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I. INTRODUCTION

The action of general relativity with fermions has two independent symmetries: general coordinate invariance and local Lorentz invariance. These symmetries are traditionally implemented by Cartan's tetrads c a i and by the spin connection ω i which is a quartic polynomial in the tetrads and their first derivatives. In this paper, the spin connection is replaced by tensor gauge fields with their own Yang-Mills action.

General coordinate invariance is the defining symmetry of Einstein's general relativity. A general coordinate transformation x → x acts on coordinates x i and on tensor indices i, k but leaves Dirac indices α, β and Lorentz indices a, b unchanged

ψ α (x ) = ψ α (x), c i a (x ) = ∂x i ∂x k c k a (x). (1) 
General coordinate invariance is implemented by Cartan's tetrads c a k and their derivatives. Local Lorentz transformations act on Dirac and Lorentz indices but leave coordinates and tensors unchanged

ψ α (x) = D αβ (Λ(x)) ψ β (x) (D i ψ) α = (∂ i + ω i ) αβ ψ β = D αβ (Λ) (D i ψ) β c a i (x) = Λ a b (x) c b i (x).
(

) 2 
Local Lorentz invariance is implemented by the spin connection ω i in standard formulations [START_REF] Utiyama | Invariant theoretical interpretation of interaction[END_REF][START_REF] Kibble | Lorentz invariance and the gravitational field[END_REF][START_REF] Kibble | Canonical variables for the interacting gravitational and dirac fields[END_REF][START_REF] Weinberg | Gravitation and Cosmology[END_REF][START_REF] Deser | Canonical Vierbein Form of General Relativity[END_REF][START_REF] Cahill | Physical Mathematics[END_REF][START_REF] Green | Superstring theory[END_REF]. * cahill@unm.edu

Invariance under general coordinate transformations and invariance under local Lorentz transformations are both exact and independent symmetries of the action of general relativity with fermions. But while general coordinate transformations (1) act on coordinates and tensor indices, local Lorentz transformations (2) act on Lorentz and Dirac indices leaving coordinates unchanged. In this respect, local Lorentz invariance is like a noncompact internal symmetry [START_REF] Cahill | General internal gauge symmetry[END_REF].

These observations motivate the attempt in the present paper to implement local Lorentz invariance by means of tensor gauge fields L ab i and a real vector field K i . The spin connection ω i = 1 8 ω ab i [γ a , γ b ] is replaced by a "Lorentz connection" L i = 1 8 L ab i [γ a , γ b ] with fieldstrength F ik = [∂ i + L i , ∂ k + L k ] and Yang-Mills-like action [START_REF] Cahill | Is the local Lorentz invariance of general relativity implemented by gauge bosons that have their own Yang-Mills-like action?[END_REF] 

S L = - 1 4m 2 λ 2 Tr F † ik h F ik βhβ √ g d 4 x (3) 
in which h = iβγ a c i a K i is a hermitian matrix and K i (x) is a real vector field. Here β = iγ 0 , g = | det(g ik )|, and λ is a coupling constant. The vector field K i (x) makes the trace in the action S L invariant under noncompact Lorentz transformations, but the squares of the time derivatives ( Lab i ) 2 appear in S L with positive signs only if the average value of K i is timelike.

The action of the vector boson K i is

S K = -1 4 (D i K k -D k K i )(D i K k -D k K i ) -1 4 (K i K i + m 2 ) 2 √ g d 4 x. (4) 
The potential energy density 1 4 (K i K i + m 2 ) 2 makes the average value 0|K i (x)|0 of K i (x) timelike at low temperatures. Its vibrations about 0|K i (x)|0 are massless. The particles of the vector boson K i and of the tensor gauge fields L ab i are neutral, weakly interacting and massless, so they would contribute to dark matter.

In terms of the connection L i and the gauge fields of the standard model A i = iA α is t αs , the covariant derivative of a Dirac field ψ is defined in this paper as

D i ψ = ∂ i + L i + A i ψ (5) 
rather than in terms of the spin connection as

D i ψ = ∂ i + ω i + A i ψ (6) 
in which

ω i = 1 8 ω ab i [γ a , γ b ] and [1-7] ω ab i = 1 2 c aj ∂ i c b j -∂ j c b i -1 2 c bj ∂ i c a j -∂ j c a i -1 2 c ak c b c c i (∂ k c c -∂ c ck ) . (7) 
The present formalism has a serious disadvantage: it introduces one vector boson K i and six tensor gauge fields L ab i . On the other hand, it has three advantages: 1. It treats local Lorentz invariance as an internal symmetry and gives it a Yang-Mills action.

It adds to the usual internal-symmetry gauge fields

A i = iA α is t αs in the Dirac covariant derivative D i ψ = ∂ i + L i + A i ψ a linear combination of gauge fields L i = 1 8 L ab i [γ a , γ b ]
and not a quartic polynomial ω i in the tetrads and their derivatives.

It requires the existence of massless, neutral,

weakly interacting fields K i and L ab i which would contribute to dark matter.

