Ali Oudrhiri

Emilien Taly

Nathan Bain

Alix Munier

Roberto Guizzetti

Pascal Urard

Performance Modeling and Estimation of a Configurable Output Stationary Neural Network Accelerator

Keywords: Neural network accelerator, output stationary, estimation, latency, power, area

Neural network accelerators are designed to process Neural Networks (NN) optimizing three Key Performance Indicators (KPIs): latency, power, and chip area. This work is based on the study of Gemini, an industrial prototype near memory computing inference accelerator designed using a high-level synthesis technique. Gemini is an output stationary configurable accelerator that achieves its performance based on two structural parameters. The measurement of the KPIs requires simulations that are time-consuming and resource-intensive.

This paper presents a high-level practical estimator that can instantly predict the KPIs depending on the NN and the Gemini configuration. The latency is accurately derived using an analytical model based on the architecture, the operators scheduling and the NN characteristics. The power and the chip area are computed analytically and the models are calibrated using simulations. Finally, we show how to use the estimator to derive Pareto optima for choosing the best Gemini configurations for a VGG-like NN.

I. INTRODUCTION

Deep Neural Networks (NN) have become incredibly popular [START_REF] Lecun | Deep learning[END_REF]. We can find NN-based solutions in every field, which led it to become a field on its own. The principle behind NNs is far from being new. However, they are recently thriving due to hardware progress [START_REF] Lecun | 1.1 deep learning hardware: Past, present, and future[END_REF]. NNs require a tremendous computational complexity which was not available a few decades ago. CPUs, FPGAs and especially GPUs participated in the recent resurgence of NNs as they overcame this computational need [START_REF] Lecun | Deep learning[END_REF]. However, NN ASIC accelerators become the NN hardware best candidates. These chips dedicated to NN processing are especially advantageous for inference. They can further enhance latency while having a small area and low power consumption. NNs present various structures and have different hardware requirements [START_REF] Lecun | 1.1 deep learning hardware: Past, present, and future[END_REF]: some applications need very low latency chips, such as cloud computing, while others require low power and small area, such as the edge computing market. Then, for each application, the designer has to always find a compromise between the 3 KPIs: latency, chip area and, power.

Gemini is designed as an industrial Near Memory Computing (NMC) solution to meet this challenge for the inference (all the NN weights are precalculated). It supports feed forward NNs (convolution layers, depthwise, pooling, and Fully Connected (FC)). The architecture of Gemini was primarily designed to be streamlined and highly configurable, facilitating effortless adaptation to various applications. Therefore, achieving pure performance on a specific NN was not the objective. Gemini is a configurable output stationary NN accelerator [START_REF] Sze | Efficient processing of deep neural networks: A tutorial and survey[END_REF] with mainly two structural architectural parameters. Chip area, latency, and power consumption depend on both the NN to be used and the two architectural parameters. The configurability of Gemini allows it to adapt to the NN structure. Choosing the best configuration according to the NN for Gemini is too time-consuming. There are around 1000 possible Gemini configurations. For a fixed NN, measuring the KPIs requires simulating the NN execution. It cannot be done for all the configurations in a reasonable time. However, using accurate KPIs models, one could rapidly estimate all the possible configurations for a fixed NN. Thus, the challenge lays in obtaining the best KPIs estimation depending on the NN and the two structural parameters. In this article, we consider only the scenario where the entire NN can fit into on-chip RAM. Consequently, only the accelerator's performance will be investigated. Considerations regarding off-chip communications are not taken into account since they are not influenced by the choice of the Gemini configuration.

A. Related works

There is a large research community working on NNs accelerators. Several surveys list the trends and the performances of state-of-the-art accelerators [START_REF] Sze | Efficient processing of deep neural networks: A tutorial and survey[END_REF]- [START_REF] Sekanina | Neural architecture search and hardware accelerator co-search: A survey[END_REF]. The accelerators' KPIs are usually directly measured on the system for specific NNs without any need for high-level KPIs estimations. Another important research area is the one dealing with the design space exploration of accelerators (generally using FPGAs) [START_REF] Kedia | Design space exploration of fpga-based system with multiple dnn accelerators[END_REF]- [START_REF] Haris | Secda: Efficient hardware/software co-design of fpga-based dnn accelerators for edge inference[END_REF]. Their objective is to find the best architectural parameters according to KPIs. They use KPIs models and optimizing algorithms to find the best design solutions.

