIMIC as seen in Algorithm 1 with truncation selection (with uniform

tie-breaking) and with λ = ⌊12n lnn⌋ and µ = ⌊λ/8⌋. Our choice for λ is based
on a grid search for the n-factor in the interval [1, 20] with a step size of 1. The
value 12 was the first with which MIMIC found an optimum in all runs of our
test setup (see also Section 3.2). For µ, we chose a constant fraction of λ, which
is common for EDAs.

3.2. Test Setup
We are interested in determining how well MIMIC is capable of generating a

probabilistic model that implicitly captures an exponential number of optima of
EBOM. Consequently, we use our insights from Section 2.4 in order to determine
how good a model of MIMIC is. To this end, we let MIMIC run for a number of
iterations I, which we explain below, and we determine

1. the probabilistic model (that is π and P ) in each iteration,

2. with what probability optimal solutions are created in each iteration, and

3. how many distinct optima are created in I iterations.

10



Our choice of I is as follows: let T denote the number of iterations until
MIMIC samples an optimum for the first time. Then we let the algorithm run
for T more iterations, that is, I = 2T . Since MIMIC might fail finding an
optimum in a reasonable time, we abort a run if the number of iterations exceeds
50 000 iterations. However, we chose λ and µ such that all of our tests were
successful. That is, MIMIC always found an optimum, and we let the algorithm
run for 2T iterations.

We consider MIMIC for values of n from 50 to 200 in steps of 10. For each
value of n, we start 100 independent runs. For each run, we record the number
of iterations until the first optimum is sampled (that is, T ), the set of all optima
that are found in each of the 2T total iterations (which may include duplicates),
the number of optima found in each of these iterations, as well as the probabilistic
model in each iteration. Note that with this data we are able to compute the
information above we are interested in.

3.2.1. Visualization
We depict our results in Figures 1 to 5 and in Tables 1 and 2. In these plots,

we visualize:

1. the total number of iterations and fitness evaluations,

2. how the probabilistic model evolves during a run,

3. the number of optima found as well the number of runs that only found
distinct optima,

4. the probability of sampling an optimum during an iteration, and

5. how the Kullback–Leibler divergence (KL divergence; see Section 3.3.4)
evolves during a run.

For each figure, we plot the data of all 100 runs (per n) simultaneously in a
concise manner: we depict the median of the data as a point and connect the
medians with a solid line. Further, we depict the mid 50% (that is, ranks 25
to 75 when ordering the runs) as a shaded area bounded by a dotted line. We
provide more information about the visualization in the discussion of our results.

3.3. Discussion
In this section, we discuss the results depicted in Figures 1 to 4 and in

Tables 1 and 2.

3.3.1. Run time
Figure 1 shows the run time of each of the 100 runs per n with respect to

the number of iterations (Figure 1a) and with respect to the number of fitness
function evaluations (Figure 1b).

The number of iterations depicted is the number of iterations of each run
until an optimum was found for the first time. That is, the number of iterations

11



60 80 100 120 140 160 180 200

3

4

5

6

7

=

nu
m

be
ro

fi
te

ra
tio

ns
un

til
op

tim
um

MIMIC

(a) The number of iterations it took each of
the 100 runs per n until an optimum was
found for the first time (that is, T ).

60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

·104

=

nu
m

be
ro

f�
tn

es
se

va
lu

at
io

ns
un

til
op

tim
um

MIMIC

(b) The number of fitness evaluations it took
each of the 100 runs per n until an optimum
was found for the first time (that is, λT ).

Figure 1: Two depictions of the run time of MIMIC optimizing EBOM. For information about
the type of plot used, please refer to Section 3.2.1. For a discussion of these plots, please refer
to Section 3.3.1.

corresponds to T , as explained in Section 3.2. For each change in the number
of iterations (for example, at n = 70), there is one value of n that has a high
variance (the shaded area), and many runs take either the number of iterations
of the previous value of n or an extra iteration. Except for these transitions, the
run time of MIMIC is enormously consistent, with the mid 50% all taking the
same number of iterations. Overall, the number of iterations slightly increases
with n.

The number of fitness function evaluations provides a better picture on how
long MIMIC takes for a run. Note that the numbers shown in Figure 1b are the
numbers from Figure 1a times λ, as MIMIC performs λ fitness evaluations in
each iteration. The reason that the curve is not constant when the number of
iterations stays the same for different values of n is that we chose λ = ⌊12n lnn⌋,
which grows in n. Thus, depending on how T grows in n, the total run time of
MIMIC on EBOM is at least in the order of n lnn.

3.3.2. Probabilistic model
Figure 2 and Tables 1 and 2 showcase information about the probabilis-

tic model of MIMIC and its quality with respect to an ideal model (see also
Section 2.4). For a comparison to make sense, it is important that the permu-
tation π of a model of MIMIC is close to that of an ideal model – ideally, π
would correspond to a permutation of an ideal model. To this end, we say that a
permutation π is correct if, starting from the first position, its positions occur in
pairs of two such that (1) the positions in each pair differ by exactly 1 and that
(2) the maximum of the positions of each pair is an even number. Note that the

12



60 80 100 120 140 160 180 200

0

5 · 10−2

0.1

0.15

0.2

0.25

100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

=

de
vi

at
io

n
fro

m
0.

