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Introduction

By a classical result by Mané-Sad-Sullivan [START_REF] Mañé | On the dynamics of rational maps[END_REF] and Lyubich [START_REF] Lyubich | Some typical properties of the dynamics of rational mappings[END_REF], the stability of a family of rational maps of degree d ≥ 2 is determined by the stability of its repelling cycles. More precisely, the so-called λ-lemma ensures that, once one can follow holomorphically with the parameter a dense subset of the Julia set J λ 0 (the support of the unique measure of maximal entropy of f λ 0 [START_REF] Freire | An invariant mesure for rational maps[END_REF]41]) at a given parameter λ 0 , then every point of J λ 0 can be followed holomorphically. The important point here is that the motions corresponding to different points (that exist thanks to Montel theorem) do not intersect. This is a consequence of Hurwitz theorem. The stability locus is the (open dense) subset of the parameter space where the above condition of stability holds true. The complement of such set is the bifurcation locus. By a result of DeMarco [START_REF] Demarco | Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity[END_REF], such locus is the support of a naturally defined bifurcation current, see also [START_REF] Przytycki | Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map[END_REF][START_REF] Sibony | Seminar talk at Orsay[END_REF] for the polynomial case.

A generalization of the theory by Mané-Sad-Sullivan, Lyubich, and DeMarco to families of endomorphisms of P k of algebraic degree d ≥ 2 in any dimension k ≥ 1 has been recently carried out by Berteloot, Dupont, and the first author in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF][START_REF] Bianchi | Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree[END_REF], see also the presentation in [START_REF] Berteloot | Stability and bifurcations in projective holomorphic dynamics[END_REF]. As most of the one-dimensional techniques do not apply anymore, the main tools were ergodic and (pluri)potential theory. Very roughly speaking, compactness of suitable spaces of currents and plurisubharmonic functions played the role of Montel theorem. And precise statistical properties of the measure of maximal entropy [START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF][START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF][START_REF] Erik | Complex dynamics in higher dimensions, Complex potential theory[END_REF] (among them, an explicit lower bound for its Lyapunov exponents [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF]) played somehow the role of an asymptotic Hurwitz theorem. As a consequence, dynamical stability in such families (defined for instance by the vanishing of a natural bifurcation current [START_REF] Bassanelli | Bifurcation currents in holomorphic dynamics on P k[END_REF][START_REF] Pham | Lyapunov exponents and bifurcation current for polynomial-like maps[END_REF], or by a condition on the stability of the repelling points) is equivalent to the existence of a holomorphic motion for a full measure subset of the Julia set, with respect to the measure of maximal entropy. We refer to [START_REF] Astorg | Hyperbolicity and bifurcations in holomorphic families of polynomial skew products[END_REF][START_REF] Berteloot | Les cycles répulsifs bifurquent en chaîne[END_REF][START_REF] Berteloot | Perturbations d'exemples de Lattès et dimension de Hausdorff du lieu de bifurcation[END_REF][START_REF] Berteloot | Ramification current, post-critical normality and stability of holomorphic endomorphisms of P k[END_REF][START_REF] Dujardin | Geometric methods in holomorphic dynamics[END_REF] for further developments of the theory of stability/bifurcation in any dimension, and in particular to [START_REF] Astorg | Higher bifurcations for polynomial skew products[END_REF][START_REF] Bianchi | Bifurcations in the elementary Desboves family[END_REF][START_REF] Biebler | Lattès maps and the interior of the bifurcation locus[END_REF][START_REF] Dujardin | Non density of stability for holomorphic mappings on P k[END_REF][START_REF] Gauthier | Sparsity of postcritically finite maps of P k and beyond: A complex analytic approach[END_REF][START_REF] Taflin | Blenders near polynomial product maps of C 2[END_REF] for new phenomena with respect to the one-dimensional case.

The main goal of this paper is to strengthen the main result in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] by showing that, in stable families of endomorphisms of P k of algebraic degree d ≥ 2, dynamical stability implies the existence of a well-defined local motion for almost all points with respect to all measures on the Julia set with strictly positive Lyapunov exponents and not charging the post-critical set. By a result of de Thélin and Dupont [START_REF] De | Sur les exposants de Lyapounov des applications méromorphes[END_REF][START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF], this in particular applies to all ergodic measures whose measure-theoretic entropy is strictly larger than (k -1) log d. In this case, the motion is welldefined on all the parameter space. Observe that the topological entropy of an endomorphism of P k of algebraic degree d is equal to k log d [START_REF] Gromov | On the entropy of holomorphic maps[END_REF] (which is then equal to the measure-theoretic entropy of the unique measure of maximal entropy), and that (k -1) log d is a natural threshold for many dynamical phenomena. See [START_REF] Bianchi | Equilibrium states of endomorphisms of P k I: existence and properties[END_REF][START_REF] Bianchi | Equilibrium states of endomorphisms of P k II: spectral gap and limit theorems[END_REF][START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF][START_REF] Micha L Szostakiewicz | Stochastics and thermodynamics for equilibrium measures of holomorphic endomorphisms on complex projective spaces[END_REF][START_REF] Urbański | Equilibrium measures for holomorphic endomorphisms of complex projective spaces[END_REF] for large classes of examples of such measures in any dimension, and their statistical properties.

Let us notice that an analogous result is already known in the setting of polynomial diffeomorphisms of C 2 (usually called Hénon maps). Indeed, a parallel theory to that of [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF][START_REF] Bianchi | Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree[END_REF] has been developed in this setting by Dujardin and Lyubich, see [START_REF] Dujardin | Stability and bifurcations for dissipative polynomial automorphisms of C 2[END_REF][START_REF] Dujardin | Geometric methods in holomorphic dynamics[END_REF]. Stability is defined also in this setting by means of a number of equivalent conditions, among them the existence of a branched holomorphic motion for the Julia sets, meaning that natural motions of distinct points can a priori intersect. In [START_REF] Berger | On stability and hyperbolicity for polynomial automorphisms of C 2[END_REF] Berger and Dujardin proved that such motion is unbranched at almost every point with respect to all measures of positive entropy. Since the topological entropy is the logarithm of the algebraic degree in this context, this corresponds to our threshold. The current work was inspired by [START_REF] Berger | On stability and hyperbolicity for polynomial automorphisms of C 2[END_REF] and provides a parallel to that result for families of endomorphisms of P k . As was already the case for [START_REF] Dujardin | Stability and bifurcations for dissipative polynomial automorphisms of C 2[END_REF] and [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF], our approach is completely different from the one in [START_REF] Berger | On stability and hyperbolicity for polynomial automorphisms of C 2[END_REF], since the key point here is to understand the relation between the Julia sets and the dynamics of the critical set (which does not exist in the case of diffeomorphims of C 2 ). This is achieved with techniques from pluripotential theory.

1.1. Definitions and results. We will consider in this paper a more general setting than that of the endomorphisms of P k , that is that of polynomial-like maps of large topological degree, see Definition 2.5. However, we restrict to the family H d (P k ) of all the endomorphisms of P k of a given algebraic degree d ≥ 2 in this introduction for simplicity.

The main result of [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] in this setting can be stated as follows. Given a holomorphic family (f λ ) λ∈M of endomorphisms of P k , we denote by µ λ the equilibrium measure of f λ (i.e., the unique measure of maximal entropy k log d of f λ [START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF][START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF][START_REF] Erik | Complex dynamics in higher dimensions, Complex potential theory[END_REF]), and recall that the Julia set J λ of f λ is by definition the support of µ λ .

Theorem-Definition 1.1 (Berteloot-B.-Dupont [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF]). Let M be an open connected and simply connected subset of the family H d (P k ) of the endomorphisms of P k of a given algebraic degree d ≥ 2. The following conditions are equivalent:

(1) the repelling points in the Julia sets move holomorphically with λ (see Definition 3.5);

(2) the sum L(λ) = log|Jac f λ |µ λ of the Lyapunov exponents of µ λ satisfies dd c L ≡ 0;

(3) there exists an equilibrium lamination.

We say that a family is stable if any of the equivalent conditions above holds.

An equilibrium lamination is defined as follows. Denote by J the set of all holomorphic maps γ: M → P k such that γ(λ) belongs to J λ for all λ ∈ M . We often identify a map γ with its graph Γ γ in the product space M × P k . The family (f λ ) λ∈M induces a dynamical system F on the space J by Fγ(λ) := f λ (γ(λ)). Observe also that the maps f λ can be seen as fibers of a single holomorphic map f : M × P k → M × P k . We denote by C f the critical set of such f , and by GO(C f ) the grand orbit of C f , i.e., GO(f ) := ∪ n,m≥0 f -m (f n (C f )). We also denote by d t the topological degree of any element of H d (P k ). Observe that in this case we have

d t = d k . Definition 1.2. A dynamical lamination for the family f is an F-invariant subset L of J such that (1) Γ γ ∩ Γ γ ′ = ∅ for all γ ̸ = γ ′ ∈ L; (2) Γ γ ∩ GO(C f ) = ∅ for all γ ∈ L; (3) F : L → L is d t -to-1.
An equilibrium lamination or µ λ -measurable holomorphic motion of J λ is a dynamical lamination satisfying the following further property:

(4) µ λ ({γ(λ) : γ ∈ L}) = 1 for all λ ∈ M ;
Our main result in the case of the family H d (P k ) can be stated as follows.