The action S L is discussed in Sec. II. The matrix h, the vector K i , and positive signs of squares of the time derivatives ( Lab i ) 2 are discussed in in Sec. III. The Dirac action

S D = - ψ γ a c i a D i ψ √ g d 4 x (8) 
in which D i is the covariant derivative ( 5) is discussed in Sec. IV. If tensor gauge fields do gauge SO [START_REF] Kibble | Canonical variables for the interacting gravitational and dirac fields[END_REF][START_REF] Utiyama | Invariant theoretical interpretation of interaction[END_REF] and if all invariant terms of dimension (mass) 4 or less occur in the action (which is not obvious in a theory of gravity), then the total action would include the contracted squares

S C = -M 2 D i c a k D i c k a √ g d 4 x (9) 
of the covariant derivatives of the tetrads

D i c a k = ∂ i c a k + L a i b c b k -Γ ki c a . ( 10 
)
The factor M 2 is required because tetrads are dimensionless. The linear combination L a i b c b k -Γ ki c a of the tensor gauge field and the Levi-Civita connection acquires a mass of order M . In the limit M → ∞ the equation of motion of the tensor gauge fields L ab i arises from the term S C and is D i c a k = 0 which is Cartan's first equation of structure. In the same limit, the tensor gauge fields approach the spin connection as described in Sec. VII.

II. ACTION OF TENSOR GAUGE BOSONS

The action (3) proposed for the tensor gauge fields is

S L = - 1 4m 2 λ 2 Tr F † ik h F ik βhβ √ g d 4 x (11)
in which the field strength F ik is

F ik = [∂ i + L i , ∂ k + L k ] , (12) 
the matrix of tensor gauge fields L i is

L i = 1 8 L ab i [γ a , γ b ] , (13) 
h = iβγ a c i a K i is a 4 × 4 positive hermitian matrix, and K i is a real vector field, and λ is a coupling constant.

The action [START_REF] Castellano | Early results from glass-jwst. iii. galaxy candidates at z ≈ 9 -15[END_REF] is real because

Tr F † ik h F ik βhβ * = Tr βhβ F †ik h F ik = Tr F † ik h F ik βhβ . (14) 
The gamma matrices

γ 0 = -i 0 1 1 0 γ i = -i 0 σ i -σ i 0 β = iγ 0 = 0 1 1 0 γ 5 = 1 0 0 -1 iβγ 0 = 1 0 0 1 and iβγ = -σ 0 0 σ (15) satisfy {γ a , γ b } = 2η ab I. The commutators [γ a , γ b ] in L i = -1 8 L ab i [γ a , γ b ] are for spatial a, b, c = 1, 2, 3 [γ a , γ b ] = 2i abc σ c I and [γ 0 , γ a ] = -2σ a γ 5 . ( 16 
)
The gauge fields associated with rotations and boosts are

r a i ≡ 1 2 abc L bc i and b a i ≡ L a0 i , (17) 
and the matrix of gauge fields L i is

L i = -i 1 2 r i • σ I -1 2 b i • σ γ 5 . (18) 
The field strength ( 12) is then

F ik = [∂ i + L i , ∂ k + L k ] (19) 
= -i 1 2 ∂ i r k -∂ k r i + (r i × r k -b i × b k ) • σI -1 2 ∂ i b k -∂ k b i + (r i × b k + b i × r k ) • σγ 5 .
Under a local Lorentz transformation D = D(Λ(x)), these fields transform as

L ab i = Λ a c Λ b d L cd i -1 2 Tr D∂ i D -1 [γ a , γ b ] ∂ i + L i = D ∂ i + L i D -1 F ik = D F ik D -1 h = D -1 † h D -1 (βhβ) = D βhβ D † ψ = D ψ (20) 
and so the action density s L of the action S L (11) is invariant

s L = Tr F † ik h F ik βh β = Tr D -1 † F † ik D † D -1 † hD -1 DF ik D -1 DβhβD † = Tr F † ik h F ik βhβ = s L (21) 
under local Lorentz transformations (2) as well as under general coordinate transformations (1). The squares of the time derivatives ( Lab i ) 2 and ( La0 i ) 2 of the gauge fields must appear with a positive sign in the action S L [START_REF] Castellano | Early results from glass-jwst. iii. galaxy candidates at z ≈ 9 -15[END_REF] if the gauge-field action is to be bounded below. They will appear with a positive sign at low temperatures if the vector boson K i in the matrix h = iβγ a c i a K i has an average value 0|K i |0 = K 0i in the low-temperature ground state that is timelike,

K 0i K 0i
-m 2 < 0. The matrix h, the vector K i , and the signs of the time derivatives ( Lab i ) 2 and ( La0 i ) 2 are discussed in Sec. III.

The tensor gauge fields L ab i have spin 2 (not 3) because they are antisymmetric in a and b.

An explicit formula for the matrix D(Λ) is given in Appendix A along with derivations of the identities

D † βD = β and DβD † = β. ( 22 
)
These identities [START_REF] Smullin | Constraints on Yukawa-type deviations from Newtonian gravity at 20 microns[END_REF] imply that the action S L with h replaced by β, i.e, the trace Tr F † ik βF ik β , is invariant under local Lorentz transformations. But the choice h → β gives an action in which the squares of the time derivatives of the tensor gauge fields that gauge boosts and those that gauge rotations occur with opposite signs. So the trace [START_REF] Castellano | Early results from glass-jwst. iii. galaxy candidates at z ≈ 9 -15[END_REF] which uses the matrix h = iβγ a K a may be the only viable choice.

