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Abstract

It is generally accepted that the phonon gas of a superfluid always enters a weak coupling regime at sufficiently low
temperatures, whatever the strength of the interactions between the underlying particles (constitutive of the super-
fluid). Thus, in this limit, we should always be able to calculate the damping rate of thermal phonons by applying
Fermi’s golden rule to the Hamiltonian H3 of cubic phonon-phonon coupling taken from quantum hydrodynamics, at
least in the case of a convex acoustic branch and in the collisionless regime (where the eigenfrequency of the consid-
ered phonons remains much greater than the gas thermalization rate). Using the many-body Green’s function method,
we predict that, unexpectedly, this is not true in two dimensions, contrary to the three-dimensional case. We confirm
this prediction with classical phonon-field simulations and a non-perturbative theory in H3, where the fourth order is
regularized by hand, giving a complex energy to the virtual phonons of the four-phonon collisional processes. For a
weakly interacting fluid and a phonon mode in the long-wavelength limit, we predict a damping rate about three times
lower than that of the golden rule.
Keywords: Bose gas ; two-dimensional superfluid ; cold atom gas ; Beliaev-Landau phonon damping; many-body Green’s func-
tions; quantum hydrodynamics
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1. Presentation of the problem and general reasoning

In dimension d ≥ 2, we consider a spatially homogeneous system of particles with short-range interactions,
entirely superfluid in its ground state and prepared at a non-zero but arbitrarily low temperature, which allows us
to restrict its study to leading order in temperature by means of an effective low-energy theory. Irrespective of the
quantum statistics (bosonic or fermionic) of the particles and the strength of their interactions (in gas or liquid phase),
this system has an acoustic excitation branch, i.e. with a linear departure in wave number (with no band gap), whose
quanta are the phonons.

The coupling between low-wavenumber phonons (of energy < ηkBT , where temperature T → 0 then cutoff
η→ +∞ at the end of the calculations) is deduced from the quantum hydrodynamics of Landau and Khalatnikov [1],
the effective Hamiltonian taking the form 1

H = H2 + H3 + H4 (1)

where term Hn is of degree n in terms of b̂†k and b̂k, bosonic creation and annihilation operators of a phonon of wave
vector k in a quantization box [0, L]d with periodic boundary conditions. The term H2 represents an ideal gas of
phonons of dispersion relation εk,

H2 =
∑
k,0

εkb̂†kb̂k (2)

The precise form of the coupling terms H3 and H4 in equation (1) is of little importance at this stage and will be given
in section 2. The coupling between phonons makes the system acoustically non-linear and causes the damping of
sound waves, the subject of the present work.

We limit our study of damping here (i) to modes of wave vector q in the collisionless regime εq ≫ ℏΓth where Γth
is the thermalization rate of the phonon gas or, what amounts to the same thing, the damping rate of thermal phonons
of energy εk ≃ kBT , and (ii) to the case of an acoustic branch with a convex start in wavenumber, which can be limited
to its cubic approximation at low temperature:

εk = ℏck

1 + γ8
(
ℏk
mc

)2 with γ > 0 (3)

1. The inclusion of higher-order terms H5,H6, etc., would be meaningless without gradient corrections to the energy functional of quantum
hydrodynamics [2], corrections which also bring the curvature term (here put by hand) into equation (3).
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where m is the mass of a particle, c is the speed of sound at zero temperature and γ is a dimensionless curvature
parameter. 2 3 These assumptions allow us to describe damping in terms of elementary phonon-coupling processes 4

and, as is generally accepted, to deduce the damping rate from Fermi’s golden rule applied to the H3 term of the
Hamiltonian. 5 Indeed, it is expected that at sufficiently low temperatures, the phonon gas will always enter the weak
coupling regime, even if the constituent particles of the system are strongly interacting (as in liquid helium 4, for
example [6]). We will show in this section, by simple reasoning, that this is true in dimension d = 3 but not in
dimension d = 2. Phonon damping in the two-dimensional case will therefore be the subject of further study (beyond
the golden rule) in subsequent sections.

Our simple reasoning is based on many-body Green’s function method [7]. To fix ideas and the Green’s function
to be considered, we assume that the gas, initially at thermal equilibrium for the Hamiltonian H (density operator
σ̂(0) = σ̂th ∝ exp(−H/kBT )), is excited by the sudden creation of a coherent state of phonons in mode q:

σ̂(0+) = Ûexcσ̂thÛ†exc with Ûexc = eαb̂†q−α∗b̂q (4)

Experimentally, this excitation procedure can be carried out by a short-duration Bragg laser pulse [8, 9, 10, 11, 12].
The amplitude ⟨b̂q(t)⟩ of the coherent state is then measured over time, for example through the gas density (more
precisely, its Fourier components of wave vectors ±q). In the limit of very low initial excitation, we enter the linear
response regime and can formally expand the unitary excitation operator Ûexc to order one in α in equation (4) to
obtain

⟨b̂q(t)⟩ t>0
=
α→0

α⟨[b̂q(t), b̂†q(0)]⟩th + O(α2) (5)

where b̂q(t) is written in Heisenberg representation for the evolution unperturbed by Ûexc, b̂q(t) = eiHt/ℏb̂q(0)e−iHt/ℏ,
the mean of the left-hand side is taken in the perturbed state σ̂(0+) and that of the right-hand side in the initial
unperturbed thermal state σ̂th, and we have used the fact that ⟨b̂q(0)b̂q(t)⟩th = ⟨b̂q(t)b̂q(0)⟩th = 0 by non-conservation
of the total momentum. Using section 31 of reference [7], we relate our signal to the two-point Green’s function G of
the phonon field and the associated self-energy Σ (noted Σ⋆ in [7]): 6

s(t) ≡ eiεqt/ℏ⟨[b̂q(t), b̂†q(0)]⟩th
t>0
=

∫
C+

dz
2iπ

e−i(z−εq)t/ℏG(q, z) with G(q, z) =
1

z − εq − Σ(q, z)
(6)

where the integration path C+ runs in the upper half of the complex plane parallel to the real axis from +∞ to −∞
and where we have, for convenience, removed the free evolution due to the Hamiltonian H2. In the following, it will
be advantageous to take as the new complex energy variable in Σ the deviation from the free-evolution energy, any
confusion being avoided by indexing the wave vector dependence:

Σ(q, z) = Σq(ζ) with ζ ≡ z − εq hence G(q, z) =
1

ζ − Σq(ζ)
(7)

2. As in quantum electrodynamics, the parameters appearing in the Hamiltonian are in fact the bare values, different from the actual values
measured in an experiment, the passage from one to the other being made by a procedure known as “renormalisation”. Equation (2) should therefore
refer to a bare dispersion relation ε(0)

k and equation (3) to a bare speed of sound c(0) and a bare curvature parameter γ(0). We do not do so here to
lighten the notations, and because this renormalization does not intervene in dimension d = 2 at the leading order in temperature.

3. The choice γ > 0 excludes superfluids of paired spin 1/2 fermions in the limit, known as BCS, of a weakly attractive interaction between
particles [3].

4. In the opposite regime εq ≪ ℏΓth, the system has time to relax to a juxtaposition of local thermodynamic equilibrium states during an
oscillation period of the sound wave of wavevector q and damping at non-zero temperature is described through transport or viscosity coefficients,
obtained by solving kinetic equations and which enter into partial differential equations on densities, velocities, volume entropy, etc, of a two-fluid
model [4].

5. In the case γ < 0 of an acoustic branch with a concave start, the three-phonon processes induced by H3 to order one do not conserve
momentum-energy, and an extended formulation of the golden rule (taking into account the four-phonon processes induced by H3 to order two and
by H4 to order one) must be used to obtain a non-zero damping rate, see references [1, 5] and our section 4.2.

6. Recall that, originally, G and Σ are functions of (r, t) and (r′, t′), where r, r′ are two position vectors and t, t′ are two times. By spatial
homogeneity and stationarity of the thermal state, they are reduced to functions of (r− r′, t− t′), whose space-time Fourier transforms are functions
of (k, ω); the analytic continuation of the latter to complex frequencies z/ℏ leads to functions G(k, z) and Σ(k, z) of equation (6).
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From this exact formalism, we can recover the exponential damping of Fermi’s golden rule |s(t)|2 ≃ exp(−Γqt) in two
steps. (i) First, the pole approximation [13] is performed, neglecting the energy dependence of Σ:

Σq(ζ) ≈ Σq(i0+) so that s(t) ≃ spole(t) = exp[−iΣq(i0+)t/ℏ] (8)

(ii) As the pole approximation is generally legitimate only in a weak coupling limit between phonons, it suffices to
calculate Σq at the leading order in the coupling, i.e. at second order in H3, but also at first order in H4 if we need
to know ReΣq. The central question of this section is whether simply taking a low-temperature limit with proper
rescaling of the wave number of the mode under consideration, 7

ϵ ≡ kBT/mc2 → 0 with q̄ ≡ ℏcq/kBT fixed (9)

is enough to bring the phonon gas into the weak coupling regime and justify the two steps. We’ll see that the answer
depends on the dimensionality of the system.

Step (i). To justify the pole approximation, we rely on the scaling laws describing the behavior of the self-energy at
low temperature:

Σq(ζ) = kBT ϵν Σ̃q̄(ζ/(kBT ϵσ)) (10)

After outputting the energy scale kBT , two exponents ν and σ remain, the first characterizing the order of magnitude
of function Σq(ζ), the second its energy width around ζ = 0. It is understood that the new function Σ̃q̄ has a finite,
non-zero limit when ϵ → 0. After inserting form (10) into the signal expression (6), we perform the following scaling
on the conjugate variables ζ and t,

ζ ≡ kBT ϵνζ̃ ; t ≡ t̃ ℏ/(kBT ϵν) (11)

to obtain the reduced expression

s(t) =
∫

C+

dζ̃
2iπ

e−iζ̃ t̃

ζ̃ − Σ̃q̄(ϵν−σζ̃)
(12)

in which ϵ still has to tend towards zero at a fixed t̃. We then see that, if ν > σ, the argument of function Σ̃q̄ tends
towards zero by positive imaginary-part values when ϵ → 0, which means it can be replaced by i0+: we find the pole
approximation (8), which is exact in this limit.

Step (ii). To find out whether it’s sufficient to calculate the self-energy to the leading order in phonon coupling, let’s
keep only the cubic coupling H3 for simplicity (we can check that the quartic coupling H4 doesn’t change anything
qualitatively), omit the non-resonant processes it contains (terms in b̂†b̂†b̂† and b̂b̂b̂) of sub-dominant contribution in
the ϵ → 0 limit, and estimate the order of magnitude of its contribution of order 2n to Σq(i0+) as follows: 8

Σ
(2n)
q (i0+) ≈

∫  n∏
i=1

ddki

 ⟨ |H3| ⟩
1
∆E1
⟨ |H3| ⟩ . . . ⟨ |H3| ⟩

1
∆E2n−1

⟨ |H3| ⟩ (13)

Let’s briefly justify form (13) (the reader is referred to sections 3 and 4 for a detailed treatment of cases n = 1 and
n = 2). Order 2n involves 2n actions of H3 so 2n matrix elements ⟨ |H3| ⟩, each of which introduces a new independent
phonon wave vector ki (Beliaev terms b̂†b̂†b̂ in H3) or makes one disappear (Landau terms b̂†b̂b̂); the other phonon
wave vectors that appear are deduced from ki and q by conservation of momentum. Since the 2n actions of H3 must
conserve the number of phonons as a whole, there must be as many Beliaev processes as Landau processes, leading
to exactly n independent wave vectors on which to sum. In the thermodynamic limit, we express H3 in terms of the
volumic Hamiltonian such that H3 = H3/Ld/2 and replace the sum over the ki by an integral. Finally, between each

7. It should be pointed out that the strength of the interactions between the constituent particles of the fluid does not vary in the limit (9), so that
the speed of sound c remains constant. On the other hand, limit (9) automatically brings mode q into the collisionless regime εq ≫ ℏΓth because
the rate Γth of gas thermalization, which can be estimated by the damping rate of phonons of wave number ≈ kBT/ℏc, tends to zero faster than
linearly in temperature, as we shall see.

8. As H3 changes the parity of the phonon number, the odd-order contributions 2n + 1 are zero.
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matrix element of H3 appears an energy denominator representing the free propagation of Hamiltonian H2 and giving
the energy difference between the initial state with a phonon q and an intermediate state. Each ∆E j (1 ≤ j ≤ 2n − 1)
can be expressed as the algebraic sum (i.e. with a plus or minus sign) of j elementary energy defects εk + εk′ − εk′′

corresponding to a k + k′ ↔ k′′ Beliaev-Landau process. In the low-temperature limit ϵ → 0, the integral (13) is
in general dominated by “small-angle” processes, where all intermediate phonons (those with wave vectors ki and
others) are almost collinear to and in the same direction as q [1, 5]; more precisely, we find that the angles θi between
vectors q and ki must be O(γ1/2ϵ) for ∆E j to reach their minimum energy scale kBT ϵ2 and for the integrand to be
amplified by the “small-denominator” effect, which leads to the expansion of the elementary energy defect

εk + εk′ − εk′′=k+k′ ∼
ϵ→0

kBTγϵ2
[

k̄k̄′

k̄ + k̄′
(θ − θ′)2

2γϵ2 −
3
8

k̄k̄′(k̄ + k̄′)
]

(14)

where γ is the curvature parameter in the dispersion relation (3), angles θ = (̂q,k) and θ′ = (̂q,k′) are introduced,
and the scaling of k to k̄ by its typical value kBT/ℏc is based on equation (9). The ∆E j are thus effectively of
order kBT ϵ2 and each ddki integration element in (13) written in polar or spherical coordinates brings out a factor
(kBT/ℏc)d(γ1/2ϵ)d−1. It remains to give the estimate of the matrix elements of H3, which is easily derived from their
expression (31) to come (the coupling constant Λ is given by equation (28)):

⟨ |H3| ⟩ ≈ (kξk′ξk′′ξ)1/2(1 + Λ)
mc2

ρ1/2 ≈ ϵ
3/2(1 + Λ)

mc2ξd/2

(ρξd)1/2 (15)

where we have introduced the density ρ of the fluid and the so-called relaxation or correlation length of the superfluid,

ξ =
ℏ

mc
(16)

We thus end up with the estimate

Σ
(2n)
q (i0+) ≈

ϵ→0
kBTγϵ2

[
ϵ2d−4(1 + Λ)2

γ(5−d)/2ρξd

]n

(n > 0, d ≥ 2) (17)

which designates the quantity in square brackets as the small parameter of the perturbative expansion of Σq in the
coupling. The degree in ϵ of the leading non-zero order, corresponding to the choice n = 1 in equation (17), gives the
value of the exponent ν in equation (10):

ν = 2d − 2 (18)

The value of the second exponent σ is obtained by generalizing estimate (13) to the case ζ , 0, which amounts to
adding ζ to the energy of the initial state and therefore to each energy denominator, ∆E j → ∆E j + ζ. As we’ve seen,
∆E j ≈ kBT ϵ2; this is also the width of the self-energy around z = ϵq (around ζ = 0), so that

σ = 2 (19)

irrespective of dimensionality.

Three-dimensional case. In dimension d = 3, where ν = 4 > σ = 2 and where 2d − 4 = 2 > 0 in the square brackets
of equation (17), steps (i) and (ii) are justified and the damping of mode q is described exactly by Fermi’s golden rule
in the limit (9). We then find the low-temperature behavior of the imaginary part of Σq(i0+),

ImΣd=3
q (i0+) q̄ fixed

∼
ϵ→0
−

9kBT ϵ4(1 + Λ)2

32πρξ3

[ ∫ q̄

0
dk̄ k̄2(q̄ − k̄)2(n̄lin

k + 1/2) +
∫ +∞

0
dk̄ k̄2(k̄ + q̄)2(n̄lin

k − n̄lin
k+q)

]
= −

9kBT ϵ4(1 + Λ)2

32πρξ3

{
q̄5

60
+ 48[g5(1) − g5(e−q̄)] − 24q̄ g4(e−q̄) + 4q̄2[g3(1) − g3(e−q̄)]

}
(20)
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corresponding exactly to the Γq damping rate given in reference [5] (multiplied by the usual −ℏ/2 factor). In equation
(20), Bose functions gα(z) =

∑+∞
n=1 zn/nα have been introduced and it has been possible to replace the dispersion

relation εk by its linear approximation ℏck in the occupation numbers, which is indicated by the exponent “lin”:

n̄lin
k =

1
exp k̄ − 1

(21)

It is satisfying to note that the prefactor in (20) is indeed that predicted by (17) for n = 1 (and d = 3); in particular, it
is independent of the curvature parameter γ. Green’s function formalism also gives access to the real part, which was
out of reach of reference [5] and represents the thermal energy shift of phonon q, 9

ReΣd=3
q,th (i0+) q̄ fixed

∼
ϵ→0

kBT ϵ4(1 + Λ)2

2π2ρξ3

{
q̄ζ(4)

[
−27 ln

e(3γ)1/2ϵ

4
+

2 + 18Λ + 3Λ∗/2
(1 + Λ)2

]
+

9
8

∫ +∞

0
dk̄ k̄2 n̄lin

k

[
(k̄ − q̄)2 ln |k̄ − q̄| − (k̄ + q̄)2 ln(k̄ + q̄)

] }
(22)

where ζ is the Riemann zeta function, such that ζ(s) = gs(1), and ζ(4) = π4/90. For the real part, we obtain a more
complicated form than that of (17) because (a) the angles between q and k of order θ ≈ ϵ0 contribute at the same
level as the small angles θ ≈ ϵ, 10 and (b) the quartic Hamiltonian H4 also contributes, which forces us to introduce
the second coupling constant Λ∗ of equation (28). In particular, we notice a logarithmic correction to the kBT ϵ4 law.
In the q̄ → 0 limit, expression (22) becomes ∼ ℏqδcth, where coefficient δcth is the thermal correction to the speed
of collisionless sound in the fluid. The value of δcth derived from Andreev and Khalatnikov’s kinetic theory [15], see
equation (45) in reference [14], is in good agreement with ours, 11 but that deduced from the leading order of effective
field theory, see equation (33) in reference [14], is in disagreement.

Two-dimensional case. In dimension d = 2, where ν = σ = 2 and where 2d − 4 = 0, we fail to justify step (i) and
step (ii) at low temperature! In particular, the bracketed expression in equation (17) does not depend on ϵ and only
becomes a small parameter in the ρξ2 ≫ 1 limit where the underlying superfluid itself (and not just the phonon gas)
enters the weakly interacting regime. So, in d = 2, taking the ϵ → 0 limit makes neither the pole approximation nor
the Σq(ζ) second-order calculation in phonon coupling accurate. To obtain the correct expression of the signal in this
limit, we need to calculate Σ̃q̄(ζ̃) for all values of ζ̃ and at all orders in H3. However, let’s take as a reference value the
low-temperature behavior of Σq(i0+) at the leading order in the coupling (n = 1):

Σ
(2)
q (i0+) q̄ fixed

∼
ϵ→0
−i

9kBT ϵ2(1 + Λ)2

8π(3γ)1/2ρξ2

[ ∫ q̄

0
dk̄ k̄(q̄ − k̄)(n̄lin

k + 1/2) +
∫ +∞

0
dk̄ k̄(k̄ + q̄)(n̄lin

k − n̄lin
k+q)

]

= −i
9kBT ϵ2(1 + Λ)2

8π(3γ)1/2ρξ2

[
q̄3

12
+ 2ζ(2)q̄

]
≡ −i

ℏΓq

2
(23)

9. We omit in (22) the so-called quantum component, independent of occupation numbers, which is at the leading order in ϵ the sum of two
contributions, (i) an ill-defined contribution, linear combination of monomials q, q3 and q5 with coefficients divergently dependent on the ultraviolet
cutoff η of equation (26), which must therefore be reabsorbed in εq, i.e. in a redefinition of the dispersion relation (see also footnote 2), and (ii) a
universal contribution predicted quantitatively by quantum hydrodynamics, ReΣd=3

q,quant univ(i0+) = [3(1 + Λ)2/(160π2)](ℏ2q5/mρ) ln(ℏq/mc). Such

a contribution in q5 ln q was qualitatively expected in reference [2]. It appears in equation (35) of reference [14], with the correct numerical
coefficient but with an extra factor c.

10. Indeed, in the angular integration, in d = 3, sin θ dθ/(∆E/kBT ) is ≈ ϵ0 at large angles and ≈ ϵ2/ϵ2 = ϵ0 at small angles, where ∆E is an
energy denominator. This phenomenon does not occur for the imaginary part, given the energy-conserving Dirac distribution δ(∆E) and the fact
that ∆E only vanishes at small angles for low-temperature thermal phonons. In practice, to obtain (22), we split the angular integral into two
intervals, θ ∈ [0, α] and θ ∈ [α, π], where α ≪ 1 is fixed. In the first interval, the curvature term in the dispersion relation is kept in the denominator
of the integrand, but the numerator is replaced by its leading order in θ (i.e. sin θ ≃ θ). In the second interval, we use the linear dispersion relation,
but keep all the dependence in θ of the trigonometric functions. All calculations done, the lower and upper parts of the integral include a divergence
in lnα which disappears exactly in their sum.

11. Perfect agreement is reached if, in equation (45) of [14], we replace ln 27 by 25/6 − 2C + ln(3/2) + 2ζ′(4)/ζ(4) = ln(26.852 . . .) where
C = 0.577 . . . is Euler’s constant. This small deviation results from an approximation made by Andreev and Khalatnikov in the calculation of an
integral, that of equation (13) in [15].
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with ζ(2) = π2/6. At sufficiently low temperatures, Σ(2)
q (i0+) becomes pure imaginary and reduces to −iℏΓq/2 where

Γq is the damping rate of the golden rule at the leading order in ϵ (the quartic Hamiltonian H4 does not show a real part
here as it is subleading in ϵ, see section 3). Equation (23) is, as far as we know, original. In limits q̄→ 0 and q̄→ +∞,
it reproduces equations (30) and (22) of reference [16] (times −iℏ given the conventions of [16]), which deals with the
two-dimensional gas of weakly interacting bosons for which γ = 1 (as in the Bogolioubov spectrum) and Λ = 0 (as
in the zero-temperature mean-field equation of state µ = ρg used in [16]). In the following, in dimension d = 2, we
go beyond Fermi’s golden rule with classical field numerical simulations in section 2 and with the Green’s function
method to higher and higher orders in H3 in later sections: to order two in section 3, to order four in section 4 and
non-perturbatively in section 5; to our surprise, we are forced to do so by the failure of estimate (17) for n ≥ 2. In
fact, by an explicit calculation of the fourth order contribution in H3 in section 4, we establish a troubling result that
disproves (17) in dimension d = 2: Σ(4)

q (i0+) does not tend to zero as kBT ϵ2 at low temperature ϵ → 0, but as kBT ϵ0,
see equation (96). This effectively makes the perturbative expansion in powers of H3 unusable in this limit, since the
fourth order becomes much larger than the second order for a fixed interaction strength (ρξ2)−1 in the superfluid. To
obtain an operational description of the damping, section 5, contrary to equation (17), takes the limit ϵ → 0 with
fixed ζ̃ , 0 in Σ̃(4)

q̄ (ζ̃), regularizes the result (divergent at ζ̃ = 0) nonperturbatively by assigning finite lifetimes to
the intermediate phonons of the four-phonon collisional processes, and calculates the integral over ζ̃ in equation (12),
finally obtaining a damping rate scaling as kBT ϵ2 as expected. We conclude in section 6.