Most of the authors evaluate the latency using analytical formulas based on operations scheduling, accelerator architecture, and NN parameters [START_REF] Mei | A uniform latency model for dnn accelerators with diverse architectures and dataflows[END_REF], [START_REF] Erdem | Runtime design space exploration and mapping of dcnns for the ultra-low-power orlando soc[END_REF]. For example, Erdem et al. [START_REF] Erdem | Runtime design space exploration and mapping of dcnns for the ultra-low-power orlando soc[END_REF] evaluate the latency of the computation according to channel and kernel parallelizations. For consumption, the strategies are often based on the power estimation of components [START_REF] Zhao | mrna: Enabling efficient mapping space exploration for a reconfiguration neural accelerator[END_REF], [START_REF] Tang | Neurometer: An integrated power, area, and timing modeling framework for machine learning accelerators industry track paper[END_REF], [START_REF] Yannan | Accelergy: An architecture-level energy estimation methodology for accelerator designs[END_REF]: for example, Wu et al. [START_REF] Yannan | Accelergy: An architecture-level energy estimation methodology for accelerator designs[END_REF] develop Accelergy, a tool that evaluates the energy of different architectures accelerators. Firstly, a designer describes the architecture with compound components characterized by primitives components for which the power is known; RAMs power is evaluated with CACTI [START_REF] Balasubramonian | Cacti 7: New tools for interconnect in innovative off-chip memories[END_REF] and other primitives such as Multiplications And Accumulations (MACs) are given by libraries. Secondly, the designer lists the actions of each component and their use rate. Accelergy estimates the total energy by combining all these data. Zhao et al. [START_REF] Zhao | mrna: Enabling efficient mapping space exploration for a reconfiguration neural accelerator[END_REF] also evaluate the consumption by listing the accelerator components but with more simplified energy models. They use also CACTI for RAMs power estimation and they consider registers, MACs, and communication networks for the other components. Concerning the chip area, Shahshahani et al. [START_REF] Shahshahani | Ppa based cnn architecture explorer[END_REF] rely on machine learning models to predict it. The main drawback of this method is its lack of interpretability. For instance, the impact of each resource is difficult to estimate. Wu et al. [START_REF] Yannan | An architecture-level energy and area estimator for processing-in-memory accelerator designs[END_REF] and Tang et al. [START_REF] Tang | Neurometer: An integrated power, area, and timing modeling framework for machine learning accelerators industry track paper[END_REF] simply consider the area contribution of each component to evaluate the chip area.

B. Contributions

This paper presents a method to estimate KPIs of an NN output stationary accelerator based on its configuration and NN parameters. The study aims to provide insights into the performance metrics without optimizing the architecture. The proposed estimation methodology can be utilized by anyone using output stationary accelerator architectures.

In Gemini, the latency is estimated analytically depending on the architecture, the operators scheduling, and the NN parameters. This estimation comes from the predictivity and the regularity of the operations schedule.

In this paper, we choose to model the power rather than the energy. The energy is impacted by the power of the system as well as its latency. Considering that energy is less efficient when dealing with trade-offs between consumption and speed (the energy combines both of them). The power will be split into leakage and dynamic power. The leakage is the power dissipated when the device is powered up but the gates are not toggling; it does not depend on the inputs. The dynamic one is the power dissipated when the gates switch their states; it depends on the inputs. Splitting the power allows us to estimate the power as a function of the clock frequency because the dynamic power scales linearly with the clock frequency while the leakage remains constant. [START_REF] Kumar | Dynamic power dissipation analysis in cmos vlsi circuit design with scaling down in technology[END_REF]. The power consumption of Gemini cannot be measured using tools such as Accelergy [START_REF] Yannan | Accelergy: An architecture-level energy estimation methodology for accelerator designs[END_REF]. Indeed, the computing part of Gemini is designed using High-Level Synthesis (HLS); the number, the type and the use rate of components are then difficult to predict because operators schedule and optimizations (such as resource sharing) depend on the configurations. However, we assume that main compound operators such as registers, MACs or multiplexers must be synthesized during the HLS. A power model for Gemini is then exhibited based on a linear equation of the complexity of main operators and calibrated through simulations of NNs executions. An advantageous characteristic of this model resides in its inherent simplicity, as it necessitates a minimal quantity of data regard-ing the architecture and the NN for its effective utilization. The power estimator is based on gate-level simulations, which is sufficient to have accurate power values to compare several configurations.