With the abbreviations

R ik = ∂ i r k -∂ k r i + (r i × r k -b i × b k ) B ik =∂ i b k -∂ k b i + (r i × b k + b i × r k ), (23) 
the field strength

F ik is F ik = -i 1 2 R ik • σ I -1 2 B ik • σ γ 5
, and the action S L is

S L = - 1 16m 2 λ 2 Tr R ik • σI + iB ik • σγ 5 h R ik • σI -iB ik • σγ 5 βhβ √ g d 4 x. ( 24 
)
Tensor gauge fields L ab i possess at least two other actions that are invariant under local Lorentz transformations and general coordinate transformations. One is succinct and linear

S E = M 2 E F ab ik c i a c k b √ g d 4 x (25) 
in the coefficients F ab ik of the field strength

F ik = F ab ik [γ a , γ b ] = ∂ i L k -∂ k L i + [L i , L k ]. (26) 
These coefficients

F ab ik = ∂ i L ab k -∂ k L ab i + L bc i L a ck -L ac i L b c k resemble Riemann's curvature tensor R k i n = ∂ Γ k in -∂ n Γ k i + Γ k m Γ m in -Γ k mn Γ m i . ( 27 
)
But the action S E [START_REF] Chiaverini | New experimental constraints on nonNewtonian forces below 100 microns[END_REF] does not lead to second-order differential equations for the gauge fields L ab i . A third invariant action is based upon the scalar

F ab ik F ik ab = ∂ i L ab k -∂ k L ab i + L bc i L a ck -L ac i L b c k (28) 
∂ i L k ab -∂ k L i ab + L i bd L dk a -L i ad L d k b .
It is hermitian and invariant under general coordinate transformations and local Lorentz transformations, but the squares of its time derivatives occur with opposite signs.

III. THE MATRIX h AND THE VECTOR K

The action S L of the proposed tensor gauge fields will be invariant under local Lorentz transformations [START_REF] Geraci | Improved constraints on non-Newtonian forces at 10 microns[END_REF] if the matrix h which appears in the trace [START_REF] Castellano | Early results from glass-jwst. iii. galaxy candidates at z ≈ 9 -15[END_REF] transforms as

h = D -1 † h D -1 (29) 
where

D = D(Λ(x)), D † βD = β and DβD † = β .
The simplest choice is the hermitian matrix

h = iβγ a c i a K i (30)
in which K i is a real vector transforming as

K i (x ) = ∂x k ∂x i K k (x) (31) 
under general coordinate transformations. Its action S K (4) is simpler than it looks since

D i K k -D k K i = ∂ i K k -∂ k K i . ( 32 
)
Under a Lorentz transformation Λ, Dirac's gamma matrices transform as a 4-vector

D(Λ)γ a D -1 (Λ) = Λ a b γ b D -1 (Λ)γ a D(Λ) = Λ a b γ b (33) 
where Λ a b = Λ -1a b . And since the matrix D(Λ) leaves β invariant D -1 † (Λ) β = β D(Λ) as seen earlier ( 22), the matrices βγ a also transform as a 4-vector

D -1 † (Λ) βγ a D -1 (Λ) = Λ a b βγ b D † (Λ) βγ a D(Λ) = Λ a b βγ b . (34) 
So Λ changes h to

h = iβγ a c i a K i = iβγ a Λ b a c i b K i = iD -1 † βγ b D -1 c i b K i = D -1 † h D -1 (35) 
which satisfies [START_REF] Geraci | Improved constraints on non-Newtonian forces at 10 microns[END_REF] as does βhβ since

(β h β) = β D -1 † hD -1 β = D βhβ D † . ( 36 
)
The squares of the time derivatives Lab i of the gauge fields must appear with a positive sign in the action (3) if the gauge-field action is to be bounded below. They will appear with a positive sign at low temperatures if the vector boson K i in the matrix h = iβγ a c i a K i has an average value

K 0i = 0|K i |0 in the low-temperature vacuum that is timelike, K 0i K 0i
-m 2 < 0. At low temperatures, the average value K 0i is made timelike by the second term -1 4 (K i K i + m 2 ) 2 in its action S K (4) which due to antisymmetry (32) may be written in the simpler form

S K = -1 4 (∂ i K j -∂ k K i )(∂ i K j -∂ k K i ) -1 4 (K i K i + m 2 ) 2 √ g d 4 x. (37) 
At low temperatures and presumably in the rest frame of the CMB, the vector K i has the average vacuum value 0|K i |0 = K i 0 = m δ i 0 , and the average value of the matrix h (30) is

h = iβγ a c i a K 0i = iβγ 0 c 0 0 K 00 = -mI. ( 38 
)
Then in the rest frame of the CMB and apart from the fluctuations k i = K i -K i 0 , the action S L [START_REF] Long | Upper limits to submillimetre-range forces from extra space-time dimensions[END_REF] is