Theorem 1.3. Let M be an open connected and simply connected subset of the family H d (P k ) of the endomorphisms of P k of a given algebraic degree d ≥ 2 and assume that the family (f λ ) λ∈M is stable. Then there exists a dynamical lamination L satisfying (4') ν({γ(λ) : γ ∈ L}) = 1 for every λ ∈ M and every ergodic f λ -invariant measure ν whose measure-theoretic entropy is strictly larger than (k -1) log d.

In particular, given any λ 0 ∈ M and any ergodic f λ 0 -invariant measure ν 0 whose measuretheoretic entropy is strictly larger than (k -1) log d, it is possible to define a measurable holomorphic motion of J λ associated to the measure ν 0 on all of M . An analogous result holds in the much more general setting of families of polynomial like maps of large topological degree (see Definition 2.5), or of arbitrary subfamilies of H d (P k ). A version of Theorem-Definition 1.1 in this more general setting is the main result of [START_REF] Bianchi | Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree[END_REF], see also [START_REF] Bianchi | Motions of Julia sets and dynamical stability in several complex variables[END_REF]. We refer to Theorem 3.12 and Corollary 3.13 for precise statements of our results in these cases and to Theorem 3.11 for a weaker (local) version of it holding for all measures supported on the Julia set with strictly positive Lyapunov exponents and not charging the postcritical set. As part of our proof, we also prove a generalization of de Thélin and Dupont theorem above [START_REF] De | Sur les exposants de Lyapounov des applications méromorphes[END_REF][START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF] in this setting, giving the strict positivity of the Lyapunov exponents of measures of sufficiently large measure-theoretic entropy for polynomial like maps of large topological degree, see Theorem 2.7. This result is crucial to get a uniform domain of existence for the laminations associated with different measures, depending only on their measure-theoretic entropy.

1.2. Organization of the paper. In Section 2 we recall some definitions and results on polynomial-like maps of large topological degrees. We also study the Lyapunov exponents of measures with sufficiently large measure-theoretic entropy and prove their strict positivity, with an explicit lower bound depending on the measure-theoretic entropy of the measure, see Theorem 2.7. In Section 3 we recall definitions and results on holomorphic families of polynomial-like maps and we state the precise versions of our main results, see Theorems 3.11 and 3.12 and Corollary 3.13. Section 4 is dedicated to the proof of these results. In Appendix A we record an intermediate contraction estimate along generic inverse orbits (with respect to naturally defined measures) in the space (J , F), for later reference.

Polynomial-like maps

2.1. Preliminary notions. We recall here the main notions and results about polynomial-like maps that we will use in the sequel. We refer to [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF] for more details. Definition 2.1. A polynomial-like map is a proper holomorphic map f : U → V , where U ⋐ V are open subsets of C k and V is convex.

In particular, a polynomial-like map f is a ramified covering U → V , and the topological degree d t (i.e., the number of preimages of any point in V , counting the multiplicity) of f is well-defined. We will always assume that d t ≥ 2. The (compact) set K := ∞ n=1 f -n (U ) is the filled-in Julia set of f . It consists of the set of points whose orbit is well-defined. The system (K, f ) is a well-defined dynamical system.

Notice in particular that homogeneous lifts to C k+1 of endomorphisms of P k give polynomiallike maps. On the other hand, while in dimension k = 1 any polynomial-like map is conjugated to an actual polynomial on the Julia set [START_REF] Douady | On the dynamics of polynomial-like mappings[END_REF], in higher dimensions this class is known to be much larger than that of regular polynomial endomorphisms of P k (i.e., those extending holomorphically to P k ), see for instance [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]Example 2.25]. Definition 2.2. Let f : U → V be a polynomial-like map. For 0 ≤ p ≤ k we set

d p = d p (f ) := lim sup n→∞ ∥(f n ) * (ω k-p )∥ 1/n W and (2.1) d * p = d * p (f ) := lim sup n→∞ sup S ∥(f n ) * (S)∥ 1/n W
where W ⋐ V is a neighbourhood of K, ω is the standard Kähler form on C k , and the supremum in (2.1) is taken over all positive closed (k -p, k -p)-currents of mass less than or equal to 1 on a fixed neighbourhood W ′ ⋐ V of K. We say that d p and d * p are the dynamical and * -dynamical degrees of order p of f , respectively. Similarly, we define (2.2)

δ p = δ p (f ) := lim sup n→∞ sup X ∥(f n ) * [X]∥ 1/n W
where the supremum in (2.2) is taken over all p-dimensional complex analytic sets X ⊂ V . 

d k = δ k = d * k = d t .
In the case of endomorphisms of P k of algebraic degree d, for every 0 ≤ p ≤ k the above definitions reduce to d * p = δ p = d p = d p . The next lemma in particular implies that d p ≤ δ p . Lemma 2.3 (see [START_REF] Bianchi | Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree[END_REF]Lemma 4.7]). Let f : U → V be a polynomial-like map. Let X be an analytic subset of V of pure dimension p ≤ k -1. There exists a function C: N → R with lim sup n→∞ C(n) 1/n = 1 and independent of X such that

(2.3) f -n (V ) [X] ∧ (f n 1 ) * ω ∧ . . . ∧ (f np ) * ω ≤ C(n) δ n p and
(2.4)

f -n (V ) ω k-p ∧ (f n 1 ) * ω ∧ . . . ∧ (f np ) * ω ≤ C(n) δ n p
where 0 ≤ n j ≤ n -1 for all 1 ≤ j ≤ p. In particular, the topological entropy of the restriction of f to X is bounded by log δ p .

Proof. The proof of (2.3) follows the strategy used by Gromov to estimate the topological entropy of endomorphisms of P k , see for instance [START_REF] Gromov | On the entropy of holomorphic maps[END_REF], and adapted by Dinh and Sibony [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF] to the setting of polynomial-like maps. Since only minor modifications are needed, we refer to [10, Lemma A.2.6] for a complete proof. The second expression is deduced from the first (by possibly increasing C(n) by a bounded factor) as ω k-p can be written as an average of currents of integration on p-dimensional analytic sets. □ Corollary 2.4 (see [START_REF] Bianchi | Motions of Julia sets and dynamical stability in several complex variables[END_REF]Lemma A.2.9]). Let f : U → V be a polynomial-like map. Let ν be an ergodic f -invariant probability measure such that h ν (f ) > log δ p . Then ν gives no mass to analytic sets of dimension less than or equal to p.

Proof. Let X be an analytic set of dimension at most p, and assume by contradiction that m := ν(X) > 0. We can assume that X is irreducible and has pure dimension q ≤ p. Since ν is invariant, for all n ∈ N we have ν(

f n (X)) = ν(f -n (f n (X))) ≥ ν(X) = m. Hence, we must have ν(f n 1 (X) ∩ f n 2 (X)) > 0 for some n 1 ̸ = n 2 ∈ N.
By the minimality of X, we deduce that f n 1 (X) = f n 2 (X). Up to replacing f with an iterate, we can then assume that X is invariant and such that ν(X) > 0. The ergodicity of ν implies that ν(X) = 1. This implies that h ν (f ) is smaller than or equal to the topological entropy of the restriction of f to X. Since this is bounded by log δ p by Lemma 2.3, the assertion follows. □

We will focus in this paper on maps satisfying the following condition [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]. Observe that the condition is always satisfied by lifts of endomorphisms, and moreover it is stable by small perturbation of the coefficients (since d * k-1 (f ) depends upper semicontinuously from the map f ). This gives large families of examples. Definition 2.5. We say that a polynomial-like map f has large topological degree if d * k-1 < d t . Polynomial-like maps of large topological degree enjoy many of the dynamical properties of endomorphisms (however, their study is usually technically more involved, because of the lack of a naturally defined Green function). For instance, they admit a unique measure of maximal entropy log d t , whose Lyapunov exponents (see below) are strictly positive. We denote this measure by µ and define the Julia set as the support of f . Observe that J is a subset of the boundary of K.