Finally, the chip area will also be modeled with the area contribution of main operators multiplied by constants.

To evaluate the estimator accuracy, it is chosen to consider the Root Mean Square Error (RMSE). It has the advantage to be homogenous to the modeled parameter. The estimated RMSE for area and leakage is 0.005 mm² and 0.57 µW, respectively. The latency and power models of a NN are constructed based on the models of its various constituent layers (including their parameters). They have been validated on a broad range of NNs. Latency is generally estimated with an error of less than 10 cycles, and dynamic power with a RMSE of less than 20 µW. We illustrate our results on a VGG-like NN, as presented in Fig. 1, which is inspired by VGG-16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], widely used for benchmarking NN accelerators performances [START_REF] Zhao | mrna: Enabling efficient mapping space exploration for a reconfiguration neural accelerator[END_REF], [START_REF] Brown | Nemocnn: An efficient near-memory accelerator for convolutional neural networks[END_REF].

3x3x4 2x2x4 3x3x8 3x3x8 2x2x8 3x3x16 3x3x16 16384x32 32x32 32x1 VGG-like 128x128x1 3x3x4
Convolution filters

Fully connected

Maxpool window

Fig. 1: VGG-like network structure This paper is organized as follows. Section II presents the configurable architecture of Gemini. Section III exposes the simulation environment used to gather data used in determining KPIs model. Section IV details the estimation model of the KPIs as well as its accuracy. Section V illustrates how the configuration can be chosen once the performances have been estimated. Finally, the conclusion is made in section VI.

II. GEMINI CONFIGURABLE ARCHITECTURE

In this section, we start by presenting the two structural parameters of Gemini, then the architecture of the accelerator will be described in a bottom-up fashion from the processing elements to the whole accelerator.

A. Presentation of Gemini structural parameters

Gemini is composed of a Tensor Processing Unit (TPU) and two SRAM modules: the features maps (fmaps) RAM and the weights RAM. The TPU contains the block in charge of calculations called the processing elements (PEs) array. There are N P E parallel PEs organized in 2D (W P AR, M P AR) with N P E = W P AR × M P AR. These two structural parameters are configurable before the logic synthesis. They size all the designs from the PEs array to top-level RAMs and they fix the scheduling of the operations. They were introduced to optimize the convolutions processing. W P AR stands for width parallelization of the output feature map (ofmap) and M P AR is the filter parallelization (since the number of filters is usually called M in literature [START_REF] Chen | Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices[END_REF]). Fig. 2 illustrates the notations.

B. TPU architecture

The TPU architecture is composed of the PEs array, the input mixers and the storing stage. Fig. 3 shows the TPU blocks in the top-level architecture.

The processing elements array is composed of N P E PEs. Concerning the architecture of one single processing element, each PE has two pipelined stages: the first one is the output computation stage performing MACs with fmaps pixels and weights. The second one is the quantization stage. It is triggered when ofmaps pixels are calculated (when all the MACs are performed). Its role is to put the ofmaps pixels in the desired range of quantization by multiplying them by a scaling factor and taking only fmap pixels bits from the most significant bits. The quantization stage always takes 5 clock cycles. PEs are organized following an output stationary dataflow, each processor then computes an ofmap pixel. The partial sum contributing to the output is stored in the accumulator (register) of each PE when new fmaps and weights are broadcasted to the PEs every cycle. This paradigm is described in [START_REF] Sze | Efficient processing of deep neural networks: A tutorial and survey[END_REF] and used by several accelerators such as [START_REF] Du | Shidiannao[END_REF] or [START_REF] Moons | An energy-efficient precision-scalable convnet processor in a 40-nm cmos[END_REF].

The mixers are combinational blocks that take as input a disordered dataset and output the sorted data. The input mixers are the ifmaps mixer and the weights one.

Finally, the storing stage is located at the output of PEs array. It eliminates some useless PEs computations that should not be written in the fmaps RAM. For convolutions, the PEs array calculates ofmaps pixels corresponding to horizontal padding and strides even if they are not necessary for the ofmap (they are eliminated by the storing stage). A design choice allowing a few useless operations done by PEs was made to simplify the mixers and to optimize the power and area.

The storing stage also writes the quantized outputs inside the fmaps RAM in the correct order. This function is mapped by a mixer. This stage is pipelined with the PEs.