2. Numerical experiment in the classical field model

Experimental studies of sound in two-dimensional superfluid ultracold atomic gases have so far concentrated on
the hydrodynamic [17, 18] regime or, in the collisionless regime, on the ϵ = kBT/mc2 ≥ 1 [19, 20, 21] tempera-
ture interval. To verify that in dimension d = 2, the low-temperature limit (9) is not sufficient to render accurate
the exponential decay predicted by Fermi’s golden rule, we therefore carry out in this section a numerical study of
phonon damping, at all orders in coupling H3, in the classical field model. We first recall the quantum hydrodynamics
Hamiltonian of Landau and Khalatnikov. We then explain how to numerically integrate its classical field version and
introduce a correlation function that is more convenient to calculate than signal (6), but almost equivalent. We then
analyze the results obtained for different interaction strengths.

2.1. Quantum hydrodynamics Hamiltonian

Quantum hydrodynamics is an effective low-energy theory that provides accurate predictions to leading order
in temperature, even for a strongly interacting fluid [1]. The fluid is decomposed into small, but still mesoscopic
elements of size b (b ≫ ξ = ℏ/mc). Each element, with center r, is (i) sufficiently large that it has a large number
of particles (ρbd ≫ 1), allowing it to be assigned a phase operator ϕ̂(r) canonically conjugated to its particle number
operator ρ̂(r)bd, [ρ̂(r)bd, ϕ̂(r′)] = iδr,r′ , and (ii) small enough to be considered both as homogeneous (b ≪ λth where
λth = 2πℏc/kBT is the de Broglie wavelength of a thermal phonon in the fluid) and in its ground state (kBT ≪ εmin

exc
where εmin

exc = ℏc(2π/b) is the minimum phonon excitation energy in the small element). 12 The Hamiltonian is then
the sum of the kinetic energies of the center of mass and the internal energy of each small element:

Hhydro =
∑

r

1
2

mv̂(r) · ρ̂(r)bdv̂(r) + bde0(ρ̂(r)) (24)

where v̂ = (ℏ/m)grad ϕ̂ is the fluid velocity field and e0(ρ) is the bulk energy density in the ground state at density
ρ. At low temperatures, the density field ρ̂(r) fluctuates little and the phase field ϕ̂(r) varies slowly; we separate them

12. The ultraviolet cutoff to come corresponds more or less to the choice π/b ≈ ηkBT/ℏc. Even so, b remains well below the coherence length
of the fluid at sufficiently low temperatures. This is obvious in d = 3 because of the presence of condensate. It is also true in d = 2 where the
first-order coherence function g1(r) decreases at large distances as exp[mkBT ln(ξ/r)/(2πℏ2ρs)] where ρs ≃ ρ is the superfluid density [22, 23, 24].
This makes the assumption v̂ = (ℏ/m)grad ϕ̂ used in reference [1] and in equation (24) plausible.
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into their Fourier components of zero wave vector ρ̂0 = N̂/Ld ≃ ρ and ϕ̂0, and into spatial fluctuations δρ̂(r) and δϕ̂(r)
admitting modal expansions [25]

δρ̂(r) =
1

Ld/2

∑
k,0

(
ℏρk
2mc

)1/2

(b̂k + b̂†
−k) eik·r ; δϕ̂(r) =

−i
Ld/2

∑
k,0

(
mc

2ℏρk

)1/2

(b̂k − b̂†
−k) eik·r (25)

where b̂†k and b̂k are the creation and annihilation operators of a phonon of wave vector k in the quantization box
[0, L]d, c is the speed of sound at zero temperature, given by mc2 = ρ(dµ/dρ) with µ = de0/dρ the chemical potential
of the fluid in the ground state. As in any effective theory, we need to put an ultraviolet cutoff in the space of wave
vectors, which we take here to be isotropic

ℏck < ηkBT (26)

and to which the sums (25) are restricted; we’ll let the temperature tend towards zero as in (9) and then η → +∞ (in
the quantum case) without encountering divergences if all goes well. It remains to expand Hhydro into powers of δρ̂ and
grad δϕ̂. Zero order provides a constant of no interest. Order one is zero by construction. Order two, diagonalized by
the transformation (25), gives back the Hamiltonian H2 of equation (2) with a linear dispersion relation, the curvature
in equation (3) having to be put in by hand, see references [1, 5] and our footnote 1. The third and fourth orders,
giving the coupling between phonons in equation (1), are written in representation r:

H3 = bd
∑

r

1
2

mv̂(r) · δρ̂(r)v̂(r) +
1
6

d2µ

dρ2 δρ̂(r)3 ; H4 = bd
∑

r

1
24

d3µ

dρ3 δρ̂(r)4 (27)

knowing that grad ϕ̂ = grad δϕ̂. They involve the dimensionless coupling constants

Λ = ρ
d2µ

dρ2 /(3
dµ
dρ

) = ρ2 d2µ

dρ2 /(3mc2) and Λ∗ = ρ
3 d3µ

dρ3 /(mc2) (28)

To reveal the physical processes contained in H3 and already mentioned in section 1, we insert in (27) the modal
expansions (25) and collect together the terms of the same type, Beliaev, Landau and non-resonant respectively:

H3 = H(+)
3 + H(−)

3 + H(non res.)
3 (29)

with

H(−)
3 = (H(+)

3 )† =
1

2Ld/2

∑
k,k′
A(k,k′; k+k′)b̂†k+k′ b̂kb̂k′ ; H(non res.)

3 =
1

6Ld/2

∑
k,k′
A(k,k′;−(k+k′))(b̂kb̂k′ b̂−(k+k′)+h.c.)

(30)
and the coupling amplitude 13

A(k,k′; k′′) = mc2
(
ℏ3kk′k′′

8ρm3c3

)1/2 (
3Λ +

k · k′

kk′
+

k · k′′

kk′′
+

k′ · k′′

k′k′′

)
(31)

Of course, all wave vectors k, k′, ±(k + k′) appearing in the Hamiltonian are non-zero and subject to condition (26).
Writing H4 in representation b̂ and b̂† is of little interest here, and we dispense with it.

2.2. Classical field model

The model is built by replacing operators b̂k and b̂†k in section 2.1 with complex amplitudes bk and b∗k. This only
makes sense for highly populated phonon modes, which imposes a choice of cutoff η ≲ 1 in equation (26); in the
simulations, we’ll take η = 1. At thermal equilibrium, mode occupation numbers are no longer given by Bose’s law,
but by equipartition n̄clas

k = kBT/εk.

13. By choice of notation, our amplitudeA differs by a factor of two from that of reference [5] (more precisely by a factor 2mc2/ρ1/2).
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Let’s restrict our numerical study to the experimentally relevant case of a gas of spinless bosons in the quasi-
2D regime, where the chemical potential µ in the xOy plane is less than, but not very small compared to ℏω⊥, the
quantum of excitation of the motion along Oz; in this case, the equation of state takes the simple form µ = ρg
with g = (8π)1/2ℏ2a3D/(ma⊥), where a3D is the 3D scattering length and a⊥ = (ℏ/mω⊥)1/2 the size of the harmonic
oscillator along Oz [26, 27], so that Λ = Λ∗ = 0 in equation (28) and H4 ≡ 0 in equation (27). 14

The numerical simulation method is described in detail in reference [34]. To sample the initial state, bk are drawn
according to the (Gaussian) thermal distribution for the H2 Hamiltonian, then the resulting field is evolved with the
full Hamiltonian H to reach true thermal equilibrium by ergodicity. The time evolution on each dt step is split into
the evolution due to H2 during dt/2, the evolution due to H3 alone during dt and then again the evolution due to H2
during dt/2. The evolution due to H2 is calculated exactly in k space, while the evolution due to H3 is calculated in
r 15 space by the fourth-order Runge-Kutta method [35], remembering to filter the field in k space as in equation (26)
after each action of H3 in r space to eliminate the cut-off-violating processes that H3 has induced. 16 The dt step must
be small enough for the total energy on a single realization to be conserved to better than one percent of the typical
⟨|H3|⟩ interaction energy, where ⟨. . .⟩ is the average over a large number of realizations, itself a very small fraction of
the total energy.

It would be numerically inefficient to determine phonon damping by simulating a Bragg excitation (4), as this
would require a large number of independent simulations for each new value of wave vector q, while ensuring that
amplitude α is small enough to be in the linear response regime. 17 We prefer to use the following correlation function,
allowing all possible values of q to be processed in parallel by simple averaging over the same set of independent
realizations: 18

s∗(t) ≡
eiεqt/ℏ⟨b̂q(t)b̂†q(0)⟩th

⟨b̂q(0)b̂†q(0)⟩th

t>0
≃ lim

δ→0+

∫ +∞

−∞

dε
−2iπ

e−i(ε−εq)t/ℏG(q, ε + iδ) +
[
G(q, ε + iδ) − G(q, ε − iδ)

]
/[exp(ε/kBT ) − 1]

1 + 1/[exp(εq/kBT ) − 1]
(32)

In practice, this signal is very close to that of equation (6), which in simulations allows us to identify it with s(t), as
we’ll do in the figure caption:

s∗(t) ≃ s(t) (33)

Indeed, even for the strongest interaction considered in our simulations, we have, for any value of energy ε, the
property | ImΣ(q, ε + i0+)| ≪ εq, so that the difference between the bracketed Green’s functions G(q, ε ± iδ) in
equation (32), which can only result from a non-zero imaginary part of the self-energy in the limit δ → 0+, is very
small except in the width of “Lorentzian” G(q, ε + i0+) where |ε − εq| ≲ | ImΣ(q, ε + i0+)| ≪ εq, kBT . It is therefore
an excellent approximation to replace ε by εq in Bose’s law in the numerator of the integrand in (32). By analyticity
in the lower complex half-plane, the term proportional to G(q, z − iδ) exp(−izt/ℏ) then gives a zero contribution to the
integrand for t > 0 (this can be seen by closing the integration path with a semicircle at infinity and using Cauchy’s

14. The Popov equation of state of a strictly two-dimensional Bose gas in the weakly interacting regime corresponds to a chemical potential-
dependent pseudo-coupling constant, g(µ) = 4πℏ2/[m ln(ε0/µ)] where ε0 = 4ℏ2/[ma2

2D exp(2C + 1)], a2D is the 2D scattering length and
C = 0.577 . . . is the Euler constant [28, 29]. In its range of validity [30], it leads to non-zero but small values of Λ and Λ∗, for exam-
ple Λ = mg(µ)/(12πℏ2)/[1 − mg(µ)/(4πℏ2)]2 ≃ mg(µ)/(12πℏ2) ≪ 1. The quasi- and strictly 2D regimes are connected by noting that
g = g(µ = 0.105 965 . . . ℏω⊥) in view of the expression of a2D in terms of a3D and a⊥ given in references [31, 32, 33].

15. Since the equations of motion deriving from H3 are local in r space (or quasi-local since they involve spatial gradients), the complexity on
a step dt is of degree one in the number of points N on the numerical grid; in k space, they are strongly non-local (each amplitude bk is roughly
coupled to all the others) resulting in catastrophic complexity ∝ N2.

16. The change from r to k is performed by a fast Fourier transform, in which the wave vectors span the setD∩(2π/L)Zd withD = [−kmax, kmax[d

(each Cartesian component kα of k has a meaning modulo 2kmax, so that D can be regarded as the first Brillouin zone of the spatial lattice
(π/kmax)Zd , which is precisely that spanned by r in the simulations with restriction to [0, L[d). The naive choice kmax = ηkBT/ℏc associated with
the cutoff (26) is not suitable: the processes of H3 bringing phonons out of the corresponding first Brillouin zone are then folded back into this zone
(Umklapp processes) and can no longer be filtered. At the very least, kmax = 2ηkBT/ℏc must be used: filtering forces us to double the number of
points per dimension.

17. The classical field version ⟨∂bq(t)/∂bq(0)⟩th of the correlation function ⟨[b̂q(t), b̂†q(0)]⟩th, which involves a numerical derivative in the partic-
ular mode q, faces the same problems.

18. The obtention of the right-hand side of equation (32) is done by means of the exact relation (31.24) of reference [7] but is here approximated
as we replaced ⟨b̂q(0)b̂†q(0)⟩th in the denominator by 1 + n̄q, where n̄q is the Bose law at energy εq; this is however an excellent approximation for
our simulations.
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Figure 1: Inverse of the decay time at 1/e of the modulus of signal s(t) (6) as a function of the wavenumber q of the modes along Ox, q = ±qex,
for different (increasingly weaker) interaction strengths in the two-dimensional superfluid of bosons: (a) (ρξ2)−1 = 0.64, (b) (ρξ2)−1 = 0.46, (c)
(ρξ2)−1 = 0.28, (d) (ρξ2)−1 = 0.1. Discs (superimposed on a thin-line quadratic fit): numerical experiment with ϵ = 1/2 (black) or ϵ = 1/3 (red).
Black dashed line: Fermi’s golden rule (34) for the classical phononic field in the ϵ → 0 limit. Black solid line: many-body Green’s function
method with the Σ̃(2,2)

q̄ (ζ̃) (40) self-energy (leading order in H3 and ϵ). The other parameters have the following fixed values: γ = 1, Λ = Λ∗ = 0,
η = 1. In the simulations, the system size is large enough for the thermodynamic limit to be reached (a quantization box width of L = 128πℏc/kBT
is sufficient). In the theory, the self-energies are replaced by their classical field versions to enable comparison with numerics. The rate Γu used as
a unit is that of equation (34).

theorem) and we end up with (33). The same conclusion applies to the classical field model, where the two exponential
functions in (32) are linearized.

2.3. Numerical results
In Figure 1, we plot the inverse of the decay time at 1/e of the signal as a function of the reduced wavenumber

q̄ = ℏcq/kBT of the mode under consideration, for four values of the interaction strength 1/(ρξ2) and for one or two
values of ϵ = kBT/mc2, see the disks. The unit of time is 2Γ−1

u , where the constant Γu appears as a prefactor in the
damping rate of Fermi’s golden rule at the leading order in ϵ, here for the classical field: 19

Γclas
q = Γuq̄(η − q̄/2) with Γu =

9kBT ϵ2(1 + Λ)2

4πℏ(3γ)1/2ρξ2 (34)

As can be seen in panels (a) and (d) of Figure 1, the results normalized in this way do not depend significantly on ϵ
at q̄ fixed and the ϵ → 0 limit appears to be reached; in the simulations, the inverse of the decay time at 1/e therefore
varies indeed as kBT ϵ2 at low temperature, as predicted by the golden rule and more generally by estimate (17) at all
orders in H3. On the other hand, the q̄ dependence of the damping time is very poorly described by the golden rule,
dashed line in Figure 1: as predicted by the general reasoning of section 1, the ϵ → 0 limit is therefore not sufficient
in 2D to bring the phonon gas into a weak coupling regime. What section 1 didn’t say, however, is that the golden

19. In expression (23) for the quantum field, we replace n̄lin
k by 1/k̄, neglect the term 1/2 in front of n̄lin

k in the first integral and put the cutoff
k̄ < η − q̄ in the second.
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Figure 2: Deviation s(t) − spole(t) of signal (6) from pole approximation (8) as a function of time, for the mode of reduced wavenumber q̄ = 1/4
along Ox and for the same interaction strengths as in Figure 1: (a) (ρξ2)−1 = 0.64, (b) (ρξ2)−1 = 0.46, (c) (ρξ2)−1 = 0.28, (d) (ρξ2)−1 = 0.1. Curves
with error bars: results of the numerical experiment; dashed line: many-body Green’s function theory with the Σ̃(2,2)

q̄ (ζ̃) (40) self-energy (leading
order in H3 and ϵ) in its classical field version. The real part of the deviation is shown in black, the imaginary part in red. We took ϵ = 1/2 in the
numerical experiment and for the calculation of spole(t) (carried out to second order in H3 and to all orders in ϵ) but we checked that we obtain
the same results (within the error bars) for ϵ = 1/3. The other parameters are fixed at γ = 1, Λ = Λ∗ = 0, η = 1. In the simulations, the sizes are
chosen to ensure that the thermodynamic limit is reached (width L = 128πℏc/kBT for (a), (b) and (c); double width for (d)). Time is scaled by the
half-rate of the golden rule in the classical field (34).

rule remains insufficient even if the underlying superfluid enters the weakly interacting regime (ρξ2)−1 → 0, see panel
(d) where a perturbative calculation at the leading order in H3 should a priori be legitimate; the behavior at weak q̄
predicted by (34) is in fact particularly bad there.

To make the inadequacy of the golden rule even more glaring, we plot in Figure 2, as a function of time, the
deviation of the numerical signal from the pole approximation (8) limited to second order at H3 but taken to all orders
in ϵ [see equation (39)] and transformed for the classical field (if we were at the leading order in ϵ, it would simply
be the deviation from the exponential exp(−Γclas

q t/2) of the golden rule), for the same interaction strengths as before
but for a fixed value of the reduced wave number, q̄ = 1/4, large enough to make it easy to reach the thermodynamic
limit in simulations. 20 Here too, the ϵ → 0 limit is reached in simulations (when time t is scaled as in (11) with
ν = 2d − 2 = 2, which is done here by expressing it in units of 2/Γclas

q ), the expected deviation from the golden rule is
indeed present and persists even in the weakly interacting limit (ρξ2)−1 → 0, at least on the real part. 21

3. Study at leading order in phonon-phonon coupling

The classical field simulations of section 2 established the inadequacy of Fermi’s golden rule in describing phonon
damping in dimension d = 2; we have not shown this here, but in addition to disagreement on the decay time at 1/e,

20. The smaller q̄ is, the lower the damping rate of the mode and the greater the granularity of the energy levels of the phonon gas in the
quantization box, and the more we need to increase the size of the system to reach the thermodynamic limit.

21. If we move from panel (c) to panel (d) in Figure 2, the interaction strength is divided by ≃ 3, the imaginary part is divided by ≃ 2 in maximum
absolute value so may well tend towards zero, while the real part only decreases by a factor of ≃ 1.3.
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−(q + k),−(Ω + ω)
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Figure 3: The self-energy Σ(q, z) is given at order two in H3 by one-loop diagrams, corresponding to Beliaev, Landau and non-resonant processes
(from left to right in the figure). Variables Ω and ω are the Matsubara energies associated with the incoming q and internal k wave vectors. Inner
lines (of any orientation and to be summed) are solid, outer lines (whose orientation is fixed by the choice of Green’s function) are dashed.

they reveal, in logarithmic scale, a non-exponential decay of the signal s(t) [34]. In this section, we incriminate the
approximation made in step (i) of section 1, and renounce it by retaining all the energy dependence of the self-energy
in the integral expression (6) of s(t), continuing however to calculate Σq(ζ) at leading order in the phonon-phonon
coupling and in ϵ (as in step (ii) of section 1). After a diagrammatic calculation of Σ(2), we obtain some analytical
predictions put into a universal form and compare them with simulations.

3.1. Calculation of the self-energy

In the Hamiltonian H of equation (1), the cubic coupling H3 seems to dominate over the quartic coupling H4, since
it appears at order δρ̂3 rather than δρ̂4 in the expansion of the hydrodynamic Hamiltonian, see section 2.1. However,
as H3 does not conserve the phonon number, it must be treated at least at second order of perturbation theory in the
calculation of Σq(ζ), whereas H4 gives a non-zero first order contribution, which is at first sight as large as that of
H3. 22 The full calculation is required.

At first order in perturbation theory, there’s no need to use Feynman diagrams, as the contribution to Σq(ζ) is
independent of the ζ variable and can be obtained by the following simple procedure, justifiable by the quantum
master equation method of reference [36]. We write the perturbation operator, here H4, in representation b̂, b̂† and in
normal order, with the help of bosonic commutation relations (all b̂† put on the left, all b̂ put on the right). Terms that
do not preserve phonon number do not contribute. The terms b̂†b̂, being quadratic, are absorbed into a redefinition of
the bare εk eigenenergies of the modes (as was expected from footnote 2). Finally, we isolate in the remaining “true”
quartic coupling terms the contributions b̂†qb̂†kb̂kb̂q, whose thermal averaging over the modes k , q gives the q-mode
energy shift. All this is summarized by the compact expression

Σ
(H4)
q (ζ) =

∫
ddk

(2π)d ⟨q,k|H
true
4 |q,k⟩n̄k =

ℏ2qΛ∗
4mρ

∫
ddk

(2π)d kn̄k ≈
ϵ→0

q̄kBT ϵd+1

ρξd (35)

where H4 is the volumic Hamiltonian such that H4 = H4/Ld, the coupling constant Λ∗ is that of equation (28), we
have deduced the matrix element in the two-phonon state from expression (27) of H4 and expression (25) of δρ̂(r) and
we have obtained the scaling behavior in the limit (9) in the right-hand side of equation (35) as in section 1. As we see
from the contribution (17) of H3 written for n = 1, the contribution of H4 in dimension d = 2 (but not in dimension
three) is subleading and can therefore be neglected when ϵ → 0. This is what we’ll do from now on.

At second order in H3, it’s best to use the method in reference [7]. 23 This method provides a diagrammatic
expansion of the self-energy Σ(q, z) for particular values of the complex energy variable, z = Ω ∈ 2iπkBTZ, where Ω
is called Matsubara energy, 24 which is then completed by an analytic continuation to C \ R [7]. Here, as in Figure 3,

22. The contribution of H3 to Σq(i0+) involves the ratio ⟨ |H3 | ⟩
2/∆E ≈ δρ̂2×3−2, that of H4 involves the matrix element ⟨ |H4 | ⟩ ≈ δρ̂

4, where we
use the notations of equation (13) and the fact that the denominator ∆E, made up of energy differences of the quadratic Hamiltonian H2, is ≈ δρ̂2.

23. Since our phonon states already have the bosonic symmetry, we can dispense with the direct interaction and exchange lines introduced in
[7].

