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Abstract—Neural network accelerators are designed to process
Neural Networks (NN) optimizing three Key Performance Indi-
cators (KPIs): latency, power, and chip area. This work is based
on the study of Gemini, an industrial prototype near memory
computing inference accelerator designed using a high-level
synthesis technique. Gemini is an output stationary configurable
accelerator that achieves its performance based on two structural
parameters. The measurement of the KPIs requires simulations
that are time-consuming and resource-intensive.

This paper presents a high-level practical estimator that
can instantly predict the KPIs depending on the NN and the
Gemini configuration. The latency is accurately derived using
an analytical model based on the architecture, the operators
scheduling and the NN characteristics. The power and the chip
area are computed analytically and the models are calibrated
using simulations. Finally, we show how to use the estimator to
derive Pareto optima for choosing the best Gemini configurations
for a VGG-like NN.

Index Terms—Neural network accelerator, output stationary,
estimation, latency, power, area.

I. INTRODUCTION

Deep Neural Networks (NN) have become incredibly popu-
lar [1]. We can find NN-based solutions in every field, which
led it to become a field on its own. The principle behind NNs
is far from being new. However, they are recently thriving
due to hardware progress [2]. NNs require a tremendous
computational complexity which was not available a few
decades ago. CPUs, FPGAs and especially GPUs participated
in the recent resurgence of NNs as they overcame this com-
putational need [1]. However, NN ASIC accelerators become
the NN hardware best candidates. These chips dedicated to
NN processing are especially advantageous for inference. They
can further enhance latency while having a small area and low
power consumption. NNs present various structures and have
different hardware requirements [2]: some applications need
very low latency chips, such as cloud computing, while others
require low power and small area, such as the edge computing
market. Then, for each application, the designer has to always
find a compromise between the 3 KPIs: latency, chip area and,
power.

Gemini is designed as an industrial Near Memory Comput-
ing (NMC) solution to meet this challenge for the inference
(all the NN weights are precalculated). It supports feed for-
ward NNs (convolution layers, depthwise, pooling, and Fully
Connected (FC)). The architecture of Gemini was primarily

designed to be streamlined and highly configurable, facilitating
effortless adaptation to various applications. Therefore, achiev-
ing pure performance on a specific NN was not the objective.
Gemini is a configurable output stationary NN accelerator [3]
with mainly two structural architectural parameters. Chip area,
latency, and power consumption depend on both the NN to be
used and the two architectural parameters. The configurability
of Gemini allows it to adapt to the NN structure.
Choosing the best configuration according to the NN for
Gemini is too time-consuming. There are around 1000 possible
Gemini configurations. For a fixed NN, measuring the KPIs
requires simulating the NN execution. It cannot be done for
all the configurations in a reasonable time. However, using
accurate KPIs models, one could rapidly estimate all the
possible configurations for a fixed NN. Thus, the challenge
lays in obtaining the best KPIs estimation depending on the
NN and the two structural parameters. In this article, we
consider only the scenario where the entire NN can fit into
on-chip RAM. Consequently, only the accelerator’s perfor-
mance will be investigated. Considerations regarding off-chip
communications are not taken into account since they are not
influenced by the choice of the Gemini configuration.

A. Related works

There is a large research community working on NNs accel-
erators. Several surveys list the trends and the performances
of state-of-the-art accelerators [3]–[5]. The accelerators’ KPIs
are usually directly measured on the system for specific NNs
without any need for high-level KPIs estimations. Another
important research area is the one dealing with the design
space exploration of accelerators (generally using FPGAs) [6]–
[10]. Their objective is to find the best architectural parameters
according to KPIs. They use KPIs models and optimizing
algorithms to find the best design solutions.

Most of the authors evaluate the latency using analytical
formulas based on operations scheduling, accelerator archi-
tecture, and NN parameters [11], [12]. For example, Erdem et
al. [12] evaluate the latency of the computation according to
channel and kernel parallelizations.
For consumption, the strategies are often based on the power
estimation of components [8], [13], [14]: for example, Wu
et al. [14] develop Accelergy, a tool that evaluates the en-
ergy of different architectures accelerators. Firstly, a designer



describes the architecture with compound components char-
acterized by primitives components for which the power is
known; RAMs power is evaluated with CACTI [15] and
other primitives such as Multiplications And Accumulations
(MACs) are given by libraries. Secondly, the designer lists
the actions of each component and their use rate. Accelergy
estimates the total energy by combining all these data. Zhao et
al. [8] also evaluate the consumption by listing the accelerator
components but with more simplified energy models. They use
also CACTI for RAMs power estimation and they consider
registers, MACs, and communication networks for the other
components.
Concerning the chip area, Shahshahani et al. [16] rely on
machine learning models to predict it. The main drawback
of this method is its lack of interpretability. For instance, the
impact of each resource is difficult to estimate. Wu et al. [17]
and Tang et al. [13] simply consider the area contribution of
each component to evaluate the chip area.