5

maximum deviation
mean deviation
minimum deviation

Figure 2: Depicted are the maximum, mean, and minimum of the deviation of the central
probabilities in P from 0.5 in iteration 2T . The numbers over the plot with the triangles
denote the number of runs (out of 100) that have a correct permutation in their model. For a
discussion of this plot, please refer to Section 3.3.2.

13



1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

iteration

re
la

tiv
e

nu
m

be
ro

fo
pt

im
a

sa
m

pl
ed

n = 110

MIMIC
1√
e

(a) The relative number of optima in an iter-
ation for n = 110.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0.1

0.2

0.3

0.4

0.5

0.6

iteration

re
la

tiv
e

nu
m

be
ro

fo
pt

im
a

sa
m

pl
ed

𝑛 = 200

MIMIC
1√
e

(b) The relative number of optima in an iter-
ation for n = 200.

Figure 3: Depicted are how the relative number of optima sampled evolves over the number
of iterations for MIMIC optimizing EBOM. The horizontal line at the top shows the value
1/

√
e ≈ 60.65%, which is roughly the probability of sampling an optimum in a single iteration,

given an ideal model of MIMIC for EBOM (see Section 2.4). For a discussion of these plots,
please refer to Section 3.3.3.

Table 1: The probabilities of the first 10 positions (occurring in π) of MIMIC optimizing
EBOM for one of the runs with n = 200, at iteration 2T . For a discussion of this table, please
refer to Section 3.3.2.

position i Pi,0 Pi,1

17 0.662052 0.662052
18 0.005 0.995
90 0.636872 0.610266
89 0.005 0.995
41 0.649587 0.58435
42 0.005 0.995
49 0.68438 0.546488
50 0.005 0.995
104 0.582677 0.613208
103 0.005 0.995

...

14



60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

·104

74 99

100 100 100

100 100 100 100

100 100 100 100

100
100

100

=

nu
m

be
ro

fu
ni

qu
e

op
tim

a

MIMIC

Figure 4: The number of distinct optima that MIMIC found when optimizing EBOM. An
optimum is distinct if it was only sampled once during a single run. The number over each data
point states how many of the 100 runs sampled exclusively distinct optima. For a discussion of
these plots, please refer to Section 3.3.3.

15



Table 2: The probabilities of the positions 1 and 2 (occurring in π) of MIMIC optimizing
EBOM for one of the runs with n = 200, over all iterations. For a discussion of this table,
please refer to Section 3.3.2.

iteration P1,0 P1,1 P2,0 P2,1

1 0.5 0.5 0.5 0.5
2 0.533825 0.454897 0.428928 0.587039
3 0.311688 0.665446 0.542926 0.485564
4 0.51094 0.458128 0.256098 0.789337
5 0.141582 0.828571 0.535533 0.478152
6 0.474968 0.453086 0.115023 0.903664
7 0.465116 0.519018 0.0794045 0.943806
8 0.465385 0.478368 0.0381406 0.98
9 0.450299 0.486737 0.00945626 0.995
10 0.440618 0.480589 0.005 0.995
11 0.005 0.995 0.442663 0.462725
12 0.005 0.995 0.470277 0.424279
13 0.406593 0.460972 0.005 0.995
14 0.455733 0.421111 0.005 0.995

set of all correct permutations corresponds exactly to that of all ideal models.4
In Table 1, we show an excerpt of the model from one out of the 100 runs

of MIMIC on EBOM in the last iteration, that is, 2T . In total, we mention 10
entries from the model (out of 200). The first column depicts the bit positions
as they occur in the permutation π. We see that all entries occur as they would
in a correct permutation, suggesting that the entire permutation is correct. Note
that the order of the positions per pair appears randomly, which makes sense, as
the order does not matter for sampling a block in EBOM correctly.

The other two columns of Table 1 show the two probabilities of the position
from the first column. We see that, for each pair of positions (as defined
above), the first position has its probabilities close to 0.5 and second one has its
probabilities at the borders of the interval [ 1n , 1−

1
n ]. Further, the probabilities

at the borders are at the correct end for maximizing the probability of sampling
a block in EBOM correctly. That is, the probability Pi,0 is at 1

n (making it likely
to sample a 0 when the previous position sampled at 0), and the probability Pi,1

is at 1− 1
n . Overall, the results from Table 1 already suggest that MIMIC builds

a model close to an ideal one.
In Figure 2, we have a closer look at how closely the model of MIMIC in

iteration 2T resembles an ideal model. In order for such a comparison to make
sense, we first analyze how well the permutation of such a model deviates from
the permutation of an ideal model. Out of all of our runs, each run produced a
correct permutation in iteration 2T . We depict these numbers in Figure 2 over

4Property (2) is necessary, since EBOM defines its block with respect to position 1. For
example, positions 1 and 2 form a block in EBOM, but positions 2 and 3 do not.

16



the curve in the middle, with the triangles. Thus, the only way for a model of
MIMIC to deviate from an ideal model is in how largely the probabilities in P
deviate from those of an ideal model.

When comparing probabilities of P to that of an ideal model, we group the
probabilities into those that should be close to 0.5 (the central probabilities) and
into those that should be close to the borders (the border probabilities). We may
also use the respective adjective for a position in order to indicate that both of
the probabilities are central or border. We group the probabilities with respect to
the blocks in π. In order to determine which position of each block is central and
which is border, we look at the probability with the highest deviation from 0.5
(breaking ties uniformly at random). The position with the probability that
has the highest deviation is considered border, the other position is considered
central.