24. As a slight departure from the usual notation [7], our Matsubara variables Ω, ω, etc., are not real frequencies but pure imaginary energies,
i.e. we incorporate an additional factor iℏ.
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each diagram must have two vertices (we’re at second order), where three phonon lines meet (H3 is cubic in b̂, b̂†). The
only possible topology is one-loop and, since two loops deduced from each other by rotation of angle π around their
axis must be considered as identical, the four possible orientations of the two internal lines lead to only three distinct
diagrams, represented in the order Beliaev, Landau and non-resonant in Figure 3 (using the typology of equation
(29)). Given the conservation of Matsubara energy and momentum at each vertex (the sum of incoming quantities
must equal that of outgoing quantities), there remains a single independent Matsubara energy ω and wave vector k, on
which to sum. Feynman’s rules of section 25 of reference [7] then lead for our phonon gas of zero chemical potential
to

Σ(2)(q,Ω) = −kBT
∑

ω∈2iπkBTZ

∫
ddk

(2π)d

{
(1/2)|⟨k,q − k|H3|q⟩|2

(ω − εk)(Ω − ω − εq−k)
+

|⟨k + q|H3|k,q⟩|2

(ω − εk)(Ω + ω − εk+q)
+

(1/2)|⟨0|H3|q,k,−(k + q)⟩|2

(ω − εk)(−Ω − ω − ε−(k+q))

}
(36)

in the thermodynamic limit with H3 = H3Ld/2, |0⟩ the phonon vacuum and, for each contribution, a k integration
domain ensuring that the wavevectors k, q − k, etc., satisfy the cutoff (26). Also included are symmetry factors 1/2
when the two branches of the loop have the same orientation and are therefore physically identical. Matsubara sums
are calculated by means of the general expression 25∑

n∈Z

1
(2iπn − ε̄1)(2iπn − ε̄2)

= −
n̄ε1 − n̄ε2

ε̄1 − ε̄2
(37)

where the real or even complex energies ε j are two by two distinct, and we set ε̄ = ε/kBT and n̄ε = 1/(exp ε̄ − 1). We
then use the fact that Ω/kBT ∈ 2iπZ to make this variable disappear from Bose’s law, and the relation n̄−ε = −(1+ n̄ε)
to bring us back to true occupation numbers (at positive energy). So, for example:

n̄Ω−εq−k = n̄−εq−k = −(1 + n̄q−k) (38)

The integrand becomes a rational function of the discrete variable Ω, and its analytic continuation to C \R is achieved
by the simple substitution Ω→ z. We get

Σ
(2)
q (ζ) =

∫
ddk

(2π)d

[
(1/2)|⟨k,q − k|H3|q⟩|2

ζ + εq − (εk + εq−k)
(n̄k + n̄q−k + 1) +

|⟨k + q|H3|k,q⟩|2

ζ + εq + εk − εq+k
(n̄k − n̄q+k)

−
(1/2)|⟨0|H3|q,k,−(k + q)⟩|2

ζ + εq + ε−(k+q) + εk
(n̄k + n̄−(q+k) + 1)

}
(39)

It remains to take the limit ϵ → 0 at q̄ and ζ̃ fixed as in equations (9,10,11) with, remember, exponents ν = σ = 2
in dimension d = 2. Through the “small-denominator” effect described in section 1, each contribution to the integral
(39) is dominated by configurations where the three wave vectors in the energy denominator are quasi-colinear and of
the same direction (within an angle O(ϵ)). In the first contribution, it suffices to use expansion (14) with k′ = q − k
(having k and k′ quasicollinear and of the same direction then implies k < q); in the second, we use (14) with
k′ = q which imposes nothing on k; in the third, we are dealing with a sum with positive coefficients of three phonon
energies, which can never be O(kBT ϵ2) (it is always ≈ kBT ϵ0), so that the corresponding contribution is subleading
and negligible at low temperatures. 26 Respecting the order of the contributions in (39), and restricting ourselves to
the strict upper half of the complex plane as in expression (6) of the signal, we get: 27

Σ̃
(2,2)
q̄ (ζ̃)

Im ζ̃>0
=

9(1 + Λ)2(2q̄)1/2

64iπρξ2

{∫ q̄

0
dk̄

[k̄(q̄ − k̄)]3/2(1 + n̄lin
k + n̄lin

q−k)[
(3γ/8)q̄k̄(q̄ − k̄) + ζ̃

]1/2 + 2
∫ η−q̄

0
dk̄

[k̄(q̄ + k̄)]3/2(n̄lin
k − n̄lin

k+q)[
(3γ/8)q̄k̄(k̄ + q̄) − ζ̃

]1/2

}
(40)

25. This is easily demonstrated by partial fraction decomposition of the summand with respect to variable n and using the identity
limN→+∞

∑N
n=−N 1/(2iπn − ε̄) = −(n̄ε + 1/2) ∀ε ∈ C \ 2iπZ resulting from the properties of the digamma function ψ(z) such as the reflection

formula.
26. After these expansions, the angular integral is Lorentzian and can therefore be performed very well using Cauchy’s formula, by closing the

integration path with an infinite semicircle in the complex plane, after performing the change of variable θ = ϵθ̃ on the angle θ between q and k
and sending the integration bounds ±π/ϵ over θ̃ to infinity. In the first contribution, the limiting behavior θ′ ∼ −kθ/(q − k) of the angle θ′ between
q and k′ was used beforehand.

27. The value of Σ̃(2,2)
q̄ (ζ̃) in the strict lower half of the complex plane can be deduced from the general relation valid for all orders in phonon

coupling, Σq(ζ)∗ = Σq(ζ∗).

13



where the occupation numbers marked by the superscript “lin” are those (21) of the phonon modes for the linearized
dispersion relation. In the left-hand side of (40), the second integer 2 in the exponent reminds us that Σ(2) is calculated
to second order in ϵ; the tildes on Σ and ζ remind us that a factor kBT ϵ2 has been taken out of these quantities as in
(10,11). Finally, despite the ever-present threat of quantum field fluctuations, we can take the limit of an infinite η
cutoff without triggering ultraviolet divergence, so without having to renormalize any quantities whatsoever. Then, if
we make ζ̃ tend towards zero by positive imaginary parts in (40), we find equation (23).

3.2. Analytical studies: one-parameter universality
Remarkably, it is possible, by a simple change of variable, to ensure that in the leading-order theory in ϵ and in

the coupling treated in this section 3, there remains only one parameter u containing all physical parameters such as
the interaction strength 1/ρξ2, the curvature parameter γ and the coupling constant Λ, i.e. 28

u =
πρξ2γ3/2

√
3(1 + Λ)2

(41)

In fact, the new definitions marked with a Czech accent,

ť =
3γq̄
8u

t̃ =
3γϵ2cqt

8u
; ζ̌ =

8u
3γq̄

ζ̃ =
8uζ

3γϵ2ℏcq
(42)

lead to a new self-energy and a new signal expression, clearly involving only u and the reduced variables q̄ and ť:

Σ̌
(2,2)
q̄ (ζ̌) =

8u
3γq̄
Σ̃

(2,2)
q̄ (ζ̃)

Im ζ̌>0
=

1
i

∫ q̄

0

dk̄
2q̄

[k̄(q̄ − k̄)]3/2(1 + n̄lin
k + n̄lin

q−k)

[k̄(q̄ − k̄) + ζ̌/u]1/2
+

1
i

∫ +∞

0

dk̄
q̄

[k̄(q̄ + k̄)]3/2(n̄lin
k − n̄lin

q+k)

[k̄(q̄ + k̄) − ζ̌/u]1/2
(43)

and

s(2,2)(t) =
∫

C+

dζ̌
2iπ

e−iζ̌ ťǦ
(2,2)
q̄ (ζ̌) with Ǧ

(2,2)
q̄ (ζ̌) =

1

ζ̌ − Σ̌(2,2)
q̄ (ζ̌)

(44)

In this case, we speak of one-parameter universality.
Let’s carry out the analytic continuation of function (43) from the upper to the lower half-plane through its branch

cut on the real axis. 29 This will enable us, as in reference [13], to separate the signal into the contribution of a contour
around a displaced branch cut (power-law decreasing contribution at long times) and the contribution of a pole in the
analytically continuated Green’s function (exponentially decreasing contribution in time), see our Figure 4b, which
improves physical understanding. First, we need to identify the branch points (immutable singularities) of Σ̌(2,2)

q̄ (ζ̌) on
the real axis. Since the values of ζ̌ that make the square root argument in the denominator vanish, span the interval
[−uq̄2/4, 0] when k̄ spans [0, q̄] in the first contribution to (43), and span [0,+∞[ when k̄ spans R+ in the second, we
might expect to have two branch points, ζ̌ = −uq̄2/4 and ζ̌ = 0. 30 In reality, by subtle compensation between the
two contributions, only ζ̌ = −uq̄2/4 remains; the branch cut [−uq̄2/4,+∞[ starts from this point, as shown in Figure
4a. 31. The branch cut can then be rotated by an angle ϕ ∈] − π,−π/2[ to bring it into the third quadrant, by analytic

28. For the same to apply in the classical field model, we would also have to incorporate the cut-off parameter η into u, i.e. introduce the quantity
uclas = ηu. This is unnecessary here, as we have taken η = 1 in the simulations. As a curiosity, let’s point out, for the classical field and in the limit
q̄ ≪ 1, that the signal s(2,2)(t) defined below ceases to start at value 1 in t = 0 (as it should physically) if uclas < 1, which we link mathematically
to the appearance of a pole of the Green’s function on the real axis. Consequently, it would be interesting to know whether all two-dimensional
physical systems (even in very strong interaction, provided it’s short-range) lead to u > 1.

29. There’s a mathematical subtlety here that the reader will forgive us for. Implicitly, from expression (43) for Σ̌(2,2)
q̄ (ζ̌), valid only for Im ζ̌ > 0,

we define a function in all C \ R by applying (43) as it is for Im ζ̌ < 0; the branch cut [−uq̄2/4,+∞[ mentioned in the text and shown in Figure
4a corresponds to this function rather than to the true self-energy Σ̌(2,2)

q̄ (ζ̌), whose branch cut is R in its entirety and which would therefore be less
convenient to analytically continuate from the upper half-plane to the lower half-plane, for the same final result (we see that it’s R in its entirety
(i) by considering the energy denominator ζ + ∆E in the Landau contribution of equation (39) and checking that ∆E spans R when θ/ϵ and k̄ span
R+ in (14) with k′ = q, or (ii) by using the relation iz1/2 = −signe(Im z)(−z)1/2, ∀z ∈ C \ R, to make the factor i disappear in (43) and obtain a
physically correct expression over all C \ R satisfying Σq(ζ)∗ = Σq(ζ∗), whose branch cut is then shown to be R).

30. For example, ζ̌ 7→
∫ b

a dx/(ζ̌ − x)1/2 = 2(ζ̌ − b)1/2 − 2(ζ̌ − a)1/2 has the real numbers a and b as branch points.
31. If we return to variable ζ̃, the branch point is at −3γq̄3/32.
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C+

Re ζ̌

Im ζ̌(a)

−uq̄2/4
•

C+

Re ζ̌

Im ζ̌(b)

−uq̄2/4
•

ϕ
×

ζ̌q̄

Figure 4: (a) Singularities of Green’s function Ǧ(2,2)
q̄ (ζ̌) in the complex plane and (b) integration path followed in calculating signal (44) to obtain

the first deviation (47) from the pole approximation. The change of variable (42) ζ̌ = 8(z−εq)u/(3γℏcqϵ2) was performed to reveal a one-parameter
universality u (41). Black horizontal line: original integration path in (44). Black disk: ζ̌ 7→ Ǧ(2,2)

q̄ (ζ̌) branch point. Dashed half-line: original

branch cut of ζ̌ 7→ Ǧ(2,2)
q̄ (ζ̌) in (a), and rotated by an angle ϕ ∈] − π,−π/2[ in (b) by analytic continuation of ζ̌ 7→ Ǧ(2,2)

q̄ (ζ̌) from the upper to the
lower half-plane, resulting in the ζ̌q̄ pole (red cross). In (b), to apply Cauchy’s theorem, we close C+ with two portions of a circle at infinity (in
blue) and a contour (in red) which bypasses the displaced branch cut.

continuation of Σ̌(2,2)
q̄ (ζ̌) from the upper half-plane to the lower half-plane, the new branch cut being the half-line

−uq̄2/4 + exp(iϕ)R+, see Figure 4b. As shown in Appendix A and agreeing that z3/2 = z
√

z, the function continuated
in this way is written:

Σ̌
(2,2)
q̄↓ (ζ̌) =

e3iϕ/2

i

∫ +∞

0

dk̄
q̄

(k̄2 − e−iϕq̄2/4)3/2

[k̄2 − e−iϕ(q̄2/4 + ζ̌/u)]1/2

[
1

exp(eiϕ/2k̄ − q̄/2) − 1
−

1
exp(eiϕ/2k̄ + q̄/2) − 1

]
(45)

In particular, it is analytic on a neighborhood of ζ̌ = 0 (see Appendix A, which also gives its value and that of its
derivative at this point). On the other hand, the corresponding Green’s function Ǧ(2,2)

q̄↓ (ζ̌) has a pole ζ̌q̄ in the fourth
quadrant, as we have verified numerically. 32

Rather than numerically evaluating the contour and pole contributions to the signal, let’s now extract analytically
from form (45) the “very substance” of the theory at order two in H3, noting for example that it is illusory to calculate
the position of the ζ̌q̄ pole at all orders in 1/u since the self-energy is calculated here only at order one in 1/u. On the
other hand, limiting ourselves to order zero in 1/u, which would mean taking the u → +∞ limit at q̄ fixed, would be
too poor, as the signal would then be reduced to the exponential of Fermi’s golden rule. As can be seen from (43), the
new self-energy depends on u only through the ratio ζ̌/u; so it tends towards its value at i0+ when u tends to +∞ under
the integral sign (ζ̌ and ť being fixed in (44)). A more interesting result is obtained by taking the limit u→ +∞ for

Q = u1/2q̄ and ť fixed (46)

so that the branch point in Figure 4 remains fixed instead of being rejected at infinity (which would effectively make the
contour contribution disappear). We then find a correction of order u−1/2 to Fermi’s golden rule signal; as u−1 ≪ u−1/2

one would expect that we can keep this correction without having to calculate the self-energy at the next order (order
four) in H3, even if we’ll see in section 5 that this is not the case. Let’s report the technical details in Appendix B and

32. If angle ϕ is too close to −π/2 (which we’ll avoid in the following) and if q̄ is quite small, a second pole of imaginary part < 0, of uncertain
physical interpretation, may appear to the left of the displaced branch cut.
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give the result directly in quantum theory:

s(2,2)(t)
Q and ť fixed
=

u→+∞
e−π

2 ť/3 +
S (ť)
u1/2 + O(1/u) with S (ť) = S contour(ť) + S pole(ť) (47)

The first contribution is the real-valued exponential of the golden rule in limit q̄ → 0. The second is divided into the
contour and pole contributions established in Appendix B:

S contour(ť) = −
eiQ2 ť/4

π

∫ ei(ϕ+π)(+∞)

0
dz

eizť
∫ π/2

0 dα
(
z sin2 α + Q2

4

)1/2

( Q2

4 + z − i π2

3 )2
; S pole(ť) = e−π

2 ť/3(δŽ − iδζ̌q̄ ť) (48)

where angle ϕ is freely chosen in ] − π,−π/2[ (result (48) does not depend on it). In a power expansion of u−1/2, δζ̌q̄

is the first deviation of the pole from the pole approximation −iπ2/3 (multiplied by u1/2) and δŽ is the first deviation
from one of the residue of Ǧ(2,2)

q̄↓ (ζ̌) (also multiplied by u1/2): 33

δζ̌q̄ =

∫ +∞

0
dK

1 − (K2 + Q2/4)1/2

(K2 − i π2

3 +
Q2

4 )1/2

 ; δŽ =
1
2

∫ +∞

0
dK

(K2 + Q2/4)1/2

(K2 − i π2

3 +
Q2

4 )3/2
(49)

In Figure 5, we show function S (ť) of equation (47) for Q = 1, together with predictions drawn numerically from
Σ̌

(2,2)
q̄ (ζ̌) for finite values of u. It can be seen that u = 20 has already reached the asymptotic regime, so the same is

expected for the parameters of the classical field simulations in Fig. 2d, which correspond to u ≃ 18.14 and Q ≃ 1.06.
So function S (ť) is not just a mathematical curiosity, and its predictions are not without practical interest. Let’s keep
two of them, due to the contour: the behavior at short times is square-root, which accounts for the rapid rise of the
signal in Figure 5, and the behavior at long times is sinusoidal damped as the inverse of time, its continuous connection
to that at short times explaining the sign changes on this figure, 34 35

S (ť) ∼
ť→0+

2e−iπ/4(ť/π)1/2 ; S (ť) ∼
ť→+∞

−iQ/4

( Q2

4 − i π2

3 )2

eiQ2 ť/4

ť
(50)

3.3. Comparison with classical field simulations
In order to compare with the simulations of section 2, we transpose the quantum treatments of sections 3.1 and 3.2

to the classical field: in equation (40), we must keep the cutoff parameter η finite (it is one in the simulations), neglect
the term 1 in front of the occupation numbers n̄lin

k and replace these by the classical equipartition law 1/k̄. As a test,
note that the corresponding value of Σ(2,2)

q (i0+) is then written as −iℏΓclas
q /2, where Γclas

q is the damping rate (34), as it
should be. In what follows, we of course retain the full dependence of Σ̃(2,2)

q (ζ̃) on ζ̃ when calculating signal s(2,2)(t)
by Green’s function.

The corresponding predictions for the decay time at 1/e are shown in thick black solid lines on each panel of
Figure 1. They are in all cases closer to the simulations than the golden rule, but paradoxically the improvement

33. As signal (6) starts exactly at one, S (0) = 0 so the contour contribution for ť = 0 must exactly cancel out that of the pole residue’s deviation
from one. Verification is non-trivial. The main idea is to reduce S contour(0) to a simple integral by inverting the integration on z and α in (48) (a
primitive function of (z+ a)1/2/(z+ b)2 is known, where a and b are two constants). Moreover, we note that Re δŽ > 0 for all Q: the first correction
in u−1/2 makes the residue Ž of modulus > 1 and therefore the pole ζ̌q̄ of spectral weight > 1.

34. If ť → +∞, the integral giving S contour(ť) is dominated by values of z close to zero and z can be replaced by 0 in the integrand, everywhere
except in exp(izť). If ť → 0+, the integral giving exp(iQ2 ť/4)S contour(ť) − S contour(0) is dominated by values of z close to infinity, so reduces to the
Fresnel integral (−1/π)

∫ +∞
0 dz[exp(izť) − 1]/z3/2 whose value is known (we’ve taken ϕ + π = 0+ for simplicity).

35. A more explicit expression of the signal can be obtained in the limit Q→ 0: S (ť) =
(

ť
π

)1/2
e−iπ/4 −

√
3

2π e−iπ/4
(

2π2 ť
3 − 1

)
erfi(

√
π2 ť/3)e−π

2 ť/3,

where erfi is the imaginary error function, which has the same behavior at short times as in (50) but the new behavior at long times S (ť) ∼
ť→+∞

− e−iπ/4

2π1/2

(
3
π2

)2 1
ť3/2

. Since function erfi is, despite its name, real-valued on the real axis, we find that Re S (ť) = − Im S (ť) in this limit, a property of
which a trace remains in Figure 5.
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Figure 5: In quantum theory and for a self-energy cal-
culated at order two in H3 and at order two in ϵ =
kBT/mc2, deviation of signal (6) from Fermi’s golden
rule exponential exp(−Γqt/2) multiplied by u1/2 (the
universal parameter u is given by (41), the rate Γq by
(23)) and plotted as a function of reduced time (42)
for real and imaginary parts, for increasing values of
u (the underlying two-dimensional superfluid is more
and more weakly interacting) but for a scaled wave
number as in (46) kept constant, Q = 1. Curves for
finite values of u: obtained by numerical integration
of expression (44). Curves for u = +∞: taken from
analytical prediction (47) (they simply correspond to
Re S (ť) and Im S (ť)).

is clearest in the strong interaction regime (a) and becomes very modest in the weakly interacting regime (d). This
deterioration was, however, to be expected from the reasoning preceding equation (46): if ρξ2 increases at a fixed q̄, the
second-order Green’s function calculation in H3 must reduce to the golden rule, thus deviating from the simulations.

Analysis of Figure 2 showing the time dependence of the signal gives us a further clue as to what happens when
we reduce the interaction strength, (ρξ2)−1 → 0. The predictions derived from Σ̃(2,2)

q (ζ̃) are this time shown as dashed
lines (those from the golden rule would be identically zero). They come remarkably close to the simulations for the
imaginary part of the deviation s(t) − spole(t) (the red dashed line almost merges with the numerical results in panel
(d)), but they show a persistent, and even increasing in relative values, disagreement on the real part, which explains
the previous failure on the decay time at 1/e.

The anomaly exhibited by the real part in Figure 2d is striking if we recall the analytical predictions of Figure 5
(even if they are for the quantum field): the real part and the imaginary part, for the corresponding values of u and Q
(u ≃ 18.14 and Q ≃ 1.06, remember), should be more or less symmetrical to each other with respect to the abscissa
axis (see also footnote 35), which is far from being the case in the simulations. In conclusion, the calculation of the
signal with the self-energy Σ̃(2,2)

q̄ (ζ̃), by fault of the real part, fails to account for the first deviation from the golden
rule in the limit u→ +∞ where it had every chance of excelling.

4. Study at fourth order in H3

To understand the persistent discrepancy in the real part of the signal between the numerical simulations in section
2 and the theoretical study at second-order in H3 in section 3, even when the two-dimensional superfluid enters
the weakly interacting limit (ρξ2)−1 → 0, we calculate the self-energy at fourth order in H3, either with the usual
diagrammatic formalism in section 4.1, or by a Landau-style reasoning in section 4.2, which provides an interesting
physical insight and leads to a more compact expression. In section 4.3, however, we show that the fourth-order result
is useless in the low-temperature limit ϵ = kBT/mc2 → 0 of interest here.

4.1. Calculation with the diagrammatic formalism of reference [7]

The two topologies. We directly omit the quartic Hamiltonian H4 in equation (1) and the non-resonant terms H(non res.)
3

in the cubic Hamiltonian (29), as their contributions to Σ(4) are subleading in the limit ϵ → 0 (this is obvious for
H(non res.)

3 , which does not benefit from the “small-denominator” effect, and this will be justified for H4 in section
4.2). The coupling Hamiltonian therefore reduces to the terms H(+/−)

3 given in equation (30). In the corresponding
fourth-order Feynman diagrams, each of the four vertices is the meeting point of three phonon lines, leading to two
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possible topologies, (i) inner-loop and (ii) bridge, as shown in Figure 6. In the first topology, we lift the degeneracy by
arbitrarily putting the inner loop in the upper branch, and remember (as in section 3) that swapping the two inner-loop
lines leads to the same diagram; after orientation of internal lines, this leaves eight distinct diagrams. In the second
topology, the degeneracy is lifted by orienting the bridge line downwards; six distinct diagrams remain. In reality, in
the terminology of Figure 6, the contributions of diagrams B3 and B4 to Σ(4) double, as do those of P2 and P3 and
those of P4 and P6. 36 Only eleven truly independent diagrams remain.