B. Contributions

This paper presents a method to estimate KPIs of an NN
output stationary accelerator based on its configuration and
NN parameters. The study aims to provide insights into the
performance metrics without optimizing the architecture. The
proposed estimation methodology can be utilized by anyone
using output stationary accelerator architectures.

In Gemini, the latency is estimated analytically depending
on the architecture, the operators scheduling, and the NN
parameters. This estimation comes from the predictivity and
the regularity of the operations schedule.

In this paper, we choose to model the power rather than
the energy. The energy is impacted by the power of the
system as well as its latency. Considering that energy is less
efficient when dealing with trade-offs between consumption
and speed (the energy combines both of them). The power
will be split into leakage and dynamic power. The leakage is
the power dissipated when the device is powered up but the
gates are not toggling; it does not depend on the inputs. The
dynamic one is the power dissipated when the gates switch
their states; it depends on the inputs. Splitting the power
allows us to estimate the power as a function of the clock
frequency because the dynamic power scales linearly with the
clock frequency while the leakage remains constant. [18].
The power consumption of Gemini cannot be measured using
tools such as Accelergy [14]. Indeed, the computing part of
Gemini is designed using High-Level Synthesis (HLS); the
number, the type and the use rate of components are then
difficult to predict because operators schedule and optimiza-
tions (such as resource sharing) depend on the configurations.
However, we assume that main compound operators such as
registers, MACs or multiplexers must be synthesized during
the HLS. A power model for Gemini is then exhibited based
on a linear equation of the complexity of main operators
and calibrated through simulations of NNs executions. An
advantageous characteristic of this model resides in its inherent
simplicity, as it necessitates a minimal quantity of data regard-

ing the architecture and the NN for its effective utilization. The
power estimator is based on gate-level simulations, which is
sufficient to have accurate power values to compare several
configurations.

Finally, the chip area will also be modeled with the area
contribution of main operators multiplied by constants.

To evaluate the estimator accuracy, it is chosen to consider
the Root Mean Square Error (RMSE). It has the advantage
to be homogenous to the modeled parameter. The estimated
RMSE for area and leakage is 0.005 mm² and 0.57 µW,
respectively. The latency and power models of a NN are
constructed based on the models of its various constituent
layers (including their parameters). They have been validated
on a broad range of NNs. Latency is generally estimated with
an error of less than 10 cycles, and dynamic power with a
RMSE of less than 20 µW. We illustrate our results on a
VGG-like NN, as presented in Fig.1, which is inspired by
VGG-16 [19], widely used for benchmarking NN accelerators
performances [8], [20].
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Fig. 1: VGG-like network structure
This paper is organized as follows. Section II presents the

configurable architecture of Gemini. Section III exposes the
simulation environment used to gather data used in determin-
ing KPIs model. Section IV details the estimation model of
the KPIs as well as its accuracy. Section V illustrates how the
configuration can be chosen once the performances have been
estimated. Finally, the conclusion is made in section VI.

II. GEMINI CONFIGURABLE ARCHITECTURE

In this section, we start by presenting the two structural
parameters of Gemini, then the architecture of the accelerator
will be described in a bottom-up fashion from the processing
elements to the whole accelerator.

A. Presentation of Gemini structural parameters

Gemini is composed of a Tensor Processing Unit (TPU)
and two SRAM modules: the features maps (fmaps) RAM and
the weights RAM. The TPU contains the block in charge of
calculations called the processing elements (PEs) array. There
are NPE parallel PEs organized in 2D (WPAR,MPAR)
with NPE = WPAR × MPAR. These two structural
parameters are configurable before the logic synthesis. They
size all the designs from the PEs array to top-level RAMs and
they fix the scheduling of the operations. They were introduced
to optimize the convolutions processing. WPAR stands for
width parallelization of the output feature map (ofmap) and
MPAR is the filter parallelization (since the number of filters
is usually called M in literature [21]). Fig.2 illustrates the
notations.