We then calculate the absolute distance of each probability to its ideal value.
For the central probabilities, we calculate their distance to 0.5 (regardless of
whether the probability is conditional on a 0 or a 1). For the border probabilities
conditional on a 0, we calculate their distance to 1

n , and for those conditional
on a 1, we calculate their distance to 1− 1

n . Afterward, for the two groups of
central and border probabilities, we calculate, for each of the positions per run
and value of n, the maximum, mean, and minimum of the deviations of each
probability.

The results of these calculations for the central probabilities are depicted in
Figure 2. The arguably most interesting result is the maximum deviation among
all positions of a single run. This value seems to decrease with increasing n.
However, a deviation of about 0.2 can still be considered rather large. We discuss
in the following sections how this affects the quality of the model.

The deviations for the border probabilities are not depicted, as the maximum
over all runs and all values of n was in the order of 10−6. This suggests that the
border probabilities are always very close to the borders in iteration 2T .

Since we only looked at the model of MIMIC in iteration 2T , Table 2 provides
an excerpt of how the probabilities of the first block evolve over the iterations.
We depict data from one of the runs with n = 200. From iteration 10 to 11
and from 12 to 13, we see that the probabilities of the positions 1 and 2 change
their statuses of being central or border. This makes sense, as we already briefly
discussed, as the order of the positions in a block does not matter for sampling
a correct block. Given a correct block, it is then random which position MIMIC
determines to be the first in its permutation (and, thus, central) and which it
chooses next (being border). Thus, we conclude that MIMIC does not converge
to a single model that is close to an ideal model but instead switches between
different models from iteration to iteration.

3.3.3. Similarity to an ideal model
Since the results so far suggest that the model of MIMIC is close to an ideal

model except for the deviation of the central probabilities (see Section 3.3.2), we
now consider how well the model reflects the two properties of an ideal model

17



that we describe in Section 2.4. We start with the probability to sample an
optimum in each iteration.

Figure 3 shows how many of the solutions of the λ solutions sampled during
each iteration are optima. We chose to depict this ratio for the cases of n = 110
and n = 200, which are cases where all of the mid 50% of the runs used the
same number of iterations (see also Figure 1a). This data can be interpreted as
the probability of sampling an optimum in each iteration. Following our ideas
discussed in Section 2.4, we also depict the value 1/

√
e in both plots, which

represents the probability to sample an optimum, given an ideal model.
Both Figures 3a and 3b show that the empirical ratio is surprisingly close

to the ideal value. This suggests that the model behaves similarly to an ideal
model in terms of consistently sampling optima, despite the central probabilities
sometimes deviating somewhat largely from 0.5 (see Figure 2). The fact that
some data points show a ratio that is slightly higher than the theoretical optimum
is due to the variance in the randomness of the algorithm.

Figure 4 shows how many of the optima that MIMIC found per run were
distinct as well as how many runs only found distinct optima. Note that the
sudden increases in the number of optima found relate to the number of iterations
depicted in Figure 1a. Except for the cases n = 50 and n = 60, all optima that
MIMIC found per run were distinct. This result is remarkable and suggests that
MIMIC builds a very general model that is capable of sampling a huge variety
of different solutions.

We now argue that it is not unlikely for the cases n = 50 and n = 60 to have
runs that failed to only find distinct optima. In Section 2.4 we derived a lower
bound on how likely it is to have no duplicate in m samples. In a similar fashion,
one can derive an upper bound (using that, for a ≤ b, a!/(a−m)! ≲ (a− m

2 )
m

and that, for x ∈ [0, 1], (1− x)m ≈ e−xm) of roughly e−m2/2n/2+1

. Thus, a lower
bound of having a duplicate in m tries is roughly at least 1− e−m2/2n/2+1

. For
n = 60, using that 4 out of 6 iterations are used for sampling optima and that
about 1.7 · 104 solutions are created in a run (retrieved from the data used for
Figure 1), we get that the probability for a run to have a duplicate optimum is
about 6%, which means that we would expect about 6 failures. For n = 70, the
probability to have a duplicate optimum drops already below 1%.5

Overall, the results from Figures 3 and 4 suggest that the model of MIMIC
behaves similarly to an ideal model. We thus consider it to actually be similar
to an ideal model.

3.3.4. Similarity in the Kullback–Leibler Divergence
In order to get a concise summary for how well the model of MIMIC represents

an ideal model, we compute the Kullback–Leibler divergence (KL divergence)
from an ideal model to the actual model in each iteration.

5This estimation makes the assumption that the model is ideal in 4 out of 6 iterations.
However, data similar to that depicted in Figure 3 suggests that it takes at least one iteration
until the model samples optima consistently.

18



KL divergence. Roughly, for a measurable space (S,S), the KL divergence is a
non-negative real number that, given two probability measures µ and ν over S,
determines how similar µ and ν are. We note that the KL divergence is not
symmetric (and thus not a measure), which is why it is important to state which
order of µ and ν is considered. In the following, we discuss the KL divergence
from µ to ν more formally, denoted by KL(µ ∥ ν).

If ν is not absolutely continuous with respect to µ, that is, if ν assigns positive
probability to events to which µ assigns zero probability, then KL(µ ∥ ν) is
defined to be positive infinity. If ν is absolutely continuous with respect to µ,
then the Radon–Nikodym derivative dµ/dν exists, and KL(µ ∥ ν) is defined as
the (binary) entropy of this derivative with respect to µ, that is,

KL(µ ∥ ν) =
∫
S

log2

(
dµ

dν

)
dµ. (1)

In other words, KL(µ ∥ ν) represents the expected difference of bits required to
encode samples of µ when given a sampler for ν.