S L = - 1 16λ 2 Tr R ik • σI + iB ik • σγ 5 R ik • σI -iB ik • σγ 5 √ g d 4 x (39) = - 1 4λ 2 R ik • R ik + B ik • B ik √ g d 4 x
in which the squares of the time derivatives ( ṙk ) 2 and ( ḃk ) 2 appear with positive signs as promised. So the action S L is bounded below in the rest frame of the CMB. At low temperatures, the vector boson K i fluctuates about its average value, K i (x) = K 0i + k i (x). The fluctuations k i (x) are those of a massless vector field with k 0 (x) = 0 as discussed in Appendix C. The six gauge fields L ab i remain massless despite the nonzero average value K i 0 of the vector boson K i . The ground state |0, v of a Lorentz frame moving at velocity v relative to the CMB is related to the ground state of the CMB by a unitary Lorentz transformation |0, v = U v |0 that represents matched (59) Lorentz and general-coordinate transformations. The action is invariant under Lorentz and general-coordinate transformations

U -1 v S L U v = S L . (40) 
So the average value of the action in the state |0, v is the same as in the state |0 in which the CMB is at rest

0, v|S L |0, v = 0|U -1 v S L U v |0 = 0|S L |0 . ( 41 
)
Thus the action is bounded below in all Lorentz frames. The matrix h takes a simpler form in two-component notation as discussed in Appendix D.

It may be useful here to distinguish different kinds of symmetry. One kind is an exact symmetry of the action and of the vacuum, like that of the group SU c (3) of QCD.

A second kind is a symmetry of the action but not of the vacuum, like that of SU (2)⊗U(1) Y in which the average value of a component of the Higgs field in the lowtemperature vacuum makes the W and Z bosons massive. Their masses make their interactions of short range and therefore weak.

A third kind is symmetries of the action that are intrinsically reduced by the ground state of the actual universe. As described in Sec. V, the average values of the tetrads c a 0i (x) = Tr(ρ c a i (x)) in the ground state of the late, low-temperature universe reduce the two independent symmetries of general coordinate and local-Lorentz invariance to a single exact symmetry of the vacuumlocal Lorentz invariance. Every local-Lorentz transformation Λ a b (x) must be accompanied by a specific general coordinate transformation (63)

∂x i ∂x k = c i a (x) Λ a b (x) c b k (x) (42) 
in order to preserve the average values of the tetrads.

In the theory sketched in this paper, the average value of the vector boson K i in the present low-temperature universe and in the rest frame of the CMB, 0|K i |0 = m δ 0 i , gives the action S L (3, 24) of the six gauge fields L ab i the approximate and simpler form [START_REF] Cahill | An effective potential that is real[END_REF]. The six gauge fields L ab i remain massless, and local Lorentz invariance remains exact -apart from 0|K i |0 , the CMB, and the matter and energy of the actual universe.

IV. DIRAC ACTION

The explicitly hermitian Dirac action is

S D = -1 2 ψ γ a c i a D i ψ + ψ γ a c i a D i ψ † √ g d 4 x (43)
in which the covariant derivative D i ψ is

D i ψ = ∂ i + 1 8 L ab i [γ a , γ b ] ψ. ( 44 
)
To avoid clutter, I am using a single Dirac field ψ and am suppressing the gauge bosons

A α i of SU c (3) × SU (2) × U (1 
). To include them, one would replace the single Dirac field ψ by a vector Ψ whose components Ψ α would be the 6 leptons and 18 quark fields. One would add the 12 gauge bosons

A α i of SU c (3) × SU (2) × U (1)
and their actions. Then the covariant derivative of the 96-component Dirac field Ψ would be 

D i Ψ = ∂ i + 1 8 L ab i [γ a , γ b ] + A α i t α Ψ ( 45 
ψ = D ψ ψ = (ψ † β) = ψ † D † β = ψ † β D -1 (D i ψ) = D D i ψ (47) (c i a ) = Λ b a c i b while D γ a D -1 = Λ a b γ b = Λ -1a b γ b .

Thus the action density (8) is invariant under local Lorentz transformations

L D = ψ † β γ a c i a D i ψ = ψ † D † β γ a D c i c Λ c a D i ψ = ψ † β γ b Λ a b Λ -1c a c i c D i ψ (48) = ψ † β γ b c i b D i ψ = L D
as well as under general coordinate transformations. The explicitly hermitian action density is

L Dh = -ψ † βc i a γ a ∂ i ψ -1 2 ψ † β γ a (∂ i c i a ) ψ + ψ † 1 2 c i 0 r i • σ I -c i s r s i γ 5 ψ (49) -1 2 jsk c i j b s i ψ † σ k ψ.
as shown in Appendix E. Although the current that generates the rotational field r s i is

j is r = 1 2 ψ † c i 0 σ s -c i s γ 5 ψ, (50) 
the current that generates the boost field b s i has no time component

j is b = -1 2 jsk c i j ψ † σ k ψ. (51) 
So unless the spatial tetrads are nondiagonal so that c 0 j = 0 for j = 1, 2 or 3, the time components of the boost bosons b s 0 do not occur in the Dirac action, and do not generate Coulomb potentials.

These comments apply also to the gauge fields of groups larger than the Lorentz group: unless the spatial tetrads are nondiagonal, c 0 a = 0 for a > 0, the time components of the gauge bosons of the generators of the noncompact directions do not appear in the Dirac action and do not generate Coulomb potentials.