PEs array: (3,2)
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Number of filters (M): 4

Fig. 2: NPE organization for convolution
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Fig. 3: Accelerator architecture

B. TPU architecture

The TPU architecture is composed of the PEs array, the
input mixers and the storing stage. Fig.3 shows the TPU blocks
in the top-level architecture.

The processing elements array is composed of NPE PEs.
Concerning the architecture of one single processing element,
each PE has two pipelined stages: the first one is the output
computation stage performing MACs with fmaps pixels and
weights. The second one is the quantization stage. It is
triggered when ofmaps pixels are calculated (when all the
MACs are performed). Its role is to put the ofmaps pixels
in the desired range of quantization by multiplying them by a
scaling factor and taking only fmap pixels bits from the most
significant bits. The quantization stage always takes 5 clock
cycles.
PEs are organized following an output stationary dataflow,
each processor then computes an ofmap pixel. The partial sum
contributing to the output is stored in the accumulator (register)
of each PE when new fmaps and weights are broadcasted to
the PEs every cycle. This paradigm is described in [3] and
used by several accelerators such as [22] or [23].

The mixers are combinational blocks that take as input a
disordered dataset and output the sorted data. The input mixers
are the ifmaps mixer and the weights one.

Finally, the storing stage is located at the output of PEs
array. It eliminates some useless PEs computations that should
not be written in the fmaps RAM. For convolutions, the PEs
array calculates ofmaps pixels corresponding to horizontal
padding and strides even if they are not necessary for the
ofmap (they are eliminated by the storing stage). A design
choice allowing a few useless operations done by PEs was
made to simplify the mixers and to optimize the power and
area.

The storing stage also writes the quantized outputs inside the
fmaps RAM in the correct order. This function is mapped by
a mixer. This stage is pipelined with the PEs.

C. Layers execution scheduling

The TPU executes the NN layer by layer. It supports con-
volutions and FC layers with different operations scheduling.

For convolutions, for each ofmap in 2D, WPAR pixels
are calculated simultaneously. This paradigm is duplicated in
MPAR to process 2D ofmaps simultaneously (as a reminder
M is the number of filters). This parallelization is illustrated
in Fig.2 where WPAR and MPAR are respectively equal to
3 and 2.
At every cycle, one filter weight is selected by the weights
mixer and broadcasted to all PEs. It is then multiplied by
NPE fmaps selected by the ifmap mixer (each PE receives
a different fmap pixel) and accumulated inside the PE reg-
ister. When all filter MACs are done, the NPE outputs are
quantized and then processed by the storing stage.

For FC layers, NPE from Nout output neurons are pro-
cessed simultaneously. Nout are the FC ofmaps flattened. At
every cycle, one input neuron from Nin (Nin are the FC
ifmaps flattened) is broadcasted to the PEs by the ifmap mixer
and multiplied with NPE weights (chosen by the weights
mixer) and accumulated inside the PE accumulator every
cycle. Then, as it is done for convolution, the NPE quantized
outputs go into the storing stage that writes them inside the
fmap RAM.

Depthwise layers have the same scheduling as convolutions.
Pooling layers follow also the same scheduling replacing the
weight multiplication by the pooling operation.

D. Top-level architecture

The weights RAM contains the NN weights as well as
information on the network (such as layer types) in a com-
pacted way. The fmaps RAM contains the feature map pixels:
before the beginning of the executions, this RAM contains
ifmaps pixels; during the executions, intermediary fmaps are
also stored inside this RAM overwriting non-meaningful data,
and finally, at the end of the execution, it contains the final
ofmaps.
Both fmaps and weights SRAMs are sized according to the
NN to be supported and according to (WPAR,MPAR).
The fmaps RAM is composed of WPAR memory banks of
MPAR× fmapbits width for each bank. The weights RAM
is composed of one memory bank of NPE × weighstbits.
The number of bits used for the fmaps and weights pixels are
respectively fmapbits and weightsbits. As a reminder, in the
scope of this study, it is required that the entire NN fits into the
on-chip RAMs, including weights and intermediate ifmaps.

