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Introduction

With the recent advances in capture and display systems, holography attracted a significant interest from the scientific and industrial communities during the last decade. Indeed, since it provides all the depth perception cues of the human visual system without causing eye-strain, it is often considered as a perfect candidate for the ultimate 3D display creating virtual images indistinguishable from the real ones [START_REF] Blanche | Holography, and the future of 3D display[END_REF].

However, one of the most important obstacles to the adoption of Holography for 3D visualization applications is the massive amount of information contained in digital holograms [START_REF] Schelkens | Compression strategies for digital holograms in biomedical and multimedia applications[END_REF]. As a consequence, and since they have very different signal properties compared to conventional images and videos, specific compression techniques need to be designed for holographic data [START_REF] El Rhammad | Scalable Coding Framework for a View-Dependent Streaming of Digital Holograms[END_REF][START_REF] El Rhammad | Progressive hologram transmission using a view-dependent scalable compression scheme[END_REF][START_REF] Birnbaum | Object-based digital hologram segmentation and motion compensation[END_REF][START_REF] Kizhakkumkara Muhamad | Binary hologram compression using context based Bayesian tree models with adaptive spatial segmentation[END_REF][START_REF] Raees | INTER-FERE: A Unified Compression Framework for Digital Holography[END_REF]. In this context, the Joint Photographic Experts Group (JPEG) designed a new standard for the compression of holograms, called JPEG Pleno Holography [START_REF] Schelkens | JPEG Pleno: Providing representation interoperability for holographic applications and devices[END_REF][START_REF] Kizhakkumkara Muhamad | JPEG Pleno holography: scope and technology procedures[END_REF]. To define the common test conditions necessary for the objective and subjective quality evaluation of proponents codecs [START_REF] Antonio | Definition of common test conditions for the new JPEG pleno holography standard[END_REF], the JPEG committee gathered test data from publicly available hologram databases [START_REF] Blinder | Open access database for experimental validations of holographic compression engines[END_REF][START_REF] Gilles | Hybrid approach for fast occlusion processing in computer-generated hologram calculation[END_REF][START_REF] Gilles | Computer generated hologram from Multiview-plus-Depth data considering specular reflections[END_REF][START_REF] Bernardo | Benchmarking coding standards for digital holography represented on the object plane[END_REF].

While they cover a wide range of use cases, resolutions and pixel pitches, the aforementioned databases are mainly restricted to still holographic images. Providing an open access dataset of dynamic hologram sequences is therefore essential for the evaluation and comparison of video coding algorithms with inter-frame compression mechanisms such as motion estimation and compensation. In this paper, we propose the first largescale holographic video dataset containing 18 sequences of 300 hologram frames, computed with three different resolutions and pixel pitches. For each hologram, the corresponding color and depth images are also provided, enabling their use in additional applications such as the validation of 3D scene geometry retrieval or deep learning-based hologram synthesis methods. Altogether, our dataset comprises 5400 pairs of RGB-D images and holograms, totaling more than 550 GB of publicly available data 1 .

The remainder of this paper is organized as follows. Section 2 presents the synthetic scenes, calculation parameters and method used to compute the holographic videos, Section 3 describes the proposed dataset structure and usage, and Section 4 outlines its potential ap-plications, including the design and assessment of video codecs and the validation of 3D scene geometry retrieval or deep learning-based hologram synthesis methods. Finally, Section 5 discusses the current limitations and future extensions of the proposed dataset.

Holographic video acquisition

In the following, we describe the 3D scenes, calculation parameters, and Computer-Generated Hologram (CGH) method used to compute the proposed holographic dataset.

Input synthetic 3D scenes

Figure 1 shows the six synthetic scenes used to compute the holographic videos, which contain the following 3D models:

• Animals -a fox, a rabbit and a bear • Cars -two cars, a garbage truck and a bus • Dices -three dices in front of a chessboard • Piano -a piano and its chair • Table -a table surrounded by four chairs • Woods -a mushroom house with four trees From one frame to another, the hologram position was shifted along a given path shown in green in Figure 1, with its optical axis always pointing towards the scene center. In addition, while Cars, Dices, Piano, Table and Woods are still 3D scenes, the models contained in Animals are animated.