C. Layers execution scheduling

The TPU executes the NN layer by layer. It supports convolutions and FC layers with different operations scheduling.

For convolutions, for each ofmap in 2D, W P AR pixels are calculated simultaneously. This paradigm is duplicated in M P AR to process 2D ofmaps simultaneously (as a reminder M is the number of filters). This parallelization is illustrated in Fig. 2 where W P AR and M P AR are respectively equal to 3 and 2. At every cycle, one filter weight is selected by the weights mixer and broadcasted to all PEs. It is then multiplied by N P E fmaps selected by the ifmap mixer (each PE receives a different fmap pixel) and accumulated inside the PE register. When all filter MACs are done, the N P E outputs are quantized and then processed by the storing stage.

For FC layers, N P E from N out output neurons are processed simultaneously. N out are the FC ofmaps flattened. At every cycle, one input neuron from N in (N in are the FC ifmaps flattened) is broadcasted to the PEs by the ifmap mixer and multiplied with N P E weights (chosen by the weights mixer) and accumulated inside the PE accumulator every cycle. Then, as it is done for convolution, the N P E quantized outputs go into the storing stage that writes them inside the fmap RAM.

Depthwise layers have the same scheduling as convolutions. Pooling layers follow also the same scheduling replacing the weight multiplication by the pooling operation.

D. Top-level architecture

The weights RAM contains the NN weights as well as information on the network (such as layer types) in a compacted way. The fmaps RAM contains the feature map pixels: before the beginning of the executions, this RAM contains ifmaps pixels; during the executions, intermediary fmaps are also stored inside this RAM overwriting non-meaningful data, and finally, at the end of the execution, it contains the final ofmaps. Both fmaps and weights SRAMs are sized according to the NN to be supported and according to (W P AR, M P AR). The fmaps RAM is composed of W P AR memory banks of M P AR × f mapbits width for each bank. The weights RAM is composed of one memory bank of N P E × weighstbits. The number of bits used for the fmaps and weights pixels are respectively f mapbits and weightsbits. As a reminder, in the scope of this study, it is required that the entire NN fits into the on-chip RAMs, including weights and intermediate ifmaps.

III. SIMULATION ENVIRONMENT

The objective is to gather data on KPIs (latency, area, and power) via simulations for several NNs and (W P AR, M P AR) couples. These data will be used to build an estimator based on analytical models predicting those indicators. For our utilization, both W P AR and M P AR vary from 2 to 32 (NPE could then vary from 4 to 1024). Each (W P AR, M P AR) couple is called a configuration. As aforementioned, it was chosen to perform simulations at the gate level stage directly before the P&R. We choose to work with 8 bits for both f mapbits and weightsbits since it is the most used quantization mode. The SRAM is fixed, only the aspect ratio between RAMs width and depth undergoes variation across different configurations. The technology chosen is CMOSC40. The simulation environment is summarized in Fig. 4. The design of the TPU is described in C++ and the HLS is performed by SIEMENS CATAPULT ® . The TPU execution is described using loops ensuring that one loop execution in C++ corresponds to one clock cycle. Then the latency of a NN processing can already be measured at this level by counting the number of loops. Once the TPU RTL is obtained for each configuration, the top level of the accelerator is built instantiating the TPU and its corresponding RAMs. If several cuts are possible for one RAM, we choose the option giving the smallest area. Once the full RTL is ready (including TPU and RAMs), we operate the logic synthesis using the SYNOPSYS DCSHELL ® tool with the same constraints and corners for all configurations: the synthesis is done at 200 MHz, 1 V, and 125 °C for the slowest corner. This corner represents the worst case in terms of timing. The libraries used are LVT (low threshold voltage) and RVT (regular threshold voltage) in CMOSC40. Finally, when the gate netlist is ready, area and leakage power estimations are given by DCSHELL ® without any simulation as they do not depend on the NN to be computed. Latency and dynamic power estimations can be obtained by doing gate-level simulations: they are performed using CADENCE XCELIUM ® environment. The simulations are run at 1 MHz for the typical corner at 1.1 V and 25°C. The toggle rate is then exploited by SYNOPSYS PRIMEPOWER ® to evaluate the average dynamic power on the whole NN execution.