Calculating a generic inner-loop diagram. It’s convenient to number the internal lines from j = 1 to 5 as on the
left-hand side of Figure 7. Each line has an orientation s j ∈ {−1; 1} (left to right if s j = 1, right to left if s j = −1), a
wave vector k j and a Matsubara energy ω j ∈ 2iπkBTZ. In Figure 6, we have chosen to always have s3 ≥ s4 in order to
avoid the double counting of diagrams mentioned above. As independent quadrivectors, we’ve chosen those in lines
2 and 3, which we’ve renamed as follows:

(k2, ω2) = (k, ω) ; (k3, ω3) = (k′, ω′) (51)

The others can be deduced by energy-momentum conservation at each vertex. For example, the sum of the wave
vectors arriving at a given vertex is equal to the sum of the wave vectors departing from it, giving:

k1 = s1(q − s2k) ; k4 = s4(s2k − s3k′) ; k5 = s2s5k (52)

The same relations apply to Matsubara energies. Given the rules set out in section 25 of reference [7], the contribution
to the self-energy of the generic inner-loop diagram Bi is:

Σ
(4)
Bi

(q, z) =
(−kBT )2

1 + δs3,s4

∫
ddk

(2π)d

∫
ddk′

(2π)dA(k1,k2; q)A(k3,k4; k2)A(k3,k4; k5)A(k1,k5; q)
∑

ω,ω′∈2iπkBTZ

1∏5
j=1(ω j − εk j )

(53)
where we temporarily have z = Ω ∈ 2iπkBTZ (see section 3.1). To write the transition amplitudes at each vertex,
we used the invariance of function A of equation (31) by permutation of its three arguments and hence the fact that
matrix elements ⟨k2,k3|H3|k1⟩, ⟨k1,k3|H3|k2⟩ and ⟨k1,k2|H3|k3⟩ are all equal to A(k2,k3; k1). The denominator
of the symmetry factor in front of the integrals is 2 if the two lines of the inner loop have the same orientation
(to compensate for the double counting of configurations differing only by the exchange of quadrivectors (k3, ω3) and
(k4, ω4) and in this case physically identical); otherwise, these two lines are distinguishable and the symmetry factor is
1. The Matsubara double sum is calculated explicitly in Appendix C, which also shows that its expression simplifies
in the limit of small angles O(ϵ) → 0 between the wave vectors, where we can restrict to s2 = s5 (otherwise, the
diagram’s contribution is subleading in ϵ, see equation (56) below):∑

ω,ω′∈2iπkBTZ

(kBT )2∏5
j=1(ω j − εk j )

diag. B
∼
ϵ→0
−s1s4

(n̄ε3 − n̄−s3 s4ε4 )(n̄−s1ε1 − n̄s2ε2 )
(ζ − ζ1)2(ζ − ζ2)

(54)

with variable ζ = z − εq and ζ j all of order kBT ϵ2,

ζ1 ≡ s1εk1 + s2εk2 − εq ; ζ2 ≡ s1εk1 + s3εk3 + s4εk4 − εq (55)

The dependence in ζ of form (54) on the right-hand side is easy to interpret physically since ζ1 + εq and ζ2 + εq are the
energies of the intermediate states marked by the vertical lines on the left-hand side of Figure 7: in fact, they are the
sums of the energies of the internal lines j intersected by each vertical line counted algebraically, i.e. weighted by the
orientations s j (if s j = −1, the phonon on line j is going backward in time and its energy must be counted negatively).
This validates estimate (13) by reproducing its energy denominators.

36. There is indeed a non-trivial symmetry connecting certain diagrams. To see this, let’s apply a vertical axis rotation of angle π to each diagram,
then change the orientation of all lines (internal and external); this does not change the value of the diagram’s contribution to Σ(4). Most diagrams
are mapped on themselves in this way, with the exception of pairs {B3, B4}, {P2, P3} and {P4, P6}, whose two partners are simply exchanged
(remember, in the case of bridge diagrams, that a horizontal axis rotation of angle π, which restores the original orientation of the vertical line, does
not change the value of the diagram). This means that Σ(4)

B3
(q, z) = Σ(4)

B4
(q, z), Σ(4)

P2
(q, z) = Σ(4)

P3
(q, z) and Σ(4)

P4
(q, z) = Σ(4)

P6
(q, z) as announced.
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Figure 6: Contributions to self-energy Σ(q, z) at fourth order in H(+)
3 + H(−)

3 are given by eight inner-loop diagrams (numbered B1 to B8) and six
bridge diagrams (numbered P1 to P6). The wave vectors qi (2 ≤ i ≤ n) and q′j (1 ≤ j ≤ n′) near the inner lines are those of the incoming and
outgoing phonons of the four-phonon n → n′ collisional processes in the Landau-style physical interpretation of section 4.2 (for bridge diagrams:
wave vectors of type I contributions in black, type II in red, in the sense of equation (63)); for the sake of simplicity, wave vectors of virtual phonons
are not shown (they are deduced by conservation of momentum at each vertex). The contributions of the non-resonant processes of H3, subleading
in the ϵ → 0 limit, are not shown. On the other hand, once this limit is taken, the diagram P5 (more precisely, its type II contribution, hence the red
color) diverges linearly for ζ̃ ≡ (z − εq)/kBT ϵ2 = 0, revealing a non-physical pole in Green’s function, see section 4.3.
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III
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Figure 7: In the expansion of the self-energy Σ(q, z), generic forms of fourth-order diagrams in H3 for inner-loop (left-hand side) or bridge diagrams
(right-hand side). The boxes contain the possible s j = ±1 orientations of the internal lines and indicate their numbering j. Given the conservation
of the Matsubara energy-momentum at each vertex, there are only two independent internal wave vectors k, k′ and Matsubara energies ω, ω′; the
others are given by equations (52) (inner loop) and (61) (bridge). The red lines are a graphical construction for finding the energy denominators in
the simplified forms (54) and (63) of the double Matsubara sums, which apply to leading order in ϵ when all internal wave vectors make a small
angle O(ϵ) with q. In the simplified form (54), the quantity ζ1 corresponds to the two outer red lines of the inner-loop diagram (indeed, s2 = s5 at
the leading order in ϵ) and ζ2 corresponds to the central red line. In the simplified form (63), the quantity ζ1 corresponds to the left vertical red line
of the bridge diagram, ζ2 to the other vertical red line, ζ3 to the oblique line numbered II and ζ4 to the oblique line numbered I.

To go to the ϵ → 0 limit in (53), we directly set the angles to zero in each coupling amplitudeA (which brings out
a factor 3(1 + Λ)), then expand the energy denominators of (54) on the model of (14) ; for the “small-denominator”
effect to take full action, the internal vectors k j must all make a small angle O(ϵ) with the incoming wave vector q,
which imposes 37

sign(q − s2k) = s1 ; sign(s2k − s3k′) = s4 ; s2s5 = 1 (56)

The first two conditions in (56) restrict the range of variation of wave numbers k and k′. The last, which is independent
of them, eliminates diagrams B3 and B4, of subleading contributions. Remembering the definitions (11,18) of ζ̃ and
(9) of q̄, we arrive in dimension d = 2 at the result (for Im ζ̃ , 0 but of arbitrary sign):

Σ̃
(4,2)
Bi

(q̄, ζ̃) =
q̄

1 + δs3,s4

(
9(1 + Λ)2

8ρξ2

)2 ∫
DB

1

k̄dk̄
(2π)2

∫
DB

2 (k̄)

k̄′dk̄′

(2π)2 k̄2k̄′(q̄− s2k̄)(s2k̄− s3k̄′)(n̄lin
k′ − n̄lin

k′−s2 s3k)(n̄lin
s2k− n̄lin

s2k−q)I(k̄, k̄′)

(57)
with the occupation numbers (21) extended to negative wavenumbers and the angular integral 38

I(k̄, k̄′) =
∫
R

dθ̃
∫
R

dϕ̃
1

[ζ̃ − (AB
1 + BB

1 θ̃
2)]2[ζ̃ − (AB

2 + BB
1 θ̃

2 + BB
2 ϕ̃

2)]
(58)

involving coefficients

AB
1 =

3γ
8

(k̄ − s2q̄)k̄q̄ ; AB
2 =

3γ
8

k̄k̄′(s2k̄′ − s3k̄) + AB
1 ; BB

1 =
−k̄q̄/2
k̄ − s2q̄

; BB
2 =

−k̄k̄′/2
s2k̄′ − s3k̄

(59)

and integration domains DB
1 over k̄, then DB

2 (k̄) over k̄′ at fixed k̄, satisfying conditions (56) and cut-off (26) k̄ j < η,
1 ≤ j ≤ 5. In the left-hand side of (57), the second integer in the exponent reminds us to which order in ϵ the function
Σ(4) is calculated (here to second order), and the tilde over Σ means, as in (10), that the result has been divided by
kBT ϵ2. Finally, we check on a case-by-case basis that expression (57) has a finite limit when the cutoff η → +∞ (for
the quantum field). 39

37. When k2 = k and k3 = k′ form a zero angle with q, the other wave vectors k j given by (52) must satisfy the condition k j · q = k jq.
38. In the integral, before taking the limit ϵ → 0, we set θ̃ = θ/ϵ and ϕ̃ = (θ − θ′)/ϵ, where θ is the angle between q and k, θ′ the angle between

q and k′.
39. For example, in the case of the diagram B8 (s1 = s4 = −1, s2 = s3 = s5 = 1), the domains DB

1 = [q̄, η] and DB
2 (k̄) = [k̄, η] are unbounded
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Calculating a generic bridge diagram. The beginning is very similar to the previous case. We number the internal
lines as on the right-hand side of Figure 7, with the same sign convention, except for the vertical line (the “bridge”),
with sign s5 = 1 when oriented downwards (which we have limited ourselves to in Figure 6 to avoid double counting).
We keep as independent quadrivectors

(k1, ω1) = (k, ω) ; (k3, ω3) = (k′, ω′) (60)

the others deduced by energy-momentum conservation, e.g. for wave vectors:

k2 = s2(q − s1k) ; k4 = s4(q − s3k′) ; k5 = s5(s1k − s3k′) (61)

The contribution of diagram Pi to the self-energy is then written [7]:

Σ
(4)
Pi

(q, z) = (−kBT )2
∫

ddk
(2π)d

∫
ddk′

(2π)dA(k1,k2; q)A(k3,k5; k1)A(k2,k5; k4)A(k3,k4; q)
∑

ω,ω′∈2iπkBTZ

1∏5
j=1(ω j − εk j )

(62)
No need here to divide by a symmetry factor. The explicit calculation of the Matsubara double sum is given in
Appendix C, which also establishes its simplified expression in the limit of small angles O(ϵ) between the wave
vectors:∑
ω,ω′∈2iπkBTZ

(kBT )2∏5
j=1(ω j − εk j )

diag. P
∼
ϵ→0
−s1s2s4s5

(n̄−s2ε2 − n̄s1ε1 )(n̄ε3 − n̄−s3 s5ε5 )
(ζ − ζ1)(ζ − ζ2)(ζ − ζ4)

− s1s2s4s5
(n̄−s3 s5ε5 − n̄−s3 s4ε4 )(n̄s1ε1 − n̄−s2ε2 )

(ζ − ζ1)(ζ − ζ2)(ζ − ζ3)
(63)

with variable ζ and ζ j all of order kBT ϵ2,

ζ1 ≡ s1εk1+s2εk2−εq ; ζ2 = s3εk3+s4εk4−εq ; ζ3 ≡ s1εk1+s4εk4−s5εk5−εq ; ζ4 ≡ s2εk2+s3εk3+s5εk5−εq
(64)

There are this time two contributions to the right-hand side, called type I and type II in this order. Quantities ζ j are
energy differences between intermediate and initial states, as in the inner-loop case, except that four straight lines
must be introduced to identify them, see right-hand side of Figure 7: two vertical lines for ζ1 and ζ2, two oblique lines
for ζ3 and ζ4. Indeed, from the point of view of the oblique line marked I on the figure, the internal line of the bridge
is oriented from left to right if s5 = 1, and ζ4 must have a plus sign in front of s5εk5 in equation (64); for oblique line
II, the opposite is true, hence the minus sign in front of s5εk5 in ζ3.

When ϵ → 0, the limit of small angles in the energy denominators and in the coupling amplitudes A is taken as
before, except that a distinction must be made between the two types. For type I contribution, we obtain (for Im ζ̃ , 0
but of arbitrary sign)

Σ̃
(4,2)
PI

i
(q̄, ζ̃) = q̄

(
9(1 + Λ)2

8ρξ2

)2 ∫
DP

1

k̄dk̄
(2π)2

∫
DP

2 (k̄)

k̄′dk̄′

(2π)2 k̄k̄′(q̄− s1k̄)(q̄− s3k̄′)(k̄− s1s3k̄′)(n̄lin
k′ −n̄lin

k′−s1 s3k)(n̄lin
s1k−n̄lin

s1k−q)J(k̄, k̄′)

(65)
with the angular integral

J(k̄, k̄′) =
∫
R

dθ̃
∫
R

dθ̃′
1

[ζ̃ − (AP
1 + BP

1 θ̃
2)][ζ̃ − (AP

2 + BP
2 θ̃
′2)][ζ̃ − (AP

4 + BP
1 θ̃

2 + BP
4 (θ̃ − θ̃′)2)]

(66)

For type II contribution, we obtain (again for Im ζ̃ , 0 but of arbitrary sign)

Σ̃
(4,2)
PII

i
(q̄, ζ̃) = q̄

(
9(1 + Λ)2

8ρξ2

)2 ∫
DP

1

k̄dk̄
(2π)2

∫
DP

2 (k̄)

k̄′dk̄′

(2π)2 k̄k̄′(q̄−s1k̄)(q̄−s3k̄′)(k̄−s1s3k̄′)(n̄lin
k′−s3q−n̄lin

k′−s1 s3k)(n̄lin
s1k−n̄lin

s1k−q)K(k̄, k̄′)

(67)

when η → +∞ but the bosonic amplification factors (n̄lin
k′ − n̄lin

k′−k)(n̄lin
k − n̄lin

k−q) = O[exp(−k̄ − k̄′′)] are rapidly decreasing in the two decoupled
integration variables (k̄, k̄′′ = k̄′ − k̄) and suppress any power-law divergence that might arise from the other factors ; in the case of B7 (s1 = −1,
s2 = s3 = s4 = s5 = 1),DB

1 = [q̄, η] andDB
2 (k̄) = [0, k̄] remain unbounded and the bosonic factors (1 + n̄lin

k′ + n̄lin
k−k′ )(n̄

lin
k − n̄lin

k−q) = O(exp(−k̄)) are
now rapidly decreasing only in variable k̄ but, since k̄′ < k̄, the integral over k̄′ at fixed k̄ is at most O(k̄α), α > 0, and the integral over k̄ converges
if η→ +∞.
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with the angular integral

K(k̄, k̄′) =
∫
R

dθ̃
∫
R

dθ̃′
1

[ζ̃ − (AP
1 + BP

1 θ̃
2)][ζ̃ − (AP

2 + BP
2 θ̃
′2)][ζ̃ − (AP

3 + BP
2 θ̃
′2 + BP

3 (θ̃ − θ̃′)2)]
(68)

Irrespective of type, the coefficients are

AP
1 =

3γ
8

(k̄ − s1q̄)k̄q̄ ; AP
2 =

3γ
8

(k̄′ − s3q̄)k̄′q̄ ; AP
4 = AP

1 +
3γ
8

k̄k̄′(s1k̄′ − s3k̄) ; AP
3 = AP

1 + AP
2 − AP

4 (69)

BP
1 =

−k̄q̄/2
k̄ − s1q̄

; BP
2 =

−k̄′q̄/2
k̄′ − s3q̄

; BP
4 =

−k̄k̄′/2
s1k̄′ − s3k̄

; BP
3 = −BP

4 (70)

The integration domains DP
1 and DP

2 (k̄) are also independent of type; they take into account the cut-off (26) on all
internal wave vectors k j, 1 ≤ j ≤ 5, as well as conditions

sign(q − s1k) = s2 ; sign(q − s3k′) = s4 ; sign(s1k − s3k′) = s5 (71)

ensuring that k2, k4 and k5 are collinear with and in the same direction as q as soon as k and k′ are. For all s j

orientations taken from Figure 6, conditions (71) are compatible, so none of the Pi diagrams is subleading in ϵ.
Finally, we verify the existence of a finite limit in (65,67) when cutoff η→ +∞ (for the quantum field).

4.2. Calculation using Landau approach

The calculation of Σ(4) as in reference [7], although systematic and rigorous, does not explicitly say which colli-
sional processes between phonons lie behind each diagram in Figure 6. Here we develop a more heuristic method,
inspired by reference [1] and valid to the leading order in ϵ, which answers the question, gives the result in compact
form (rather than spread into a dozen or so integral contributions) and makes it easy to show that the contribution of
H4 is subleading in the ϵ → 0 limit.

Reference [1] explains, for Hamiltonian (1), how to calculate by an extended Fermi golden rule the damping rate
of phonon mode q due to n → n′ collisions, n being the number of incoming qi phonons (they include one and only
one phonon of wave-vector q) and n′ the number of outgoing q′j phonons (they do not include any phonon of wave-
vector q). The ordinary cases of Beliaev and Landau processes correspond to (n, n′) = (1, 2) and (n, n′) = (2, 1), they
have n + n′ = 3 phonons; here, it will be about four-phonon processes, like (n, n′) = (2, 2). We start by writing kinetic
equations for the phonon occupation numbers, provisionally assumed to be out of equilibrium, counting positively the
direct process n → n′ (which tends to empty mode q) and negatively the inverse process n′ → n (which tends to fill
it):

d
dt

nq = −
1

(n − 1)!

∫  n∏
i=2

ddqi

(2π)d

 1
n′!

∫  n′∏
j=1

ddq′j
(2π)d

 2π
ℏ
A2

i→fδ(Ei − Ef)(2π)dδ

 n∑
i=1

qi −

n′∑
j=1

q′j


×

 n∏
i=1

nqi

n′∏
j=1

(1 + nq′j ) −
n∏

i=1

(1 + nqi )
n′∏
j=1

nq′j

 (72)

We have taken the thermodynamic limit, and divided by symmetry numbers taking into account the invariance of the
process by permutation of the n − 1 last incoming wave vectors (we agree that q1 = q) and by permutation of the n′

outgoing wave vectors. We recognize in (72) the Dirac distribution of energy conservation, the factor 2π/ℏ and the
square of a transition amplitude Ai→f between initial state |i⟩ = |(qi)1≤i≤n⟩ and final state |f⟩ = |(q′j)1≤ j≤n′⟩ typical of
the golden rule, as well as a Dirac distribution of momentum conservation and the bosonic amplification factors. The
principle of microreversibility was used to factorize the squared amplitude of the direct process.

We then take the excitation procedure (4), where all phonon modes are at thermal equilibrium except q, hence
the substitution nk → n̄k, k , q, and linearize (72) around nq = n̄q for weak excitation, which gives the back-to-
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equilibrium equation (d/dt)(nq − n̄q)|t=0+ = −Γ
n→n′
q (nq − n̄q) with rate

Γn→n′
q =

1
(n − 1)!

∫  n∏
i=2

ddqi

(2π)d

 1
n′!

∫ n′∏
j=1

ddq′j
(2π)d

 2π
ℏ
A2

i→fδ(Ei − Ef)(2π)dδ

 n∑
i=1

qi −

n′∑
j=1

q′j


×

 n∏
i=2

n̄qi

n′∏
j=1

(1 + n̄q′j ) −
n∏

i=2

(1 + n̄qi )
n′∏
j=1

n̄q′j

 (73)

where, unlike equation (72), all products on the incoming wave vectors exclude mode q and therefore start at i = 2.
The difference with the golden rule lies in the calculation of amplitudeAi→f. Usually, we simply haveAi→f = ⟨f|H3|i⟩.
Reference [1] deals precisely with the useful case of four-phonon collisions, where Ai→f is obtained by treating
H3 = H3/Ld/2 at second order and H4 = H4/Ld at first order of perturbation theory:

Ai→f = ⟨f|H4|i⟩ +
∑
|λ⟩

⟨f|H3|λ⟩⟨λ|H3|i⟩
Ei − Eλ

(74)

and the sum is taken over all possible intermediate phonon Fock states |λ⟩. A simple power counting as in section 1
shows that H4’s contribution to (74) is subleading in the small-angle limit ϵ → 0; 40 so we omit it in the following.
In the energy denominator, we have chosen the reference energy Ei of the initial state rather than Ef of the final state,
because we are talking about a i→ f transition, as recalled by the choice of f in bra and i in ket in the matrix element
in the numerator, which is not a serious physical reason. Fortunately, this doesn’t matter, since the amplitude is used
in (72) on the energy shell (Ei = Ef): the result is invariant by exchanging the roles of i and f in any term of the sum
in the right-hand side of (74):

⟨f|H3|λ⟩⟨λ|H3|i⟩
Ei − Eλ

(direct direction)←→
⟨i|H3|λ⟩⟨λ|H3|f⟩

Ef − Eλ
(inverse direction) (75)

The total damping rate is obtained by summing Γn→n′
q over the collisional processes n→ n′ relevant to the order under

consideration. From the following obvious rules, (i) the diagram giving the transition amplitudeAi→f is connected, i.e.
there is no possible decoupling of the n→ n′ process into two independent collisional processes, (ii) any intermediate
state (between successive actions ofH3) must differ from the initial and final states, we find at order four in H(+)

3 +H(−)
3

as the only possibilities the processes 1→ 3, 2→ 2 and 3→ 1: 41

Γ
(4)
q = Γ

1→3
q + Γ2→2

q + Γ3→1
q (76)

Heuristically, we generalize this formalism to the calculation of the fourth-order contribution in H(+)
3 +H(−)

3 to the self-
energy of mode q. As with the damping rate, we assume that it is the sum of the contributions of the above-mentioned
n→ n′ collisional processes:

Σ(4)(q, z) = Σ1→3(q, z) + Σ2→2(q, z) + Σ3→1(q, z) (77)

Knowing that the energy-conserving Dirac distribution in (73) ultimately comes from the identity

lim
δ→0+

Im
1

Ei + iδ − Ef
= −πδ(Ei − Ef) , (78)

that the displaced variable ζ = z − εq plays the role of iδ in the pole approximation (8) and a self-energy differs from

40. In view of equations (25,27), the contribution of H4 to (74) is of order (mc2/ρ)ϵ2; in view of equations (14,15), that of H3 is of order
(mc2/ρ)ϵ0.

41. In reference [1], unlike in our case, the acoustic branch has a concave start (γ < 0 in equation (3)): only process 2→ 2 preserves momentum-
energy and gives a non-zero contribution to (76); however, it was miscalculated, and the error has been corrected in reference [5].
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a rate by a factor of −iℏ/2, we arrive without hesitation at the form

Σ
(4)
n→n′ (q, z) =

1
(n − 1)!