Calculation parameters

Table 1 shows the hologram calculation parameters used to compute the holographic videos. For each scene, we computed three sequences of 300 hologram frames with different resolutions and pixel pitches, called configurations 1, 2 and 3. These configurations enable a wide range of testing conditions: while the maximum diffraction angle is lower than 2.87°for the first configuration, it is more than six times larger in the third one, reaching 13.7°, 15.4°and 18.7°for the red, green and blue channels, respectively.

To subjectively assess their visual quality, the proposed holographic videos can be either numerically reconstructed or optically displayed on Spatial Light Modulators (SLM). Indeed, even though configuration 3 does not correspond to any commercially available SLM at the time of writing, the holograms computed using configurations 1 and 2 are compatible with the Thorlabs EXULUS-HD1 and EXULUS-4K1 SLMs, and with the HoloEye LETO-3 and GAEA-2 SLMs, respectively. Nevertheless, to this end the sequences first need to be converted and quantized to real-valued amplitude or phaseonly holograms, as detailed in Section 3.3.

Hologram synthesis method

To compute the holographic videos, we used a layerbased CGH calculation method with occlusion culling. For each hologram frame H of resolution (N x × N y ) and pixel pitch p, the method comprises four steps, which are described in the following.

Let R H be the local coordinates system of H, whose origin is located at the center of the hologram and whose axes x, y and z correspond to its horizontal, vertical and optical axes, respectively. The first step of our method is to capture a 2D-plus-depth orthographic projection of the scene from the hologram position. To this end, we use a virtual camera of resolution (N x × N y ) whose projection matrix is given by

P =   N y 0 0 N x /2 0 N y 0 N y /2 0 0 0 1   T, (1) 
where T is the (4 × 4) transformation matrix from the world coordinates system to the hologram coordinates system R H . Then, the 3D scene geometry is reconstructed from the acquired 2D-plus-depth data. Let A and D be the color and depth images captured by the camera. Since D is encoded as an 8-bits gray level image, the scene geometry is naturally sliced into 256 parallel depth layers located at depths

z d = d 255 (z max -z min ) + z min , (2) 
and separated by a distance

∆ = z max -z min 255 , (3) 
where d ∈ {0, ..., 255} is the layer index and z min , z max are the minimal and maximal depths of the scene, respectively.

Each depth layer is thus considered to operate as a surface source of light emitting a complex wave o d sampled on a regular grid of resolution (N x , N y ), such that 

o d [x, y; c] = A[x, y; c] exp (jϕ[x, y]) if D[x, y; c] = d 0 otherwise, (4) 
u 255 = o 255 u d = o d + m d P ∆ {u d+1 } for 0 ≤ d < 255. (5) 
In this last equation, u d is the light wave propagated on layer d, m d is a binary cross-section mask which has value 0 when D[x, y; c] = d and 1 elsewhere, and P z stands for the Angular Spectrum propagation [START_REF] Goodman | Introduction to Fourier Optics[END_REF] between two parallel planes separated by a distance z, given by

P z {u} = F -1 F {u} (f x , f y ) e j2πz √ λ -2 -f 2 x -f 2 y , (6) 
where λ is the wavelength of light, f x and f y are the spatial frequencies, and F and F -1 are the forward and inverse Fourier Transform, respectively. Finally, the light wave is numerically propagated towards the hologram plane to obtain the final hologram, such that

H = P zmin {u 0 } . ( 7 
)
3 Dataset description and usage

In this section, we describe the dataset structure and how to numerically or optically reconstruct the holograms. 

Dataset structure

Numerical reconstruction

To facilitate their visual quality assessment, each hologram can be reconstructed using the Numerical Reconstruction Software for Holography (NRSH) developed by the JPEG Pleno committee [START_REF] Birnbaum | A standard way for computing numerical reconstructions of digital holograms[END_REF]. To this end, we provide for each hologram sequence the corresponding NRSH configuration file. For instance, the numerical reconstructions shown in the right column of Figure 2 were obtained using the following Matlab code: 

Optical reconstruction

As stated in Section 2.2, it is possible to optically display the hologram sequences on a SLM. To this end, the holograms first need to be converted and quantized to real-valued amplitude or phase holograms, which modulate the amplitude or phase of the reference wave, respectively.