III. SIMULATION ENVIRONMENT

The objective is to gather data on KPIs (latency,
area, and power) via simulations for several NNs and
(WPAR,MPAR) couples. These data will be used to build
an estimator based on analytical models predicting those



indicators. For our utilization, both WPAR and MPAR
vary from 2 to 32 (NPE could then vary from 4 to 1024).
Each (WPAR,MPAR) couple is called a configuration. As
aforementioned, it was chosen to perform simulations at the
gate level stage directly before the P&R.
We choose to work with 8 bits for both fmapbits and
weightsbits since it is the most used quantization mode.
The SRAM capacity is fixed, only the aspect ratio between
RAMs width and depth undergoes variation across different
configurations.
The technology chosen is CMOSC40. The simulation environ-
ment is summarized in Fig.4.
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Fig. 4: Simulation environment

The design of the TPU is described in C++ and the HLS
is performed by SIEMENS CATAPULT®. The TPU execution
is described using loops ensuring that one loop execution in
C++ corresponds to one clock cycle. Then the latency of a NN
processing can already be measured at this level by counting
the number of loops.
Once the TPU RTL is obtained for each configuration, the
top level of the accelerator is built instantiating the TPU and
its corresponding RAMs. If several cuts are possible for one
RAM, we choose the option giving the smallest area. Once the
full RTL is ready (including TPU and RAMs), we operate the
logic synthesis using the SYNOPSYS DCSHELL® tool with
the same constraints and corners for all configurations: the
synthesis is done at 200 MHz, 1 V, and 125 °C for the slowest
corner. This corner represents the worst case in terms of
timing. The libraries used are LVT (low threshold voltage) and
RVT (regular threshold voltage) in CMOSC40. Finally, when
the gate netlist is ready, area and leakage power estimations
are given by DCSHELL® without any simulation as they do
not depend on the NN to be computed.
Latency and dynamic power estimations can be obtained
by doing gate-level simulations: they are performed using
CADENCE XCELIUM® environment. The simulations are run
at 1 MHz for the typical corner at 1.1 V and 25°C. The
toggle rate is then exploited by SYNOPSYS PRIMEPOWER®

to evaluate the average dynamic power on the whole NN
execution.

For each simulation, we choose wisely which NN must be
run to extrapolate the result of simulations into other NNs.
For that, we run simulations on single-layer NNs varying
all the possible parameters. The performance of a NN of
several layers is obtained from the information of single-

layer ones. For FC layers, Nin and Nout are varying. For
convolutions, we vary the number of filters, filter sizes, 2D
ifmap sizes, strides, and padding. For depthwise and pooling
layers, different ifmap sizes, strides and, padding are chosen.
A total of 93 single-layer NNs are considered. Concerning the
sweep of (WPAR,MPAR), we limit the simulations to 210
different configurations.

IV. KEY PERFORMANCE INDICATORS ESTIMATION

The objective of this section is to estimate the performances
of the accelerator according to its configurations for each NN.
Those estimations are done thanks to an analytical model
based on simulations discussed in section III. This model gives
latency, area, leakage and, dynamic power.
The modeling of each KPI will be detailed.

A. Latency modeling
Latency in cycles is obtained at the C++ description level.

As the design is fully pipelined, the difference between the
number of cycles given by the C++ execution and the one
obtained after gates simulations corresponds only to the ramp-
up of the pipeline. This was observed for several NNs. As the
NN’s layers are processed serially and separately, the latency
of the neural network execution corresponds to the sum of
the layers’ latencies added to a constant overhead independent
from the NN (it includes the pipeline ramp-up). For this work,
only the meaningful terms will be detailed. For example, the
bias cycles will be neglected.
The following paragraphs detail the latency modeling of each
layer type and the latency behavior of a NN of L layers.

1) Convolution latency
The execution of the convolution is fully predictive. It can

be computed based on the output stationary paradigm where
WPAR (among 2D ofmap pixels) pixels of MPAR filters
(among M filters) are processed simultaneously. The number
of 2D ofmap pixels calculated corresponds to the size of
the 2D ifmap excluding the vertical padding padv . This is
because the execution duration is independent of the stride
and the horizontal padding usage. Only the vertical padding
is impacting the number of pixels calculated. So the number
of 2D ofmap image pixels is W (H − (R− 1)padv), with W
and H the width and height of the ifmap and R the height
of the filter. Thus the number of cycles Ncycconv needed to
compute a convolution is:

Ncycconv =

⌈
W (H − (R− 1)padv)

WPAR

⌉⌈
M

MPAR

⌉
×Kc (1)

where Kc is the number of cycles required for one-pixel
computation. As stated in section II, 3 stages are pipelined for
the computation of one pixel; the latency of the full system
is then approximately the latency of the slowest stage. The
slowest one is the output computation stage of the PEs array.
Every cycle, one filter weight is read, so the number of cycles
needed to compute one pixel is Kc = S.R.C where S, R, and
C are respectively the filter width, height and, channels. The
latency of maxpool and depthwise layers are derived from the
same formula.