For each simulation, we choose wisely which NN must be run to extrapolate the result of simulations into other NNs. For that, we run simulations on single-layer NNs varying all the possible parameters. The performance of a NN of several layers is obtained from the information of single-layer ones. For FC layers, N in and N out are varying. For convolutions, we vary the number of filters, filter sizes, 2D ifmap sizes, strides, and padding. For depthwise and pooling layers, different ifmap sizes, strides and, padding are chosen. A total of 93 single-layer NNs are considered. Concerning the sweep of (W P AR, M P AR), we limit the simulations to 210 different configurations.

IV. KEY PERFORMANCE INDICATORS ESTIMATION

The objective of this section is to estimate the performances of the accelerator according to its configurations for each NN. Those estimations are done thanks to an analytical model based on simulations discussed in section III. This model gives latency, area, leakage and, dynamic power. The modeling of each KPI will be detailed.

A. Latency modeling

Latency in cycles is obtained at the C++ description level. As the design is fully pipelined, the difference between the number of cycles given by the C++ execution and the one obtained after gates simulations corresponds only to the rampup of the pipeline. This was observed for several NNs. As the NN's layers are processed serially and separately, the latency of the neural network execution corresponds to the sum of the layers' latencies added to a constant overhead independent from the NN (it includes the pipeline ramp-up). For this work, only the meaningful terms will be detailed. For example, the bias cycles will be neglected. The following paragraphs detail the latency modeling of each layer type and the latency behavior of a NN of L layers.

1) Convolution latency

The execution of the convolution is fully predictive. It can be computed based on the output stationary paradigm where W P AR (among 2D ofmap pixels) pixels of M P AR filters (among M filters) are processed simultaneously. The number of 2D ofmap pixels calculated corresponds to the size of the 2D ifmap excluding the vertical padding pad v . This is because the execution duration is independent of the stride and the horizontal padding usage. Only the vertical padding is impacting the number of pixels calculated. So the number of 2D ofmap image pixels is W (H -(R -1)pad v), with W and H the width and height of the ifmap and R the height of the filter. Thus the number of cycles N cycconv needed to compute a convolution is:

N cycconv = W (H -(R -1)pad v) W P AR M M P AR × K c (1)
where K c is the number of cycles required for one-pixel computation. As stated in section II, 3 stages are pipelined for the computation of one pixel; the latency of the full system is then approximately the latency of the slowest stage. The slowest one is the output computation stage of the PEs array. Every cycle, one filter weight is read, so the number of cycles needed to compute one pixel is K c = S.R.C where S, R, and C are respectively the filter width, height and, channels. The latency of maxpool and depthwise layers are derived from the same formula.

2) Fully connected latency Concerning FC layers, N out output neurons are processed simultaneously by N P E processors. It takes N in cycles to process them; N in is the number of input neurons. So the latency N cycfc of a FC is:

N cycfc = N out N P E N in

3) Estimator validation

Combining the last equations, the general shape of the latency Lat of a NN of L K layers follows Eq.2:

Lat = L l=1 α l M P AR × β l W P AR γ l + K l=1 δ l N P E ϵ l
(2) with L the number of convolution layers, K the number of fully connected layers and α l , β l , γ l , δ l , ϵ l are constants depending on the layer l type. We deduce from Eq 2 that the latency is a decreasing curve with N P E. As the execution is predictive, there are few clock cycles of difference between the prediction and the simulation for all the NNs tested. Fig. 5 shows the estimation of the VGG-like network for M P AR = 8. The two curves are quasi-identical (the results are similar varying M P AR).

B. Area and leakage modeling

In this paragraph, we will discuss the area and leakage model for RAMs and TPU as well as the calibration of the model by the constants identification.

1) RAM modules area and leakage RAM modules leakage and area are dependent on the memory capacity chosen (total number of KBs). Even if the organization of RAMs (width × depth) changes with configurations, the difference of leakage and area is only impacted by RAMs technology variation. Then RAM modules area and leakage will be considered as constants and only the TPU will be considered.