In the static limit, the exchange of the three massless tensor gauge fields r i that gauge rotations would imply that two macroscopic bodies of F and F fermions separated by a distance r would contribute to the energy a static Coulomb potential

K L (r) = 3 F F f 2 4πr
This potential is positive and repulsive (between fermions and between antifermions). It violates the weak equivalence principle because it depends upon the number F of fermions as F = 3B + L and not upon their masses.

The potential K L (r) changes Newton's potential to

K N L (r) = -G mm r (1 + α) in which the coupling strength α is α = - 3F F λ 2 4πGmm = - 3F F m 2 P λ 2 4πmm
.

Couplings α ∼ 1 are of gravitational strength. Experiments put no upper limits on the masses of tensor gauge fields and no lower limits on their coupling λ.

V. INTRINSIC REDUCTION OF SYMMETRY

When quantizing a gauge theory, one picks a gauge. For general relativity in flat space, the usual gauge choice is to set the average value of the metric g ik (x) equal to the Minkowski metric η

0|g ik (x)|0 = η ik =    -1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1    . ( 52 
)
The average vacuum value of the metric is then quadratic in the average values of Cartan's tetrads

0|g ik (x)|0 = 0|c a i (x) η ab c b k (x)|0 = η ik . (53) 
A further gauge choice of Lorentz frame sets the average vacuum values of the tetrads equal to Kronecker deltas

0|c a i (x)|0 = δ a i . ( 54 
)
The independent symmetry transformations of general coordinate invariance (1)

c b i (x ) = ∂x k ∂x i c b k (x) ( 55 
)
and local Lorentz invariance (2)

c a i (x) = Λ a b (x) c b i (x) (56) map a tetrad c b k (x) to c a i (x ) = Λ a b (x) ∂x k ∂x i c b k (x) (57) 
So if the average vacuum values (54) of the tetrads 0|c a i (x)|0 = δ a i are to be invariant, then

Λ a b (x) ∂x k ∂x i δ b k = Λ a k (x) ∂x k ∂x i = δ a i . (58) 
By multiplying this last equation by ∂x i /∂x , we see that the tetrad values 0|c a i (x)|0 = δ a i will be unchanged only if the general coordinate transformation x → x and the local Lorentz transformation Λ a (x)

∂x a ∂x = Λ a (x) ⇐⇒ ∂x k ∂x i = Λ -1k i (x) (59) 
are the same. In that case, we have

Λ a k ∂x k ∂x i = Λ a k Λ -1k i (x) = δ a i ( 60 
)
which maintains the average values of the tetrads in the vacuum

0|c a i (x )|0 = Λ a b (x) ∂x k ∂x i 0|c b k (x)|0 = Λ a b (x) ∂x k ∂x i δ b k = Λ a k (x) Λ -1k i (x) = δ a i . (61) 
In a universe described by a density operator ρ, the average values of the tetrads are traces

c a i (x) = Tr(ρ c a i (x)). ( 62 
)
By using the tetrad identity c k a c a i = δ k i , one may show that the joint transformations (57) preserve the average values (62) of the tetrads if the general coordinate transformation x → x is related to the local Lorentz transformation Λ(x) by two tetrads

∂x i ∂x k = c i a (x) Λ a b (x) c b k (x). ( 63 
)
The nonzero average values of the tetrads reduce the two symmetries of the action to a single symmetry of the ground state of the universe: local Lorentz invariance. This reduction of symmetry is intrinsic rather than spontaneous because tetrads intrinsically have nonzero average values Tr(ρ c a i (x)). The ideas of this section are independent of the existence of the tensor gauge fields proposed in this paper.

VI. IS THE GAUGE GROUP U(2,2)?

So far we have been assuming that the gauge group of the Dirac field is the Lorentz group which acts on the Dirac field as the direct sum

D(Λ) = D (1/2,0) (Λ) ⊕ D (0,1/2) (a). ( 64 
)
Is this a hint of a larger symmetry? These 4 × 4 matrices

D(Λ) = D(Λ(x)) leave β = iγ 0 invariant D † (Λ) β D(Λ) = β and D(Λ)βD † (Λ) = β. ( 65 
)
as noted earlier [START_REF] Smullin | Constraints on Yukawa-type deviations from Newtonian gravity at 20 microns[END_REF] and transform Dirac's gamma matrices as a 4-vector

D † (Λ) βγ a D(Λ) = Λ a b βγ b (66)
as noted earlier (33 and 34).

The gauge group of the Dirac field may be the group of all 4 × 4 complex matrices U that leave β invariant

D † (U ) β D(U ) = β. (67) 
This group has 16 generators and is known as U(2,2) [START_REF] Witten | [END_REF] as one may see by rotating all four of the matrices of this equation of β invariance (67) from the β = iγ 0 direction to the γ 5 direction. This rotation shows that the group must leave γ 5 invariant

D † (U ) γ 5 D(U ) = γ 5 (68) 
which is the defining equation of U(2,2). The 4 × 4 direct-sum matrices D(Λ) (64) leave β invariant (65) and so form a subgroup of U(2,2).

