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Abstract

Despite the growing interest for Holography, there is a
lack of publicly available three-dimensional hologram se-
quences for the evaluation of video codecs with inter-
frame compression mechanisms such as motion estima-
tion and compensation. In this paper, we report the first
large-scale dataset containing 18 holographic videos com-
puted with three different resolutions and pixel pitches.
By providing the color and depth images corresponding
to each hologram frame, our dataset can be used in ad-
ditional applications such as the validation of 3D scene
geometry retrieval or deep learning-based hologram syn-
thesis methods. Altogether, our dataset comprises 5400
pairs of RGB-D images and holograms, totaling more
than 550 GB of data.
Keywords : Real-time Hologram Calculation,

Computer-Generated Holography, 3D Imaging

1 Introduction

With the recent advances in capture and display systems,
holography attracted a significant interest from the scien-
tific and industrial communities during the last decade.
Indeed, since it provides all the depth perception cues of
the human visual system without causing eye-strain, it is
often considered as a perfect candidate for the ultimate
3D display creating virtual images indistinguishable from
the real ones [1].
However, one of the most important obstacles to the

adoption of Holography for 3D visualization applications
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is the massive amount of information contained in digi-
tal holograms [2]. As a consequence, and since they have
very different signal properties compared to conventional
images and videos, specific compression techniques need
to be designed for holographic data [3–7]. In this con-
text, the Joint Photographic Experts Group (JPEG) de-
signed a new standard for the compression of holograms,
called JPEG Pleno Holography [8,9]. To define the com-
mon test conditions necessary for the objective and sub-
jective quality evaluation of proponents codecs [10], the
JPEG committee gathered test data from publicly avail-
able hologram databases [11–14].

While they cover a wide range of use cases, resolu-
tions and pixel pitches, the aforementioned databases
are mainly restricted to still holographic images. Pro-
viding an open access dataset of dynamic hologram se-
quences is therefore essential for the evaluation and com-
parison of video coding algorithms with inter-frame com-
pression mechanisms such as motion estimation and com-
pensation. In this paper, we propose the first large-
scale holographic video dataset containing 18 sequences
of 300 hologram frames, computed with three differ-
ent resolutions and pixel pitches. For each hologram,
the corresponding color and depth images are also pro-
vided, enabling their use in additional applications such
as the validation of 3D scene geometry retrieval or deep
learning-based hologram synthesis methods. Altogether,
our dataset comprises 5400 pairs of RGB-D images and
holograms, totaling more than 550 GB of publicly avail-
able data1.
The remainder of this paper is organized as follows.

Section 2 presents the synthetic scenes, calculation pa-
rameters and method used to compute the holographic
videos, Section 3 describes the proposed dataset struc-
ture and usage, and Section 4 outlines its potential ap-

1https://hologram-repository.labs.b-com.com/#/

holographic-videos
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plications, including the design and assessment of video
codecs and the validation of 3D scene geometry retrieval
or deep learning-based hologram synthesis methods. Fi-
nally, Section 5 discusses the current limitations and fu-
ture extensions of the proposed dataset.

2 Holographic video acquisition

In the following, we describe the 3D scenes, calcu-
lation parameters, and Computer-Generated Hologram
(CGH) method used to compute the proposed holo-
graphic dataset.

2.1 Input synthetic 3D scenes

Figure 1 shows the six synthetic scenes used to compute
the holographic videos, which contain the following 3D
models:

• Animals – a fox, a rabbit and a bear

• Cars – two cars, a garbage truck and a bus

• Dices – three dices in front of a chessboard

• Piano – a piano and its chair

• Table – a table surrounded by four chairs

• Woods – a mushroom house with four trees

From one frame to another, the hologram position was
shifted along a given path shown in green in Figure 1,
with its optical axis always pointing towards the scene
center. In addition, while Cars, Dices, Piano, Table and
Woods are still 3D scenes, the models contained in Ani-
mals are animated.

2.2 Calculation parameters

Table 1 shows the hologram calculation parameters used
to compute the holographic videos. For each scene, we
computed three sequences of 300 hologram frames with
different resolutions and pixel pitches, called configura-
tions 1, 2 and 3. These configurations enable a wide
range of testing conditions: while the maximum diffrac-
tion angle is lower than 2.87° for the first configuration,
it is more than six times larger in the third one, reaching
13.7°, 15.4° and 18.7° for the red, green and blue chan-
nels, respectively.
To subjectively assess their visual quality, the pro-

posed holographic videos can be either numerically re-
constructed or optically displayed on Spatial Light Mod-
ulators (SLM). Indeed, even though configuration 3 does
not correspond to any commercially available SLM at
the time of writing, the holograms computed using con-
figurations 1 and 2 are compatible with the Thorlabs

EXULUS-HD1 and EXULUS-4K1 SLMs, and with the
HoloEye LETO-3 and GAEA-2 SLMs, respectively. Nev-
ertheless, to this end the sequences first need to be con-
verted and quantized to real-valued amplitude or phase-
only holograms, as detailed in Section 3.3.