2) TPUs' area and leakage modeling a) TPU main operators' complexities Estimating the TPU power and area knowing only (W P AR, M P AR) is challenging. The RTL is obtained by HLS, so the tool can adapt the number and types of operators and their scheduling to optimize the synthesis performance for each configuration; HLS can then generate different netlists for two close but different configurations. It was decided to model the leakage and area with a linear combination of the expected main operators' complexities and then identify the constants thanks to a linear regression (which are different for area and leakage). These positive constants (c 0 , c 1 , c 2 and c 3) encapsulate the consumption of primitives operators. The compound operators taken into account are:

• Operators that do not depend on the configuration: the term c 0 corresponds to all the constant operators. As a matter of example, there are all the registers and logic units of finite state machines. • PEs array input registers (fmaps and weights registers, accumulators) and arithmetic logic units (MACs): all these components scale with NPE. They will then be modeled with c 1 × N P E. • Mixers: there are 3 mixers in the circuit (ifmap, weights and storing stage mixers) ensuring that the data is well sorted at the input and output of PEs array and RAMs. These mixers are mapped into shifters implemented with multiplexers that have a complexity of N ⌈log 2 M ⌉ with N is the total number of data sorted and M is the number of possible shifts for each data. Mixers are then modeled by: c 2 × N P E⌈log 2 W P AR⌉.

Their power and area cannot be neglected especially for a large N P E. • Storing stage operators: they eliminate the non-useful pixels (due to stride or padding). They scale with W P AR.

They are modeled with c 3 × W P AR. Area and leakage follow Eq.3 with different constants:

c 0 + c 1 × N P E + c 2 × N P E⌈log 2 W P AR⌉ + c 3 × W P AR (3)
This method can be adapted to any output stationary accelerator as the compound operators (except the storing stage that was optimized for Gemini) are consistently necessary: MACs and registers for computation and storage are always synthesized along with mixers used for data transfer from RAMs to PEs. Furthermore, the FSM operators are also present in any design. b) Constants identification and validation of area and leakage models The constants c 0 , c 1 , c 2 and c 3 are identified using the 210 configurations dataset. They are determined by linear regression optimizing the RM SE and the correlation coefficient (R²). Fig. 6 shows the results of the modeling for a fixed M P AR = 5. It is observed that the significant increases in leakage and area, such as those observed at 40 and 80 N P Es, are accurately captured by the modeling: they correspond to an increase of the value of ⌈log 2 W P AR⌉ (W P AR is a power of 2). Table I displays the modeling results of the 210 different configurations. The low RMSE validates the accuracy of the estimation. The R² close to 1 confirms that our modeling with Eq.3 is meaningful. The same approach can be applied in case of changes in the number of bits (f mapbits or weightsbits) or the process technology. Only the regression step needs to be rerun, using the updated simulation data.

C. Dynamic power modeling

This paragraph describes how the dynamic power of the execution of a NN on Gemini can be evaluated for each architecture configuration. The dynamic power is calculated by summing the internal power (consumption due to the power dissipation of the capacitance inside a standard cell) and the switching one (dissipation of load capacitance) [START_REF] Dananjaya | Vlsi power in a nutshell[END_REF]. First, the RAMs dynamic power will be discussed, then the TPU dynamic power for each layer type will be detailed. The dynamic power of any NN can then be estimated by combining the power consumption of its layers.

1) RAM modules' dynamic power For all NNs tested, the dynamic power of both RAMs (fmaps and weights) remains almost constant while sweeping (W P AR, M P AR). It is since for each RAM, the number of KB is fixed for all configurations, thus the total amount of data read is the same; only the RAM modules widths and depths are changing affecting the number of read cycles and the size of the buffer to be read: for example, several reading cycles are needed when the RAM modules width is small while only a few of them are needed to read the same memory amount when the width is large. Fig. 7 shows the dynamic power of RAMs and TPU for the VGG-like NN for the configurations M P AR = 8 (W P AR is swept from 2 to 16). For this example, the SRAMs capacity is 1.3 MB. For our study, we neglect the impact of RAMs as they do not impact the configuration choice.

2) TPU dynamic power modeling

To estimate the dynamic power consumption of the TPU, the same compound operators used in section IV B were considered. The only difference is that the constants c i of Eq.3 should now depend on the NN. The regression should not be performed for each NN. Instead, it is executed only once using the data from the 210 simulated NNs.

The first statement is that the dynamic power of the TPU is globally increasing with N P E for all the NNs tested (as shown in Fig. 7). Furthermore there are some local optimums reached for some (W P AR, M P AR). They are the same for all NNs tested but they change according to the architecture. It means that they depend only on the architecture and not on the NN. However, the power magnitude of those optimums depends on the NN. The identification of c i is different between convolutions and fully connected layers as they have different parameters. a) Convolution dynamic power There are 5 different parameters characterizing convolutions: ifmap 2D dimensions (W × H), filter dimensions (S.R.C), number of filters (M), strides and, padding.

