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There are several statements equivalent to the famous Riemann hypothesis. In 2011, Solé and Planat stated that the Riemann hypothesis is true if and only if the inequality ζ(2) • q≤qn (1 + 1 q ) > e γ • log θ(q n ) holds for all prime numbers q n > 3, where θ(x) is the Chebyshev function, γ ≈ 0.57721 is the Euler-Mascheroni constant, ζ(x) is the Riemann zeta function and log is the natural logarithm. In this note, using Solé and Planat criterion, we prove that the Riemann hypothesis is true.

Introduction

The Riemann hypothesis is the assertion that all non-trivial zeros have real part 1 2 . It is considered by many to be the most important unsolved problem in pure mathematics. It was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of twenty-three unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems. In mathematics, the Chebyshev function θ(x) is given by θ(x) = q≤x log q with the sum extending over all prime numbers q that are less than or equal to x, where log is the natural logarithm.

Proposition 1.1. We have [6, pp. 1]:

x ∼ θ(x) when (x → ∞).
Leonhard Euler studied the following value of the Riemann zeta function (1734). Proposition 1.2. It is known that [1, (1) pp. 1070]:

ζ(2) = ∞ k=1 q 2 k q 2 k -1 = π 2 6 ,
where q k is the kth prime number (We also use the notation q n to denote the nth prime number).

In mathematics, Ψ(n) = n • q|n 1 + 1 q is called the Dedekind Ψ function, where q | n means the prime q divides n. We say that Dedekind(q n ) holds provided that

q≤qn 1 + 1 q > e γ ζ(2) • log θ(q n ).
Next, we have Solé and Planat Theorem:

Proposition 1.3. Dedekind(q n ) holds for all prime numbers q n > 3 if and only if the Riemann hypothesis is true [7, Theorem 4.2 pp. 5].

A natural number N k is called a primorial number of order k precisely when,

N k = k i=1 q i . We define R(n) = Ψ(n) n•log log n for n ≥ 3. Dedekind(q n ) holds if and only if R(N n ) > e γ
ζ(2) is satisfied. There are several statements out from the Riemann hypothesis assumption: Proposition 1.4. We have [7, Proposition 3. pp. 3]:

lim k→∞ R(N k ) = e γ ζ (2) 
.

On the sum of the reciprocals of all prime numbers not exceeding x, we have Proposition 1.5. For x ≥ 2278383 [2, Theorem 5.6 (1) pp. 243]:

- 0.2 log 3 x ≤ q≤x 1 q -B -log log x ≤ 0.2 log 3 x
where B ≈ 0.2614972128 is the Meissel-Mertens constant [4, (17.) 

pp. 54].

The following property is based on natural logarithms:

Proposition 1.6. [3, pp. 1]. For x > 0: log(1 + x) < x.
Putting all together yields a proof for the Riemann hypothesis using the Chebyshev function.

2 What if the Riemann hypothesis were false?

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. However, there are some implications in case of the Riemann hypothesis might be false.

Lemma 2.1. If the Riemann hypothesis is false, then there are infinitely many prime numbers q n for which Dedekind(q n ) fails (i.e. Dedekind(q n ) does not hold).

Proof. The Riemann hypothesis is false, if there exists some natural number x 0 ≥ 5 such that g(x 0 ) > 1 or equivalent log g(x 0 ) > 0:

g(x) = e γ ζ(2) • log θ(x) • q≤x 1 + 1 q -1
.

We know the bound [7, Theorem 4.2 pp. 5]:

log g(x) ≥ log f (x) - 2 x
where f was introduced in the Nicolas paper [5, Theorem 3 pp. 376]:

f (x) = e γ • log θ(x) • q≤x 1 - 1 q .
When the Riemann hypothesis is false, then there exists a real number b < 1 2 for which there are infinitely many natural numbers x such that log f (x) = Ω + (x -b ) [5, Theorem 3 (c) pp. 376]. According to the Hardy and Littlewood definition, this would mean that

∃k > 0, ∀y 0 ∈ N, ∃y ∈ N (y > y 0 ) : log f (y) ≥ k • y -b . That inequality is equivalent to log f (y) ≥ k • y -b • √ y • 1 √ y , but we note that lim y→∞ k • y -b • √ y = ∞
for every possible positive value of k when b < 1 2 . In this way, this implies that ∀y 0 ∈ N, ∃y ∈ N (y > y 0 ) : log f (y) ≥ 1 √ y .

Hence, if the Riemann hypothesis is false, then there are infinitely many natural numbers x such that log f

(x) ≥ 1 √ x . Since 2 x = o( 1 √ 
x ), then it would be infinitely many natural numbers x 0 such that log g(x 0 ) > 0. In addition, if log g(x 0 ) > 0 for some natural number x 0 ≥ 5, then log g(x 0 ) = log g(q n ) where q n is the greatest prime number such that q n ≤ x 0 . Actually,

q≤x 0 1 + 1 q -1 = q≤qn 1 + 1 q -1 and θ(x 0 ) = θ(q n )
according to the definition of the Chebyshev function.

Main Insight

Theorem 3.1. The Riemann hypothesis is true when for every large enough prime number q n > 3, there exists another prime q n ′ > q n such that

R(N n ′ ) ≤ R(N n ).
Proof. If the Riemann hypothesis is false and the inequality

R(N n ′ ) ≤ R(N n )
is satisfied for every large enough prime number q n > 3, then there is an infinite subsequence of natural numbers n i such that

R(N n i+1 ) ≤ R(N n i ),
q n i+1 > q n i and Dedekind(q n i ) fails by Lemma 2.1. This is a contradiction with the fact that

lim inf k→∞ R(N k ) = lim k→∞ R(N k ) = e γ ζ (2) 
by Proposition 1.4. By definition of the limit inferior for any positive real number ε, only a finite number of elements of the sequence R(N k ) are less than e γ ζ(2) -ε. This is a contradiction with the previous infinite subsequence and thus, the Riemann hypothesis must be true.

Main Theorem

Theorem 4.1. The Riemann hypothesis is true.

Proof. The Riemann hypothesis is true when

R(N n ′ ) ≤ R(N n )
is satisfied for large enough prime numbers q n ′ > q n because of the Theorem 3.1. That is the same as log log θ(q n ′ ) -log log θ(q n ) ≥

qn<q≤q n ′ log 1 + 1 q .
By Propositions 1.1 and 1.5, for every large enough prime number q n > 3, there exists another prime q n ′ > q n such that

log log θ(q n ′ ) -log log θ(q n ) ≈ log log(q n ′ ) -log log(q n ) = 0.2 log 3 q n + B + log log(q n ′ ) -B - 0.2 log 3 q n -log log(q n ) ⪆ qn<q≤q n ′ 1 q > qn<q≤q n ′ log 1 + 1 q
where q n ∼ θ(q n ) when (n → ∞)

and the inequality 1 q > log 1 + 1 q is satisfied for every prime q by Proposition 1.6. Consequently, the inequality

R(N n ′ ) ≤ R(N n )
holds for sufficiently large prime numbers q n ′ > q n and therefore, the Riemann hypothesis is true.

Conclusions

Practical uses of the Riemann hypothesis include many propositions that are known to be true under the Riemann hypothesis and some that can be shown to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis is closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the Large Prime Gap Conjecture, etc. In general, a proof of the Riemann hypothesis could spur considerable advances in many mathematical areas, such as number theory and pure mathematics.
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