In the current paper, we will often need that f satisfies the (a priori) stronger property that max{d *

0 , . . . , d * k-1 } < d t .
The following result by Dinh and the authors implies that this is always the case for maps of large topological degree. Proposition 2.6 (see [START_REF] Bianchi | Monotonicity of dynamical degrees for Hénon-like and polynomial-like maps[END_REF]Theorem 1.3]). Let f be a polynomial-like map. Then the sequence {d * j } 0≤j≤k is non-decreasing. In particular, if f has large topological degree then max{d * 0 , . . . ,

d * k-1 } = d * k-1 < d t . 2.2.
Strict positivity of the Lyapunov exponents. Let f : U → V be a polynomial-like map and ν an ergodic f -invariant probability measure. By Oseledets Theorem [START_REF] Oseledets | A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems[END_REF], ν admits k Lyapunov exponents (counting multiplicity, and admitting the possible value of -∞). We will denote them by -∞ ≤ χ l < χ l-1 < . . . < χ 1 , with multiplicity m j ≥ 1, j = 1, . . . , l respectively. Note that m 1 +m 2 +. . .+m l = k. As soon as the measure-theoretic entropy of ν is positive, its largest Lyapunov exponent is strictly positive by Ruelle inequality [START_REF] Ruelle | An inequality for the entropy of differentiable maps[END_REF] (the result is stated for compact manifolds, but the proof applies here too, by triangulating a neighbourhood of the filled Julia set K).

The following is the main result of this section.

Theorem 2.7. Let f : U → V be a polynomial-like map of large topological degree. Let ν be an ergodic f -invariant probability measure satisfying h ν (f ) > log d * k-1 (f ). Then (1) all the Lyapunov exponents of f with respect to ν are larger than or equal to (h ν (f )log d * k-1 )/(2m l ) > 0 (where m l is the multiplicity of the smallest Lyapunov exponent of ν);

(2) the function log|Jac f | is integrable with respect to ν.

The second assertion follows from the first, since the sum of the Lyapunov exponents is equal to ⟨ν, log|Jac f |⟩ by Birkhoff Theorem, so this last integral is finite as soon as all Lyapunov exponents are finite. Hence, we only need to prove the first assertion. This is known in the case of endomorphisms of P k , see de Thélin [START_REF] De | Sur les exposants de Lyapounov des applications méromorphes[END_REF] and Dupont [START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF]. When ν is the measure of maximal entropy, it is a result of Dinh-Sibony [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF], see [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF] for the case of endomorphisms of P k . Although we will follow the strategy of the proof de Thélin and Dupont, because of the lack of a Hodge theory in this setting, we will need to replace some cohomological arguments when working with polynomial-like maps. We also cannot exploit the linearity of the sequence {d * p } 1≤p≤k of the dynamical degrees, see also Remark 2.10.

As in [START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF], the assertion will be deduced from the following estimate. Recall that l ≥ 1 is the number of distinct Lyapunov exponents of ν.

Theorem 2.8. Let f : U → V be a polynomial-like map and let ν be an ergodic f -invariant probability measure. Then, if l ≥ 2, for every 2 ≤ j ≤ l, we have

(2.5) h ν (f ) ≤ log max 1≤i≤k-l j δ i + 2m j χ + j + . . . + 2m l χ + l
where we set χ + := max{χ, 0}, and l j = m j + . . . + m l .

If h ν (f ) = 0, the assertion is clear. So we can assume that h ν (f ) > 0. As we mentioned above we have χ 1 > 0 by Ruelle inequality. Let 1 ≤ q ≤ l be such that q := max{i : χ i > 0}. Since the same proof below works for the case l = q, without loss of generality we can assume that l > q. It is not difficult to see that the right-hand side of (2.5), seen as a function of j, is non-decreasing for j ≥ q + 1, hence it is enough to prove Theorem 2.8 for 2 ≤ j ≤ q + 1.

Proposition 2.9 (see [START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF]Proposition 6.3]). Let f : U → V be a polynomial-like map. Fix 0 < β 0 ≤ 1. For every ε > 0 there exists r 0 > 0 and n 0 ∈ N and, for any n ≥ n 0 , a maximal (n, r 0 )-separated set E n with Card(E n ) ≥ e n(hν (f )-2ε) and such that, for any z ∈ E n and every 2 ≤ j ≤ q + 1, there exists a neighbourhood U j z of the origin of D l j and an injective mapping

Ψ j z : U j z → f -n (V ) which satisfies the following properties: (1) Ψ j z (0) = z and LipΨ j z ≤ β 0 ; (2) diam f i (Ψ j z (U j z )) ≤ e -nε , for 0 ≤ i ≤ n -1; (3) Vol(Ψ j z (U j z )
) ≥ e -n(2m j χ + j +...+2mqχ + q ) e -8knε for j ≤ q and Vol(Ψ q+1 z (U q+1 z

)) ≥ e -8knε .

Recall that a set A is (n, r 0 )-separated, if for all x, y ∈ A we have max 0≤i≤n-1

|f i (x) -f i (y)|> r 0
(we assume here that |f i (x) -f i (y)|> r 0 if at least one among f i (x) and f i (y) is not defined).

Proof. The statement being local, the same proof as in [START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF] applies here. □ Proof of Theorem 2.8. We keep the notations of Proposition 2.9 and set Ψ j n := ∪ z∈En Ψ j z (U j z ). Up to taking suitable local charts, we can assume that the Ψ j z (U j z )'s are graphs above σ(f -n (V )) where σ :

C k → C l j is the orthogonal projection. Let ω := dd c ∥z∥ 2 be the standard Kähler (1, 1)-form on V . For a ∈ σ(f -n (V )), set Γ n (a) := {(z, f (z), . . . , f n-1 (z)), z ∈ σ -1 (a) ∩ f -n+1 (V )} ⊂ V n . Then Vol(Γ n (a)) = Γn(a) ω k-l j n
, where ω n = n i=1 Π * i ω and, for every 1 ≤ i ≤ n, Π i denotes the projection of V n onto its i-th factor. Since E n is (n, r 0 )-separated and diam

f i (Ψ j z (U j z )) ≤ e -nε the set Ψ j n ∩ σ -1 (a) is (n, r 0 /2)-separated. Lelong inequality implies that Vol(Γ n (a)) ≥ Card Ψ j n ∩ σ -1 (a)
, see for instance [START_REF] Gromov | On the entropy of holomorphic maps[END_REF]. By using Proposition 2.9 we get (2.6)

a∈σ(f -n (V )) Vol(Γ n (a))da ≥ a∈σ(f -n (V )) Card Ψ j n ∩ σ -1 (a) da = Vol(σ(Ψ j n )) ≥ e n(hν -2ε) e -n(2m j χ + j +...+2mqχ + q ) e -8knε .
On the other hand, we also have

Vol(Γ n (a)) = 0≤n i ≤n-1 f -n (V ) [σ -1 (a)] ∧ (f n 1 ) * ω ∧ . . . ∧ (f n k-l j ) * ω.
By Lemma 2.3, and since the sum in the last expression contains n k-l j terms, there exists a function C: N → R independent of a such that lim sup n→∞ C(n) 1/n = 1 and, for all n ∈ N,

Vol(Γ n (a)) ≤ C(n) δ n k-l j .
Hence, for all n ∈ N, we have (2.7)

a∈σ(f -n (V )) Vol(Γ n (a))da ≤ C(n) δ n k-l j a∈σ(f -n (V )) da ≤ α(n) δ n k-l j where α(n) := C(n) a∈σ(V ) da = C(n) Vol(σ(V )) (notice that σ(f -n (V )) ⊂ σ(V )). In particu- lar, we have lim sup n→∞ α(n) 1/n = 1.
Combining the two inequalities (2.6) and (2.7), we deduce that for any ε > 0 there exists an integer n 0 such that for any n > n 0 we have

log δ k-l j + 1 n log α(n) ≥ h ν (f ) -(2m j χ + j + . . . + 2m q χ + q ) -(8k + 2)ε.
By letting n → ∞ and ε → 0, we have

h ν (f ) ≤ log δ k-l j + 2m j χ + j + . . . + 2m q χ + q ≤ log max 1≤i≤k-l j δ i + 2m j χ + j + . . . + 2m q χ + q .
The proof is complete. □ End of the proof of Theorem 2.7. Let us first assume that f admits l ≥ 2 distinct Lyapunov exponents. By using (2.5) and Proposition 2.6 we have

(2.8) χ + l ≥ h ν (f ) -log max 1≤i≤k-m l δ i 2m l ≥ h ν (f ) -log d * k-1 2m l ,
which concludes the proof in this case.