First of all, as was specified in II B, all the blocks except the storing stage work, in the same way, considering different strides or paddings. Then a low dynamic power dependency on those parameters is expected. For the 210 configurations of (W P AR, M P AR), we choose 6 different parameters NNs. We run them with and without the padding to evaluate their impact on the dynamic power. The RMSE is 2.94 µW for an average of 157.2 µW. Concerning the stride, we took one NN with a stride of 1x1 and another with 2x2. All the other parameters are the same. The RMSE is 0.72 µW for an average of 155.6 µW. Due to this low RMSE (compared to the average), it was then decided to neglect the impact of stride and padding on dynamic power consumption.

The number of filters M should also be neglected. Actually, the mixers and PEs array are duplicated in M P AR; it means that the execution is the same considering any number of filters between 1 and M P AR; and when M > M P AR several same executions are operated which is not affecting the average dynamic power. Considering 3 different NNs, fixing all the parameters except M (respectively set to 7, 14, 24), the RMSE is: 6.04 µW for an average of 152.5 µW. This parameter can also be neglected because of this low RMSE value.

The dynamic power is increasing with the 2D ifmap pixels number (W × H) before reaching a saturation level where the dynamic power consumption is almost the same for all ifmap 2D pixels number. As it was specified before, W P AR 2D pixels from the 2D ofmap are processed simultaneously. Considering the padding to simplify calculations, the number N exec of executions to calculate all the 2D ofmap pixels is the following:

N exec = W × H W P AR = W × H W P AR + r + o. (4)
with r equal to 0 when W ×H W P AR is an integer and 1 otherwise. o corresponds to the few overhead cycles. They do not consume a significant amount of power. The term W ×H W P AR corresponds to executions where 100% of W P AR are working and r to the execution where only a few of them are used (because there are less than W P AR pixels to calculate). Thus, when W × H is large (large 2D ifmap), N exec is quasi equal to W ×H W P AR . As the dynamic power is measured with an average on all the convolution processing, the dynamic power will then correspond to the power of the executions where all W P AR are working (because it is repeated W ×H W P AR times). It explains the power saturation when the ifmap is large enough (number of pixels higher than 80). Fig. 8 shows the dynamic Fig. 8: Power consumption of TPU sweeping 2D ifmap pixels power of the TPU sweeping the number of the ifmap pixels for some configurations of (W P AR, M P AR), all the other NN parameters are the same. The saturation comes with relatively small images for small W P ARs; N exec becomes quasi equal to W ×H W P AR . For a large number of W P AR, the saturation happens for bigger images (higher W × H). For the power modeling, it was decided to consider the saturation by modeling the power of all ifmaps having more than 80 pixels by the power of a 1024 pixels ifmap. Tested on 19 NNs with different ifmap sizes, the RMSE is 11.5 µW for an average of 134 µW. This assumption is relevant because the ifmaps used are usually in the range of saturation (even for a large W P AR). For small images (below 80 2D pixels), we have 2 models corresponding to ifmaps with respectively 16 and 36 pixels. The maximum RMSE is 10 µW. Concerning the impact of filter dimensions, the dynamic power is decreasing with the filter size (S × R × C). The major impact is on the general slope. Fig. 9 exhibits this statement on 4 NNs having the same parameters except the filter size. The dynamic power of convolutions is decreasing with filter dimensions because, as one weight is processed each cycle, the larger the filter dimensions, the higher the number of accumulation cycles required before the 5 scaling factors cycles. Thus on average, the 5 cycles of scaling (see section II,B) do not have an impact on the overall power of big filters; on the opposite, for small filters, the 5 cycles have more impact because there are fewer accumulation cycles. To model this behavior, we choose to make only c 1 dependent on the filter dimensions as it is the constant affecting the slope. We estimated c 1 for different filter sizes and we generalize it with a regression (a power function was chosen as it gives the lowest RMSE and correlation coefficient). The model explained below was tested on 5 NNs with different filter sizes for the 210 configurations: the RMSE is 16 µW for an average of 152 µW.