2) Fully connected latency
Concerning FC layers, Nout output neurons are processed

simultaneously by NPE processors. It takes Nin cycles to
process them; Nin is the number of input neurons. So the
latency Ncycfc of a FC is:

Ncycfc =

⌈
Nout

NPE

⌉
Nin

3) Estimator validation
Combining the last equations, the general shape of the

latency Lat of a NN of L+K layers follows Eq.2:

Lat =

L∑
l=1

(⌈ αl

MPAR

⌉
×
⌈

βl

WPAR

⌉
γl

)
+

K∑
l=1

⌈
δl

NPE

⌉
ϵl

(2)
with L the number of convolution layers, K the number of
fully connected layers and αl, βl, γl, δl, ϵl are constants
depending on the layer l type.
We deduce from Eq 2 that the latency is a decreasing curve
with NPE.
As the execution is predictive, there are few clock cycles of
difference between the prediction and the simulation for all
the NNs tested. Fig.5 shows the estimation of the VGG-like
network for MPAR = 8. The two curves are quasi-identical
(the results are similar varying MPAR).

Fig. 5: VGG-like estimated and simulated latencies.

B. Area and leakage modeling

In this paragraph, we will discuss the area and leakage
model for RAMs and TPU as well as the calibration of the
model by the constants identification.

1) RAM modules area and leakage
RAM modules leakage and area are dependent on the

memory capacity chosen (total number of KBs). Even if
the organization of RAMs (width × depth) changes with
configurations, the difference of leakage and area is only
impacted by RAMs technology variation. Then RAM modules
area and leakage will be considered as constants and only the
TPU will be considered.

2) TPUs’ area and leakage modeling
a) TPU main operators’ complexities

Estimating the TPU power and area knowing only
(WPAR,MPAR) is challenging. The RTL is obtained by
HLS, so the tool can adapt the number and types of operators
and their scheduling to optimize the synthesis performance for
each configuration; HLS can then generate different netlists for
two close but different configurations.
It was decided to model the leakage and area with a linear
combination of the expected main operators’ complexities and
then identify the constants thanks to a linear regression (which
are different for area and leakage). These positive constants
(c0, c1, c2 and c3) encapsulate the consumption of primitives
operators. The compound operators taken into account are:

• Operators that do not depend on the configuration: the
term c0 corresponds to all the constant operators. As a
matter of example, there are all the registers and logic
units of finite state machines.

• PEs array input registers (fmaps and weights registers,
accumulators) and arithmetic logic units (MACs): all
these components scale with NPE. They will then be
modeled with c1 ×NPE.

• Mixers: there are 3 mixers in the circuit (ifmap, weights
and storing stage mixers) ensuring that the data is well
sorted at the input and output of PEs array and RAMs.
These mixers are mapped into shifters implemented with
multiplexers that have a complexity of N⌈log2 M⌉ with
N is the total number of data sorted and M is the number
of possible shifts for each data. Mixers are then modeled
by: c2 ×NPE⌈log2 WPAR⌉.
Their power and area cannot be neglected especially for
a large NPE.

• Storing stage operators: they eliminate the non-useful pix-
els (due to stride or padding). They scale with WPAR.
They are modeled with c3 ×WPAR.

Area and leakage follow Eq.3 with different constants:

c0 + c1 ×NPE

+ c2 ×NPE⌈log2 WPAR⌉+ c3 ×WPAR
(3)

This method can be adapted to any output stationary accel-
erator as the compound operators (except the storing stage
that was optimized for Gemini) are consistently necessary:
MACs and registers for computation and storage are always
synthesized along with mixers used for data transfer from
RAMs to PEs. Furthermore, the FSM operators are also
present in any design.

b) Constants identification and validation of area and
leakage models

The constants c0, c1, c2 and c3 are identified using the 210
configurations dataset. They are determined by linear regres-
sion optimizing the RMSE and the correlation coefficient
(R²). Fig.6 shows the results of the modeling for a fixed
MPAR = 5. It is observed that the significant increases in
leakage and area, such as those observed at 40 and 80 NPEs,
are accurately captured by the modeling: they correspond to an