∫  n∏
i=2

ddqi

(2π)d

 1
n′!

∫  n′∏
j=1

ddq′j
(2π)d

 A2
i→f(q, z)

ζ + Ei − Ef
(2π)dδ

 n∑
i=1

qi −

n′∑
j=1

q′j


×

 n∏
i=2

n̄qi

n′∏
j=1

(1 + n̄q′j ) −
n∏

i=2

(1 + n̄qi )
n′∏
j=1

n̄q′j

 (79)

The only pitfall lies in the construction of the ζ dependence of the Ai→f transition amplitude. The choice of Ei or Ef
as reference energy is no longer irrelevant. Choosing Ei as in the left-hand side of (75) means taking the point of view
of a i → f transition, i.e. travelling through time in the ordinary direction; the correct integration path is precisely
C+, the one spanned by variable ζ in (6); Ei must therefore be replaced by ζ + Ei in the energy denominator internal
to Ai→f. On the other hand, choosing Ef as in the right-hand side of (75) means taking the opposite point of view of
a f → i transition, i.e. going backward in time; the correct integration path for the Green’s function is then C− [13],
which runs in the lower half-plane parallel to the real axis from −∞ to +∞ and is spanned by variable −ζ in (6); Ef
must therefore be replaced by −ζ + Ef in the energy denominator internal toAi→f.

To decide according to the intermediate state |λ⟩, we need to rely on the following property. By construction,
function Σ(4)(q, z) depends on the mode through its wave vector q but not its energy εq (when using the original
complex energy z as a variable), and therefore cannot have an energy denominator containing εq. The opposite is
true when using the displaced variable ζ. This means that, if in the direct direction of the transition amplitude, the
action on |i⟩ of operator H (±)

3 does not cause the phonon of wave vector q to disappear, its energy εq appears in Eλ

and therefore disappears in ζ + Ei − Eλ, and reverse direction of the transition amplitude must be used, this rule
being applied intermediate state by intermediate state. Hence our final prescription on the transition amplitude to be
included in (79): 42

Ai→f(q, z) =
∑

|λ⟩ /q<|λ⟩

⟨f|H (±)
3 |λ⟩⟨λ|H

(±)
3 |i⟩

ζ + Ei − Eλ
+

∑
|λ⟩ /q∈|λ⟩

⟨i|H (±)
3 |λ⟩⟨λ|H

(±)
3 |f⟩

−ζ + Ef − Eλ
(80)

From expression (80) we derive the transition amplitude for process 1→ 3 (knowing that q′1 + q′2 + q′3 = q):

Aq→q′1,q
′
2,q
′
3
(q, ζ) =

A(q′1,q
′
2; q′1 + q′2)A(q′1 + q′2,q

′
3; q)

ζ + ϵq − (ϵq′1+q′2 + ϵq′3 )
+
A(q′2,q

′
3; q′2 + q′3)A(q′2 + q′3,q

′
1; q)

ζ + ϵq − (ϵq′2+q′3 + ϵq′1 )

+
A(q′1,q

′
3; q′1 + q′3)A(q′1 + q′3,q

′
2; q)

ζ + ϵq − (ϵq′1+q′3 + ϵq′2 )
(81)

42. In reality, the collisional processes n→ n′ with n incoming phonons qi and n′ outgoing phonons q′j occur in a thermal bath, and the modes of

the virtual phonons k (neither incoming nor outgoing) are not initially empty. The corresponding bosonic amplification factors (nk + 1)1/2 and n1/2
k

would therefore have to be taken into account in the expression (80) of the transition amplitude, and the contribution of the new allowed processes,
in which a virtual phonon k is annihilated before being recreated (which is forbidden in vacuum), would have to be included. However, these two
modifications exactly cancel each other and the expression (80) remains unchanged. Let’s check this on a single term of the first sum in (80). To this
aim, let’s describe in more detail the corresponding transition |i⟩ → |λ⟩ → |f⟩ by noting |i⟩ = |i1⟩ ⊗ |i2⟩ ⊗ |nk : k⟩ and |f⟩ = |f1⟩ ⊗ |f2⟩ ⊗ |nk : k⟩, where
|i1⟩ (|i2⟩) are the incoming photons annihilated by the first (second) action of H3, |f1⟩ (|f2⟩) are the outgoing phonons created by the first (second)
action ofH3 and |nk : k⟩ the Fock state with nk quanta in the virtual phonon mode, so the intermediate state is written |λ⟩ = |f1⟩ ⊗ |i2⟩ ⊗ |nk + 1 : k⟩
(we don’t take into account the other modes, spectators, nor the thermal occupation of incoming and outgoing modes, since their bosonic factors
are included in (72,79)). In this example, q < |λ⟩ hence q ∈ |i1⟩. The components of H3 ensuring the transitions |i⟩ → |λ⟩ and |λ⟩ → |f⟩ are
written respectively W1 = A1b̂†k(

∏
q′j∈|f1⟩ b̂†q′j

)(
∏

qi∈|i1⟩ b̂qi ) and W2 = A2(
∏

q′j∈|f2⟩ b̂†q′j
)(
∏

qi∈|i2⟩ b̂qi )b̂k. In the presence of the thermal bath, (i) the

numerator ⟨f|H (±)
3 |λ⟩⟨λ|H

(±)
3 |i⟩ = ⟨f|W2 |λ⟩⟨λ|W1 |i⟩ becomes A1A2(1 + nk), (ii) the new associated process, corresponding to the inverse order of

action of W1 and W2, has numerator ⟨f|W1 |λ
′⟩⟨λ′ |W2 |i⟩ = A1A2nk, (iii) the new intermediate state |λ′⟩ = |i1⟩ ⊗ |f2⟩ ⊗ |nk − 1 : k⟩ contains the

phonon q so its energy denominator must be taken from the second sum of (80), and happens to be the exact opposite of the denominator of the
former process, the calculation giving −ζ + Ef − Eλ′ = −(ζ + Ei − Eλ). Ultimately, the linear contributions in nk of the two processes exactly
cancel each other in the transition amplitude Ai→f(q, z), which allows us to forget the thermal background as is done in (80). Similar reasoning,
but limited to 2→ 2 processes on the energy shell, can already be found in reference [5].
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then for process 2→ 2 (knowing that q′1 + q′2 = q + q2):

Aq,q2→q′1,q
′
2
(q, ζ) =

A(q′1,q
′
2; q′1 + q′2)A(q,q2; q + q2)
ζ + ϵq + ϵq2 − ϵq+q2

−
A(q′1 − q,q′2; q2)A(q′1 − q,q; q′1)

ζ + ϵq + ϵq′1−q − ϵq′1

+
A(q′2 − q2,q2; q′2)A(q′2 − q2,q′1; q)

ζ + ϵq − (ϵq′1 + ϵq′2−q2 )
+
A(q − q′2,q2; q′1)A(q − q′2,q

′
2; q)

ζ + ϵq − (ϵq′2 + ϵq−q′2 )
−
A(q′2 − q,q′1; q2)A(q′2 − q,q; q′2)

ζ + ϵq + ϵq′2−q − ϵq′2
(82)

and finally for process 3→ 1 (knowing that q′1 = q + q2 + q3):

Aq,q2,q3→q′1 (q, ζ) = −
A(q2,q3; q2 + q3)A(q2 + q3,q; q′1)

ζ + ϵq + ϵq2+q3 − ϵq′1
+
A(q + q2,q3; q′1)A(q,q2; q + q2)

ζ + ϵq + ϵq2 − ϵq+q2

+
A(q + q3,q2; q′1)A(q,q3; q + q3)

ζ + ϵq + ϵq3 − ϵq+q3

(83)

In these equations (81,82,83), the three contributions where we had to choose the opposite direction in (75), i.e. take
Ef rather than Ei as the reference energy, are easy to spot as they start with a minus sign.

Our prescription (79,80) gives simple but generally different results from the exact fourth-order diagrammatic
theory, given the expressions for Matsubara double sums in Appendix C. Remarkably, however, once these sums have
been replaced by their simplified expressions (54,63), which is legitimate at small angles, it is in perfect agreement
with the value of Σ(4) predicted by the diagrams in Figure 6; this can be verified with the aid of the correspondence
table 1, obtained from the coupling amplitudes in (53,62) and the energy denominators in (54,63), and which makes it
possible to associate with each internal line on this figure an incoming qi, outgoing q′j or virtual (linear combination of
the previous ones) phonon of a n→ n′ process, thus giving a clear physical meaning to the corresponding diagram. 43

Ultimately, the prescription (79,80) leads in d = 2 to a rigorously equivalent but much more compact expression of
Σ(4) at leading order in ϵ:

Σ̃
(4,2)
q̄ (ζ̃) =

1
3

∫∫
Tq̄

q̄′1dq̄′1
(2π)2

q̄′2dq̄′2
(2π)2 Φ(q̄′1, q̄

′
2) +

∫∫
R+2\Tq̄

q̄′1dq̄′1
(2π)2

q̄′2dq̄′2
(2π)2 Φ(q̄′1, q̄

′
2) +

∫∫
R+2

q̄2dq̄2

(2π)2

q̄3dq̄3

(2π)2 Φ(−q̄2,−q̄3) (84)

where we have kept the order of processes 1 → 3, 2 → 2 and 3 → 1, Tq̄ is the triangle {(q̄′1, q̄
′
2) ∈ R+2 | q̄′1 + q̄′2 ≤ q̄}

and, as before, the tilde on Σq̄ indicates a division by kBT ϵ2. One and the same function is involved in the integrand

43. The verification is facilitated by the following result: according to our Landau prescription, each diagrammatic contribution to the Matsubara
sums (54,63) is given by σ/

∏
j(ζ − ζ j) with σ = s( f1 f2 − f3 f4), where (i) the global sign s is the product of the orientations si of the virtual phonon

lines (indeed, if a virtual phonon goes back in time, its energy appears with a plus sign in the denominator in the corresponding (ζ − ζ j) factor, so
it contributes through the second sum of (80) and a global minus sign must be included), (ii) each fk is the product of the bosonic amplification
factors of the lines connected to the vertex k (the line i contributes to fk by a factor n̄εi if it goes towards the vertex, or by a factor 1 + n̄εi if it goes
away from it, which is written si(1+ n̄siεi ) if the line is to the right of the vertex and sin̄siεi if it is to the left), excluding, however, external lines and
virtual phonon lines, whose occupation numbers do not appear in the prescription (79,80). Diagram vertices are numbered from left to right; in the
case of bridge diagrams, the degeneracy of internal vertex numbering is lifted by rotating the vertical phonon line by a small angle to the left (type
I, effective orientation s5) or to the right (type II, effective orientation −s5). One thus finds, all signs factorized, σB = s1 s2 s3 s4 s5[(1 + n̄s1ε1 )(1 +
n̄s3ε3 )(1 + n̄s4ε4 ) − n̄s1ε1 n̄s3ε3 n̄s4ε4 ] for inner-loop diagrams (s = s2 s5), σPI = s1 s2 s3 s4 s5[(1 + n̄s2ε2 )(1 + n̄s3ε3 )(1 + n̄s5ε5 ) − n̄s2ε2 n̄s3ε3 n̄s5ε5 ] and
σPII = s1 s2 s3 s4(−s5)[(1 + n̄s1ε1 )(1 + n̄s4ε4 )(1 + n̄−s5ε5 ) − n̄s1ε1 n̄s4ε4 n̄−s5ε5 ] for bridge diagrams (s = s1 s4 for type I, s = s2 s3 for type II). We then
find exactly the simplified forms (54,63) if we use energy conservation at the second vertex, respectively s2ε2 = s3ε3 + s4ε4, s1ε1 = s3ε3 + s5ε5
and s2ε2 = s4ε4 + (−s5)ε5, through the identity n̄a+b = n̄an̄b/(1 + n̄a + n̄b), and the equality s2 = s5 in the inner-loop diagrams.
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B1 all the squares of 1→ 3 PI
1 all crossed terms of 1→ 3 PII

1 3rd term × 4th term of 2→ 2
B2 squares of 3rd and 4th terms of 2→ 2 PI

2 1st term × 3rd term of 2→ 2 PII
2 3rd term × 5th term of 2→ 2

B3 2nd term × 3rd term of 2→ 2 PI
3 1st term × 4th term of 2→ 2 PII

3 2nd term × 4th term of 2→ 2
B4 4th term × 5th term of 2→ 2 PI

4 1st term × 2nd term of 2→ 2 PII
4 1st term × 3rd term of 3→ 1

B5 squares of 2nd and 5th terms of 2→ 2 PI
5 2nd term × 3rd term of 3→ 1 PII

5 2nd term × 5th term of 2→ 2
B6 square of 1st term of 3→ 1 PI

6 1st term × 5th term of 2→ 2 PII
6 1st term × 2nd term of 3→ 1

B7 square of 1st term of 2→ 2
B8 squares of 2nd and 3rd terms of 3→ 1

Table 1: In the calculation of the self-energy at fourth-order in H3, correspondence between the Feynman diagrams in Figure 6 and the square or
crossed terms (double products) of the quantities A2

i→f(q, z) involved in Landau prescription (79); the various terms of the Ai→f(q, z) transition
amplitudes referred to are those of equations (81,82,83) written in that order. For bridge diagrams, it was necessary to distinguish between type I
and type II, as in (63). The correspondence holds after integration on the wave vectors as in (79), which makes, for example, the squares of each of
the terms of (81), which differ by a permutation of q′j, or the double products of 2nd and 4th terms and 5th and 3rd terms of (82), which are mapped
one onto the other by exchange of q′1 and q′2, give the same contribution.

of the n→ n′ contributions, only the integration domain changes with the process under consideration: 44

Φ(q̄′1, q̄
′
2) =

1
2

q̄
(

9(1 + Λ)2

8ρξ2

)2

q̄′1q̄′2(q̄′1 + q̄′2 − q̄)[(1 + n̄lin
q′1
+ n̄lin

q′2
)n̄lin

q′1+q′2−q − n̄lin
q′1

n̄lin
q′2

]

×

∫
R

dθ̃1

∫
R

dθ̃2

 q̄′1+q̄′2

ζ̃+q̄(q̄′1+q̄′2)(q̄′1+q̄′2−q̄)
[

(q̄′1 θ̃1+q̄′2 θ̃2)2

2(q̄′1+q̄′2−q̄)2(q̄′1+q̄′2)2
−

3γ
8

] + q̄−q̄′1

ζ̃+q̄q̄′1(q̄−q̄′1)
[
−

θ̃21
2(q̄′1−q̄)2

+
3γ
8

] + q̄−q̄′2

ζ̃+q̄q̄′2(q̄−q̄′2)
[
−

θ̃22
2(q̄′2−q̄)2

+
3γ
8

]


2

ζ̃ −
q̄′1(q̄′2−q̄)θ̃2

1+q̄′2(q̄′1−q̄)θ̃2
2−2q̄′1q̄′2 θ̃1 θ̃2

2(q̄′1+q̄′2−q̄) +
3γ
8 (q̄′1 + q̄′2)(q̄′1 − q̄)(q̄′2 − q̄)

(85)

4.3. Failure of order four in the limit ϵ = kBT/mc2 → 0
An unexpected divergence. As a first simple application of the expansion of the self-energy to order four in H3, we
had decided to calculate Σ̃(4,2)

q̄ (i0+) numerically 45 to see if, through a better approximation of Σq(i0+) in equation (8),
this would bring the pole approximation closer to the numerical results by reducing the deviation in Figure 2d. To
our surprise, we discovered that Σ̃q̄

(4,2)(iδ) diverges as 1/iδ when δ → 0+! We then confirmed this result analytically,
showing that 46

Σ̃
(4,2)
q̄ (ζ̃) ∼

ζ̃→0

−2
3π2γζ̃

(
9(1 + Λ)2

8ρξ2

)2 ∫ η

q̄
k̄dk̄

∫ η−k̄

0
k̄′dk̄′(k̄ − q̄)(q̄ + k̄′)(n̄lin

k−q − n̄lin
k )(n̄lin

k′+q − n̄lin
k′+k) (86)

This divergence comes from the angular integral K(k̄, k̄′) (68) of bridge diagram P5. Let’s analyze the behavior of
(68) in the ζ̃ → 0 limit for any orientation s j of the internal lines. If it is divergent, it is necessarily dominated by a
neighborhood of the cancellation locus of the integrand denominator in the (θ̃, θ̃′) plane for ζ̃ = 0. As the curvature
parameter γ is > 0, this locus is the union of the two vertical lines θ̃ = ε(−AP

1 /BP
1 )1/2 (ε = ±1) where the first

factor in the denominator vanishes, the two horizontal lines θ̃′ = ε′(−AP
2 /BP

2 )1/2 (ε′ = ±1) where the second factor
vanishes, and the conic making the third factor vanish. The unfortunate thing is that the conic always passes through
the intersection points Pε,ε′ ≡ (ε(−AP

1 /BP
1 )1/2, ε′(−AP

2 /BP
2 )1/2) of the horizontal and vertical lines, whatever the wave

numbers k̄, k̄′ and q̄, on the sole condition that εε′ = s2s4. This follows from the identity on the coefficients (69,70):

4AP
1 AP

2 BP
1 BP

2 (BP
3 )2 = [AP

2 BP
1 (BP

2 + BP
3 ) + AP

1 BP
2 BP

3 − AP
3 BP

1 BP
2 ]2 (87)

44. As far as the bosonic factors are concerned, this is shown by making use of the relation n̄lin
−k = −(1 + n̄lin

k ), ∀k ∈ R∗.
45. The angular integrals are calculated analytically, only the integration over the wavenumbers is done by computer.
46. To facilitate the calculation of angular integrals, we have established (86) first in the case where ζ̃ → 0 by positive imaginary parts, then

extended to the case Im ζ̃ < 0 as in footnote 27.
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Since the angular integral is two-dimensional, a possible divergent part Kdiv(k̄, k̄′) of K(k̄, k̄′) can only come from a
small neighborhood of the triple intersection points Ps2,s4 and P−s2,−s4 , where we replace each factor in the denominator
by its linear approximation in τ = θ̃ − ε(−AP

1 /BP
1 )1/2 and τ′ = θ̃′ − ε′(−AP

2 /BP
2 )1/2. This leaves

Kdiv(k̄, k̄′) =
∫
R2

2dτdτ′

[ζ̃ − ( 3γ
4 )1/2s1q̄k̄τ][ζ̃ − ( 3γ

4 )1/2s3q̄k̄′τ′]{ζ̃ − ( 3γ
4 )1/2s3k̄′[s1k̄τ + (q̄ − s1k̄)τ′]}

= −
8π2(1 − s2)(1 − s1s3)
3γζ̃q̄k̄k̄′(s1k̄ − s3k̄′)

(88)
where we have been able to extend the integral to the whole R2 since it converges to infinity, and have been able to
restrict ourselves to the point Ps2,s4 (at the cost of adding a global factor 2) by parity invariance (θ̃, θ̃′)→ (−θ̃,−θ̃′). In
the right-hand side of (88), we have explicitly calculated the integral over τ′ and then over τ by the residue method (the
integration path must be closed by a semicircle at infinity in the upper or lower half-plane containing the minimum
number of poles in view of constraints (71)). The divergent part is therefore non-zero only if s2 = s1s3 = −1, i.e. if
the lower left branch of the bridge loop is oriented to the left and the two upper branches have opposite orientations,
which selects as announced diagram P5 in Figure 6. Inserting the corresponding value of Kdiv(k̄, k̄′) into (67) yields
equation (86). The same technique applied to type I contribution of bridge diagrams leads in (66) to a divergent part
of the form 47 48

Jdiv(k̄, k̄′) =
∫
R2

2dτdτ′

[ζ̃ − ( 3γ
4 )1/2s1q̄k̄τ][ζ̃ − ( 3γ

4 )1/2s3q̄k̄′τ′]{ζ̃ − ( 3γ
4 )1/2s1k̄[(q̄ − s3k̄′)τ + s3k̄′τ′]}

=
8π2(1 − s1)(1 − s2s4)
3γζ̃q̄k̄k̄′(s1k̄ − s3k̄′)

(89)
and concludes that there is no divergence (to have Jdiv , 0, the upper left branch of the bridge loop would have to be
oriented to the left, and the two lower branches would have to be of opposite orientations, which does not occur in
Figure 6).

Physical implications. From the expansion of the self-energy to order four in H3, and still to leading order (two) in
ϵ, we form a new approximation to the Green’s function,

G̃
(≤4,2)
q̄ (ζ̃) =

1

ζ̃ − Σ̃(2,2)
q̄ (ζ̃) − Σ̃(4,2)

q̄ (ζ̃)
(90)

One might think that it is more accurate and performs better than the one in section 3. Unfortunately, because of the
divergence (86), this is not the case: in the weakly interacting regime, which is the most favorable, it has a pole ζ̃nϕ

q̄ in
the upper half-plane (and its complex conjugate in the lower half-plane), in the absence, it should be pointed out, of
any analytic continuation, hence the exponent nϕ (“non physical”). This violates the fundamental analyticity property
of the Green’s function on C \ R [7], and leads, for example, to a signal diverging exponentially in time in (6) if path
C+ passes above ζ̃nϕ

q̄ , or not starting at one if it passes below. To show the existence of this pole, let’s reduce the
implicit equation

ζ̃
nϕ
q̄ = Σ̃

(2,2)
q̄ (ζ̃nϕ

q̄ ) + Σ̃(4,2)
q̄ (ζ̃nϕ

q̄ ) (91)

to its leading order, assuming that ζ̃nϕ
q̄ tends to zero as (ρξ2)−1 (by positive imaginary parts). Since Σ̃(2,2)

q̄ (ζ̃) is already
of order one in (ρξ2)−1, and is a derivable function of ζ̃ at i0+ (see Appendix A), we can replace it by its value at
this point. In the case of Σ̃(4,2)

q̄ (ζ̃), we keep its divergent part (86), as the second-order prefactor (ρξ2)−2 it contains
is promoted to first order by division by ζ̃, but we neglect its regular part, of second-order near i0+. By making the
universalizing change of variables (41,42,43) as in section 3, we are left with

ζ̌
nϕ
q̄ = Σ̌

(2,2)
q̄ (i0+) −

(2/q̄2)
∫ η

q̄ k̄ dk̄
∫ η−k̄

0 k̄′dk̄′(k̄ − q̄)(k̄′ + q̄)(n̄lin
k−q − n̄lin

k )(n̄lin
k′+q − n̄lin

k′+k)

ζ̌
nϕ
q̄

(92)

47. In fact, the coefficients also satisfy the relationship obtained by exchanging indices 1 and 2 and replacing index 3 by index 4 in (87).
48. In the case of inner-loop diagrams, the existence of a triple nodal point is less surprising since the denominator of (58) comprises a squared

trinomial. In fact, there are four of them, playing equivalent roles. For the sign choices ε = s1 s2 and ε′ = s2 s3 s4, the coefficients of τ and τ′ in the
linearized forms are all negative; setting them to −1 and taking ζ̃ = iδ to simplify, we get

∫
[−1,1]2 4dτdτ′/[(iδ− τ)2(iδ− τ− τ′)], which is O(1) when

δ→ 0+.
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where the first term in the right-hand side is given in (114). Since the integral in the numerator is > 0, equation (92) on
ζ̌

nϕ
q̄ has a pure imaginary solution in the upper half-plane. 49 For the sake of completeness, let’s point out that Σ̃(4,2)

q̄ (ζ̃)
has another linear divergence on the real axis, at ζ̃0 = −3γq̄3/32, 50 as shown by Appendix D, which is less damaging
as it does not imply the existence of a non-physical pole of the Green’s function in the weakly interacting limit (it
suffices to have |Σ̃(2,2)

q̄ (i0+)|≪ |Re ζ̃0| for this divergence to have little effect on signal damping in its half-width).