2.3 Hologram synthesis method

To compute the holographic videos, we used a layer-
based CGH calculation method with occlusion culling.
For each hologram frame H of resolution (Nx ×Ny) and
pixel pitch p, the method comprises four steps, which are
described in the following.

Let RH be the local coordinates system of H, whose
origin is located at the center of the hologram and whose
axes x, y and z correspond to its horizontal, vertical and
optical axes, respectively. The first step of our method
is to capture a 2D-plus-depth orthographic projection
of the scene from the hologram position. To this end,
we use a virtual camera of resolution (Nx × Ny) whose
projection matrix is given by

P =

Ny 0 0 Nx/2
0 Ny 0 Ny/2
0 0 0 1

T, (1)

where T is the (4 × 4) transformation matrix from the
world coordinates system to the hologram coordinates
system RH .

Then, the 3D scene geometry is reconstructed from the
acquired 2D-plus-depth data. Let A and D be the color
and depth images captured by the camera. Since D is
encoded as an 8-bits gray level image, the scene geometry
is naturally sliced into 256 parallel depth layers located
at depths

zd =
d

255
(zmax − zmin) + zmin, (2)

and separated by a distance

∆ =
zmax − zmin

255
, (3)

where d ∈ {0, ..., 255} is the layer index and zmin, zmax

are the minimal and maximal depths of the scene, re-
spectively.

Each depth layer is thus considered to operate as a sur-
face source of light emitting a complex wave od sampled
on a regular grid of resolution (Nx, Ny), such that

od[x, y; c] =

{
A[x, y; c] exp (jϕ[x, y]) if D[x, y; c] = d

0 otherwise,

(4)
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Table 1: Hologram calculation parameters

Parameter Configuration 1 Configuration 2 Configuration 3
Frames 300 300 300
Width 1920 3840 2048
Height 1080 2160 2048

Pixel pitch 6.4 µm 3.74 µm 1 µm

Wavelength
Red:

Green:
Blue:

640 nm
532 nm
473 nm

Maximum
diffraction

angle

Red:
Green:
Blue:

2.87°
2.38°
2.12°

Red:
Green:
Blue:

4.91°
4.08°
3.63°

Red:
Green:
Blue:

18.7°
15.4°
13.7°

Compatible
SLMs

EXULUS-HD1,
LETO-3

EXULUS-4K1,
GAEA-2

-

where c is the color channel and ϕ[x, y] ∈ [0; 2π[ is the
initial phase, set to a uniform random value to render
a diffuse scene. The light waves scattered by the scene
are then numerically propagated and occluded from one
layer to another using the recurrence formula{

u255 = o255

ud = od +mdP∆ {ud+1} for 0 ≤ d < 255.
(5)

In this last equation, ud is the light wave propagated on
layer d, md is a binary cross-section mask which has value
0 when D[x, y; c] = d and 1 elsewhere, and Pz stands
for the Angular Spectrum propagation [15] between two
parallel planes separated by a distance z, given by

Pz {u} = F−1
{
F {u} (fx, fy) ej2πz

√
λ−2−f2

x−f2
y

}
, (6)

where λ is the wavelength of light, fx and fy are the
spatial frequencies, and F and F−1 are the forward and
inverse Fourier Transform, respectively.
Finally, the light wave is numerically propagated to-

wards the hologram plane to obtain the final hologram,
such that

H = Pzmin
{u0} . (7)

3 Dataset description and usage

In this section, we describe the dataset structure and how
to numerically or optically reconstruct the holograms.

3.1 Dataset structure

Each holographic video is stored as a sequence of binary
Matlab® v7.3 files containing the following variables:

projMatrix Transformation matrix from the world coor-
dinates system to the hologram coordinates
system T , of size (4× 4)

amplitude Amplitude image A, stored as a table of
(Ny ×Nx × 3) unsigned 8-bits integers

depthMap Depth map D, stored as a table of (Ny ×
Nx × 3) unsigned 8-bits integers

depthMin Minimal depth of the scene zmin, in meters

depthMax Maximal depth of the scene zmax, in meters

hologram Computed hologram H, stored as a table
of (Ny × Nx × 3) single precision complex
numbers

pixelPitch Pixel pitch p, in meters

wavelength Color wavelengths λ, in meters

3.2 Numerical reconstruction

To facilitate their visual quality assessment, each
hologram can be reconstructed using the Numerical
Reconstruction Software for Holography (NRSH) devel-
oped by the JPEG Pleno committee [16]. To this end, we
provide for each hologram sequence the corresponding
NRSH configuration file. For instance, the numerical
reconstructions shown in the right column of Figure 2
were obtained using the following Matlab code:

% Initialize the reconstruction distance

% based on the depth map value d

zrec = d * (depthMax - depthMin) / 255 + depthMin;

% Initialize configuration file

info = getSettings(’cfg_file’, ’config.txt’);

% Reconstruct hologram

recons = nrsh(hologram, zrec, info);

3



(a) Animals (b) Cars (c) Dices

(d) Piano (e) Table (f) Woods

Figure 1: Input 3D scenes used to compute the holographic dataset. For each scene, the hologram path is shown
in green.

3.3 Optical reconstruction

As stated in Section 2.2, it is possible to optically dis-
play the hologram sequences on a SLM. To this end, the
holograms first need to be converted and quantized to
real-valued amplitude or phase holograms, which mod-
ulate the amplitude or phase of the reference wave, re-
spectively.
The most straightforward way to compute an ampli-

tude hologram is to numerically simulate the physical in-
terference phenomena between the object and reference
waves occurring in conventional optical holography, such
that

Hamplitude = (H +R)(H +R)∗

= |H|2 + |R|2 + 2ℜ{HR∗}, (8)

where ℜ{C} and C∗ are respectively the real part and
complex conjugate of C, and R is the incident reference
wave in the hologram plane.
Since they do not modulate the amplitude of the in-

cident wave, phase holograms have a better diffraction
efficiency than amplitude holograms. However, the cal-
culation of a phase hologram from the complex-valued
scene light wave is a nonlinear ill-posed inverse problem
for which analytic solutions cannot be found. There-
fore, phase holograms are often computed using iterative
phase retrieval algorithms such as the Gerchberg-Saxton
method and its improved forms [17–19]. To avoid iter-
ative methods, another approach is to use the double

phase encoding algorithm [20, 21], which encodes each
pixel of the complex-valued hologram using two phase
values, or the complex error diffusion method [22,23], in
which the amplitude of each pixel is forced to unity and
the resulting error is diffused to the adjacent values.

4 Applications

In the following, we present the applications of the pro-
posed dataset, ranging from the design and assessment
of holographic video codecs to the validation of 3D scene
geometry retrieval or deep learning-based hologram syn-
thesis methods.

4.1 Design and assessment of video
codecs

First, this dataset may be used to facilitate the design
of video coding algorithms with inter-frame compression
mechanisms such as motion estimation and compensa-
tion. As a matter of fact, removing temporal redundan-
cies would significantly reduce the memory and band-
width consumption of holographic videos. It is thus en-
visioned that future coders will require this feature. How-
ever, since the light wave scattered by each scene point
may contribute to every pixel during hologram recording,
a slight change in the scene translates to substantially dif-
ferent hologram patterns. As a consequence, automated
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motion estimation from holographic data is still a very
challenging research topic [24].
Since Cars, Dices, Piano, Table and Woods contain

only still 3D objects, the global scene motion from one
frame to another can be perfectly induced from the trans-
formation matrix T . By providing this matrix together
with the 2D-plus-depth projections of the scene, the re-
lation between the scene motion and resulting hologram
can be easily characterized, constituting a valuable in-
sight for the development of motion estimation and com-
pensation algorithms. For instance, this data can be used
to train a neural network for the prediction of scene ob-
ject motion vectors from consecutive holographic video
frames. It must be noted that since the hologram path
is looped in each video sequence, the first and last holo-
graphic frames can be considered as being consecutive,
enabling the use of any chunk of successive frames for
the training, validation and test sets.
Once specific holographic video codecs have been de-

veloped, this dataset can be used to evaluate and com-
pare their rate-distortion performances. While sev-
eral objective or subjective quality evaluation proce-
dures were specifically designed for still holograms of 3D
scenes [25–27], new procedures need to be developed for
holographic videos.

4.2 Deep learning-based hologram syn-
thesis

The proposed holographic sequences may also find appli-
cation in the field of supervised deep learning-based holo-
gram synthesis methods. Indeed, over the last decade
several techniques were proposed to generate holograms
of 3D scenes using Deep Neural Networks (DNN), out-
performing physically-based conventional CGH meth-
ods [28–30]. An extensive review of these works can be
found in [31].
The supervised deep learning-based hologram calcu-

lation is formulated as follows. We call Ĥ = N (X ,Θ)
the hologram predicted by the DNN function N , where
X = {A,D} is the input RGB-D image and Θ are the
networks parameters. The network is trained by solving
the minimization problem

minimize
Θ

L{N (X ,Θ), H} , (9)

where L is a loss function to evaluate the error between Ĥ
and the ground-truth hologram H. In [32], the authors
used this approach to design a Convolutional Neural Net-
work (CNN) able to generate full-HD holograms at 60 Hz
on a single consumer-grade graphics processing unit, at
1.1 Hz on a mobile device (iPhone 11 Pro) and at 2.0 Hz

on an edge device with a Google Tensor Processing Unit
(TPU).