TABLE I: Leakage and area estimation characteristics

TPU LEAKAGE ESTIMATION for MPAR = 5
TPU LEAKAGE SIMULATION for MPAR = 5

TPU AREA ESTIMATION for MPAR = 5
TPU AREA SIMULATION for MPAR = 5

TPU LEAKAGE AND AREA ESTIMATIONVS SIMULATION
for MPAR = 5 configurations

Fig. 6: Area and leakage estimations and simulations.

increase of the value of ⌈log2 WPAR⌉ (WPAR is a power
of 2). Table I displays the modeling results of the 210 different
configurations. The low RMSE validates the accuracy of the
estimation. The R² close to 1 confirms that our modeling with
Eq.3 is meaningful. The same approach can be applied in case
of changes in the number of bits (fmapbits or weightsbits)
or the process technology. Only the regression step needs to
be rerun, using the updated simulation data.

C. Dynamic power modeling

This paragraph describes how the dynamic power of the
execution of a NN on Gemini can be evaluated for each
architecture configuration. The dynamic power is calculated
by summing the internal power (consumption due to the power
dissipation of the capacitance inside a standard cell) and the
switching one (dissipation of load capacitance) [24].
First, the RAMs dynamic power will be discussed, then the
TPU dynamic power for each layer type will be detailed. The
dynamic power of any NN can then be estimated by combining
the power consumption of its layers.

1) RAM modules’ dynamic power
For all NNs tested, the dynamic power of both RAMs

(fmaps and weights) remains almost constant while sweeping
(WPAR,MPAR). It is since for each RAM, the number of
KB is fixed for all configurations, thus the total amount of data
read is the same; only the RAM modules widths and depths
are changing affecting the number of read cycles and the size
of the buffer to be read: for example, several reading cycles
are needed when the RAM modules width is small while only
a few of them are needed to read the same memory amount
when the width is large.

Fig.7 shows the dynamic power of RAMs and TPU for the
VGG-like NN for the configurations MPAR = 8 (WPAR is
swept from 2 to 16). For this example, the SRAMs capacity
is 1.3 MB. For our study, we neglect the impact of RAMs as
they do not impact the configuration choice.

Dynamic power of VGG-like 
for MPAR = 8 configurations

TPU dynamic power
RAMs dynamic power

NPE

p
ow

er
 (

µ
W

/M
H

z)

Fig. 7: Power consumption of TPU and RAMs on VGG-like

2) TPU dynamic power modeling
To estimate the dynamic power consumption of the TPU,

the same compound operators used in section IV B were
considered. The only difference is that the constants ci of Eq.3
should now depend on the NN. The regression should not be
performed for each NN. Instead, it is executed only once using
the data from the 210 simulated NNs.

The first statement is that the dynamic power of the TPU
is globally increasing with NPE for all the NNs tested (as
shown in Fig.7). Furthermore there are some local optimums
reached for some (WPAR,MPAR). They are the same for
all NNs tested but they change according to the architecture.
It means that they depend only on the architecture and not on
the NN. However, the power magnitude of those optimums
depends on the NN.
The identification of ci is different between convolutions and
fully connected layers as they have different parameters.

a) Convolution dynamic power
There are 5 different parameters characterizing convolu-

tions: ifmap 2D dimensions (W × H), filter dimensions
(S.R.C), number of filters (M ), strides and, padding.

First of all, as was specified in II B, all the blocks except
the storing stage work, in the same way, considering different
strides or paddings. Then a low dynamic power dependency
on those parameters is expected. For the 210 configurations of
(WPAR,MPAR), we choose 6 different parameters NNs.
We run them with and without the padding to evaluate their
impact on the dynamic power. The RMSE is 2.94 µW for an
average of 157.2 µW.
Concerning the stride, we took one NN with a stride of 1x1
and another with 2x2. All the other parameters are the same.
The RMSE is 0.72 µW for an average of 155.6 µW.
Due to this low RMSE (compared to the average), it was
then decided to neglect the impact of stride and padding on
dynamic power consumption.



The number of filters M should also be neglected. Actually,
the mixers and PEs array are duplicated in MPAR; it means
that the execution is the same considering any number of filters
between 1 and MPAR; and when M > MPAR several same
executions are operated which is not affecting the average
dynamic power. Considering 3 different NNs, fixing all the
parameters except M (respectively set to 7, 14, 24), the RMSE
is: 6.04 µW for an average of 152.5 µW. This parameter can
also be neglected because of this low RMSE value.