To implement U(2,2) gauge symmetry, we'll need to extend the 6 generators J ab = - 1 4 i[γ a , γ b ] and 6 gauge fields L ab i to 16 generators G A and 16 gauge fields

L A i so that D † (U )βG A D(U ) = D(U ) A B βG B D -1 (U )G A D(U ) = D(U ) A B G B ψ = D(U ) ψ D i ψ = ∂ i + 1 2 i L A i G A ψ (D i ψ) = D(U )D i ψ (69) in which D(U ) A
B is the 16 × 16 matrix that represents U in the adjoint representation of U (2, 2). The Dirac action will be invariant under these local U(2,2) transformations (69) if Cartan's tetrads are also extended from four 4vectors to 16 4-vectors transforming as

e A i = U A B e B i (70) 
The metric g ik must be invariant under U(2,2)

g ik = e A i e Ak = e A i e Ak = g ik . (71) 
We have seen (70) that e A i = U A B e B i , but we can choose how e Ai transforms. If we choose

e A k = F C A e Ck (72) 
then to keep

g ik = e A i e f k = e f i e f k = e h i F A C e Bk U B A (73) 
we need

U A B F C A = δ C B or (F -1 ) A B = U A B . (74) 
for then we'd have

g ik = e A i e Ak = e A i e Ak = U A B e B i F C A e Ck = e B i δ C B e Ck = e C i e Ck = g ik . (75) 
The real Lie algebras su(2,2) and sl(4,R) are not isomorphic, but over the complex numbers they both belong to A 3 in the Cartan-Weyl classification, so their complexifications are isomorphic [START_REF] Boyer | [END_REF]. It therefore may make sense to consider the possibility that GL(4,R) or GL(4,C) is the gauge group of the Dirac field.

VII. CARTAN'S FIRST EQUATION OF STRUCTURE

If we add all invariant terms of dimension (mass) 4 or less to the action (which is by no means required in a non-renormalizable theory of gravity), then the covariant derivatives [START_REF] Naidu | Two remarkably luminous galaxy candidates at z ≈ 10 -12 revealed by JWST[END_REF] of the tetrads

D i c a k = ∂ i c a k + L a i b c b k -Γ ki c a (76) 
would appear in the action squared and contracted

S C = -M 2 D i c a k D i c k a √ g d 4 x (77) 
the coefficient M 2 being required because tetrads are dimensionless.

If the mass M in the action S C is huge, say of the order of the Planck mass M P , then the equation of motion of the tensor gauge fields would be approximately the condition that S C be stationary

δS C = -M 2 (δD i c a k ) D i c k a + D i c a k δD i c k a √ g d 4 x = -2M 2 δL a i b c b k D i c k a √ g d 4 x = 0 ( 78 
)
because the other terms in the action that contain the fields L a i b -namely the action terms S D , S L and S K (8, 11, & 4) -lack the huge coefficient M 2 .

Thus in the limit M 2 → ∞, the equation of motion of the tensor gauge fields is

0 = D i c a k = ∂ i c a k + L a i b c b k -Γ ki c a (79) 
which is Cartan's first equation of structure usually derived from the tetrad postulate or from the assumption that the torsion vanishes. Multiplying it by c ck , we find that in the M 2 → ∞ limit, the tensor gauge fields approach the spin connection

L ac i Γ ki c a c ck + c a k ∂ i c ck = ω ac i . (80) 

VIII. CONCLUSIONS

The action of general relativity with fermions has two independent symmetries: invariance under general coordinate transformations and invariance under local Lorentz transformations. The action of local Lorentz transformations on Dirac and Lorentz indices is similar to the action of noncompact internal-symmetry transformations on Lie-group indices.

The internal-symmetry character of local Lorentz invariance suggests that it might be implemented not by the spin connection but by tensor gauge fields L ab i with their own Yang-Mills action. But because the Lorentz group is noncompact, their Yang-Mills action must be modified by a neutral vector field K i (x) whose average value at low temperatures is timelike. This vector boson is massless at low temperatures. The vector gauge fields L ab i are massless at all temperatures. The particles of the neutral, weakly interacting and massless fields L ab i and K i would contribute to the dark matter of the universe.

The nonzero average values of the tetrads reduce the spacetime symmetries of the vacuum to local Lorentz invariance which can be extended to local U(2,2) invariance.

If the contracted squares of the covariant derivatives of the tetrads multiplied by the square of a mass M are added to the action, then in the limit M 2 → ∞, the equation of motion of the tensor gauge fields is the vanishing of the covariant derivatives of the tetrads, which is Cartan's first equation of structure. In the same limit, the tensor gauge fields approach the spin connection. of the action S K (37) describes a spin-one vector boson K i that is nearly massless. The particles of the boson K i would have contributed to the dark matter of the hot early universe. In the high-temperature early universe, the average value of K i would have been zero, 0|K i (x)|0 = 0.