Applicability of order four. Does the appearance of a non-physical pole force us to question the validity of the di-
agrammatic expansion and, by extension, that of the many-body Green’s function method? No. The theory was
intended to be used in the (ρξ2)−1 → 0 weakly interacting limit at fixed reduced temperature ϵ = kBT/mc2. However,
we took the limit ϵ → 0 with a fixed order of expansion in (ρξ2)−1, which fails in dimension d = 2. Let’s show that
everything is fine, i.e. the non-physical pole disappears, when ρξ2ϵ2 is large enough (at fixed q̄).

To this end, let’s see how the local analysis leading to (88) is modified when ϵ is small but not infinitesimal, by
restricting ourselves directly to diagram P5, i.e. taking s1 = s4 = s5 = 1, s2 = s3 = −1. If ζ̃ = 0, type II energy
denominator in (63), which is also that of (88), is written (−ζ1)(−ζ2)(−ζ3), where the energy defects ζi are those in
equation (64). The first factor −ζ1 = −(εk − εk−q − εq) is a function of the single angle θ = ϵθ̃ between q and k, and
continues to vanish on two vertical lines in the plane (θ̃, θ̃′), at slightly modified abscissas, which negligibly changes
(by a factor 1 + O(ϵ)2) the coefficient of τ in (88); the second factor −ζ2 = −(−εk′ + εq+k′ − εq) is a function of the
single angle θ′ = ϵθ̃′ between q and k′, and continues to vanish on two horizontal lines, slightly displaced, with the
same negligible consequences on the coefficient of τ′ in (88). On the other hand, the cancellation locus of the third
factor, namely −ζ3 = −(εk + εq+k′ − εk+k′ − εq), is no longer exactly a conic in the (θ̃, θ̃′) plane and now passes slightly
to the side of the intersection points P−1,1 and P1,−1 of the horizontal and vertical lines: this changes very slightly the
coefficients of the linear combination of τ and τ′ in (88), but above all adds, next to ζ̃, the now non-zero value of −ζ̃3
in P−1,1:

(−ζ̃3)P−1,1 ∼
ϵ→0
−

27
64
γ2ϵ2k̄k̄′(k̄ − q̄)(k̄ + k̄′)(k̄′ + q̄) (93)

We recalculate the right-hand side of (88) accordingly:

KP5
div(k̄, k̄′) = −

32π2

3γq̄k̄k̄′(k̄ + k̄′)
1

ζ̃ − 27
64γ

2ϵ2q̄k̄k̄′(k̄ − q̄)(k̄′ + q̄)
(94)

The new equation on the non-physical pole

ζ̌
nϕ
q̄ = Σ̌

(2,2)
q̄ (i0+) −

2
q̄2

∫ η

q̄
k̄ dk̄

∫ η−k̄

0
k̄′dk̄′

(k̄ − q̄)(k̄′ + q̄)(n̄lin
k−q − n̄lin

k )(n̄lin
k′+q − n̄lin

k′+k)

ζ̌
nϕ
q̄ −

9
8γuϵ2k̄k̄′(k̄ − q̄)(k̄′ + q̄)

(95)

ceases to have a solution in the upper half-plane when γuϵ2 > h(q̄), where u is the universal parameter (41) and h(q̄)
is a function exclusively of q̄ (and of the cut-off η if it is not sent to infinity in quantum theory), as can be seen by
formally taking the limit γuϵ2 → +∞ in (95). For the classical field, we find numerically that h(q̄) is a decreasing
function of q̄; the problem of applicability of fourth-order theory for small values of ϵ therefore remains in the limit
q̄ → 0. 51 To see this more simply, we can evaluate Σ̌(4)

q̄ (i0+) (fourth-order in H3 contribution considered at all orders

49. Let us set ζ̌nϕ
q̄ = iy. Then (92) is written as y = −2B+ A/y where the coefficients A and B are real > 0. The resulting second-degree equation

on y has one (and only one) positive root, y0 = A/[(A+ B2)1/2 + B]. When q̄→ 0, B has a finite, non-zero limit in view of (114), then A diverges as
1/q̄, so that ζ̌nϕ

q̄ diverges as q̄−1/2 and ζ̃nϕ
q̄ tends to zero as q̄1/2. Thus, condition Im ζ̃

nϕ
q̄ ≪ |Σ̃

(2,2)
q̄ (i0+)| = O(q̄), which makes the non-physical pole

without effect on the signal in its time half-width, cannot be satisfied at wavenumber q̄ ≲ 1. It can be satisfied at large wavenumber q̄ ≫ 1, where
B ≈ q̄2 in view of (114) and A ∼ 2 exp(−q̄).

50. Note that ζ̃0 is also the branch point of Σ̃(2,2)
q̄ (ζ̃), see section 3.1 and footnote 31.

51. For the classical field (η = 1), we have the equivalent h(q̄) ∼ 8
9 (π2/2q̄)4/3 when q̄ → 0 (in practice q̄1/3 ≪ 1). This is obtained by writing

the right-hand side of (95) to leading order in q̄ (in particular, we replace q̄ by zero in the first integration bound and in the denominator of the
integrand, and replace the numerator by its linear approximation in q̄), then showing that the double integral is dominated by a neighborhood of
(k̄, k̄′) = (0, 0) of radius h(q̄)−1/4 ≪ 1 when q̄ → 0, which allows us to replace the upper integration bounds by +∞. The result is an analytically
calculable double integral and the equation ζ̌nϕ

q̄ = −i + (1 + i)π2/[2q̄( 9
8γuϵ2)3/4(ζ̌nϕ

q̄ )1/4]. It remains to express the fact that the non-physical pole
has a zero imaginary part when it disappears.
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in ϵ) in the limit ϵ → 0. All we need to do is replace ζ̌nϕ
q̄ by i0+ in the double integral in the right-hand side of (95),

which we can then calculate explicitly for the quantum field (cutoff η→ +∞):

Σ̌
(4)
q̄ (i0+) ∼

ϵ→0

16g2(e−q̄)
9γuϵ2q̄2 hence Σ

(4)
q̄ (i0+) ∼

ϵ→0
kBT

[
(1 + Λ)2

γ3/2ρξ2

]2 2g2(e−q̄)
π2q̄

(96)

At low temperature ϵ ≪ 1, the fourth order in H3 (96) is therefore a small correction to the second order (114) only if
γuϵ2 is much larger than a certain function of q̄, namely 1/q̄2 at low q̄. 52

Conclusion. At a fixed reduced wave number q̄ of the phonon mode whose damping is being studied, the condition
for the applicability of diagrammatic theory at order four in H3 is not only that the universal parameter u is large
enough (the expected weakly interacting regime) but also that the product γuϵ2 is large enough. The perturbative
approach therefore presents a fundamental incompatibility with the limit studied in this article, the low-temperature
ϵ → 0 limit with fixed interaction strength. In particular, for the numerical simulations in Figure 2, where q̄ = 1/4
and γ = 1, we find, by following with Newton’s method the root of equation (95), written for the classical field, until
it disappears, that we should have uϵ2 > 10.6 or ρξ2 > 23.4 for ϵ = 1/2 and ρξ2 > 52.6 for ϵ = 1/3. However, ρξ2 is
at most 10 in Figure 2; the fourth-order theory developed in this section is therefore inapplicable.

5. Nonperturbative theories in H3

As we saw in section 4, the theory at fourth order in H3 is not usable in dimension d = 2 in the low-temperature
limit ϵ = kBT/mc2 → 0. To account for the discrepancy between the theory at second order in H3 and simulations
on the decay time at 1/e of the phonon mode q and on the real part of the associated signal (6) in the weakly
interacting regime (ρξ2)−1 ≪ 1, see figures 1d and 2d, we propose here a non-perturbative theory guided by physical
considerations. In brief, we omit the finite part and we regularize the divergent part of the fourth-order self-energy
by giving a finite lifetime to the so-called virtual (or intermediate) phonons of four-phonon collisional processes;
this brings out a contribution that turns out to be second-order in H3 and thus corrects the eigenenergy expression
to the leading order in the interaction strength. We present an atomic physics-type regularization in section 5.1
(virtual phonons K acquire a complex energy εK → εK + Σ

(2,2)
K (i0+) = εK − (iℏ/2)ΓK) and a condensed matter-type

regularization in section 5.2 (the frequency dependence of the self-energy Σ(2,2)
K (ζ) is retained in the complex energy

of virtual phonons). Finally, in section 5.3, we give the new form of the theory in the (ρξ2)−1 → 0 limit, common to
both regularizations and successfully replacing Fermi’s golden rule.

5.1. Atomic physics-type regularization
We learn from section 4.3 that the addition of an infinitesimal complex part i0+ to ζ = z − εq, very common in

the Green’s function method, is not sufficient to give a finite value to Σ̃(4,2)
q (ζ = 0). Collisions between phonons,

which render them unstable, naturally provide a non-infinitesimal imaginary contribution next to ζ in the energy
denominators. Following the prescription of atomic physics, we therefore give virtual phonons a complex energy

εK → εK + Σ
(2,2)
K (i0±) = εK ∓

iℏ
2
ΓK (97)

where ΓK is the phonon-K damping rate of Fermi’s golden rule to order two in ϵ, see equation (23). Virtual phonons,
by definition neither incoming nor outgoing in Landau’s formulation of section 4.2, are those whose wave vectors
are not shown in the diagrams of Figure 6. The sign to be taken in (97) in front of ΓK or in the argument of ΣK is
the upper one if the phonon goes forward in time (internal line oriented to the right) or the lower one if the phonon
goes backward in time (internal line oriented to the left). 53 On the other hand, we don’t give a complex energy to
incoming or outgoing phonons as this would question energy conservation in the gas during collisional processes.
Consequently, there is no need to modify Σq(ζ) to order two in H3, which has no virtual phonons.

52. The result (96) does not contradict equation (86) because the order of the limits ζ̃ → 0 and ϵ → 0 is not the same.
53. In Landau’s formulation, we choose −i(ℏ/2)ΓK in the first sum of equation (80) and its opposite in the second sum, for the reasons explained

below (79) (in the second sum, the transition amplitudes are reversed in time), which leads to the same result as in the diagrammatic formulation.
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We apply procedure (97) to the divergent part of Σ̃(4,2)
q̄ , which comes from the type II contribution of diagram P5,

and omit all other contributions to Σ̃(4,2)
q̄ , which turn out to be O((ρξ2)−2) and subleading when (ρξ2)−1 → 0. 54 As

shown in Figure 6, the virtual phonons are then k2 = k−q and k3 = k′ in the notations of Figure 7. Both go backward
in time (s2 = s3 = −1), so the quantities ζ1 and ζ2 in (63), that are written ζ1 = εk−εk−q−εq and ζ2 = −εk′ +εk′+q−εq,
and the coefficients AP

1 and AP
2 in (68) are changed as follows,

ζ1 → ζ1 − i
ℏ
2
Γk−q ; ζ2 → ζ2 − i

ℏ
2
Γk′ ; AP

1 → AP
1 −

i
2
Γ̃k̄−q̄ ; AP

2 → AP
2 −

i
2
Γ̃k̄′ (98)

the order of the factors in the denominator of (68) respecting that of (63); here Γ̃K̄ = ℏΓK/kBT ϵ2 in the spirit of
equation (11). On the other hand, the quantity ζ3 does not involve any virtual phonon and remains unchanged. The
previously diverging part of the angular integral (88) becomes for Im ζ̃ > 0: 55

K
PII

5
div. reg.(k̄, k̄

′) = −
32π2

3γq̄k̄k̄′
1

ζ̃(k̄ + k̄′) + i
2 k̄′Γ̃k̄−q̄ +

i
2 (k̄ − q̄)Γ̃k̄′

(99)

After replacing K(k̄, k̄′) by (99) in (67) and adding the contribution of second order in H3, we end up with the non-
perturbative prescription for the self-energy correcting the result of section 3:

Σ̃
(2,2)
corr (q̄, ζ̃) = Σ̃(2,2)

q̄ (ζ̃) + Σ̃(4,2)
div. reg.(q̄, ζ̃) (100)

where the first contribution is that of equation (40) and the second, a regularization of the divergent part of Σ̃(4,2)
q̄ (ζ̃), is

written, again for Im ζ̌ > 0:

Σ̃
(4,2)
div. reg.(q̄, ζ̃) = −

2
3π2γ

(
9(1 + Λ)2

8ρξ2

)2 ∫ η

q̄
dk̄

∫ η−k̄

0
dk̄′

k̄k̄′(k̄ − q̄)(k̄′ + q̄)(k̄ + k̄′)
ζ̃(k̄ + k̄′) + i

2 k̄′Γ̃k̄−q̄ +
i
2 (k̄ − q̄)Γ̃k̄′

(n̄lin
k′+q − n̄lin

k′+k)(n̄lin
k−q − n̄lin

k )

(101)
By inserting function (100) into equation (12) (with ν = σ in dimension d = 2) in its classical field version, we obtain
a much better agreement with numerical simulations for the weakest interaction strength, see the orange solid line in
Figure 8a and the black solid line in Figure 8b, to be compared respectively with the black solid line in Figure 8a and
the black dashed line in Figure 8b corresponding to the uncorrected second order in H3.

5.2. Condensed matter regularization

It is well known in condensed matter physics that the complex energy of a quasiparticle in an interacting system
depends on the frequency at which it is observed, i.e. the frequency at which the response functions are measured.
This is the essence of Σ in (6). In (97), therefore, we need to replace the fixed complex energy ∓(iℏ/2)ΓK of the virtual
phonon K with a function of the integration variable ζ:

εk → εK + Σ
(2)
K (±(ζ + ∆E) − εK) (102)

where we need to take the sign + if the phonon K goes forward in time, and the sign − if it goes backward. The
quantity ∆E is obtained by reinterpreting the energy denominator in which phonon K participates in Σ(4) as that of
the free propagator of this phonon with complex energy zK = ζ + ∆E. So, if phonon K goes forward in time (sign
sK = +1 before εK in (64)), it will contribute to Σ(4) in simplified forms (54,63) through factor 1/(ζ + ∆E − εK),
which is precisely its unperturbed propagator at complex energy zK and therefore at complex energy redefined as in

54. In the absence of divergence at ζ = 0, adding an imaginary part to εK does not change the leading order of the diagram, which remains
fourth-order in H3.

55. We continue to linearize around the same triple intersection point of the cancellation loci, grouping the complex corrections with variable ζ̃,
so that in the integral in (88), we replace ζ̃ by ζ̃ + (i/2)Γ̃k̄−q̄ in the first factor and by ζ̃ + (i/2)Γ̃k̄′ in the second factor in the denominator.
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Figure 8: (a) Inverse of the decay time at 1/e of the modulus of signal s(t) (6) as a function of the wavenumber q of the modes along Ox, for the
parameters of Figure 1d, in particular (ρξ2)−1 = 0.1 (this is the weakest interaction strength in Figure 1). Black discs: numerical experiment with
ϵ = 1/2. Black dashed line: Fermi’s golden rule (34) for the classical phonon-field and in the ϵ → 0 limit. Black solid line: many-body Green’s
function method with the Σ̃(2,2)

q̄ (ζ̃) (40) self-energy (leading order in H3 and ϵ). Orange solid line: idem with the Σ̃(2,2)
corr (q̄, ζ̃) = Σ̃(2,2)

q̄ (ζ̃)+Σ̃(4,2)
div. reg.(q̄, ζ̃)

self-energy of equation (100) (we keep only the fourth-order divergent part in H3 and regularize it according to the atomic physics prescription by
giving by hand Fermi’s golden rule complex energy to the virtual phonons). Orange stars: idem with the Σ̃(4,2)

div. reg.(q̄, ζ̃) component of the self-energy

(106) obtained by a condensed matter physics-type regularization (virtual phonons K are given a complex energy Σ(2,2)
K (ζK) depending on frequency

i.e. on variable ζ in (6)). Orange dotted line: tangent at the origin (109) for the (ρξ2)−1 → 0 limit of regularized theories. All self-energies are
written in their classical field versions to allow comparison with numerics. The Γu rate used as a unit is that of equation (34) giving Γclas

q . (b) Signal
deviation from the pole approximation s(t) − spole(t) for parameters in Figure 2d, in particular q̄ = 1/4 and (ρξ2)−1 = 0.1. Curves with error bars:

numerical experiment. Dashed line: Green’s function method with self-energy Σ̃(2,2)
q̄ (ζ̃). Solid line: idem taking the self-energy Σ̃(2,2)

corr (q̄, ζ̃) from

equation (100). Dotted line: idem using expression (106) for the Σ̃(4,2)
div. reg.(q̄, ζ̃) component of self-energy Σ̃(2,2)

q̄ (ζ̃). The real part of the signal is in
black, the imaginary part in red.

(7) ζK = zK − εK. We therefore propose to replace it by the Green’s function (6) of phonon K written as in (7), with
ΣK calculated to order two in H3:

1
ζ + ∆E − εK

→
1

ζ + ∆E − εK − Σ
(2)
K (ζ + ∆E − εK)

(103)

which explains the substitution (102). If the virtual phonon goes backward in time (sign sK = −1), we reduce to the
previous case through the chain of transformations

1
ζ + ∆E + εK

= −
1

−(ζ + ∆E) − εK
−→ −

1

−(ζ + ∆E) − εK − Σ
(2)
K (−(ζ + ∆E)−εK)

=
1

ζ + ∆E + εK + Σ
(2)
K (−(ζ + ∆E)−εK)

(104)
again in accordance with (102). In practice, as in section 5.1, we keep only the divergent part of Σ̃(4,2)

q̄ (coming from
the type II contribution of diagram P5), in which the virtual phonons both go backward in time and are of wave
vector K = k − q (with ∆E = εq − εk so that ζ − ζ1 = ζ + ∆E + εk−q) or K = k′ (with ∆E = εq − εk′+q so that
ζ − ζ2 = ζ + ∆E + εk′ ). After regularization, the divergent part (88) of the angular integral becomes

K
PII

5
div. reg.(k̄, k̄

′) =
∫
R2

2dτdτ′

[ζ̃ − ατ + Σ̃(2,2)
k̄−q̄

(−ζ̃ + ατ)][ζ̃ − α′τ′ + Σ̃(2,2)
k̄′

(−ζ̃ + α′τ′)](ζ̃ − βτ − β′τ′)
(105)

where the coefficients are those of τ and τ′ in the integral in (88): α = (3γ/4)1/2q̄k̄, α′ = −(3γ/4)1/2q̄k̄′, β =
−(3γ/4)1/2k̄k̄′, β′ = (3γ/4)1/2(k̄ − q̄)k̄′. As functions Σ̃(2,2) in the denominator of (105) have branch cuts in the
complex plane, see section 3.2, Cauchy’s theorem no longer allows us to calculate the double integral and we can
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only integrate once, for example over τ′, restricting ourselves as usual to Im ζ̃ > 0. 56 By inserting the corresponding
contribution to K(k̄, k̄′) in (67), we end up with the corrected self-energy of the same form as (100), now with

Σ̃
(4,2)
div. reg.(q̄, ζ̃) = q̄

(
9(1 + Λ)2

8ρξ2

)2

×

∫ η

q̄

k̄dk̄
(2π)2

∫ η−k̄

0

k̄′dk̄′

(2π)2

∫ +∞

−∞

dτ
(−4iπ/β′)k̄k̄′(k̄ − q̄)(k̄′ + q̄)(k̄ + k̄′)(n̄lin

k′+q − n̄lin
k′+k)(n̄lin

k−q − n̄lin
k )[

ζ̃ − ατ + Σ̃(2,2)
k̄−q̄

(−ζ̃ + ατ)
] [
−

β
β′

(ζ̃ − α′τ) + Σ̃(2,2)
k̄′

(
β
β′

(ζ̃ − α′τ)
)] (106)

knowing that α′ − β′ = β. The results of this approach are shown as orange stars in Fig. 8a and as red and black dotted
lines in Fig. 8b. 57 The two regularization procedures, atomic physics or condensed matter, ultimately give results
close to each other and close to the simulations, which reassures us as to their validity.

5.3. Regularized theory in the weakly interacting limit
Here we calculate the limit of regularized theories when (ρξ2)−1 → 0. To do this, we scale variable ζ̃ and functions

Σ̃ to their characteristic values ∝ (ρξ2)−1 by means of changes of variables (42) and (43), marked with a Czech accent
(a factor q̄ has been taken out in view of taking the q̄ → 0 limit, and all parameters are collected together in the
quantity u ∝ ρξ2 of equation (41)), then we take the u → +∞ limit at fixed ζ̌ in equations (100) and (101). Contrary
to what happened at uncorrected second order in H3 (43), there remains a dependency in ζ̌: 58

Σ̌
(2,2)
corr (q̄, ζ̌)

Im ζ̌ > 0
−→

u→+∞
Σ̌

(2,2)
corr∞(q̄, ζ̌) ≡ −

i
2
Γ̌q̄ −

2
q̄

∫ η

q̄
dk̄

∫ η−k̄

0
dk̄′

k̄k̄′(k̄ − q̄)(k̄′ + q̄)(k̄ + k̄′)(n̄lin
k′+q − n̄lin

k′+k)(n̄lin
k−q − n̄lin

k )

ζ̌q̄(k̄ + k̄′) + i
2 k̄′(k̄ − q̄)

(
Γ̌k̄−q̄ + Γ̌k̄′

)
(107)

Here, Γ̌K̄ = 2iΣ̌(2,2)
K̄

(i0+) is the golden rule damping rate at leading order in ϵ and scaled as in (42), Γ̌K̄ = 8uΓK/(3γϵ2ℏcK);
we have Γ̌K̄ = Γ̌

clas
K̄
= 2η − K̄ given (34) in the case of the classical field and Γ̌K̄ = 4ζ(2) + K̄2/6 given (23) or (114)

in the case of the infinite cut-off quantum field. Starting from the regularized form (106), we obtain exactly the same
expression as (107). 59 Remarkably, signal (6) associated with the self-energy (107) takes real values at all times. 60

When (ρξ2)−1 → 0, therefore, there is persistent disagreement with Fermi’s golden rule on the real part of the signal,
as predicted in Figure 8b, but not on the imaginary part, of zero limit in both theories. Figure 9 shows, as a function of
the reduced wavenumber q̄, the decay time at 1/e of the phonon mode q deduced from (107) for quantum field theory
(cutoff η→ +∞). This is our prediction to leading order in temperature and interaction strength for a two-dimensional
superfluid, which replaces and corrects that of Fermi’s golden rule shown as a dashed line in Fig. 9. Three simple

56. The denominator of the integrand in (105) has a branch cut with respect to variable τ only in the strict upper half-plane because Im(ζ̃/α) > 0,
and with respect to variable τ′ only in the strict lower half-plane because Im(ζ̃/α′) < 0. We can therefore integrate on τ′ by the residue theorem,
closing the integration path with a large semicircle at infinity in the upper half-plane; this path necessarily surrounds the pole τ′0 = (ζ̃ − βτ)/β′

arising from the third factor in the denominator of (105) because Im τ′0 > 0. The integrand of the result in (106) this time has a branch cut with
respect to variable τ both in the upper half-plane (Im(ζ̃/α) > 0) and in the lower half-plane (Im(ζ̃/α′) < 0), which prevents the integration path
from being closed only at infinity.