The most straightforward way to compute an amplitude hologram is to numerically simulate the physical interference phenomena between the object and reference waves occurring in conventional optical holography, such that

H amplitude = (H + R)(H + R) * = |H| 2 + |R| 2 + 2ℜ{HR * }, (8) 
where ℜ{C} and C * are respectively the real part and complex conjugate of C, and R is the incident reference wave in the hologram plane. Since they do not modulate the amplitude of the incident wave, phase holograms have a better diffraction efficiency than amplitude holograms. However, the calculation of a phase hologram from the complex-valued scene light wave is a nonlinear ill-posed inverse problem for which analytic solutions cannot be found. Therefore, phase holograms are often computed using iterative phase retrieval algorithms such as the Gerchberg-Saxton method and its improved forms [START_REF] Gerchberg | A practical algorithm for the determination of the phase from image and diffraction plane pictures[END_REF][START_REF] Chen | 3-D modified Gerchberg-Saxton algorithm developed for panoramic computer-generated phase-only holographic display[END_REF][START_REF] Chen | Weighted Constraint Iterative Algorithm for Phase Hologram Generation[END_REF]. To avoid iterative methods, another approach is to use the double phase encoding algorithm [START_REF] Hsueh | Computergenerated double-phase holograms[END_REF][START_REF] Maimone | Holographic Near-eye Displays for Virtual and Augmented Reality[END_REF], which encodes each pixel of the complex-valued hologram using two phase values, or the complex error diffusion method [START_REF] Eschbach | Comparison of error diffusion methods for computer-generated holograms[END_REF][START_REF] Tsang | Novel method for converting digital Fresnel hologram to phaseonly hologram based on bidirectional error diffusion[END_REF], in which the amplitude of each pixel is forced to unity and the resulting error is diffused to the adjacent values.

Applications

In the following, we present the applications of the proposed dataset, ranging from the design and assessment of holographic video codecs to the validation of 3D scene geometry retrieval or deep learning-based hologram synthesis methods.

Design and assessment of video codecs

First, this dataset may be used to facilitate the design of video coding algorithms with inter-frame compression mechanisms such as motion estimation and compensation. As a matter of fact, removing temporal redundancies would significantly reduce the memory and bandwidth consumption of holographic videos. It is thus envisioned that future coders will require this feature. However, since the light wave scattered by each scene point may contribute to every pixel during hologram recording, a slight change in the scene translates to substantially different hologram patterns. As a consequence, automated motion estimation from holographic data is still a very challenging research topic [START_REF] Blinder | Signal processing challenges for digital holographic video display systems[END_REF]. Since Cars, Dices, Piano, Table and Woods contain only still 3D objects, the global scene motion from one frame to another can be perfectly induced from the transformation matrix T . By providing this matrix together with the 2D-plus-depth projections of the scene, the relation between the scene motion and resulting hologram can be easily characterized, constituting a valuable insight for the development of motion estimation and compensation algorithms. For instance, this data can be used to train a neural network for the prediction of scene object motion vectors from consecutive holographic video frames. It must be noted that since the hologram path is looped in each video sequence, the first and last holographic frames can be considered as being consecutive, enabling the use of any chunk of successive frames for the training, validation and test sets.

Once specific holographic video codecs have been developed, this dataset can be used to evaluate and compare their rate-distortion performances. While several objective or subjective quality evaluation procedures were specifically designed for still holograms of 3D scenes [START_REF] Ahar | Suitability analysis of holographic vs light field and 2D displays for subjective quality assessment of Fourier holograms[END_REF][START_REF] Ahar | Comprehensive performance analysis of objective quality metrics for digital holography[END_REF][START_REF] Prazeres | Quality evaluation of the JPEG Pleno Holography Call for Proposals response[END_REF], new procedures need to be developed for holographic videos.