The KL divergence for a reference measure. Assume that X and Y are two
random variables over a measurable space (S,S) that induce the probability
measures µ and ν, respectively. If µ and ν are absolutely continuous with respect
to a reference measure λ, then their probability density function pX and pY
of X and Y (with respect to λ), respectively, exists, and, by equation (1), it
holds that KL(µ ∥ ν) =

∫
S
M log2(M/N)dλ. Especially, if X and Y are discrete

random variables, then this formula, writing KL(X ∥ Y ) instead of KL(µ ∥ ν),
simplifies to

KL(X ∥ Y ) =
∑
s∈S

Pr[X = s] log2

(
Pr[X = s]

Pr[Y = s]

)
.

If this series is absolutely convergent, then reordering it and applying a law for
logarithms yields

KL(X ∥ Y ) =
∑
s∈S

Pr[X = s] log2(Pr[X = s])−
∑
s∈S

Pr[X = s] log2(Pr[Y = s]).

(2)

Letting KL(X ∥ Y ) =
∑

s∈S Pr[X = s] log2(Pr[Y = s]), equation (2) turns into

KL(X ∥ Y ) = KL(X ∥ X)−KL(X ∥ Y ), (3)

which we use for our calculations.

The KL divergence for MIMIC distributions. In our setting, X and Y are random
elements from {0, 1}n, each following a model of MIMIC (Section 2.2.1). Using
this assumption and letting π denote the permutation of the MIMIC model

19



represented by Y , we get

KL(X ∥ Y ) =
∑

x∈{0,1}n

Pr[X = x] log2(Pr[Y = x])

=
∑

x∈{0,1}n

Pr[X = x]

· log2
(
Pr[Yπ(1) = xπ(1)]

∏
i∈[2..n]

Pr[Yπ(i) = xπ(i) | Yπ(i−1) = xπ(i−1)]

)
=

∑
x∈{0,1}n

Pr[X = x] log2(Pr[Yπ(1) = xπ(1)]) (4)

+
∑

i∈[2..n]

∑
x∈{0,1}n

Pr[X = x] log2(Pr[Yπ(i) = xπ(i) | Yπ(i−1) = xπ(i−1)]).

We simplify the first sum of equation (4) by decomposing each sample
x ∈ {0, 1}n. To this end, for a J ⊆ [n], let (xk)k∈J = (xk)k∈[n],k/∈J . We
decompose x into xπ(1)xπ(1). Hence, using the definition of conditional probability
(and assuming that all relevant probabilities are positive), we get∑

x∈{0,1}n

Pr[X = x] log2(Pr[Yπ(1) = xπ(1)])

=
∑

xπ(1)∈{0,1}

∑
xπ(1)∈{0,1}n−1

Pr[Xπ(1) = xπ(1)]

· Pr[Xπ(1) = xπ(1) | Xπ(1) = xπ(1)] log2(Pr[Yπ(1) = xπ(1)])

=
∑

xπ(1)∈{0,1}

Pr[Xπ(1) = xπ(1)] log2(Pr[Yπ(1) = xπ(1)])

·
∑

xπ(1)∈{0,1}n−1

Pr[Xπ(1) = xπ(1) | Xπ(1) = xπ(1)]

=
∑

b∈{0,1}

Pr[Xπ(1) = b] log2(Pr[Yπ(1) = b]). (5)

Similarly, for each i ∈ [2..n], we simplify the second sum of (4) by decomposing
each sample x ∈ {0, 1}n into (xj)j∈{π(i−1),π(i)} and (xj)j∈{π(i−1),π(i)}. We get∑

x∈{0,1}n

Pr[X = x] log2(Pr[Yπ(i) = xπ(i) | Yπ(i−1) = xπ(i−1)])

=
∑

a,b∈{0,1}2

Pr[(Xπ(i−1), Xπ(i)) = (a, b)] log2(Pr[Yπ(i) = b | Yπ(i−1) = a])

·
∑

x̃∈{0,1}n−2

Pr[(Xj)j∈{π(i−1),π(i)} = x̃ | (Xπ(i−1), Xπ(i)) = (a, b)]

=
∑

ab∈{0,1}2

Pr[(Xπ(i−1), Xπ(i)) = (a, b)] log2(Pr[Yπ(i) = b | Yπ(i−1) = a]). (6)

20



Substituting equations (5) and (6) into equation (4) yields

KL(X ∥ Y ) =
∑

b∈{0,1}

Pr[Xπ(1) = b] log2(Pr[Yπ(1) = b]) (7)

+
∑

i∈[2..n]

∑
ab∈{0,1}2

Pr[(Xπ(i−1), Xπ(i)) = (a, b)] log2(Pr[Yπ(i) = b | Yπ(i−1) = a]).

Computing the discrete KL divergence. We compute the KL divergence from
equation (3), using the simplification from equation (7).

Following the notation from equation (3), we are interested in the KL diver-
gence when X represents an ideal MIMIC model and when Y represents a given
MIMIC model (at some iteration). The KL divergence then tells us how many
bits the current model wastes in comparison to an ideal model.