Assume now that all the Lyapunov exponents are equal to χ. In particular, we have l = 1 and m l = m 1 = k. By Ruelle inequality, we have h ν (f ) ≤ 2kχ, hence the desired estimate in this case also follows. □ Remark 2.10. In the case of endomorphisms of P k (see [START_REF] De | Sur les exposants de Lyapounov des applications méromorphes[END_REF] and [START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF]) the denominator in Theorem 2.7 (1) can be taken to be equal to 2 instead of 2m l , even when m l > 1. This is a consequence of the log-concavity of the sequence {d * p } 0≤p≤k (which in that case is actually linear). Let f be a polynomial-like map as in Theorem 2.7 and assume that the sequence {d * p } 0≤p≤k is log-concave, i.e., that we have

d * p-1 • d * p+1 ≤ (d * p ) 2 for 1 ≤ p ≤ k -1.
Then, the denominators 2m l can also be replaced by 2 in Theorem 2.7 [START_REF] Astorg | Hyperbolicity and bifurcations in holomorphic families of polynomial skew products[END_REF]. Indeed, the log-concavity implies that

(d * k ) m-1 • d * k-m ≤ (d * k-1 ) m for all 1 ≤ m ≤ k.
By the last inequality and the fact that

h ν (f ) ≤ log d t = log d * k we obtain (m -1)h ν (f ) ≤ (m -1) log d * k ≤ log (d * k-1 ) m d * k-m = m log d * k-1 -log d * k-m
and hence

(2.9)

h ν (f ) -log d * k-m 2m ≥ h ν (f ) -log d * k-1 2 .
Let us first assume that f admits l ≥ 2 distinct Lyapunov exponents, and let m l be the multiplicity of the smallest Lyapunov exponent, as above. Since max 1≤i≤k-m l δ i ≤ d * k-m l by Proposition 2.6, thanks to (2.9) we have

h ν (f ) -log max 1≤i≤k-m l δ i 2m l ≥ h ν (f ) -log d * k-m l 2m l ≥ h ν (f ) -log d * k-1 2 .
This permits to improve the second inequality in (2.8), and proves the assertion in this case.

Assume now that all the Lyapunov exponents are equal to χ. Then, thanks to the arguments in the last lines of the proof of Theorem 2.7, it is enough to prove the inequality

hν (f )-log d * k-1 2 ≤ hν (f )
2k . Since this is a consequence of (2.9) applied with m = k (recall that d * 0 = 1), the assertion follows in this case, too.

3. Holomorphic families of polynomial-like maps 3.1. General definitions. We will consider in all this paper holomorphic families of polynomiallike maps. These are defined as follows, see [START_REF] Pham | Lyapunov exponents and bifurcation current for polynomial-like maps[END_REF][START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]. Definition 3.1. Let M be a complex manifold and U, V be connected open subsets of M × C k such that U⊂V. Let π M : M ×C k → M be the standard projection. Assume that for every λ ∈ M we have

∅ ̸ = U λ ⋐ V λ ⋐ C k with U λ connected and V λ convex, where U λ := U ∩ π -1 M (λ) and V λ := V ∩π -1
M (λ). Assume also that U λ and V λ depend continuously on λ. A holomorphic family of polynomial-like maps is a proper holomorphic map f : U → V of the form (λ, z) → (λ, f λ (z)).

From the definition, f has a well-defined topological degree d t . We will always assume that d t ≥ 2. All the maps f : U λ → V λ are polynomial-like with the same topological degree d t . We denote by µ λ , J λ , and K λ the equilibrium measure, the Julia set, and the filled Julia set of f λ , respectively. Since the function λ → K λ is upper semicontinuous for the Hausdorff topology, when working locally near a given λ 0 ∈ M we can assume without loss of generality that V is equal to M × V for some open and convex subset V ⋐ C k . We denote by C f the critical set of f . Observe that the current of integration [C f ] is given by dd c log|Jac f |, where Jac f is the Jacobian of f .

The following result is due to Pham [START_REF] Pham | Lyapunov exponents and bifurcation current for polynomial-like maps[END_REF] in the case of ν λ = µ λ , see also [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF].

Proposition 3.2. Let (f λ ) λ∈M be a holomorphic family of polynomial like maps of large topological degree. Let R be a horizontal positive closed current on V = M × V of bidegree (k, k).

Assume that, for all λ ∈ M , the slice measure ν λ := R λ is an ergodic f λ -invariant measure.

Let L 1 (λ) ≥ . . . ≥ L k (λ) denote the k Lyapunov exponents of ν λ , counting multiplicities, and, for every

1 ≤ ℓ ≤ k let Σ ℓ (λ) := ℓ j=1 L j (λ)
be the sum of the ℓ largest exponents of ν λ . If there exists [START_REF] Dujardin | Hénon-like mappings in C 2[END_REF][START_REF] Dinh | Geometry of currents, intersection theory and dynamics of horizontallike maps[END_REF]. For a horizontal positive closed current of bidegree (k, k), the slice R λ (which, for smooth R, coincides with the intersection

λ 0 ∈ M such that L k (λ 0 ) is finite, then, for all 1 ≤ l ≤ k, the function Σ ℓ (λ) is plurisubharmonic (psh) on M . Recall that a current R in M × V is horizontal if π V (Supp R) ⋐ V [
R ∧ π * M δ λ = R ∧ [π -1 M ({λ})]
) is well-defined for all λ ∈ M and can be seen as a positive measure on V , whose mass does not depend on λ, see [START_REF] Dinh | Geometry of currents, intersection theory and dynamics of horizontallike maps[END_REF].

Proof of Proposition 3.2. The proof is essentially the same as for the case ν λ = µ λ (see [START_REF] Pham | Lyapunov exponents and bifurcation current for polynomial-like maps[END_REF][START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]) hence we only sketch it.

The differential D z f λ depends holomorphically on (λ, z). For every 1 ≤ ℓ ≤ k, it induces the linear map

ℓ D z f λ : ℓ T z C k → ℓ T f λ (z) C k which is defined as ℓ D z f λ (e 1 ∧ . . . ∧ e ℓ ) := D z f λ (e 1 ) ∧ . . . ∧ D z f λ (e ℓ ).
This map still depends holomorphically on (λ, z). Hence, the map (λ, z) → log∥∧ ℓ D z f λ ∥ is psh. For every n ≥ 0, set Ψ n (λ) := ⟨ν λ , log∥∧ ℓ D z f n λ ∥⟩. By [44, Proposition A.1] (see also [START_REF] Bianchi | Motions of Julia sets and dynamical stability in several complex variables[END_REF]Appendix A.1]), Ψ n is psh or equal to -∞ on M . For all n, m ≥ 0, z ∈ U , and λ ∈ M we also have

∥∧ ℓ D z f n+m ∥≤ ∥∧ ℓ D f n λ (z) f m ∥ • ∥∧ ℓ D z f n ∥, which implies that Ψ n+m (λ) ≤ Ψ n (λ) + Ψ m (λ).
Hence, the sequence n -1 Ψ n decreases to Ψ := inf n -1 Ψ n . By Oseledets theorem, we have Ψ(λ) = Σ ℓ (λ). We deduce that Σ ℓ is psh or identically -∞. The latter possibility is excluded since the assumption on λ 0 implies that Σ ℓ (λ 0 ) > -∞. The assertion follows. □ 3.2. Stability notions. We fix in this section a connected and simply connected complex manifold M and a holomorphic family of polynomial-like maps of large topological degree f : U → V = M × V . We first consider the space of maps

O(M, C k ) := {γ : M → C k : γ holomorphic}
with the topology of local uniform convergence. O(M, C k ) is a metric space. We then define the subspace (3.1)

J := {γ ∈ O(M, C k ) : γ(λ) ∈ J λ ∀λ ∈ M }
and the two natural maps:

(1) F : J → J , which is defined by

F(γ)(λ) = f λ (γ(λ));
(2) p λ : J → J λ , which is defined by p λ (γ) = γ(λ). Observe that J is a compact metric space, and that (J , F) is a well-defined dynamical system. Definition 3.3. A web for the family f is an F-invariant probability measure on J .

Given λ 0 ∈ M and an f λ 0 -invariant probability measure ν supported on J λ 0 , a (λ 0 , ν)-web (or ν-web for brevity) is a web M such that (p λ 0 ) * M = ν.

If a web M satisfies (p λ ) * M = µ λ (the equilibrium measure for f λ ) for all λ ∈ M , M is an equilibrium web for the family f . Definition 3.4. Given λ 0 ∈ M and an f λ 0 -invariant probability measure ν supported on J λ 0 , a dynamical lamination L (see Definition 1.2) is said to be a ν-lamination if ν({γ(λ 0 ) : γ ∈ L}) = 1.