Similarly to most deep learning-based methodologies,
the main drawback of this approach is the large amount
of data needed to train the DNN. In [32], the authors in-
troduced the MIT-CGH-4K, an open-access dataset com-
prising 4000 pairs of RGB-D images and corresponding
3D holograms. Nevertheless, the MIT-CGH-4K holo-
grams have a very limited space-bandwidth product:
they were computed with a unique pixel pitch of 8 µm
and a resolution of (384 × 384), which is insufficient for
wide-viewing angle and large-scale visualisation. In ad-
dition, they were synthesized from different scenes and
do not form a video sequence, preventing neural net-
works from learning inter-frame redundancy removal pro-
cedures to reduce the hologram calculation time.

The proposed dataset solves these limitations and can
be used for the training, validation or test sets of DNN-
based hologram synthesis methods. To increase the
amount of data and reduce over-fitting during the train-
ing phase, the following data augmentation techniques
can be used:

• rotating, shifting or flipping the RGB-D image along
the vertical or horizontal axis results in the same
transformations of the corresponding hologram;

• adding a constant offset value to the depth image
can be compensated by propagating the hologram by
the corresponding distance using the Angular Spec-
trum method given in Eq. (6).

4.3 Depth map or 3D scene geometry re-
trieval

Finally, the proposed dataset may also be useful in the
field of depth map or 3D scene geometry retrieval from
holographic data. As a matter of fact, retrieving the
scene geometry from a single hologram would pave the
way for many practical applications such as holographic
data segmentation, classification and editing, as well as
motion estimation and compensation.

Unfortunately, retrieving the scene from a single dig-
ital hologram is still a very challenging research topic.
Indeed, since each hologram pixel gathers the contribu-
tions of every scene points, the 3D information is scram-
bled into the holographic signal and cannot be retrieved
using conventional image processing algorithms. While
several autofocus methods were proposed for retrieving
a single depth value from holograms [33], these methods
cannot compute a full depth map of the scene required
for the above-mentioned applications.
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In [34], the authors used a depth-from-focus (DFF) ap-
proach to retrieve the RGB-D image of the scene from a
given hologram. They latter extended their work using a
CNN model to evaluate the focus level of each pixel in the
reconstruction volume in [35] and using the phase space
representation of the hologram in [36]. A preliminary
version of our proposed holographic dataset was used to
validate the DFF methodology in [34], as well as for the
training, validation and test sets of DNNs in [35, 36].
This confirms the suitability of this dataset for machine
learning applications.

5 Discussion

Despite its various potential applications, our dataset
still presents two limitations. First, since it only con-
tains 18 computer-generated hologram sequences ren-
dered from six different synthetic 3D scenes, its variety
of content may not be sufficient for more complex ma-
chine learning-based tasks. Secondly, it does not include
any optically acquired hologram, limiting its subsequent
applications and use cases.

In our future work, we aim to address these limitations
by enhancing the dataset with holograms generated from
more natural and realistic synthetic 3D content, along
with holograms derived from real-world scenes. Addi-
tionally, we intend to incorporate a wider variety of holo-
gram types based on research and standardization needs.

6 Conclusion

In this paper, we reported the first large-scale open ac-
cess holographic video dataset containing 18 sequences
of 300 hologram frames, computed with three different
resolutions and pixel pitches. Our dataset is primarily
intended for the design and quality assessment of holo-
graphic video coding engines with inter-frame compres-
sion mechanisms such as motion estimation and compen-
sation. However, by providing the color and depth im-
ages corresponding to each hologram frame, it can also be
used in many other applications such as the validation
of 3D scene geometry retrieval or deep learning-based
hologram synthesis methods.

At the time of writing, our dataset comprises 5400
pairs of RGB-D images and holograms, totaling more
than 550 GB of data. Nevertheless, in a future work we
intend to expand it with holograms derived from syn-
thetic 3D content that are more natural and realistic,
along with holograms generated from actual real-life sce-
narios. Additionally, we plan to provide a wider range

of hologram types, depending on the research and stan-
dardization requirements.
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Figure 2: Amplitude, depth map, hologram phase and numerical reconstruction corresponding to the same frame
of each scene.
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