By the definition of an ideal model, for X and any permutation π, it holds
for b ∈ {0, 1} that Pr[Xπ(1) = b] = 1/2 as well as, for all i ∈ [2..n] and all
ab ∈ {0, 1}2 that

Pr[(Xπ(i−1), Xπ(i)) = (a, b)]

=


1
2

(
1− 1

n

)
if i− 1 and i are in the same block and a = b,

1
2
1
n if i− 1 and i are in the same block and a ̸= b,

1
4 else.

We note that each permutation of an optimal MIMIC model yields the same
KL divergence. When computing KL(X ∥ X), we use the identity as permutation.
Further, we get, for all i ∈ [2..n] and all a, b ∈ {0, 1}, that

Pr[Xi = b | Xi−1 = a]

=


1− 1

n if i− 1 and i are in the same block and a = b,
1
n if i− 1 and i are in the same block and a ̸= b,
1
2 else.

When computing KL(X ∥ Y ), we let the permutation πY of the model
represented by Y . Letting P (Y ) denote the matrix of probabilities of the model
represented by Y , we get that Pr[Yπ(1) = 1] = P

(Y )
π(1),0 and Pr[Yπ(1) = 1] =

1− P
(Y )
π(1),0. For all i ∈ [2..n] and all b ∈ {0, 1}, we have Pr[Yπ(i) = 1 | Yπ(i−1) =

b] = P
(Y )
π(i),b and Pr[Yπ(i) = 0 | Yπ(i−1) = b] = 1− P

(Y )
π(i),b.

Overall, we calculate equation (3) in time O(n) by iterating over the respective
permutation for KL and accessing all of the required quantities in constant time
for each index of the permutation.

Empirical results. Figure 5 shows how the KL divergence changes over time. In
general, it decreases rapidly and gets slightly worse afterward. We note that due
to our setup, MIMIC found an optimal solution for the first time after iteration 5
(except in one case, where it did so after iteration 4). At this iteration, the KL

21



1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

iteration

Ku
llb

ac
k–

Le
ib

le
rd

iv
er

ge
nc

e

MIMIC

Figure 5: The evolution of the Kullback–Leibler divergence from an ideal model of MIMIC to
its actual model, for n = 150. Out of the 100 independent runs, 99 ran for 10 iterations, and 1
ran for 8 iterations. For information about the type of plot used, please refer to Section 3.2.1.
For a discussion of these plots, please refer to Section 3.3.4.

divergence is still larger than at the end. This conforms with Figure 3, where
the relative number of optima got close to that of an optimal model only a few
iterations after finding an optimal solution for the first time. This shows that
MIMIC needs a bit of time to get close to an ideal model. Once it does so, it
remains very close to a KL divergence of 1, which indicates that the model by
then very well represents an ideal model.

Although Figure 5 depicts the data of 100 runs, the center 50%, which we
depict, are very close together, almost looking like a single curve. This shows
how consistent MIMIC is in creating its probabilistic model.

4. Theoretical Analyses

We now show mathematically rigorously that all univariate EDAs perform
poorly on EBOM. More specifically, we show that a univariate model (i) has a
very small probability of sampling an optimum of EBOM at all, or (ii) with very
high probability samples only in a ball of logarithmic radius. This forbids any
performance close to what we showed for MIMIC. We note that this argument
holds for all univariate EDAs since it only refers to their probabilistic models,
but not to the specific algorithm. The probabilistic model of a univariate
EDA A, when optimizing bit strings of length n ∈ N+, is fully characterized
by a probability vector p ∈ [0, 1]n, commonly called the frequency vector of A.
We denote the component of p at position i ∈ [n] by pi, and we refer to it
as a frequency. The EDA A creates a bit string x ∈ {0, 1}n via p by, for all
i ∈ [n], setting xi = 1 with probability pi and xi = 0 with probability 1 − pi,
independently of any other random choices. Thus, for all y ∈ {0, 1}n, it holds

22



that

Pr[x = y] =
∏

i∈[n] :
yi=0

(1− pi) ·
∏

i∈[n] :
yi=1

pi .

We write x ∼ sample(p) to say that x ∈ {0, 1}n is sampled according to the
univariate model p.

To prove our result, we make use of the a large-deviation bound due to
Hoeffding [32], here given in the version of [33, Theorems 1.10.1 and 1.10.21].

Theorem 1. Let n ∈ N, δ ∈ R>0, and let X be the sum of n independent
random variables, each taking values in [0, 1]. Let µ+ ≥ E[X]. Then

Pr
[
X ≥ (1 + δ)µ+

]
≤ exp

(
−1

3
δµ+

)
.

For all n ∈ N+ and for all x, y ∈ {0, 1}n, let H(x, y) = |{i ∈ [n] | xi ≠ yi}|,
that is, the Hamming distance of x and y. With these preparations, we can
formally state the main result of this section.

Theorem 2. Let n ∈ N+ with n being even, and let p be the length-n frequency
vector of a univariate EDA A. Let x ∼ sample(p) and let E denote the event
that x is an optimum of EBOM. Assume that there is a k ∈ R+ such that
Pr[E] ≥ n−k. Last, let z = (⌊1/2 + pi⌋)i∈[n]. Then for all γ ≥ 4k, we have

Pr[H(x, z) ≥ γ ln(n)] ≤ n−γ/6.

Proof. Let X = H(x, z), and note that X follows a Poisson binomial law with n
trials where trial i ∈ [n] has success probability si := max{pi, 1− pi}. Thus, it
follows that

E[X] =
∑

i∈[n]
si =

∑
i∈[n]
|pi − zi| = ∥p− z∥1 . (8)

We bound E[X] from above and then apply Theorem 1 to X, bounding with
high probability the Hamming distance between z and a solution generated
from p. To this end, for all j ∈ [n/2], let qj = (p2j−1 + p2j)/2.