The repelling J-cycles of f λ are the repelling cycles of f λ which belong to J λ . In dimension k = 1, all repelling cycles are automatically repelling J-cycles. When k ≥ 2 there are examples of repelling points outside of the Julia set (see for instance [START_REF] Fornaess | Dynamics of P 2 (examples)[END_REF][START_REF] Hubbard | Superattractive fixed points in C n[END_REF]). Recall, however, that repelling J-cycles are dense in the Julia set [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF][START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF]. Definition 3.5. We say that the repelling J-cycles of f λ move holomorphically over an open subset Ω ⊆ M if for every n ≥ 1 there exists a set of holomorphic maps

ρ j,n ∈ J such that R n (λ) = {ρ j,n (λ) : 1 ≤ j ≤ N d (n)} for all λ ∈ Ω, where R n (λ) := {repelling n - periodic points of f λ in J λ } and N d (n) = Card(R n (λ)) for all λ ∈ M .
The following, a priori weaker, condition on the repelling cycles was introduced in [START_REF] Bianchi | Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree[END_REF]. Definition 3.6. We say that asymptotically all repelling cycles move holomorphically on Ω if there exists a set P = ∪P n ⊂ J with the following properties:

(1) Card(P n ) = d n t + o(d n t ); (2) every γ ∈ P n is n-periodic;

(3) for all open Ω ′ ⋐ Ω, we have

Card{γ ∈ P n : γ(λ) is repelling for all λ ∈ Ω ′ } d n t → 1.
Definition 3.7. We say that λ 0 ∈ M is a Misiurewicz parameter if there exist integers p 0 , n 0 ≥ 1 and a holomorphic map σ defined on some neighbourhood of λ 0 such that σ(λ) ∈ R p 0 (λ) and Γ σ ∩ W ̸ = ∅ but Γ σ ̸ ⊆ W for some irreducible component W of f n 0 (C f ), where Γ σ denotes the graph of σ.

The following result is a generalization of Theorem-Definition 1.1 to the setting of polynomiallike maps of large topological degree. Observe in particular that it applies to any subfamily of H d (P k ), for any k ≥ 1 and d ≥ 2. In particular, it permits to extend the definition of stability to these settings. Theorem 3.8 ([11, Theorem C]). Let M be a connected and simply connected complex manifold and let (f λ ) λ∈M be a holomorphic family of polynomial-like maps of large topological degree. Then the following assertions are equivalent:

(S1) asymptotically all repelling J-cycles of f λ move holomorphically over M ;

(S2) dd c L µ (λ) ≡ 0, where L µ (λ) := U λ log |Jac f λ (z)| µ λ (z)
is the sum of the Lyapunov exponents of the unique measure of maximal entropy µ λ of f λ ; (S3) there are no Misiurewicz parameters; (S4) the family admits an equilibrium lamination.

Condition (S3

) is already present in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] (and is in particular equivalent to the conditions in Theorem-Definition 1.1), see also [START_REF] Genadi | On the irregular values of the parameter of a family of polynomial mappings[END_REF][START_REF] Lyubich | Some typical properties of the dynamics of rational mappings[END_REF] for the analogous equivalence in dimension 1 and [START_REF] Berteloot | Ramification current, post-critical normality and stability of holomorphic endomorphisms of P k[END_REF] for further characterization of stability. Remark 3.9. By [START_REF] Berteloot | Les cycles répulsifs bifurquent en chaîne[END_REF], condition (S1) can actually be weakened to the following, a priori weaker, condition: there exists a function N : N → N with lim sup n→∞ d -n t N (n) > 0 such that, for every n, N (n) repelling periodic points move holomorphically (as repelling periodic points).

A crucial role in the proof of both Theorems 1.1 and 3.8 is the concept of acritical web. While the definition in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] and [START_REF] Bianchi | Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree[END_REF] is given only for equilibrium webs, we can give it for general webs. Definition 3.10. A web M is said to be acritical if M(J s ) = 0, where

J s := {γ ∈ J : Γ γ ∩ GO(C f ) ̸ = ∅} and GO(C f ) := ∪ n,m≥0 f -m (f n (C f )).
In particular (see for instance [START_REF] Bianchi | Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree[END_REF]Theorem 4.11]), the conditions (S1)-(S4) in Theorem 3.8 are equivalent to the following one:

(S5) there exists an acritical equilibrium web.

The following is a more general version of Theorem 1.3 that was announced in the Introduction. For any λ ∈ M , we denote by C + f λ := ∪ m≥0 f m λ (C f λ ) the postcritical set of f . Theorem 3.11. Let M be a connected and simply connected complex manifold and let (f λ ) λ∈M be a holomorphic family of polynomial-like maps of large topological degree. Fix λ 0 ∈ M and consider an ergodic f λ 0 -invariant probability measure ν 0 such that Supp ν 0 ⊆ J λ 0 , the smallest Lyapunov exponent of ν 0 is strictly positive, and ν(C + f λ 0 ) = 0. Then, up to replacing M with a sufficiently small open neighbourhood M λ 0 ,ν 0 of λ 0 , the conditions (S1)-(S4) in Theorem 3.8 and the condition (S5) above are equivalent to the following assertions: (S4') there exists a ν 0 -lamination; (S5') there exists an ergodic acritical ν 0 -web M such that, for all λ ∈ M λ 0 ,ν 0 , the Lyapunov exponents of (p λ ) * M are uniformly bounded from below by a strictly positive constant.

The main reason why we may need to reduce M to M λ 0 ,ν 0 (possibly depending on ν 0 ) is due to the fact that the smallest Lyapunov exponent of the motion of ν 0 may, a priori, become negative at some λ 1 ∈ M . In our construction (and more precisely in the construction of the ν 0 -lamination) we will need to restrict to the parameters where such an exponent stays positive.

It is proved in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] that the existence of a graph γ: M → P k whose orbit does not intersect the postcritical set implies the stability of the family, and is then equivalent to it. The same result is proved in [START_REF] Bianchi | Motions of Julia sets and dynamical stability in several complex variables[END_REF] for families of polynomial-like maps. In particular, it follows directly that the existence of an acritical web (associated to any measure, hence in particular (S4')) implies that the family is stable. The implication (S5') ⇒ (S4') follows from similar arguments as in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF][START_REF] Bianchi | Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree[END_REF][START_REF] Berteloot | Stability and bifurcations in projective holomorphic dynamics[END_REF], that we will briefly recall for convenience and later reference, see Section 4.3 and the Appendix. The main point of Theorem 3.11 is the implication (S1) ⇒ (S5'), and in particular the positivity of the Lyapunov exponents in (S5').

By Theorem 2.7, Theorem 3.11 in particular applies when the measure-theoretic entropy of the measure ν 0 is strictly larger than log d * k-1 . In this case we can also find a uniformity for the neighbourhood M λ 0 ,ν 0 , depending only on the measure-theoretic entropy of ν 0 . As we will see, this fact is also a consequence of the uniform bound on the Lyapunov exponents given by Theorem 2.7. The existence of M λ 0 ,h as in the statement below follows from the upper semicontinuity of the function λ → d * k-1 (f λ ). Theorem 3.12. Let M be a connected and simply connected complex manifold and let (f λ ) λ∈M be a stable family of polynomial-like maps of large topological degree. Fix λ 0 ∈ M and h ∈ R such that log d * k-1 (f λ 0 ) < h < log d t and let M λ 0 ,h be a simply connected open neighbourhood of λ 0 such that log d * k-1 (f λ ) < h for any λ ∈ M λ 0 ,h . Then for any ergodic f λ 0 -invariant probability measure ν 0 supported in J λ 0 such that h ν 0 (f λ 0 ) > h, the properties (S4') and (S5') hold on M λ 0 ,h .

Moreover, there exists a dynamical lamination L satisfying (Sh) ν({γ(λ) : γ ∈ L}) = 1 for every λ ∈ M λ 0 ,h and every f λ -invariant measure ν such that

h ν (f λ ) > h.
The following is a version of the above result for families of endomorphisms of P k , stating that, in this case, the neighbourhood M λ 0 ,h in Theorem 3.12 can be taken equal to M (recall that d * k-1 (f λ ) = d k-1 for all λ ∈ M in this case). Observe that Theorem 1.3 corresponds to the case of Corollary 3.13 where M is an open subset of H d (P k ). Corollary 3.13. Let M be a connected and simply connected complex manifold and let (f λ ) λ∈M be a stable family of endomorphisms of P k of algebraic degree d ≥ 2. Fix λ 0 ∈ M and let ν 0 be any ergodic f λ 0 -invariant probability measure with h ν 0 (f λ 0 ) > (k -1) log d. Then, the properties (S4') and (S5') hold on M . In particular, there exists a dynamical lamination L satisfying (S*) ν({γ(λ) : γ ∈ L}) = 1 for every λ ∈ M and every f λ -invariant measure ν such that h ν (f λ ) > (k -1) log d.