57. Getting them is rather cumbersome, since each evaluation of functions Σ̃(2,2)
K̄

requires numerical integration over a wavenumber, as in (40).
We have discretized the reduced wavenumbers with a step of 1/64 (results in the figure), but we have verified that a step of 1/96 leads to very
similar results.

58. In two steps, we show that the Green’s function associated with self-energy (107) has, as it should, no pole in the upper complex half-plane.
First, we establish the upper bound Im Σ̌(2,2)

corr∞(q̄, ζ̌) ≤ Im Σ̌(2,2)
corr∞(q̄, 0) ∀ζ̌ ∈ C, Im ζ̌ ≥ 0; to this end, we write the denominator of the integrand in

(107) in the form x + iy, with x ∈ R and y ∈ R+, then use the chain Im[−1/(x + iy)] = y/(x2 + y2) ≤ 1/y ≤ 2/[k̄′(k̄ − q̄)(Γ̌k̄−q̄ + Γ̌k̄′ )]. In a second

step, we check that Im Σ̌(2,2)
corr∞(q̄, 0) < 0 ∀q̄ > 0. It follows that equation ζ̌ = Σ̌(2,2)

corr∞(q̄, ζ̌) cannot have a solution ζ̌ with a positive imaginary part
without leading to the contradiction Im ζ̌ < 0.

59. Variable changes ζ̃ = (3γq̄/8u)ζ̌ and τ = (3γq̄/8u)τ̌ are carried out simultaneously, and the limit u → +∞ is taken under the
integral sign at fixed τ̌. Then the branch cuts of functions Σ̃(2,2)

K̄
are rejected at infinity, these functions are replaced by constants, e.g.

limu→+∞(8u/3γq̄)Σ̃(2,2)
k̄−q̄

((3γq̄/8u)(ατ̌ − ζ̌)) = [(k̄ − q̄)/q̄]Σ̌(2,2)
k̄−q̄

(i0−) = [(k̄ − q̄)/q̄](i/2)Γ̌k̄−q̄, and the integral over τ̌ can be calculated by Cauchy’s
formula. We find (107).

60. This results from the property Σ̌(ζ̌)∗ = −Σ̌(−ζ̌∗), ∀ζ̌ ∈ C\ iR−, satisfied by function Σ̌(2,2)
corr∞(q̄, ζ̌) (if we extend the expression in the right-hand

side as it is to the case Im ζ̌ < 0).
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Figure 9: In the low-temperature limit ϵ = kBT/mc2 → 0 then weakly
interacting limit (ρξ2)−1 → 0 for the quantum field of infinite cut-off η,
inverse of the decay time at 1/e of signal (6) for the phonon mode q in
a two-dimensional superfluid, as a function of the reduced wavenumber
q̄. Solid line: prediction from non-perturbative theories in section 5,
corresponding to the corrected self-energy (107) in section 5.3. Dotted
line: slope at origin (109). Dashed line: golden rule (23). The rate Γu
serving as unit is given by (34).

analytical predictions can be drawn from equation (107). Firstly, in the q̄ → 0 limit, the ζ̌ dependence disappears in
the right-hand side of (107) and signal (6) becomes purely exponential, s(t) = exp(−Ať) with

A =
1
2
Γ̌0 + 4

∫ η

0
dk̄

∫ η−k̄

0
dk̄′

k̄k̄′(k̄ + k̄′)(n̄lin
k′ − n̄lin

k′+k) d
dk̄ n̄lin

k

Γ̌k̄ + Γ̌k̄′
=


[1 − 4(4 ln 4

3 − 1)]η ≃ 0.4 η (classical field)

0.988 618 . . . (quantum field)
(108)

If we leave the rescaled time ť (42), which brings out the quantity Γu already introduced in (34) since ť = q̄Γut/2, we
find that this corresponds to a corrected damping rate tending towards zero linearly in q̄ :

Γcorr∞
q ∼

q̄→0
AΓuq̄ = A

9kBT ϵ2(1 + Λ)2

4πℏ(3γ)1/2ρξ2 q̄ ∼


A
η
Γclas

q ≃ 0.4Γclas
q (classical field)

A
2ζ(2)

Γq ≃ 0.3Γq (quantum field)
(109)

shown as a dotted line in Figure 9 for the quantum field and in Figure 8a for the classical field. Here, Γclas
q and Γq are

the damping rates of the golden rule for the classical field (34) and for the quantum field (23). This shows that the
slope at the origin of the corrected rate is considerably smaller than that of the golden rule. Then, in the q̄→ +∞ limit,
of course for the infinite cut-off quantum field, the integral in the right-hand side of (107) tends uniformly towards
zero in the upper half-plane and the signal decay becomes purely exponential, with a rate equivalent to that of the
golden rule: 61

Γcorr∞
q ∼

q̄→+∞
Γq ∼

q̄→+∞

3kBT ϵ2(1 + Λ)2

16π(3γ)1/2ρξ2 q̄3 (110)

Finally, in the limit of long times ť → +∞ at fixed q̄, the signal decay is not exponential but power-law up to a
logarithm, taking the same form for the classical and quantum fields, as shown in Appendix E:

s(2,2)
corr∞(t) ∼

ť→+∞

q̄4(dn̄lin
q /dq̄) ln(ť2)[

Γ̌0Σ̌
(2,2)
corr∞(q̄, 0)ť

]2 (111)

For q̄ = 1/4, we find numerically from the self-energy (107) that the asymptotic behavior (111) is not reached before a
reduced time Γqt/2 = 100, for both the quantum and classical fields, which goes far beyond our simulations in Fig. 8b
and prevents us from testing it.

61. This result is also that of zero temperature, which explains why the right-hand side of (110) is in fact independent of temperature when we
return to the non-scaled wave number q. As it results from the effective Hamiltonian of quantum hydrodynamics, it is then only valid at the leading
order in qξ, i.e. in the linear part of the acoustic branch.
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6. Conclusion

In this work, we have considered the phonon gas of a two-dimensional superfluid described by quantum hydro-
dynamics, an effective low-energy theory, with cubic and quartic coupling between phonons for an acoustic branch
εq which is a convex function of wavenumber q. Two important parameters characterize the system: the reduced
temperature ϵ = kBT/mc2 and the interaction strength (ρξ2)−1 between superfluid particles, where c is the speed of
sound and ρ the density of the superfluid in the ground state, m the mass of a particle and ξ = ℏ/mc the relaxation
length. In this system, we have studied the damping of the phonon mode q excited by a Bragg pulse in the linear
response and collisionless regime, limiting ourselves to the leading order in ϵ as going beyond this would make no
sense with our model Hamiltonian.

A first unexpected result is that in dimension two, taking the low-temperature limit, ϵ → 0 at fixed (ρξ2)−1, is not
enough to bring the phonon gas into the weak-coupling regime. This defeats the pole approximation, Fermi’s golden
rule and the assumption of exponential decay. Indeed, as we show by a scaling-law reasoning, the self-energy Σ(q, z)
has a typical value and a scale of variation in energy in the vicinity of z = εq both of order kBT ϵ2, whereas it would
be necessary to have a typical value much lower than the scale of variation to be able to apply the golden rule (as is
the case in dimension three where the scale of variation remains kBT ϵ2 but the typical value is lowered to kBT ϵ4 due
to a reduction of the density of final states at low energy). This first theoretical result is confirmed by classical field
simulations.

A second unexpected result of the two-dimensional case is that, even in the weakly interacting limit (ρξ2)−1 → 0
in the superfluid, a perturbative calculation does not give access to the self-energy to the leading order in ϵ. Thus,
the calculation of Σ(q, z) at second order in the cubic phonon coupling does not reproduce the damping of mode q
observed numerically, and the fourth-order calculation exhibits (after taking the ϵ → 0 limit at fixed q̄ = ℏcq/kBT and
(ρξ2)−1) an unphysical divergence in z = εq that renders it useless.

To break this deadlock, guided by physical intuition, we give a finite lifetime to the virtual phonons (those present
only in the intermediate state of four-phonon collisional processes). This removes the divergence of the fourth-order
contribution by transforming it into a formally second-order contribution, which corrects the second-order calculation.
The regularized theory is found to be in good agreement with simulations in the weakly interacting regime. It makes
it possible to take the (ρξ2)−1 → 0 limit in the expression of Σ(q, z) to the leading order in ϵ and to propose a phonon
damping law replacing that of the golden rule. The new law is non-exponential, except in the q̄ → 0 limit where it
is characterized by the rate (109), linear in wavenumber like the golden rule but with a coefficient about three times
smaller, and in the q̄→ +∞ limit where its rate (110) reproduces that of the golden rule.
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Appendix A. Analytic continuation of Σ̌(2,2)
q̄

(ζ̌) to the lower half-plane and validity conditions of the golden rule

To analytically continuate from the upper complex half-plane to the lower half-plane expression (43) of the self-
energy Σ̌(2,2)

q̄ (ζ̌), we proceed in two steps: (i) we reduce (43) to a single integral, that of an analytic function of a
well-chosen variable x over an interval of R, and (ii) to extend this integral to Im ζ̌ < 0, we deform the integration
path on x in the complex plane and rotate the branch cuts of the corresponding analytic function. In application, we
give conditions for the validity of Fermi’s golden rule, which are necessary but not sufficient.

Reduce to a single integral. In Landau’s contribution to (43), i.e. in the second integral, we perform the change of
variable x = k̄(k̄ + q̄) or k̄ = (x + q̄2/4)1/2 − q̄/2, where x ∈ R+. In Beliaev’s contribution, the integrand is invariant by
changing k̄ to q̄ − k̄, which allows us to restrict the integration on k̄ to the interval [0, q̄/2] at the cost of multiplying
by a factor 2; we then perform the now injective change of variable x = k̄(k̄ − q̄) to k̄ = q̄/2 − (q̄2/4 + x)1/2, where
x ∈ [−q̄2/4, 0]; we use the identity n̄lin

k = −(1 + n̄lin
−k) to give the bosonic amplification factor the same structure of

difference of occupation numbers as in Landau. In both cases, we arrive at the same integrand, except that Beliaev
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Re x

Im x

•
−q̄2/4

• i0+

•
ζ̌/u

α

α − π

α − π

0

Figure 10: Graphical illustration of the method for analytically
continuating Σ̌(2,2)

q̄ (ζ̌) from the upper half-plane Im ζ̌ > 0 to the
lower half-plane Im ζ̌ < 0 using integral form (112). Red curve:
first deformation of the integration path on variable x in the com-
plex plane. Black half-lines: singularity lines of the integrand of
(112) considered as a function of x, in thick solid line for their
original position, in thick dashed line after rotation by an angle
α or α−π as shown (α = π/4 on the figure). Black discs: branch
points x0 of the corresponding (x − x0)1/2 square root functions.
Blue half-line: final integration path on x, leading to the result
sought (45).

shows a global factor (−x)1/2/(ζ̌/u − x)1/2 where Landau contains a factor x1/2/(x − ζ̌/u)1/2; however, we can give
them the common expression (x − i0+)1/2/(x − ζ̌/u)1/2 by means of the relations (−x)1/2 = i(x − i0+)1/2∀x < 0,
x1/2 = (x − i0+)1/2∀x > 0, (ζ̌/u − x)1/2 = i(x − ζ̌/u)1/2∀x ∈ R knowing that Im(ζ̌/u) > 0. We arrive at the single
integral we’re looking for:

Σ̌
(2,2)
q̄ (ζ̌) =

1
2iq̄

∫ +∞

−q̄2/4
dx

x
√

x − i0+√
x − ζ̌/u

√
x + q̄2/4

 1

e
√

x+q̄2/4−q̄/2 − 1
−

1

e
√

x+q̄2/4+q̄/2 − 1

 (112)

Extending it analytically. Integrand of (112) is an analytic function of x in the complex plane, except for the three
singularity lines resulting from the branch cuts of the three square roots involved: i0+ +R− in the numerator, ζ̌/u+R−
and −q̄2/4 + R− in the denominator, shown in black in Figure 10. 62 This allows the integration path to be deformed
at will, provided it doesn’t cross any singularity of the integrand, see the red line in Figure 10. You’d think this would
be enough to make the integrand analytic in ζ̌/u in the region between the red line and the real axis; but it’s not,
because when ζ̌/u enters this region, the (horizontal) branch cut attached to it necessarily crosses the red line. So
we have to do better, by also deforming the branch cuts of the integrand; the simplest way to do this is to introduce
the new z1/2

θ ≡ exp(iθ/2)[exp(−iθ)z]1/2 square-root determinations, parameterized by the angle θ ∈] − π, π[ by which
the original branch cut was rotated (the R− half-line being sent to exp(iθ)R−). As long as the branch cuts, in their
rotating motion, do not sweep the integration path in red, the integrand does not change on this path and the value of
the integrand is preserved. We decide to rotate the (x + q̄2/4)1/2 branch cut by an arbitrary angle α ∈]0, π/2[, and the
other two by an angle α − π ∈] − π,−π/2[ so that they are parallel but in the opposite direction to the first one, see the
dashed lines in Figure 10. Finally, we take as our final integration path the blue half-line in Figure 10, which follows
the new branch cut of (x+ q̄2/4)1/2 63 from below and which we parameterize as follows, x = exp(iα)(−v− i0+)− q̄2/4,
v ∈ R+. Then

(x + q̄2/4)1/2
α = −ieiα/2 √v ; (x − ζ̌/u)1/2

α−π = −ieiα/2[v + e−iα(q̄2/4 + ζ̌/u)]1/2 ; (x − i0+)1/2
α−π = −ieiα/2(v + e−iαq̄2/4)1/2

(113)

62. The integrand also has poles xn = 2inπ(q̄ + 2inπ), n ∈ Z∗, coming from the Bose occupation numbers (x = 0 is not a pole because of the
factor x in the numerator). Future continuous deformations of the integration path in (112), shown in red and then blue in Fig. 10, do not pass over
any of these poles under the following conditions, which are assumed to be verified in the following (they ensure that the most dangerous pole
xn=−1 remains to the left of the blue half-line at an angle α): (i) −q̄2/4 > Re x−1 = −(2π)2 i.e. q̄ < 4π, (ii) tanα > 2πq̄/[(2π)2 − q̄2/4].

63. We could close the integration path with a circular arc of radius R → +∞, of contribution → 0 since the integrand there is exponentially
small in

√
R.
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where all i0+ could be omitted without difficulty in the right-hand sides. The complex number ζ̌/u can now be made
to descend continuously into the lower half-plane, remaining constantly to the right or left of the blue half-line without
the latter being crossed by the branch cut attached to ζ̌/u: we have indeed continuated Σ̌(2,2)

q̄ (ζ̌) analytically to Im ζ̌ < 0.
It remains to set v = k̄2, k̄ ∈ R+, to arrive at the announced result (45) with ϕ = α − π ∈] − π,−π/2[.

Application. Now that we know from equation (112) that Σ̌(2,2)
q̄ (ζ̌) has no branch point at ζ̌ = 0, we can calculate its

value and derivative at ζ̌ = i0+. For its value, the simplest way is to make ζ̌ tend towards zero by positive imaginary
parts under the integral sign in form (43); we integrate over k̄ after expanding the occupation numbers in integer series
of variable exp(−k̄), which brings up Bose functions gα(z) evaluated at z = 1 or at z = exp(−q̄) (in the latter case,
they cancel out in the final result). For the derivative, the simplest way is to use the analytic continuation (45), whose
integrand shows no singularity on the integration path for ζ̌ = 0; we can then differentiate with respect to ζ̌ and take
the limit ζ̌ → 0 under the integral sign. 64 We finally obtain

Σ̌
(2,2)
q̄ (ζ̌ = i0+) =

1
i

(
q̄2

12
+ 2ζ(2)

)
;

d
dζ̌
Σ̌

(2,2)
q̄ (ζ̌ = i0+) =

1
uq̄

(
π

2
+

iq̄
4

)
(114)

The value of the function is simply a rewriting of result (23) under the effect of the change of variables in (42,43). Its
derivative is involved in a well-known validity condition of the golden rule [13], | Im(d/dζ)Σq(ζ = i0+)| ≪ 1, which is
written here as 1/(4u) ≪ 1 and imposes, unsurprisingly, u ≫ 1. A more precise condition requires that the residue Z of
the Green’s function, which appears as a factor of the exponential exp(−ζ̌q̄ ť) in the exact expression (115) of the signal
s(2,2)(t), be very close to the value one taken in the golden rule, which adds the constraint |Re(d/dζ)Σq(ζ = i0+)| ≪ 1,
here q̄ ≫ π/(2u). As shown in Figure 1d, in which u ≃ 18.14, these conditions are not sufficient. Sections 4.3 and
5 help to understand why (in essence, a singularity appears at ζ = i0+ in Σ(4)

q (ζ), the fourth-order contribution in H3,
making the present second-order calculation irrelevant in the limit ϵ → 0).

Appendix B. First deviation of the signal from the golden-rule exponential for the theory at second order in H3

Here we establish result (47) of section 3.2, valid in the weakly interacting limit u→ +∞ at fixed ť and Q = u1/2q̄
as in (46), by starting from the writing (44) of the signal. To this end, guided by Fig. 4b, we first apply the residue
theorem to the contour formed by the union of the path C+, the portions of the circle at infinity and the contour around
the branch cut −Q2/4 − ei(ϕ+π)R+: the integral of exp(−iζ̌ ť)Ǧ(2,2)

q̄ (ζ̌) on this contour is 2iπ times the residue in ζ̌ = ζ̌q̄,
the pole of the Green’s function analytically continuated to the lower half-plane by means of (45). The signal (44) can
therefore be written exactly as the sum of the contributions of the pole ζ̌q̄ and the contour:

s(2,2)(t) =
exp(−iζ̌q̄ ť)

1 − d
dζ̌
Σ̌

(2,2)
q̄↓ (ζ̌q̄)

+ eiQ2 ť/4
∫ ei(ϕ+π)(+∞)

0

dz
2iπ

(Σ̌− − Σ̌+) exp(izť)
(−Q2/4 − z − Σ̌−)(−Q2/4 − z − Σ̌+)

(115)

where the complex variable z goes in a straight line from 0 to exp[i(ϕ + π)](+∞) and we note Σ̌± ≡ Σ̌
(2,2)
q̄↓ (−Q2/4 − z +

ei(ϕ+π)i0±) the values of the analytic continuation (45) of the self-energy immediately to the left (sign +) or right (sign
−) of the branch cut. We then make use of the fundamental property 65

Σ̌
(2,2)
q̄↓ (ζ̌) − Σ̌(2,2)

q̄↓ (0)
Q fixed
=

u→+∞

eiϕ/2

iu1/2

∫ +∞

0
dK

{
(K2 − e−iϕQ2/4)1/2

[K2 − e−iϕ(ζ̌ + Q2/4)]1/2
− 1

}
+ O(1/u) (116)

64. If we stick to form (43), we can’t take the derivative under the integral sign without making a non-absolutely convergent integral appear.
We can proceed in a hybrid way after choosing an infinitesimal infrared cut κ over k̄: in form (43), limited to k̄ > κ in each contribution, we
differentiate under the integral sign and then let ζ̌ tend towards 0 ; in form (112), limited to −κq̄ < x < κq̄, we keep the exact expression of the
factor (x− i0+)1/2/(x− ζ̌/u)1/2 but expand the rest of the integrand in powers of x (zero order is in fact sufficient), and we analytically calculate the
resulting integral for ζ̌ = s + i0+, where s is a real number (if necessary in terms of hypergeometric functions) then we calculate its derivative with
respect to s at s = 0. The final result is the same.

65. The leading term is obtained by writing the difference in the left-hand side of (116) as a single integral over k̄ by means of (45), multiplying
by u1/2, then making the change of variable k̄ = K/u1/2 before taking the limit u→ +∞ under the integral sign.
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In the contribution of the contour to (115), at the leading order in u−1/2, we can thus replace in the denominator Σ̌±
by Σ̌(2,2)

q̄↓ (0) → −2iζ(2) = −iπ2/3 according to (114), and in the numerator the difference Σ̌− − Σ̌+ by its asymptotic
equivalent, which is written

Σ̌− − Σ̌+
Q fixed
∼

u→+∞

eiϕ/2

iu1/2

∫ +∞

0
dK

(
K2 − e−iϕQ2/4

)1/2
[

1
(K2 − x + i0−)1/2 −

1
(K2 − x + i0+)1/2

]
(117)

knowing that z = ei(ϕ+π)x, x > 0. The integrand in (117) is non-zero only for K < x1/2, which prompts us to
put K = x1/2 sinα, α ∈ [0, π/2], especially as this makes the square roots in the denominator disappear: we find
S contour(ť) in (48). In the implicit equation defining the pole, rewritten by setting aside its zero-order approximation,
ζ̌q̄ − Σ̌

(2,2)
q̄↓ (0) = Σ̌(2,2)

q̄↓ (ζ̌q̄) − Σ̌(2,2)
q̄↓ (0), it suffices for the right-hand side to use (116) with ζ̌ = −iπ2/3; the convenient

choice ϕ = (−π)+ (on which the result does not depend) yields δζ̌q̄ in (49). Finally, to obtain the first deviation from
one of the residue, simply differentiate (116) with respect to ζ̌ (under the integral sign in the right-hand side), replace
ζ̌ by −iπ2/3 and then take ϕ = (−π)+: one finds δŽ in (49).