Recall that by the inequality of arithmetic and geometric mean, for all
a, b ∈ R, it holds that ab ≤

(
(a + b)/2

)2. Using this inequality, the definition
of E, as well as that, for all x ∈ R, it holds that 1 + x ≤ ex, we get

Pr[E] =
∏

j∈[n/2]

(
p2j−1p2j + (1− p2j−1)(1− p2j)

)
≤

∏
j∈[n/2]

(
q2j + (1− qj)

2
)

=
∏

j∈[n/2]

(
1− 2qj(1− qj)

)
≤ exp

(
−
∑

j∈[n/2]
2qj(1− qj)

)
.

23



Further, since, for all a, b ∈ R, it holds that (a+ b)2/2 ≤ a2 + b2, it follows that

(a+ b)

(
1− a+ b

2

)
= a+ b− (a+ b)2

2

≥ a+ b− (a2 + b2)

= a(1− a) + b(1− b) .

Using this inequality and the definition of q, we further estimate

Pr[E] ≤ exp

(
−

∑
j∈[n/2]

(
p2j−1(1− p2j−1) + p2j(1− p2j)

))
= exp

(
−
∑

i∈[n]
pi(1− pi)

)
.

In addition, by the definition of z, for all i ∈ [n], a case distinction with respect
to whether pi < 1/2 or not shows that pi(1− pi) ≥ |pi − zi|/2. Thus, we get the
estimate

Pr[E] ≤ exp
(
−
∑

i∈[n]

|pi − zi|
2

)
= exp

(
−∥p− z∥1

2

)
.

By the assumption Pr[E] ≥ n−k and equation (8), it follows that

2k ln(n) ≥ ∥p− z∥1 = E[X] .

Last, by Theorem 1, for all δ ≥ 1, it holds that

Pr
[
X ≥ (1 + δ) · 2k ln(n)

]
≤ exp

(
−2

3
δk lnn

)
= n− 2

3 δk.

By using that 2δ ≥ (1 + δ) when δ ≥ 1 and renaming γ := 4δk, we obtain the
claim Pr[X ≥ γ ln(n)] ≤ n−γ/6 for all γ ≥ 4k.

Theorem 2 provides a strong connection between the probability of the
event E that a sample x is an optimum of EBOM and the rounded frequency
vector z. If it is somewhat likely for x to be optimal, that is, if there is a k = O(1)
such that Pr[E] ≥ n−k, then x differs from z, with high probability, in at most
4k ln(n) bits. Then each of the next m ∈ N+ bit strings created by p, with
probability at least 1 −mn−2k/3, differs from z in at most 4k ln(n) positions.
These are at most 2k ln(n) correct blocks, leading to at most 22k ln(n) = nk ln(4)

different optima, which is a polynomial independent of m. Thus, increasing
the number of samples—although this decreases the probability of this line of
argument to hold—does not increase the maximum number of different optima
potentially created. Ultimately, the number of different optima created over

24



a polynomial number of iterations (in each of which p can even be chosen
adversarially) with polynomially many samples in each iteration is still only
polynomial, with high probability.

For the case that there is no k such that Pr[E] ≥ n−k or for the case that
there is only a k = ω(1), then the probability to create a single optimal solution
is already too small to be considered good, and the probabilistic model of the
univariate EDA does not reflect the optima of EBOM well at all.

5. Conclusion

We proposed the EBOM benchmark as a test problem to see how well EDAs
can develop a probabilistic model that copes with several different good solutions.
We showed that MIMIC efficiently generates a probabilistic model that behaves
very similarly to an ideal model. Since EBOM exhibits an exponential number
of optima, this suggests that MIMIC is capable of implicitly storing a large range
of different solutions in its model. Our experiments show that the model that
MIMIC generates over time

• has a permutation and border probabilities (almost) as in an ideal model,
that the model

• does not create duplicate optimal solutions with increasing input size, and
that it

• samples optima in each iteration with a probability that is close to the
theoretical optimum of 1/

√
e.

Looking at sample data about the probabilistic model further suggests that the
model is built such that it can generate an exponential number of optima. This
is impressive, since this model is generated in a reasonable amount of time. We
note that we used the plain MIMIC as found in the first paper proposing it [16]
without any modifications.

In contrast, we show via mathematical means that no univariate model can
come close to the advantages of these bivariate models. Whenever a univariate
model is good enough to sample an optimum of EBOM with probability at least
n−k, then with very high probability all its samples lie in a Hamming ball of
radius 4k lnn. It thus has enormous difficulties to sample most of the optima,
which all lie outside this Hamming ball.

For future research, it is interesting to see if MIMIC also builds good models
on more complicated functions with multiple optima, such as vertex cover on
bipartite graphs. Further, since MIMIC has a very restricted type of bivariate
model (namely, a path), considering other bivariate EDAs with a greater range
of models, such as the bivariate marginal distribution algorithm ([25]; working
on trees), would provide insights into whether the restriction of MIMIC’s model
to a path is a hindrance or not.

25



Acknowledgments

This work was supported by COST action CA15140, by a public grant as
part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH,
LabEx LMH, as well as by the Paris Île-de-France Region via the DIM RFSI
AlgoSelect project and via the European Union’s Horizon 2020 research and
innovation program under the Marie Skłodowska-Curie grant agreement No.
945298-ParisRegionFP.