Proof of main results

In this section we give the proof of Theorems 3.11 and 3.12 and Corollary 3.13. In particular, this also proves Theorem 1.3. We fix a connected and simply connected complex manifold M and let (f λ ) λ∈M be a stable family of polynomial-like maps of large topological degree. In Section 4.1 we prove the existence of a special acritical ν-web, see Proposition 4.3. In Section 4.2 we define a Lyapunov function for a given ν-web and give a criterion for the pluriharmonicity of such function, that in particular applies to the web constructed in Proposition 4.3. As a consequence, we deduce the positivity of the Lyapunov exponents of the slices of that web in a neighbourhood of the starting parameter, proving (S5'). In Section 4.3, we prove the existence of a ν-lamination and conclude the proofs of the main results.

4.1.

From stability to acritical ν-webs. In this section we give the first part of the proof of the implication (S1) ⇒(S5') in Theorem 3.11, namely we prove the existence of a suitable acritical web (with no requirement on the positivity of the associated Lyapunov exponents) under the stability assumption. Observe that we do not need to restrict the parameter space to get such property. For simplicity, we will set the following definition. Recall that we fix a stable family (f λ ) λ∈M in all this section.

Definition 4.1. Given n ∈ N, a measure M on J is critically n-aligned if ∀γ ∈ SuppM: Γ γ ∩ f n (C f ) ̸ = ∅ ⇒ Γ γ ⊆ f n (C f ).
M is critically aligned if it is critically 0-aligned. It is postcritically aligned if it is critically n-aligned for all n ≥ 0. Lemma 4.2. Take λ 0 ∈ M and let ν be an f λ 0 -invariant measure such that ν(C + f λ 0 ) = 0. Let M be a postcritically aligned ν-web. Then M is acritical.

Proof. By the F * -invariance of M, it is enough to prove that M(J + s ) = 0, where

J + s := γ ∈ J : Γ γ ∩ C + f ̸ = ∅ .
Since M is postcritically aligned, by Definition 4.1 we have

M γ ∈ J : Γ γ ∩ C + f ̸ = ∅ ≤ M γ ∈ J : Γ γ ⊆ C + f = M γ ∈ J : γ(λ 0 ) ∈ C + f λ 0 = ν C + f λ 0 = 0,
where the last equality follows from the assumption on ν. The assertion follows. □

The main result of this section is the following proposition.

Proposition 4.3. Fix λ 0 ∈ M and let ν be an ergodic f λ 0 -invariant probability measure supported in J λ 0 and such that ν(C +

f λ 0 ) = 0.
There exists a postcritically aligned ergodic ν-web M.

Observe that, in particular, M as in Proposition 4.3 is acritical by Lemma 4.2, and for every λ ∈ M the measure ν λ := (p λ ) * M is an ergodic f λ -invariant probability measure.

We will need the following technical lemma.

Lemma 4.4. Let X be a metric space and ν be a compactly supported probability measure on X. Let X j := {x j 1 , x j 2 , . . . , x j l(j) } be a sequence of finite sets such that (1) the cardinalities l(j) of X j satisfy l(j + 1) ≥ l(j);

(2) L := ∪ j X j is a compact subset of X and Supp ν ⊆ L;

(3) ∪ n X jn = L for any subsequence {X jn }.

Then there exists a sequence of sets A j := {a j 1 , a j 2 , . . . , a j l(j) } of non-negative real numbers with l(j) m=1 a j m = 1 such that

ν j := l(j) m=1
a j m δ x j m → ν, where δ x is the Dirac mass at x ∈ X.

Proof. For every j, let ζ j := {B j 1 , B j 2 , . . . , B j l(j) } be a measurable partition of L such that x j m ∈ B j m for all m. By the assumption (3) it follows the union of the X j 's is dense in L. Hence, we can assume that the maximum diameter of the elements of the partition ζ j , goes to 0 as j → ∞, i.e., that

(4.1) diam ζ j := sup 1≤m≤l(j) diam B j m → 0 as j → ∞.
For all j and 1 ≤ m ≤ l(j), set a j m := ν(B j m ). By construction we have |ν j |= 1 for all j. Hence, by Banach-Alaoglu theorem, there exists a converging subsequence {ν j i } of {ν j }. Fix one such subsequence and denote ν := lim i→∞ ν j i . Since |ν j i |= 1 it follows that | ν|= 1. Hence, it is enough to prove that ν ≤ ν. In order to do this, it is enough to show that ν(D) ≤ ν(D) for all closed balls D ⊆ X centered on Supp ν.

Let us fix a closed ball D as above and, for all ε > 0, let D ε be the closed ε-neighbourhood of D, i.e., D ε := {x ∈ X : dist(x, D) ≤ ε}. By (4.1), there exists i 0 such that diam ζ j i < ε/2 for all i > i 0 . It follows that, for i ≥ i 0 , all elements of ζ j i intersecting D are contained in D ε . This implies that, for all i ≥ i 0 , we have ν(D) ≤ ν j i (D ε ). Hence, ν(D) ≤ ν(D ε ). Finally, since lim ε→0 ν(D ε ) = ν(D), we obtain the desired inequality ν(D) ≤ ν(D) by letting ε tend to 0. The proof is complete. □

Proof of Proposition 4.3. Since (f λ ) λ∈M is stable, by Theorem 3.8, for every n ∈ N * there exists a collection {γ j,n : 1

≤ j ≤ N d (n)} ⊂ J such that R n (λ) = {γ j,n (λ) : 1 ≤ j ≤ N d (n)} for all λ ∈ M , where R n (λ) is a set of repelling n-periodic points in J λ and N d (n) ∼ d n t . Let A n = {a n 1 , . . . , a n N d (n)
} be a sequence of sets of real numbers given by applying Lemma 4.4 with the measure ν and the sequence of sets X n = R n (λ 0 ). Observe that the assumptions in Lemma 4.4 are satisfied by the asymptotics of N d (n) and the equidistribution of periodic points with respect to µ λ 0 on J λ 0 ⊇ Supp ν, see [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF][START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]. Set

M n := N d (n) j=1 a n j δ γ j,n .
By definition, each M n is a discrete probability measure supported on J . In particular, ∪ n SuppM n is relatively compact. Hence, by Banach-Alaoglu theorem, there exists a converging subsequence M n l → M. Observe that also M is a measure on J .

We claim that M is postcritically aligned. Indeed, by the assumption on the motion of the repelling cycles and Theorem 3.8, there are no Misiurewicz parameters in M . So, M n l is postcritically aligned for all l. It then follows from Hurwitz theorem that also M is postcritically aligned.

By construction, we have

(p λ 0 ) * M = lim l→∞ (p λ 0 ) * M n l = ν.
On the other hand, a priori, the measure M may not be F-invariant (hence, it may not be a web). We define M to be any limit of a subsequence of n -1 n-1 j=0 F j * M. Then, we have

F * M = M. Since ν is f λ 0 -invariant, for every j ∈ N we have (p λ 0 ) * F j * M = (f j λ 0 ) * ((p λ 0 ) * M) = (f j λ 0 ) * ν = ν.
In particular, for every n ∈ N we have (p λ 0 ) * n -1 n-1 j=0 F j * M = ν. It follows that M is a νweb. As above, since M is a limit of postcritically aligned measures, it is postcritically aligned, too. Up to replacing M with one of its ergodic components (by means of Choquet theorem), we can also assume that M is a postcritically aligned ergodic web. The assertion follows. □ Remark 4.5. One can also construct webs as in Proposition 4.3 by using the equidistribution of preimages of generic points instead of repelling points, see [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF]. Indeed, as mentioned above, by [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF][START_REF] Bianchi | Motions of Julia sets and dynamical stability in several complex variables[END_REF] the stability of a family implies the existence of an element σ ∈ J \J s , i.e., a holomorphic map σ: M → V whose graph does not intersect the postcritical set. Hence, one can consider the measures

M γ,n := d -n t σ∈F -n (γ)
a n σ δ σ where {a n σ : n ∈ N, σ ∈ F -n (γ)} is chosen so that (p λ 0 ) * M γ,n → ν. Observe that the support of M n is discrete and disjoint from J s . In particular, every M γ,n is postcritically aligned. Hence, as in the proof of Proposition 4.3, we can use the sequence (M γ,n ) n∈N to construct a web M satisfying the properties in Proposition 4.3

The following is an immediate consequence of Proposition 4.3 and Corollary 2.4. Observe that, also in this case, M as in the statement is acritical by Lemma 4.2.

Corollary 4.6. Fix λ 0 ∈ M and let ν be an ergodic f λ 0 -invariant probability measure supported in J λ 0 such that h ν (f λ 0 ) > log d * k-1 (f λ 0 ). There exists a postcritically aligned ergodic ν-web M.