The dynamic power is increasing with the 2D ifmap pixels
number (W ×H) before reaching a saturation level where the
dynamic power consumption is almost the same for all ifmap
2D pixels number.
As it was specified before, WPAR 2D pixels from the 2D
ofmap are processed simultaneously. Considering the padding
to simplify calculations, the number Nexec of executions to
calculate all the 2D ofmap pixels is the following:

Nexec =

⌈
W ×H

WPAR

⌉
=

⌊
W ×H

WPAR

⌋
+ r + o. (4)

with r equal to 0 when W×H
WPAR is an integer and 1 otherwise. o

corresponds to the few overhead cycles. They do not consume
a significant amount of power. The term

⌊
W×H
WPAR

⌋
corresponds

to executions where 100% of WPAR are working and r to
the execution where only a few of them are used (because
there are less than WPAR pixels to calculate). Thus, when
W × H is large (large 2D ifmap), Nexec is quasi equal to⌊

W×H
WPAR

⌋
. As the dynamic power is measured with an average

on all the convolution processing, the dynamic power will
then correspond to the power of the executions where all
WPAR are working (because it is repeated

⌊
W×H
WPAR

⌋
times).

It explains the power saturation when the ifmap is large enough
(number of pixels higher than 80). Fig.8 shows the dynamic
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Fig. 8: Power consumption of TPU sweeping 2D ifmap pixels

power of the TPU sweeping the number of the ifmap pixels for
some configurations of (WPAR,MPAR), all the other NN
parameters are the same. The saturation comes with relatively
small images for small WPARs; Nexec becomes quasi equal
to

⌊
W×H
WPAR

⌋
. For a large number of WPAR, the saturation

happens for bigger images (higher W ×H).
For the power modeling, it was decided to consider the

saturation by modeling the power of all ifmaps having more
than 80 pixels by the power of a 1024 pixels ifmap. Tested on
19 NNs with different ifmap sizes, the RMSE is 11.5 µW for
an average of 134 µW. This assumption is relevant because
the ifmaps used are usually in the range of saturation (even
for a large WPAR). For small images (below 80 2D pixels),
we have 2 models corresponding to ifmaps with respectively
16 and 36 pixels. The maximum RMSE is 10 µW.
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Fig. 9: Power of convolution for different filters sizes

Concerning the impact of filter dimensions, the dynamic
power is decreasing with the filter size (S × R × C). The
major impact is on the general slope. Fig.9 exhibits this
statement on 4 NNs having the same parameters except the
filter size. The dynamic power of convolutions is decreasing
with filter dimensions because, as one weight is processed each
cycle, the larger the filter dimensions, the higher the number
of accumulation cycles required before the 5 scaling factors
cycles. Thus on average, the 5 cycles of scaling (see section
II,B) do not have an impact on the overall power of big filters;
on the opposite, for small filters, the 5 cycles have more impact
because there are fewer accumulation cycles.
To model this behavior, we choose to make only c1 dependent
on the filter dimensions as it is the constant affecting the slope.
We estimated c1 for different filter sizes and we generalize it
with a regression (a power function was chosen as it gives
the lowest RMSE and correlation coefficient). The model
explained below was tested on 5 NNs with different filter sizes
for the 210 configurations: the RMSE is 16 µW for an average
of 152 µW.

Finally, Eq.5 models the dynamic power of convolution
layers Pc (as well as maxpool and depthwise layers):

Pc = c0 + c1 × S.R.Cc2 ×NPE

+ c3 ×NPE⌈log2 WPAR⌉+ c4 ×WPAR
(5)

ci were determined by linear regression. The maximum error
is theoretically lower than the sum of the errors of each
approximation. The error generated using Eq.3 is impacting
all the estimations.

b) Fully connected dynamic power
For our FC layers applications, Nin are varying from 25

to 500. The dynamic power model was built on simulations
covering this range of Nin.



Nout should not impact the power consumption because as the
architecture is output stationary, each PE calculates one Nout;⌈
Nout
NPE

⌉
executions are then needed to compute all the Nout.

The NPE processors work the same way even if Nout are
less than NPE. 4 NNs are run with the same Nin varying
Nout from 1 to 32. Only 5 µW of RMSE was observed (the
average dynamic consumption is 78 µW). The impact of Nout

is then neglected. Besides, the dynamic power is increasing
with NPE. The increase is less important for high NPEs. It
is due to the increase of the number of accumulations leading
to higher nets activities. When Nin is already high, more
accumulations are not affecting drastically the activity, so the
dynamic power does not increase excessively. This behavior is
modeled with a logarithmic function. Eq.6 models FC layers
power consumption Pfc:

Pfc = c0 + (c1 + c2 × log(Nin))×NPE

+ c3 ×NPE⌈log(WPAR)⌉+ c4 ×WPAR
(6)

ci were determined by linear regression. Tested on 9 fully
connected networks with Nin varying from 25 to 500 for 210
configurations of (WPAR,MPAR), the RMSE is 12.3 µW
and the average is 110 µW.

c) L-layers NN dynamic power
Once the dynamic power is estimated for each type of layer,

the dynamic power PdynNN (f) of a NN composed of L
layers at the frequency f is calculated with the average power
of each layer weighted by its latency.