References

[1] I. Belda, S. Madurga, T. Tarragó, X. Llorà, E. Giralt, Evolutionary com-
putation and multimodal search: A good combination to tackle molecular
diversity in the field of peptide design, Molecular Diversity 11 (2007) 7–21.
doi:10.1007/s11030-006-9053-1.

[2] C. Hocaoǧlu, A. C. Sanderson, Multimodal function optimization using
minimal representation size clustering and its application to planning mul-
tipaths, Evolutionary Computation 5 (1997) 81–104. doi:10.1162/evco.
1997.5.1.81.

[3] G. Singh, K. Deb, Comparison of multi-modal optimization algorithms based
on evolutionary algorithms, in: Proc. of GECCO’06, 2006, pp. 1305–1312.
doi:10.1145/1143997.1144200.

[4] K. A. De Jong, An analysis of the behavior of a class of genetic adaptive
systems, Ph.D. thesis, University of Michigan, USA, 1975.

[5] S. W. Mahfoud, Niching methods for genetic algorithms, Ph.D. thesis,
University of Illinois at Urbana-Champaign, USA, 1996.

[6] B. L. Miller, M. J. Shaw, Genetic algorithms with dynamic niche sharing for
multimodal function optimization, in: Proc. of CEC’96, 1996, pp. 786–791.
doi:10.1109/ICEC.1996.542701.

[7] M. Pelikan, M. Hauschild, F. G. Lobo, Estimation of distribution algorithms,
in: Springer Handbook of Computational Intelligence, Springer, 2015, pp.
899–928. doi:10.1007/978-3-662-43505-2\_45.

[8] P. Larrañaga, J. A. Lozano, Estimation of distribution algorithms: a
new tool for evolutionary computation, Springer, 2002. doi:10.1007/
978-1-4615-1539-5.

[9] M. Pelikan, D. E. Goldberg, Hierarchical BOA solves Ising spin glasses
and MAXSAT, in: Proc. of GECCO’03, 2003, pp. 1271–1282. doi:10.1007/
3-540-45110-2\_3.

26

http://dx.doi.org/10.1007/s11030-006-9053-1
http://dx.doi.org/10.1162/evco.1997.5.1.81
http://dx.doi.org/10.1162/evco.1997.5.1.81
http://dx.doi.org/10.1145/1143997.1144200
http://dx.doi.org/10.1109/ICEC.1996.542701
http://dx.doi.org/10.1007/978-3-662-43505-2_45
http://dx.doi.org/10.1007/978-1-4615-1539-5
http://dx.doi.org/10.1007/978-1-4615-1539-5
http://dx.doi.org/10.1007/3-540-45110-2_3
http://dx.doi.org/10.1007/3-540-45110-2_3


[10] J. Peña, J. Lozano, P. Larrañaga, Globally multimodal problem optimization
via an estimation of distribution algorithm based on unsupervised learning
of Bayesian networks, Evolutionary Computation 13 (2005) 43–66. doi:10.
1162/1063656053583432.

[11] C.-Y. Chuang, W.-L. Hsu, Multivariate multi-model approach for globally
multimodal problems, in: Proc. of GECCO’10, 2010, pp. 311–318. doi:10.
1145/1830483.1830544.

[12] M. Hauschild, M. Pelikan, C. F. Lima, K. Sastry, Analyzing probabilis-
tic models in hierarchical BOA on traps and spin glasses, in: Proc. of
GECCO’07, 2007, pp. 523–530. doi:10.1145/1276958.1277070.

[13] C. Echegoyen, A. Mendiburu, R. Santana, J. A. Lozano, Toward under-
standing EDAs based on Bayesian networks through a quantitative analy-
sis, IEEE Transactions on Evolutionary Computation 16 (2012) 173–189.
doi:10.1109/TEVC.2010.2102037.

[14] R. Etxeberria, P. Larrañaga, Global optimization with Bayesian networks,
in: Proc. of CIMAF’99, 1999, pp. 332–339.

[15] B. Doerr, M. S. Krejca, Code repository of this paper, https://github.
com/TheMor/TheMor-MIMIC_Multiple_Optima, 2022.

[16] J. S. D. Bonet, C. L. I. Jr., P. A. Viola, MIMIC: finding optima by estimating
probability densities, in: Proc. of NIPS’96, 1996, pp. 424–430.

[17] B. Doerr, M. S. Krejca, Bivariate estimation-of-distribution algorithms can
find an exponential number of optima, in: Proc. of GECCO’20, 2020, pp.
796–804. doi:10.1145/3377930.3390177.

[18] M. Henrion, Propagating uncertainty in Bayesian networks by probabilistic
logic sampling, in: Uncertainty in Artificial Intelligence, volume 5 of Machine
Intelligence and Pattern Recognition, North-Holland, 1988, pp. 149–163.
doi:10.1016/B978-0-444-70396-5.50019-4.

[19] D. Koller, N. Friedman, Probabilistic graphical models: principles and
techniques, The MIT Press, 2009.

[20] G. R. Harik, F. G. Lobo, D. E. Goldberg, The compact genetic algorithm,
IEEE Transactions on Evolutionary Computation 3 (1999) 287–297. doi:10.
1109/4235.797971.