Finally, Eq.5 models the dynamic power of convolution layers P c (as well as maxpool and depthwise layers):

P c = c 0 + c 1 × S.R.C c2 × N P E + c 3 × N P E⌈log 2 W P AR⌉ + c 4 × W P AR (5)
c i were determined by linear regression. The maximum error is theoretically lower than the sum of the errors of each approximation. The error generated using Eq.3 is impacting all the estimations. b) Fully connected dynamic power For our FC layers applications, N in are varying from 25 to 500. The dynamic power model was built on simulations covering this range of N in .

N out should not impact the power consumption because as the architecture is output stationary, each PE calculates one N out ; N out N P E executions are then needed to compute all the N out . The N P E processors work the same way even if N out are less than N P E. 4 NNs are run with the same N in varying N out from 1 to 32. Only 5 µW of RMSE was observed (the average dynamic consumption is 78 µW). The impact of N out is then neglected. Besides, the dynamic power is increasing with N P E. The increase is less important for high N P Es. It is due to the increase of the number of accumulations leading to higher nets activities. When N in is already high, more accumulations are not affecting drastically the activity, so the dynamic power does not increase excessively. behavior is modeled with a logarithmic function. Eq.6 models FC layers power consumption P f c :

P f c = c 0 + (c 1 + c 2 × log(N i n)) × N P E + c 3 × N P E⌈log(W P AR)⌉ + c 4 × W P AR (6)
c i were determined by linear regression. Tested on 9 fully connected networks with N in varying from 25 to 500 for 210 configurations of (W P AR, M P AR), the RMSE is 12.3 µW and the average is 110 µW. c) L-layers NN dynamic power Once the dynamic power is estimated for each type of layer, the dynamic power P dyn N N (f) of a NN composed of L layers at the frequency f is calculated with the average power of each layer weighted by its latency.

P dyn N N (f) = L l=1 Lat l × P dyn l × f L l=1 Lat l (7)
Lat l is the latency of the layer l calculated with Eq.2 and P dyn l is the dynamic power calculated with Eq.5 or Eq.6 according to the layer type. This model is quite accurate for several NNs tested. For example, on the VGG-like model (Fig. 1) on 210 (W P AR, M P AR), the RMSE is 16 µW for an average of 150.4 µW (11.6% of error). While our power model exhibits a higher RMSE when compared to alternative methods (such as [START_REF] Yannan | Accelergy: An architecture-level energy estimation methodology for accelerator designs[END_REF]), it offers the distinct advantage of simplicity by relying exclusively on two structural parameters and raw information from the NN characteristics. Despite the method's slightly elevated RMSE, it remains sufficiently low for effectively selecting the optimal configuration. Consequently, it continues to serve as a valuable tool in practical scenarios. The estimation error is due to the underestimation of the impact of the structural parameters as they probably influence other operators than the ones estimated.

V. CONFIGURATION CHOICE Some of the considered KPIs have antagonistic behaviors. By increasing N P E, the latency decreases but the power and area increase. To find the best trade-offs, we use Pareto fronts to determine the optimal architectures. Fig. 10 shows sweet spots for the VGG-like NN considering the latency and power. The area is usually a specification, so only the points below a certain area could be considered. For each point of the curve, there are no other points that simultaneously have lower power and latency. The final choice between these (W P AR, M P AR) points is made according to the application's specifications.

VI. CONCLUSION

In this paper, we presented a practical method to estimate three KPIs, latency, area, and power consumption of Gemini, an output stationary NMC configurable accelerator for NN inference. Its architecture can be easily configured thanks to two parameters, W P AR and M P AR. The KPIs estimations are specific to any feed-forward NN specified as input of the estimator. They are accurate for all the KPIs but the dynamic power. The error is small enough to allow the user to determine the most accurate configuration for their application (NN). The KPI estimation method presented in this article can be used for any output stationary accelerator (except few optimizations done for Gemini). Finally, this method can be extended to applications based on the execution of several NNs with different use rates.

Fig. 3 :

 3 Fig. 2: NPE organization for convolution

Fig. 4 :

 4 Fig. 4: Simulation environment

Fig. 5 :

 5 Fig. 5: VGG-like estimated and simulated latencies.

Fig. 6 :

 6 Fig. 6: Area and leakage estimations and simulations.

Fig. 7 :

 7 Fig. 7: Power consumption of TPU and RAMs on VGG-like

Fig. 9 :

 9 Fig. 9: Power of convolution for different filters sizes

Fig. 10 :

 10 Fig. 10: VGG-like network sweet spots

TABLE I :

 I Leakage and area estimation characteristics