Deep learning-based hologram synthesis

The proposed holographic sequences may also find application in the field of supervised deep learning-based hologram synthesis methods. Indeed, over the last decade several techniques were proposed to generate holograms of 3D scenes using Deep Neural Networks (DNN), outperforming physically-based conventional CGH methods [START_REF] Horisaki | Threedimensional deeply generated holography[END_REF][START_REF] Kang | Deeplearning-based hologram generation using a generative model[END_REF][START_REF] Wu | High-speed computer-generated holography using an autoencoder-based deep neural network[END_REF]. An extensive review of these works can be found in [START_REF] Shimobaba | Deep-Learning Computational Holography: A Review[END_REF].

The supervised deep learning-based hologram calculation is formulated as follows. We call Ĥ = N (X , Θ) the hologram predicted by the DNN function N , where X = {A, D} is the input RGB-D image and Θ are the networks parameters. The network is trained by solving the minimization problem minimize

Θ L {N (X , Θ), H} , (9) 
where L is a loss function to evaluate the error between Ĥ and the ground-truth hologram H. In [START_REF] Shi | Towards realtime photorealistic 3D holography with deep neural networks[END_REF], the authors used this approach to design a Convolutional Neural Network (CNN) able to generate full-HD holograms at 60 Hz on a single consumer-grade graphics processing unit, at 1.1 Hz on a mobile device (iPhone 11 Pro) and at 2.0 Hz on an edge device with a Google Tensor Processing Unit (TPU).

Similarly to most deep learning-based methodologies, the main drawback of this approach is the large amount of data needed to train the DNN. In [START_REF] Shi | Towards realtime photorealistic 3D holography with deep neural networks[END_REF], the authors introduced the MIT-CGH-4K, an open-access dataset comprising 4000 pairs of RGB-D images and corresponding 3D holograms. Nevertheless, the MIT-CGH-4K holograms have a very limited space-bandwidth product: they were computed with a unique pixel pitch of 8 µm and a resolution of (384 × 384), which is insufficient for wide-viewing angle and large-scale visualisation. In addition, they were synthesized from different scenes and do not form a video sequence, preventing neural networks from learning inter-frame redundancy removal procedures to reduce the hologram calculation time.

The proposed dataset solves these limitations and can be used for the training, validation or test sets of DNNbased hologram synthesis methods. To increase the amount of data and reduce over-fitting during the training phase, the following data augmentation techniques can be used:

• rotating, shifting or flipping the RGB-D image along the vertical or horizontal axis results in the same transformations of the corresponding hologram;

• adding a constant offset value to the depth image can be compensated by propagating the hologram by the corresponding distance using the Angular Spectrum method given in Eq. ( 6).

Depth map or 3D scene geometry retrieval

Finally, the proposed dataset may also be useful in the field of depth map or 3D scene geometry retrieval from holographic data. As a matter of fact, retrieving the scene geometry from a single hologram would pave the way for many practical applications such as holographic data segmentation, classification and editing, as well as motion estimation and compensation. Unfortunately, retrieving the scene from a single digital hologram is still a very challenging research topic. Indeed, since each hologram pixel gathers the contributions of every scene points, the 3D information is scrambled into the holographic signal and cannot be retrieved using conventional image processing algorithms. While several autofocus methods were proposed for retrieving a single depth value from holograms [START_REF] Elsa | Comparative analysis of autofocus functions in digital in-line phaseshifting holography[END_REF], these methods cannot compute a full depth map of the scene required for the above-mentioned applications.

In [START_REF] Madali | Automatic depth map retrieval from digital holograms using a depth-from-focus approach[END_REF], the authors used a depth-from-focus (DFF) approach to retrieve the RGB-D image of the scene from a given hologram. They latter extended their work using a CNN model to evaluate the focus level of each pixel in the reconstruction volume in [START_REF] Madali | Automatic depth map retrieval from digital holograms using a deep learning approach[END_REF] and using the phase space representation of the hologram in [START_REF] Madali | PSDFH: A Phase-Space-Based Depth from Hologram Extraction Method[END_REF]. A preliminary version of our proposed holographic dataset was used to validate the DFF methodology in [START_REF] Madali | Automatic depth map retrieval from digital holograms using a depth-from-focus approach[END_REF], as well as for the training, validation and test sets of DNNs in [START_REF] Madali | Automatic depth map retrieval from digital holograms using a deep learning approach[END_REF][START_REF] Madali | PSDFH: A Phase-Space-Based Depth from Hologram Extraction Method[END_REF]. This confirms the suitability of this dataset for machine learning applications.