Positivity of Lyapunov exponents.

Once the existence of a web as in Proposition 4.3 is established, in order to apply the ideas in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] to prove (S5') we need to check that the function associating to every λ the smallest Lyapunov exponent of (p λ ) * M is locally uniformly bounded from below by some strictly positive constant in a neighbourhood of the starting parameter λ 0 . In order to do this, it is enough to show that this function is strictly positive and lower semicontinuous in a neighbourhood of λ 0 (possibly depending on ν 0 ).

Given a web M, consider the current on V given by (4.2)

W M := [Γ γ ]dM(γ),
where [Γ γ ] is the current of integration on the graph of the map γ. Observe that W M is positive and closed.

Definition 4.7. Let M be a web. We define the function L M : M → R as

L M = π * (log|Jac f λ (z)|W M ),
where W M is as in (4.2) and π denotes as usual the projection on the parameter space M .

Up to restricting to a small neighbourhood of a given parameter λ 0 ∈ M , we can assume that W M is horizontal. Hence, the function L M is well-defined. Moreover, since log|Jac f λ (z)| is a psh function on V, by [START_REF] Dinh | Geometry of currents, intersection theory and dynamics of horizontallike maps[END_REF]Theorem 2.1] and [START_REF] Pham | Lyapunov exponents and bifurcation current for polynomial-like maps[END_REF]Proposition A.1], the function L M is psh on M , or identically equal to -∞. Observe that, when (p λ ) * M is ergodic for all λ ∈ M , the function L M (λ) is equal to the sum of the Lyapunov exponents of (p λ ) * M. Lemma 4.8. Take λ 0 ∈ M and assume that ν is an ergodic f λ 0 -invariant measure supported in J λ 0 and such that the function log|Jac

f λ 0 | is ν-integrable. If M is a critically aligned ν-web, then dd c L M (λ) = 0.
Proof. Since the problem is local, we can fix λ 0 ∈ M and work on a small ball B around λ 0 ∈ M in the parameter space. The current as in (4.2) is then horizontal. We can also assume that B has dimension 1. Define J(λ, z) := Jac f λ (z). Since the function log|J(λ 0 , •)| is ν-integrable, by [START_REF] Pham | Lyapunov exponents and bifurcation current for polynomial-like maps[END_REF]Theorem A.2], the currents log|J(λ, z)|W M and dd c (log|J(λ, z)|W M ) are well-defined. Since L M = π * (log|J(λ, z)|W M ), to get the assertion it is enough to show that dd c (log|J(λ, z)|W M ) = 0 on B × V . Observe that dd c (log|J(λ, z)|W M ) is a positive measure on B × V .

For this, we can follow the strategy in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF]Proposition 3.5]. For any small ε > 0, set

S ε := {γ ∈ SuppM : Γ γ ∩ {|J(λ, z)|< ε} ̸ = ∅}
and define

W ε M := Sε [Γ γ ]dM(γ) and W M := W M -W ε M .
For any smooth test function ϕ compactly supported in B × V , we have

(4.3) ⟨dd c (log|J(λ, z)|W M ), ϕ⟩ = ⟨log|J(λ, z)|W M , dd c ϕ⟩ = ⟨log|J(λ, z)|W ε M , dd c ϕ⟩ + ⟨log|J(λ, z)| W M , dd c ϕ⟩ =: I 1 (ε) + I 2 (ε).
Since the function λ → log|J(λ, γ(λ))| is harmonic for any γ ∈ SuppM \ S ε , we have B log|J(λ, γ(λ))|dd c (ϕ • γ) = 0 for every such γ. This gives

I 2 (ε) = ⟨log|J(λ, z)| W M , dd c ϕ⟩ = SuppM\Sε dM(γ) B log|J(λ, γ(λ))|dd c (ϕ • γ) = 0,
i.e., the second term in the right hand side of (4.3) vanishes for all ε > 0.

In order to conclude, we need to prove that the first term I 1 (ε) tends to 0 as ε → 0. The argument in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] uses the fact that the measure of maximal entropy µ λ 0 is the Monge-Ampère of a (1, 1)-current with Hölder-continuous local potentials, and in particular that it gives mass ≲ ε a (for some positive a) to balls of radius ε, but this is actually not necessary. The following claim will be enough to complete the proof. Claim 1. For any ε ≪ 1 there exists c(ε) > 0 with c(ε) → 0 as ε → 0 such that

(4.4) ν C f λ 0 ε ≤ c(ε) |log|ε|| where C f λ 0 ε is the ε-neighbourhood of C f λ 0 .
Proof. Since J(λ 0 , z) is holomorphic there exists A 1 > 0 and ε small enough such that for every z such that dist(z, C f λ 0 ) < ε we have

(4.5) |J(λ 0 , z)|≤ A 1 dist(z, C f λ 0 ).
Since by assumption the function z → log|J(λ 0 , z)| is ν-integrable, (4.5) implies that the function z → log dist(z, C f λ 0 ) is also ν-integrable. Hence, the measure ν := |log dist(z, C f λ 0 )|ν is finite and satisfies ν ≪ ν, i.e., we have ν(E) = 0 if ν(E) = 0. In particular, we have ν(C f λ 0 ) = 0.

Thus, there exists c(ε) > 0 with c(ε) → 0 as ε → 0 such that ν C f λ 0 ε ≤ c(ε). Hence, for all ε sufficiently small, we have

|log|ε||ν C f λ 0 ε ≲ ν C f λ 0 ε ≤ c(ε).
This gives (4.4) and proves the claim.

□ Let now (C f ) ε be the ε-neighbourhood of C f in B × V . Since J(λ, z) is holomorphic we can find a constant c 1 such that (C f ) ε ⊂ {|J(λ, z)|< c 1 ε}
. By using Lojasiewicz inequality we see that there are constants c 2 , β 1 > 0 such that {|J(λ, z)|< c 1 ε} ⊂ (C f ) c 2 ε β 1 . Again by using Lojasiewicz inequality we have {z:

(λ 0 , z) ∈ (C f ) ε } ⊂ C f λ 0 c 3 ε β 2
for some constants c 3 , β 2 > 0.

Fix now a ball B ′ ⋐ B centered at λ 0 . 

γ ∈ Supp M such that Γ γ ∩ C f = ∅ but Γ γ ∩ (C f ) ε ̸ = ∅.
Then by using Claim 2 for the holomorphic function J(λ, γ(λ)) we have Γ γ| B ′ ⊂ (C f ) c 4 ε αβ 3 for some constants c 4 , β 4 > 0. Since M is critically aligned, we have

M{γ ∈ J : Γ γ| B ′ ∩ (C f ) ε ̸ = ∅} ≤ M{γ ∈ J : Γ γ| B ′ ⊆ (C f ) c 4 ε αβ 3 } ≤ M{γ ∈ J : (λ 0 , γ(λ 0 )) ∈ (C f ) c 4 ε αβ 3 } ≤ ν C f λ 0 c 3 (c 4 ε αβ 3 ) β 2 .
Setting ε ′ := c 3 (c 4 ε αβ 3 ) β 2 for simplicity, we can now apply Claim 1 to get

M{γ ∈ J : Γ γ| B ′ ∩ (C f ) ε ̸ = ∅} ≤ ν C f λ 0 c 3 (c 4 ε αβ 3 ) β 2 ≤ c(ε ′ ) |log ε ′ | ≲ c(ε ′ ) log|ε| = c ′ (ε) log|ε|
for some positive function c ′ (ε) with c ′ (ε) → 0 as ε → 0. Finally, by using the last inequality and the fact that

S ε ⊂ S ′ c 5 ε β 4 := {γ ∈ J : Γ γ| B ′ ∩ (C f ) c 5 ε β 4 ̸ = ∅} for some positive constants c 5 , β 4 
(which again follows from Lojasiewicz inequality), setting ε ′′ = c 5 ε β 4 for simplicity we deduce that

I 1 (ε) = ⟨log|J(λ, z)|W ε M , dd c ϕ⟩ ≲ |log|ε|| Sε dM(γ) = |log|ε||•W ε M (S ε ) ≲ |log|ε||•W ε M (S ′ ε ′′ ) ≤ |log|ε||• c ′ (ε ′′ ) |log|ε ′′ || ≲ c ′ (ε ′′ ).
Since c ′ (ε ′′ ) → 0 as ε → 0, the assertion follows. □ Corollary 4.9. Let M be a critically aligned web. Assume that (p λ ) * M is ergodic for all λ ∈ M and denote by L 1 M (λ) ≥ . . . ≥ L k M (λ) the k Lyapunov exponents of (p λ ) * M, counting multiplicities. Assume also that there exists