[21] H. Mühlenbein, G. Paaß, From recombination of genes to the estimation
of distributions I. Binary parameters, in: Proc. of PPSN IV, 1996, pp.
178–187. doi:10.1007/3-540-61723-X_982.

[22] T. Friedrich, T. Kötzing, M. S. Krejca, EDAs cannot be balanced and
stable, in: Proc. of GECCO’16, 2016, pp. 1139–1146. doi:10.1145/2908812.
2908895.

27

http://dx.doi.org/10.1162/1063656053583432
http://dx.doi.org/10.1162/1063656053583432
http://dx.doi.org/10.1145/1830483.1830544
http://dx.doi.org/10.1145/1830483.1830544
http://dx.doi.org/10.1145/1276958.1277070
http://dx.doi.org/10.1109/TEVC.2010.2102037
https://github.com/TheMor/TheMor-MIMIC_Multiple_Optima
https://github.com/TheMor/TheMor-MIMIC_Multiple_Optima
http://dx.doi.org/10.1145/3377930.3390177
http://dx.doi.org/10.1016/B978-0-444-70396-5.50019-4
http://dx.doi.org/10.1109/4235.797971
http://dx.doi.org/10.1109/4235.797971
http://dx.doi.org/10.1007/3-540-61723-X_982
http://dx.doi.org/10.1145/2908812.2908895
http://dx.doi.org/10.1145/2908812.2908895


[23] B. Doerr, W. Zheng, Sharp bounds for genetic drift in estimation of
distribution algorithms, IEEE Transactions on Evolutionary Computation
24 (2020) 1140–1149. doi:10.1109/TEVC.2020.2987361.

[24] M. S. Krejca, C. Witt, Theory of estimation-of-distribution algo-
rithms, in: Theory of Evolutionary Computation: Recent Develop-
ments in Discrete Optimization, Springer International Publishing, 2020,
pp. 405–442. URL: https://arxiv.org/abs/1806.05392. doi:10.1007/
978-3-030-29414-4.

[25] M. Pelikan, H. Mühlenbein, The bivariate marginal distribution algorithm,
in: Advances in Soft Computing, Springer, 1999, pp. 521–535. doi:10.1007/
978-1-4471-0819-1\_39.

[26] P. K. Lehre, P. T. H. Nguyen, On the limitations of the univariate marginal
distribution algorithm to deception and where bivariate EDAs might help,
in: Proc. of FOGA’19, 2019, pp. 154–168. doi:10.1145/3299904.3340316.

[27] B. Doerr, M. S. Krejca, The univariate marginal distribution algorithm
copes well with deception and epistasis, Evolutionary Computation 29
(2021) 543–563. doi:10.1162/evco\_a\_00293.

[28] G. Harik, Linkage Learning via Probabilistic Modeling in the ECGA, Tech-
nical Report 99010, University of Illinois Urbana-Champaign, Urbana, IL,
USA, 1999.

[29] H. Mühlenbein, T. Mahnig, FDA – A scalable evolutionary algorithm
for the optimization of additively decomposed functions, Evolutionary
Computation 7 (1999) 353–376. doi:10.1162/evco.1999.7.4.353.

[30] M. Pelikan, D. E. Goldberg, E. Cantú-Paz, BOA: The Bayesian optimization
algorithm, in: Proc. of GECCO’99, 1999, pp. 525–532.

[31] M. Pelikan, D. E. Goldberg, Escaping hierarchical traps with competent
genetic algorithms, in: Proc. of GECCO’01, 2001, pp. 511–518.

[32] W. Hoeffding, Probability inequalities for sums of bounded random variables,
Journal of the American Statistical Association 58 (1963) 13–30.

[33] B. Doerr, Probabilistic tools for the analysis of randomized optimization
heuristics, in: Theory of Evolutionary Computation: Recent Developments
in Discrete Optimization, Springer International Publishing, 2020, pp. 1–87.
URL: https://arxiv.org/abs/1801.06733.

28

http://dx.doi.org/10.1109/TEVC.2020.2987361
https://arxiv.org/abs/1806.05392
http://dx.doi.org/10.1007/978-3-030-29414-4
http://dx.doi.org/10.1007/978-3-030-29414-4
http://dx.doi.org/10.1007/978-1-4471-0819-1_39
http://dx.doi.org/10.1007/978-1-4471-0819-1_39
http://dx.doi.org/10.1145/3299904.3340316
http://dx.doi.org/10.1162/evco_a_00293
http://dx.doi.org/10.1162/evco.1999.7.4.353
https://arxiv.org/abs/1801.06733

	1 Introduction
	1.1 Types of EDAs
	1.1.1 Univariate EDAs
	1.1.2 Bivariate EDAs
	1.1.3 Multivariate EDAs


	2 Preliminaries
	2.1 Notation
	2.2 Mutual-Information-Maximizing Input Clustering (MIMIC)
	2.2.1 Probabilistic model and sampling
	2.2.2 Selection
	2.2.3 Building the probabilistic model

	2.3 EqualBlocksOneMax (EBOM)
	2.3.1 Definition

	2.4 An Ideal Model of MIMIC for EBOM

	3 Results
	3.1 Algorithm Setup
	3.2 Test Setup
	3.2.1 Visualization

	3.3 Discussion
	3.3.1 Run time
	3.3.2 Probabilistic model
	3.3.3 Similarity to an ideal model
	3.3.4 Similarity in the Kullback–Leibler Divergence


	4 Theoretical Analyses
	5 Conclusion