Appendix C. Double Matsubara sums in the theory at fourth order in H3

Here we explicitly calculate the Matsubara sums contributing to (53,62) in section 4.1 and show how to obtain
their simplified forms (54,63) in the small-angle limit. The calculation relies on the generalization of relation (37) to
any number J of factors in the summand, which is demonstrated as in footnote 25:

∑
n∈Z

1∏J
j=1(2iπn − ε̄ j)

=

J∑
j=1

−n̄ε j∏J
k=1
k, j

(ε̄ j − ε̄k)
∀J ≥ 2 (118)

Internal-loop diagrams. Let’s write the sum appearing in (53) after outputting a factor (kBT )5 in the denominator (we
have set εk j = kBT ε̄ j) and expressing the Matsubara energies in terms of the independent variables ω = 2iπkBTn and
ω′ = 2iπkBTn′ as in equations (51,52), for a complex energy z temporarily equal to Ω = kBT Ω̄ ∈ 2iπkBTZ:

S Bi (z) = (kBT )−5
∑

n,n′∈Z

1
s1(Ω̄ − 2iπs2n) − ε̄1

1
2iπn − ε̄2

1
2iπn′ − ε̄3

1
2iπs4(s2n − s3n′) − ε̄4

1
2iπs2s5n − ε̄5

(119)

Using (37), let’s calculate the sum over n′ of the product of the two factors that depend on n′, then let’s make variable
Ω̄ disappear from the occupation numbers as in the first equality of (38). After the clever change of variable n→ s2n,
which doesn’t affect the summation domain since s2 = ±1, we’re left with

S Bi (z) = (kBT )−5
∑
n∈Z

s1s2s4s5(n̄ε3 − n̄−s3 s4ε4 )
[2iπn − (Ω̄ − s1ε̄1)](2iπn − s2ε̄2)(2iπn − s5ε̄5)[2iπn − (s3ε̄3 + s4ε̄4)]

(120)

We’ve taken out all the necessary factors to put the result into a simple form, as in the left-hand side of relation (118),
which makes this relation easy to use:

S Bi (z) = −(kBT )−2s1s2s4s5(n̄ε3 − n̄−s3 s4ε4 )
{

1
z − z2

[
n̄−s1ε1

(z − z1)(z − z3)
−

n̄s3ε3+s4ε4

(z2 − z1)(z2 − z3)

]
+

1
z1 − z3

[
n̄s2ε2

(z1 − z)(z1 − z2)
−

n̄s5ε5

(z3 − z)(z3 − z2)

] }
(121)

At this point, we have analytically continuated the result for variable z over C \ R and introduced the energies of the
three intermediate states (marked by the red vertical lines on the left-hand side of Figure 7) counted algebraically,
z1 = s1ε1 + s2ε2, z2 = s1ε1 + s3ε3 + s4ε4 and z3 = s1ε1 + s5ε5. In the case of s2 = s5, we also have ε2 = ε5 and z1 = z3,
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since k2 is then equal to k5; this reveals a division by zero in the second contribution of (121) between curly braces,
which we therefore extend by continuity with L’Hospital’s rule. After some skilful rearrangement, we arrive at: 66

S s2=s5
Bi

(z) = −(kBT )−2s1s4(n̄ε3 − n̄−s3 s4ε4 )
[

n̄−s1ε1 − n̄s2ε2

(z − z1)2(z − z2)
+

n̄s2ε2 − n̄s3ε3+s4ε4

(z2 − z1)2(z − z2)
+

n̄s2ε2 (1 + n̄s2ε2 )
kBT (z2 − z1)(z1 − z)

]
(122)

Note that the global factor (kBT )−2 in (121,122) simplifies with the factor (−kBT )2 in (53). Finally, consider the small-
angle limit ϵ → 0 in (122), in which z, z1 and z2 are written as εq+O(kBT ϵ2). Between the square brackets, the second
contribution is subleading because s3ε3 + s4ε4 = s2ε2 + z2 − z1 = s2ε2 +O(kBT ϵ2), so its numerator tends to zero; the
third is also subleading because its denominator is of order (kBT )3ϵ4 instead of (kBT )3ϵ6 like the others. We find (54).

Bridge diagrams. We proceed as before, with the same notations. The double sum in (62) is written

S Pi (z) = (kBT )−5
∑

n,n′∈Z

1
2iπn − ε̄1

1
s2(Ω̄ − 2iπs1n) − ε̄2

1
2iπn′ − ε̄3

1
s4(Ω̄ − 2iπs3n′) − ε̄4

1
2iπs5(s1n − s3n′) − ε̄5

(123)

Using relation (118) with J = 3, we calculate the sum over n′, perform a partial fraction decomposition of the result
for variable 2iπn and then make the change of variable n→ s1n, so that

S Pi (z) =
(kBT )−5s1s2s4s5

Ω̄ − s3ε̄3 − s4ε̄4

∑
n∈Z

1
(2iπn − s1ε̄1)[2iπn − (Ω̄ − s2ε̄2)]

[
n̄ε3 − n̄−s3 s5ε5

2iπn − (s3ε3 + s5ε5)
+

n̄−s3 s5ε5 − n̄−s3 s4ε4

2iπn − (Ω̄ + s5ε5 − s4ε4)

]
(124)

We use (118) again and then analytically continuate over z to C \ R; there are two terms between the square brackets
in (124), so two contributions, type I and type II in that order:

S PI
i
(z) =

(kBT )−2s1s2s4s5(n̄ε3 − n̄−s3 s5ε5 )
z2 − z

[
n̄s1ε1

(z1 − z)(z1 − z4)
+

n̄−s2ε2

(z − z1)(z − z4)
+

n̄s3ε3+s5ε5

(z4 − z1)(z4 − z)

]
(125)

S PII
i
(z) =

(kBT )−2s1s2s4s5(n̄−s3 s5ε5 − n̄−s3 s4ε4 )
z2 − z

[
n̄s1ε1

(z1 − z)(z3 − z)
+

n̄−s2ε2

(z − z1)(z3 − z1)
+

n̄s5ε5−s4ε4

(z − z3)(z1 − z3)

]
(126)

with the algebraic energies of the intermediate states marked by the red lines on the right-hand side of Figure 7,
z1 = s1ε1 + s2ε2 and z2 = s3ε3 + s4ε4 common to both types, z4 = s2ε2 + s3ε3 + s5ε5 for type I and finally z3 =

s1ε1 + s4ε4 − s5ε5 for type II. These variables are not independent since z1 + z2 = z3 + z4. It remains to take the limit of
small angles ϵ → 0, in which z = εq+O(kBT ϵ2) and z j = εq+O(kBT ϵ2), 1 ≤ j ≤ 4. Then s3ε3+s5ε5 = s1ε1+O(kBT ϵ2)
and we can, at leading order, replace n̄s3ε3+s5ε5 by n̄s1ε1 in (125); grouping by occupation number and simplifying, we
find the first contribution to the right-hand side of (63). Similarly, we replace n̄s5ε5−s4ε4 by n̄−s2ε2 at leading order in
(126), which reproduces the second contribution to (63).

Appendix D. A linear divergence of Σ̃(4,2)
q̄

(ζ̃) away from the origin

As we show in this appendix, the Σ̃(4,2)
q̄ (ζ̃) component of the self-energy at fourth-order in H3 and second-order

in ϵ, obtained by summing all the contributions (57), (65), (67) of the fourth-order diagrams in section 4.1, diverges
linearly when ζ̃ → ζ̃0 ≡ −3γq̄3/32 (here by positive imaginary parts):

Σ̃
(4,2)
q̄ (ζ̃) Im ζ̃>0

∼
ζ̃→ζ̃0

q̄3(n̄lin
q/2 + 1/2)

24iπ2γ(ζ̃ − ζ̃0)

(
9(1 + Λ)2

8ρξ2

)2 [∫ q̄/2

0
dk̄′k̄′(k̄′ − q̄/2)(n̄lin

k′ − n̄lin
k′−q/2) + 2

∫ η

q̄/2
dk̄′k̄′(k̄′ − q̄/2)(n̄lin

k′ − n̄lin
k′−q/2)

]
(127)

This results from two phenomena. (i) At a fixed reduced wavenumber k̄, the angular integral (58) in inner-loop
diagrams diverges at ζ̃ = AB

1 with exponent 3/2 because, for this value of ζ̃, the denominator of the integrand has θ̃ = 0

66. In particular, we use the identity (z1 − z2)−2(z − z2)−1 + (z1 − z2)−2(z1 − z)−1 + (z1 − z)−2(z1 − z2)−1 = (z − z1)−2(z − z2)−1.

38



as quadruple root. To see this quantitatively, we can use the identity
∫
R dθ̃/(z−θ̃2)2 = −iπ sign(Im z)/(2z3/2),∀z ∈ C\R,

with z = (ζ̃ − AB
1 )/BB

1 . (ii) This (ζ̃ − AB
1 )−3/2 divergence occurs at a position AB

1 depending on k̄, as shown in equation
(59), so it is generally washed out by integration over k̄ at fixed ζ̃ in (57), unless ζ̃ coincides with a parabolic extremum
of AB

1 (k̄) on the integration domain DB
1 . To see this, let’s choose an arbitrary reduced wavenumber k̄0 in DB

1 , let’s set
ζ̃ = w + AB

1 (k̄0) and take the limit w → 0 by positive imaginary parts in (57): the result can only diverge if the value
of the integral

σk̄0
(w) =

∫ k̄0+ε

k̄0−ε

dk̄
[w + AB

1 (k̄0) − AB
1 (k̄)]3/2

(128)

diverges in this limit, where ε > 0 is fixed. Since we can take ε to be as small as we like without changing the
conclusion, we can replace AB

1 (k̄) − AB
1 (k̄0) in (128) by its Taylor expansion in k̄0 to the non-zero leading order. If

(dAB
1 /dk̄)(k̄ = k̄0) , 0, an expansion to order one is sufficient, and there is no divergence because

∫
R dκ/(w − κ)3/2 =

0. 67 Otherwise, expansion to second order is required, and there is linear divergence [ζ̃ − AB
1 (k̄0)]−1 as predicted by

(127) because ∫
R

dκ
(w − κ2)3/2 =

2
iw

and
∫
R

dκ
(w + κ2)3/2 =

2
w
∀w ∈ C, Im w > 0 (129)

Let’s go into more detail on the example of diagram B1 in Figure 6, in which the signs si of the internal line orientations
are all 1, the integration domain on k̄ isDB

1 = [0, q̄] and that on k̄′ at fixed k̄ isDB
2 (k̄) = [0, k̄]. Note that AB

1 (k̄) reaches
its minimum at k̄0 = q̄/2, in the interior of DB

1 and therefore with zero derivative, and that this minimum is precisely
ζ̃0 = −3γq̄3/32, as in (127). To obtain an equivalent of Σ̃(4,2)

B1
(q̄, ζ̃) when ζ̃ → ζ̃0, we can treat θ̃2, (k̄ − q̄/2)2 and

w = ζ̃ − ζ̃0 as infinitesimals of the same order. So, in the angular integral (58), we can replace ζ̃ by ζ̃0 + i0+ and θ̃2

by 0 in the second factor in the denominator, and everywhere replace k̄ by k̄0 = q̄/2 except in coefficient AB
1 (k̄), which

is written as AB
1 (k̄) = ζ̃0 + (3γq̄/8)(k̄ − q̄/2)2. After calculating the integral over ϕ and then over θ̃ using the residue

theorem, it remains

I(k̄, k̄′) ∼
−8π2

(6γq̄3)1/2k̄′
1

[w − (3γ/8)q̄(k̄ − q̄/2)2]3/2
(130)

which can be inserted in the integrand of (57), replacing k̄ by k̄0 = q̄/2 in all other factors and in the upper bound of
integration over k̄′. We then change the order of integration. In the now internal integral over k̄ at fixed k̄′, it only
remains ∫ q̄

0

dk̄
[w − (3γ/8)q̄(k̄ − q̄/2)2]3/2

∼

(
8

3γq̄

)1/2 ∫ +∞

−∞

dκ
(w − κ2)3/2 =

(
8

3γq̄

)1/2 2
iw

(131)

where we have made the change of variable k̄ = q̄/2 + [8/(3γq̄)]1/2κ, extended the integration bounds over κ to ±∞
without changing the leading behavior and used equation (129). We finally obtain the divergent part of diagram B1:

Σ̃
(4,2)
B1

(q̄, ζ̃) Im ζ̃>0
∼

ζ̃→ζ̃0

q̄3(n̄lin
q/2 + 1/2)

24iπ2γ(ζ̃ − ζ̃0)

(
9(1 + Λ)2

8ρξ2

)2 ∫ q̄/2

0
dk̄′k̄′(k̄′ − q̄/2)(n̄lin

k′ − n̄lin
k′−q/2) (132)

Diagram B2 is treated in the same way and gives a similar divergent contribution (with a two times larger prefactor
and the integral over k̄′ from q̄/2 to η). Diagrams B3 and B4 are subleading in ϵ because s5 , s2 and must be omitted
here. Diagrams B5 and B6 lead to a strictly increasing coefficient AB

1 (k̄) = (3γ/8)q̄k̄(k̄ + q̄) on the integration interval
k̄ ∈ [0, η − q̄] and therefore cannot contribute to the linear divergence (127). Diagrams B7 and B8 have the same
problem, with AB

1 (k̄) = (3γ/8)q̄k̄(k̄ − q̄) and DB
1 = [q̄, η] > q̄/2. It remains to combine the contributions of B1 and B2

to obtain (127), whose expression between square brackets in the quantum field case tends towards −q̄(16π2 + q̄2)/48
when η→ +∞.

Finally, let’s explain why bridge diagrams do not contribute to the linear divergence (127) on the example of
diagram P1 (all si = 1, DP

1 = [0, q̄] and DP
2 (k̄) = [0, k̄], type II). As noted in section 4.3, the angular integral (68)

diverges linearly at some ζ̃ = X0(k̄, k̄′) if the cancellation loci of the three factors in the denominator of (68) intersect at

67. If k̄0 lies on the edge of DB
1 , the neighborhood of k̄0 reduces to [k̄0, k̄0 + ε] or [k̄0 − ε, k̄0] and there is square-root divergence because∫ +∞

0 dκ/(w − κ)3/2 = −2/w1/2. This divergence is subleading and ignored here.
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the same point in the (θ̃, θ̃′) plane. The triple intersection condition in the general case X0 , 0 is obtained by replacing
all coefficients AP

i by AP
i − X0 in (87); the resulting second-degree equation on X0 has the obvious zero solution, to

which section 4.3 was implicitly restricted, and a second real root, X0(k̄, k̄′) = −3γk̄(k̄ − q̄)k̄′(k̄′ − q̄)/(2q̄) ; the latter
leads to a triple intersection in the plane (θ̃, θ̃′), at points with coordinates ±[

√
3γ/(2q̄)]((q̄−k̄)(q̄−2k̄′),−(q̄−2k̄)(q̄−k̄′)),

if we add constraints k̄ > q̄/2 and k̄′ < q̄/2 to have the right signs in the coefficients of the small deviations (τ, τ′) at
these points (otherwise, as in (88), there is no divergence). Then, proceeding as in (88), we obtain the divergent part
of the angular integral (for ζ̃ → X0 by positive imaginary parts),

Kdiv(k̄, k̄′) =
−32π2

3γq̄k̄k̄′(k̄ − k̄′)[ζ̃ − X0(k̄, k̄′)]
(133)

to be integrated on (k̄, k̄′) ∈ [q̄/2, q̄] × [0, q̄/2] after multiplication by the same function of (k̄, k̄′) as in (67). Now
X0(k̄, k̄′) has a parabolic minimum, located at (k̄, k̄′) = (q̄/2, q̄/2) and precisely equal to ζ̃0! The singularity (133)
will therefore survive the wave number integration if ζ̃ → ζ̃0 as in (127). Let’s then perform the change of variables
(k̄ = κ + q̄/2, k̄′ = −κ′ + q̄/2) and treat w = ζ̃ − ζ̃0, κ2 and κ′2 as infinitesimals of the same order. By writing the
function multiplying [ζ̃ − X0(k̄, k̄′)]−1 to the leading order in κ and κ′ and replacing the pole X0(k̄, k̄′) by its quadratic
approximation in κ and κ′ near the minimum, we obtain the equivalent

Σ̃
(4,2)
PII

1
(q̄, ζ̃) Im w>0

∼
w→0

(q̄/2)4
(

9(1 + Λ)2

8ρξ2

)2

(2n̄lin
q/2 + 1)

(−32π2)
3γ(2π)4

∫ q̄/2

0
dκ

∫ q̄/2

0
dκ′

1
κ + κ′

1
w − (3γq̄/8)(κ2 + κ′2)

(134)

We can extend the integration bounds q̄/2 to +∞ without losing equivalence. The double integral is then easily
calculated in polar coordinates (K, α), where K = (κ2 + κ′2)1/2 spans R+ and α spans [0, π/2]. We finally find a
square-root divergence, ∝ (ζ̃ − ζ̃0)−1/2, subleading in (127).

Appendix E. The long-time behavior of the signal in the (ρξ2)−1 → 0 limit of non-perturbative theories

Here we obtain the asymptotic behavior (111) of the signal associated with the self-energy Σ̌(2,2)
corr∞(q̄, ζ̌) of equation

(107). To this end, we apply the technique of Appendix B by folding back the integration path C+ in (6) onto the
branch cut of Σ̌(2,2)

corr∞(q̄, ζ̌) located on iR− and described parametrically by ζ = −iy̌, y̌ ≥ 0 (this branch cut is the set of
values of ζ̌ cancelling the denominator of the integrand in (107)). Transposing equation (115) to the present case, we
obtain

s(2,2)
corr∞(t) ∼

ť→+∞

∫ +∞

0

dy̌
2π

δσq̄(y̌) exp(−y̌ť)[
Σ̌

(2,2)
corr∞(q̄, 0)

]2 where δσq̄(y̌) = Σ̌(2,2)
corr∞(q̄, 0+ − iy̌) − Σ̌(2,2)

corr∞(q̄, 0− − iy̌) (135)

is the discontinuity of the self-energy across its branch cut at distance y̌ from the origin. The identity in the sense of
distributions 1/(y̌ + i0+) = v.p.(1/y̌) − iπδ(y̌) leads to

δσq̄(y̌) = −
4π
q̄2

∫ η

q̄
dk̄

∫ η−k̄

0
dk̄′k̄k̄′(k̄ − q̄)(k̄′ + q̄)(n̄lin

k′+q − n̄lin
k′+k)(n̄lin

k−q − n̄lin
k )δ

y̌ − k̄′(k̄ − q̄)
Γ̌k̄−q̄ + Γ̌k̄′

2q̄(k̄ + k̄′)

 (136)

In the ť → +∞ limit, the exponential function in (135) restricts the integral to arbitrarily small values of y̌ and it
suffices to know the leading behavior of δσq̄(y̌) when y̌ → 0+. Since the reduced rates Γ̌K̄ cannot tend to zero, the
argument of the Dirac distribution in (136) can be zero in the limit y̌ → 0 only if k̄′ or k̄ − q̄ is infinitesimal. For an
arbitrary choice of a bound ε that is not infinitesimal but≪ 1, we can then restrict the integration domain on k̄ and k̄′

to the two parts, (i) k̄ ∈ [q̄, q̄ + ε], k̄′ ∈ [0, η − k̄] and (ii) k̄ ∈ [q̄ + ε, η − ε], k̄′ ∈ [0, ε]. 68 In part (i) of the integration
domain, we have k̄ − q̄ ≤ ε ≪ 1 so we can replace the various quantities depending on k̄ in (136) by their Taylor
expansion at k̄ = q̄ to leading order, e.g. (k̄ − q̄)(n̄lin

k−q − n̄lin
k ) ≃ 1, n̄lin

k′+q − n̄lin
k′+k ≃ (k̄ − q̄)(−d/dk̄′)n̄lin

k′+q or Γ̌k̄−q̄ ≃ Γ̌0 and

68. We note in part (ii) that, if k̄ ≤ η − ε, we have ε ≤ η − k̄ so k̄′, which must remain ≤ η − k̄, can indeed go as far as ε. We also check that
“missing bit” k̄ ∈ [η − ε, η], k̄′ ∈ [0, ε] gives a negligible contribution O(y̌ε) to δσq̄(y̌).
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the upper integration bound on k̄′ can be replaced by η − q̄. The argument of the Dirac distribution in (136) becomes
an affine function of k̄ − q̄, making it easy to integrate over k̄:

δσ(i)
q̄ (y̌) ≃ −16πq̄y̌

∫ η−q̄

0
dk̄′

(k̄′ + q̄)3

(Γ̌0 + Γ̌k̄′ )2

(
−

d
dk̄′

n̄lin
k′+q

)
Y

(
ε −

2(k̄′ + q̄)q̄y̌

k̄′(Γ̌0 + Γ̌k̄′ )

)
≃ −16πq̄y̌

∫ η−q̄

q̄2 y̌/εΓ̌0

dk̄′

k̄′
(k̄′ + q̄)3

(Γ̌0 + Γ̌k̄′ )2

(
−

d
dk̄′

n̄lin
k′+q

)
(137)

The form of the second integral in (137) is based on the following reasoning: if y̌ → 0 at fixed ε, the argument of the
Heaviside function Y in the first integral is positive, unless k̄′ → 0; at the edge of the support of this function Y , we
therefore have k̄′ ≪ 1, which allows us to replace in its argument the second term by its leading-order approximation
in k̄′; this brings up Y(ε − q̄2y̌/k̄′Γ̌0), hence the lower bound announced in the integration over k̄′. In part (ii) of the
integration domain, we proceed in the same way: since k̄′ ≤ ε ≪ 1, we replace the various quantities in (136) by their
leading order in k̄′. As the argument of the Dirac distribution becomes an affine function of k̄′, we integrate over this
variable; the resulting function Y(ε − 2q̄k̄y̌

(k̄−q̄)(Γ̌k̄−q̄+Γ̌0)
) is inoperative when y̌→ 0 because k̄ − q̄ is here ≥ ε, hence

δσ(ii)
q̄ (y̌) ≃ −16πq̄y̌

∫ η−ε

q̄+ε

dk̄
k̄ − q̄

k̄3

(Γ̌k̄−q̄ + Γ̌0)2
(n̄lin

q − n̄lin
k )(n̄lin

k−q − n̄lin
k ) (138)

It remains to take the limit ε→ 0 in results (137,138). To do this, we separate each integrand into its infrared divergent
part ∝ 1/k̄′ or ∝ 1/(k̄− q̄) and its regular part. 69 In the integral of the regular parts, we can make ε tend to zero within
the integration bounds without damage. In the integral of divergent parts, doing the same gives rise to dangerous
contributions ± ln ε, but which exactly cancel out in the sum of parts (i) and (ii). Finally,

δσq̄(y̌) =
y̌→0+

4πq̄4

Γ̌2
0

(
−

d
dq̄

n̄lin
q

)
y̌ ln y̌ +Cq̄y̌ + O(y̌2 ln y̌) (139)

For the sake of brevity, we do not give the expression of the coefficient Cq̄ of the linear part in (139), to which our
method nevertheless gives access. The form of O(. . .) in (139), on the other hand, has been obtained numerically.
Insertion of the leading term ∝ y̌ ln y̌ in (135) leads to the announced result (111).
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