Discussion

Despite its various potential applications, our dataset still presents two limitations. First, since it only contains 18 computer-generated hologram sequences rendered from six different synthetic 3D scenes, its variety of content may not be sufficient for more complex machine learning-based tasks. Secondly, it does not include any optically acquired hologram, limiting its subsequent applications and use cases.

In our future work, we aim to address these limitations by enhancing the dataset with holograms generated more natural and realistic synthetic 3D content, along with holograms derived from real-world scenes. Additionally, we intend to incorporate a wider variety of hologram types based on research and standardization needs.

Conclusion

In this paper, we reported the first large-scale open access holographic video dataset containing 18 sequences of 300 hologram frames, computed with three different resolutions and pixel pitches. Our dataset is primarily intended for the design and quality assessment of holographic video coding engines with inter-frame compression mechanisms such as motion estimation and compensation. However, by providing the color and depth images corresponding to each hologram frame, it can also be used in many other applications such as the validation of 3D scene geometry retrieval or deep learning-based hologram synthesis methods.

At the time of writing, our dataset comprises 5400 pairs of RGB-D images and holograms, totaling more than 550 GB of data. Nevertheless, in a future work we intend to expand it with holograms derived from synthetic 3D content that are more natural and realistic, along with holograms generated from actual real-life scenarios. Additionally, we plan to provide a wider range of hologram types, depending on the research and standardization requirements. 

Animals

%

  Initialize the reconstruction distance % based on the depth map value d zrec = d * (depthMax -depthMin) / 255 + depthMin; % Initialize configuration file info = getSettings('cfg_file', 'config.txt'); % Reconstruct hologram recons = nrsh(hologram, zrec, info);

Figure 1 :

 1 Figure 1: Input 3D scenes used to compute the holographic dataset. For each scene, the hologram path is shown in green.

Figure 2 :

 2 Figure 2: Amplitude, depth map, hologram phase and numerical reconstruction corresponding to the same frame of each scene.

Table 1 :

 1 Hologram calculation parameters

	Parameter Configuration 1 Configuration 2 Configuration 3
	Frames		300		300		300
	Width		1920		3840		2048
	Height		1080		2160		2048
	Pixel pitch	6.4 µm	3.74 µm	1 µm
				Red:	640 nm		
	Wavelength			Green:	532 nm		
				Blue:	473 nm		
	Maximum	Red:	2.87°2	ed:	4.91°4	ed:	18.7°1
	diffraction	Green:	.38°2	Green:	.08°3	Green:	5.4°1
	angle	Blue:	.12°R Blue:	.63°R Blue:	3.7°C
	ompatible SLMs	EXULUS-HD1, LETO-3	EXULUS-4K1, GAEA-2		-

where c is the color channel and ϕ[x, y] ∈ [0; 2π[ is the initial phase, set to a uniform random value to render a diffuse scene. The light waves scattered by the scene are then numerically propagated and occluded from one layer to another using the recurrence formula

  Transformation matrix from the world coordinates system to the hologram coordinates system T , of size (4 × 4) amplitude Amplitude image A, stored as a table of (N y × N x × 3) unsigned 8-bits integers depthMap Depth map D, stored as a table of (N y × N x × 3) unsigned 8-bits integers depthMin Minimal depth of the scene z min , in meters depthMax Maximal depth of the scene z max , in meters hologram Computed hologram H, stored as a table of (N y × N x × 3) single precision complex numbers pixelPitch Pixel pitch p, in meters wavelength Color wavelengths λ, in meters

Each holographic video is stored as a sequence of binary Matlab ® v7.3 files containing the following variables: projMatrix

https://hologram-repository.labs.b-com.com/#/ holographic-videos
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