At low temperatures the same Lagrange density describes a vector boson K i whose average value 0|K i (x)|0 in the present universe is timelike; in some Lorentz frame, presumably the rest frame of the CMB, the vector K i (x) = mδ i 0 + k i (x) has average values 0|K 0 (x)|0 = m and 0|k i (x)|0 = 0 which make 0|K i (x)|0 timelike. Its small fluctuations k i (x) are those of a massless vector k(x) described by the Lagrange density

L k = -1 4 (∂ i k j -∂ j k i )(∂ i k j -∂ j k i ) -1 4 m 4 -1 2 m 2 k 2 -(m + k 0 ) 2 -1 4 k 2 -(m + k 0 ) 2 2 (C2)
or

L k = -1 4 (∂ i k j -∂ j k i )(∂ i k j -∂ j k i ) -1 4 m 4 -1 2 m 2 k 2 -m 2 -2mk 0 -k 02 -1 4 (k 2 ) 2 + 1 2 k 2 (m 2 + 2mk 0 + k 02 ) (C3) -1 4 m 4 + 4m 3 k 0 + 6m 2 k 02 + 4mk 03 + k 04 .
Combining terms, we get

L k = -1 4 (∂ i k j -∂ j k i )(∂ i k j -∂ j k i ) -1 4 m 4 + 1 2 m 4 -1 4 m 4 + m 3 k 0 -m 3 k 0 -1 2 m 2 k 2 + 1 2 m 2 k 2 + 1 2 m 2 k 02 -3 2 m 2 k 02 (C4) + mk 2 k 0 -mk 03 -1 4 (k 2 ) 2 + 1 2 k 2 k 02 -1 4 k 04 or L k = -1 4 (∂ i k j -∂ j k i )(∂ i k j -∂ j k i ) -m 2 k 02 + mk 2 k 0 -mk 03 (C5) -1 4 (k 2 ) 2 + 1 2 k 2 k 02 -1 4 k 04 .
The quadratic part of L k is

L k2 = -1 4 (∂ i k j -∂ j k i )(∂ i k j -∂ j k i ) -m 2 k 02 . (C6)
The linear Euler-Lagrange equations for k i (x) are

∂ j ∂ j k i -∂ i k j = -2m 2 k 0 δ i 0 (C7) or k 0 + ∇ • k = -2m 2 k 0 (C8) and -k + k -∇ k0 + ∇ • k = 0. ( C9 
)
One solution is -k 0 = 2m 2 k 0 , ∇ • k = 0, k0 = 0, and ∂ j ∂ j k = 0.

(C10)

Appendix D: Two-Component Formalism Dirac's formalism is economical, but the twocomponent formalism is better suited to a discussion of a new interpretation of the matrix h.

Since the Dirac-Lorentz matrix (A1) is block diagonal

D(θ, λ) D (1/2,0) (θ, λ) 0 0 D (0,1/2) (θ, λ) = e -z•σ 0 0 e z * •σ ≡ D 0 0 D r , (D1) the matrix h h = h 0 0 h r (D2)
and its transformation law

h = D -1 † h D -1 (29) are block diagonal h 0 0 h r = D -1 † h D -1 0 0 D -1 † r h r D -1 r . (D3) 
The matrix βhβ is just h with left and right interchanged

βhβ = h r 0 0 h . (D4)
The transformation law ψ = D ψ of a Dirac field

ψ = r (D5) is ψ = r = D D r r . ( D6 
)
So the combinations † h and r † h r r are invariant

( † h ) = † D † D -1 † h D -1 D = † h (r † h r r) = r † D † r D -1 † r h r D -1 r D r r = r † h r r (D7)
much as contracted tensors are invariant

(X i g ik Y k ) = X i g ik Y k = X i g ik Y k . ( D8 
)
We now see that the 2 × 2 matrices h and h r do for spinor indices what g ik does for tensor indices. Now if D = e -z•σ/2 , then D r = e z * •σ/2 , and so

D r = D †-1 . So we can set h r = h -1 † .
Thus in two-component notation, the gauge-field action S L [START_REF] Long | Upper limits to submillimetre-range forces from extra space-time dimensions[END_REF] is

S L = - 1 16m 2 Tr R ik + iB ik • σ h R ik -iB ik • σ h -1 † + Tr R ik + iB ik • σ h -1 † R ik + iB ik • σ h √ g d 4 x.

(D9)

Since h = D -1 † h D -1 , we may choose h to be hermitian h † = h , which implies that the diagonal form of h is just two real numbers. The most general 2 × 2 hermitian matrix is a linear combination of the Pauli matices σ and the identity matrix I. Under a Lorentz transformation Λ, the 4-vector s a ≡ (-I, σ) transforms as The fully expanded covariant derivative D i ψ is

D i ψ = ∂ i -i 1 2 r i • σ I -1 2 b i • σ γ 5 ψ. (E1) If ψ = ψ † β, then -ψ γ a c i a D i ψ is -ψ † β γ a c i a D i ψ = -ψ † β γ a c i a (∂ i ψ) -ψ † β γ a c i a (-i 1 2 r i • σ I)ψ -ψ † β γ a c i a (-1 2 b i • σ γ 5 )ψ = -ψ † β γ a c i a (∂ i ψ) (E2) + 1 2 i ψ † β γ a c i a r i • σ Iψ + 1 2 ψ † β γ a c i a b i • σ γ 5 ψ. Its adjoint [-ψc i a γ a D i ψ] † is [-ψ † β γ a c i a D i ψ] † = -ψ † β γ a c i a (∂ i ψ) † + 1 2 iψ † β γ a c i a r i • σ Iψ † + 1 2 ψ † β γ a c i a b i • σ γ 5 ψ † ≡ A 1 + A 2 + A 3 . (E3)
Now β γ a = iγ 0 γ a is antihermitian, so the first term is

A 1 = -ψ † β γ a c i a (∂ i ψ) † = (∂ i ψ † )β γ a c i a ψ = -ψ † β γ a (∂ i c i a ) ψ -ψ † β γ a c i a ∂ i ψ. (E4)
The second term is