PdynNN (f) =

∑L
l=1 Latl × Pdynl × f∑L

l=1 Latl
(7)

Latl is the latency of the layer l calculated with Eq.2 and
Pdynl is the dynamic power calculated with Eq.5 or Eq.6
according to the layer type.
This model is quite accurate for several NNs tested.
For example, on the VGG-like model (Fig.1) on 210
(WPAR,MPAR), the RMSE is 16 µW for an average of
150.4 µW (11.6% of error). While our power model exhibits
a higher RMSE when compared to alternative methods (such
as [14]), it offers the distinct advantage of simplicity by relying
exclusively on two structural parameters and raw information
from the NN characteristics. Despite the method’s slightly
elevated RMSE, it remains sufficiently low for effectively
selecting the optimal configuration. Consequently, it contin-
ues to serve as a valuable tool in practical scenarios. The
estimation error is due to the underestimation of the impact
of the structural parameters as they probably influence other
operators than the ones estimated.

V. CONFIGURATION CHOICE

Some of the considered KPIs have antagonistic behaviors.
By increasing NPE, the latency decreases but the power
and area increase. To find the best trade-offs, we use Pareto
fronts to determine the optimal architectures. Fig.10 shows
sweet spots for the VGG-like NN considering the latency and
power. The area is usually a specification, so only the points
below a certain area could be considered. For each point
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Fig. 10: VGG-like network sweet spots

of the curve, there are no other points that simultaneously
have lower power and latency. The final choice between
these (WPAR,MPAR) points is made according to the
application’s specifications.

VI. CONCLUSION

In this paper, we presented a practical method to estimate
three KPIs, latency, area, and power consumption of Gemini,
an output stationary NMC configurable accelerator for NN
inference. Its architecture can be easily configured thanks to
two parameters, WPAR and MPAR. The KPIs estimations
are specific to any feed-forward NN specified as input of the
estimator. They are accurate for all the KPIs but the dynamic
power. The error is small enough to allow the user to determine
the most accurate configuration for their application (NN).
The KPI estimation method presented in this article can
be used for any output stationary accelerator (except few
optimizations done for Gemini). Finally, this method can be
extended to applications based on the execution of several NNs
with different use rates.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436–444, 2015.

[2] Yann LeCun. 1.1 deep learning hardware: Past, present, and future. In
2019 IEEE International Solid- State Circuits Conference - (ISSCC),
pages 12–19, 2019.

[3] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient
processing of deep neural networks: A tutorial and survey. CoRR,
abs/1703.09039, 2017.

[4] Sunny Bodiwala and Nirali Nanavati. Efficient hardware implementa-
tions of deep neural networks: A survey. In 2020 Fourth International
Conference on Inventive Systems and Control (ICISC), pages 31–36,
2020.

[5] Lukas Sekanina. Neural architecture search and hardware accelerator
co-search: A survey. IEEE Access, 9:151337–151362, 2021.

[6] Rajesh Kedia, Shikha Goel, M. Balakrishnan, Kolin Paul, and Rijurekha
Sen. Design space exploration of fpga-based system with multiple dnn
accelerators. IEEE Embedded Systems Letters, 13(3):114–117, 2021.

[7] Nermine Ali, Jean-Marc Philippe, Benoit Tain, and Philippe Coussy.
Exploration and generation of efficient fpga-based deep neural network
accelerators. In 2021 IEEE Workshop on Signal Processing Systems
(SiPS), pages 123–128, 2021.

[8] Zhongyuan Zhao, Hyoukjun Kwon, Sachit Kuhar, Weiguang Sheng,
Zhigang Mao, and Tushar Krishna. mrna: Enabling efficient mapping
space exploration for a reconfiguration neural accelerator. In 2019
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 282–292, 2019.



[9] Nicolas Bohm Agostini, Shi Dong, Elmira Karimi, Marti Torrents La-
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