A 2 = 1 2 iψ † β γ a c i a r i • σ Iψ † = 1 2 i ψ † r i • σ I β γ a c i a ψ = 1 2 i ψ † β r i • σ I γ a c i a ψ. (E5)
The third term is

A 3 = 1 2 ψ † β γ a c i a b i • σ γ 5 ψ † = -1 2 ψ † γ 5 b i • σ β γ a c i a ψ = -1 2 ψ † β b i • σ γ a c i a γ 5 ψ.
Since [σ s , γ j ] = 2i sjk γ k , we have σ s γ j = γ j σ s + 2i sjk γ k . (E6)

So the r terms are

1 4 i ψ † β γ a c i a r i • σ Iψ + 1 4 i ψ † β r i • σ I γ a c i a ψ = 1 4 ψ † 2c i 0 r i • σ I + β c i j r s i {iγ j , σ s } ψ = 1 2 ψ † c i 0 r i • σ I + β c i s r s i γ 5 β ψ (E7) = 1 2 ψ † c i 0 r i • σ I -c i s r s i γ 5 ψ,
while the b terms are

1 2 ψ † β γ a c i a b i • σ γ 5 ψ -1 2 ψ † β b i • σ γ a c i a γ 5 ψ = i tsk c i t b s i ψ † β γ k γ 5 ψ. (E8)
The hermitian Dirac action density then is

L Dh = -ψ † βc i a γ a ∂ i ψ -1 2 ψ † β γ a (∂ i c i a ) ψ + ψ † 1 2 c i 0 r i • σ I -c i s r s i γ 5 ψ (E9) -1 2 jsk c i j b s i ψ † σ k ψ.

  ) in which the t α 's are the generators of the Lie algebras of SU c (3), SU (2) and U (1) Y .The simplest choice for ψ is Dirac's choice ψ = ψ † βL D = -ψ † β c i b γ b D i ψ(46) in which the real 4 × 4 hermitian symmetric matrix β = iγ 0 obeys D † (Λ) β D(Λ) = β. The resulting Dirac action (8) is then invariant under local Lorentz and general coordinate transformations. Under a local Lorentz transformation D = D(Λ(x)), the Dirac field ψ, its covariant derivative D i ψ and the tetrads c i a transform as

D= D - 1 † hD - 1 = D - 1 †D - 1 †

 1111 † (Λ) s a D (Λ) = Λ a b s b (D10)while the 4-vector s a r ≡ (I, σ) transforms asD † r (Λ) s a r D r (Λ) = Λ a b s b r . (D11) The 4 × 4 matrix h (30) is h = iβγ a c i a K i = iβγ a K a = s a K a 0 0 s a r K a . (D12)Under a local Lorentz transformation Λ = Λ(x), the vector field K a (x) goes toK a (x) = U (Λ)K a (x)U -1 (Λ) = Λ b a K b (x). s b D -1 K b s b D -1 K b = s a Λ -1b a K b = s a Λ b a K b D -1 † r s b r D -1 r K b = s a r Λ -1b a K b = s a r Λ b a K b .(D15)Appendix E: Hermitian Form of the Dirac Action

  The actions S L , S K and S D are invariant under local Lorentz transformations and under independent general coordinate transformations. Lorentz invariance -to a single symmetry of the ground state: local Lorentz invariance. Since nonzero average tetrad values are intrinsic to the theory, this reduction of symmetry is intrinsic rather than spontaneous. It is discussed in Sec. V.Local invariance under the Lorentz group SO(3,1) is extended to U(2,2) in Sec.VI.

	Although general coordinate invariance and local
	Lorentz invariance are independent symmetries of the ac-
	tion, they are not independent symmetries of the ground
	state of the universe because they do not leave invari-
	ant the nonzero average values of Cartan's tetrads c a Their average values 0|c a k |0 or Tr(ρ c a i (x)) reduce the k .
	symmetries of the action -general coordinate invariance
	and local
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Appendix A: The Matrix D(Λ)

The matrix D(Λ(θ, λ)) is

in which z = 1 2 (λ + iθ) [START_REF] Cahill | Physical Mathematics[END_REF]. So

and

as noted earlier [START_REF] Smullin | Constraints on Yukawa-type deviations from Newtonian gravity at 20 microns[END_REF].

Appendix B: Explicit Form of SL in Frame of Earth

The Solar System moves at v = 368 ± 2 km/s relative to the CMB. So in the Lorentz frame of the Earth, the average value of

So at low temperatures and apart from the fluctuations k i (x), the action S L [START_REF] Long | Upper limits to submillimetre-range forces from extra space-time dimensions[END_REF] is

Since v 10 -3 , it's useful to separate terms according to the number of powers of v

in which the first integral contains terms of order zero and two in v.

Terms with an odd number of γ 5 's cancel. The first term (B4) is thus

The second (B5) and third (B6) integrals involve a commutator

The fourth term (B7) is quadratic in v

The action S L in the frame of the Earth is the sum

Appendix C: The Vector Boson K i

At very high temperatures, the potential energy density 1 4 (K i K i +m 2 ) 2 is insignificant compared to the thermal energy density k B T and the Lagrange density