λ 0 ∈ M such that L k M (λ 0 ) > -∞. Then the function λ → -L k M (λ) of M is plurisubhamonic.
In particular, it is upper semicontinuous. Proof. By Proposition 3.2 the upper partial sums of Lyapunov exponents are plurisubharmonic In particular, the function λ → k-1 j=1 L j M (λ) is plurisubharmonic. Set ν 0 := (p λ 0 ) * M. Since, by assumption, the smallest Lyapunov exponent of ν 0 is finite, the function log|Jac Fact. M(K ∩ ) = 0 for every compact subset K ⊆ J , where

f λ 0 | is ν 0 - integrable. Thanks to Lemma 4.8 we have that L M (λ) is pluriharmonic. Since -L k M (λ) = k-1 j=1 L j M (λ) -L M (λ), it follows that the function -L k M (λ) is plurisubharmonic. □ 4 
K ∩ := {γ ∈ J : ∃j ∈ N, ∃γ ′ ∈ K such that Γ F j (γ) ∩ Γ γ ′ ̸ = ∅ and Γ F j (γ) ̸ = Γ γ ′ }.
Once this Fact is establish, in order to construct a lamination one can follow the arguments in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF]Section 4.3] or [START_REF] Bianchi | Motions of Julia sets and dynamical stability in several complex variables[END_REF]Section 3.4.3] to show that the set L := J \ (J ∩ ∪ J s ) gives the desired lamination associated to ν. □

We can now complete the proofs of our main results.

Proof of Theorem 3.11. Proposition 4.3 and Corollary 4.9 show that (up to possibly restricting M as in the statement of the theorem) (S1) implies (S5'). We used here the fact that, by assumption, the Lyapunov exponents of ν 0 are strictly positive, and that the function λ → L k M (λ) is lower semicontinuous by Corollary 4.9. Proposition 4.10 shows that (S5') implies (S4'). As remarked after the statement of the theorem, these conditions imply those of Theorem 3.8. The proof is complete. □

In order to prove Theorem 3.12 (and Corollary 3.13) we will need the following further lemma.

Lemma 4.11. Take λ 0 ∈ M and let ν be an f λ 0 -invariant measure. Let M be a ν-web and L a ν-lamination. Then, for every λ ∈ M , the measure-theoretic entropy of (p λ ) * M is equal to h ν (f λ 0 ).

Proof. We denote ν λ := (p λ ) * M for simplicity. In particular, we have ν = ν λ 0 . Let A ⊂ J λ 0 be a measurable set with ν λ 0 (A) > 0. Set A A := {γ ∈ L : γ(λ 0 ) ∈ A}.

For every λ ∈ M , set also A λ := p λ (A A ). Note that we have M(A A ) = ν λ 0 (A) = ν λ (A λ ) for all λ ∈ M . Fix M ∋ λ 1 ̸ = λ 0 and let ξ := {A i } be a measurable partition for ν λ 0 . Define the measurable partition (ξ) λ 1 := {A i λ 1 } for ν λ 1 . By construction, the entropy of ξ with respect to ν λ 0 [START_REF] Cornfeld | Ergodic theory[END_REF][START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF] is equal to the entropy of (ξ) λ 1 with respect to ν λ 1 . By the definition of L, for every n ∈ N we have

n j=0 f -j λ 0 ξ λ 1 = n j=0 f -j λ 1 (ξ) λ 1 ,
where we recall that, for every λ ∈ M and a given partition η, the partition n j=0 f -j λ η is defined as n j=0 f -j λ η := {f -n λ (B n ) ∩ . . . ∩ f -1 λ (B 1 ) ∩ B 0 : B 0 , . . . , B n ∈ η}.

By the definition of measure-theoretic entropy [START_REF] Cornfeld | Ergodic theory[END_REF][START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF] we conclude that h ν λ 0 (f λ 0 ) ≤ h ν λ 1 (f λ 1 ). By reversing the roles of λ 0 and λ 1 , we also see that h ν λ 1 (f λ 1 ) ≤ h ν λ 0 (f λ 0 ). So, we have h ν λ (f λ ) = h ν λ 0 (f λ 0 ) for all λ ∈ M . The assertion follows. □

Proof of Theorem 3.12. Theorems 3.11 and 2.7 show that (S1) implies (S5') on a neighbourhood of λ 0 , a priori depending on ν 0 . As in the proof of Theorem 3.11, Proposition 4.10 shows that (S5') implies (S4'), hence (S4') holds on the same neighbourhood. Since d * k-1 (f λ ) depends upper semicontinuously on λ, it follows that the set

M ′ λ 0 ,h := {λ: d * k-1 (f λ ) < h}
is open (and non-empty by the assumption on λ 0 ). Define M 0 λ 0 ,h to be the connected component of M ′ λ 0 ,h containing λ 0 . It is enough to show that (S4') and (S5') hold on M 0 λ 0 ,h . Assume that this is not the case. Let Ω be the maximal open subset of M 0 λ 0 ,h where (S4') and (S5') hold, and let M be as in (S5'). By Lemma 4.11, the measure-theoretic entropy of (p λ ) * M is constant on Ω. It follows from Theorem 2.7 that the function u(λ) := -L k M (λ) is uniformly bounded from above on Ω by a strictly negative constant. Recall that this function is plurisubharmonic on M by Corollary 4.9. We can assume that u ≥ 0 on the boundary of Ω, since otherwise (thanks to the upper semicontinuity of this function), we would have u < 0 in a neighbourhood Ω 0 of a point of the boundary of Ω, and we could extend the lamination to an open set Ω ′ = Ω ∪ Ω 0 which is larger than Ω.

The function u is then bounded above by a strictly negative constant on Ω, and satisfies u ≥ 0 on its boundary. Up to adding a negative constant, we can assume that there exists λ 1 in the boundary of Ω with u(λ 1 ) = 0. By upper semicontinuity, for every ε > 0, there exists a neighbourhood of λ 1 where u ≤ ε. Since λ 1 is a point of strictly positive density for Ω, this gives a contradiction with the mean inequality for u at λ 1 . Hence, the only possibility is that Ω is equal to M 0 λ 0 ,h . This proves the claim. To conclude, we just need to show that (Sh) holds. In order to do this, we apply the Fact in the proof of Proposition 4.10 with K = J . For all λ ∈ M 0 λ 0 ,h , ν as in the statement, and M an acritical ν-web, we have M(J ∩ ) = 0. Since we also have M(J s ) = 0 for all such M, we have M(J ∩ ∪ J s ) = 0 for all λ, ν, M as above. It follows that L := J \ (J ∩ ∪ J s ) gives the desired lamination, see also the end of [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF]Section 4] for details. The proof is complete. □

Recall that Corollary 3.13 in particular implies Theorem 1.3.

  These definitions are independent of the open neighbourhoods W, W ′ . Moreover, we have d p ≤ d * p and δ p ≤ d * p for all 0 ≤ p ≤ k, d * 0 = 1, and

Claim 2 .

 2 (see the Claim in [8, Lemma 3.6]) There exists 0 < α ≤ 1 such that sup B ′ |ψ|≤ |ψ(λ 0 )| α for every holomorphic function ψ : B → D * . Take

. 3 .Proposition 4 . 10 .

 3410 Existence of the lamination and proofs of the main results. The following proposition has the same proof as[START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] Theorem 4.1], see also[START_REF] Bianchi | Motions of Julia sets and dynamical stability in several complex variables[END_REF] Theorem 3.4.1] and[START_REF] Berteloot | Stability and bifurcations in projective holomorphic dynamics[END_REF] Section 7] for an overview of the arguments. We will give in the Appendix an intermediate statement, for later reference. Fix λ 0 ∈ M . Let ν 0 be an ergodic f λ 0 -invariant measure with Suppν 0 ⊆ J λ 0 . Assume that there exists an acritical ergodic ν 0 -web M such that, for all λ ∈ M , the Lyapunov exponents L j M (λ) of the measures (p λ ) * M are uniformly strictly positive. Then there exists a ν 0 -lamination on M . Sketch of proof. Thanks to the locally uniform lower bound for the smallest Lyapunov exponents (and in particular to Proposition A.1 below), one can prove the following property, see the Fact in [7, Section 4.3]:
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Proof of Corollary 3.13. By Theorem 3.12, we only need to show that we can take M λ 0 ,h = M for all λ 0 ∈ M and h > log d k-1 . This is clear since for every endomorphism of P k we have d * k-1 = d k-1 . The proof is complete. □ Appendix A. Exponential backward contraction along graphs Recall that J is as in (3.1) and is a compact metric space, and that F: J → J is defined as (Fγ)(λ) = f λ (γ(λ)). A web M (associated to any f λ -invariant measure ν at any parameter λ) is an F-invariant probability measure on J , and M is acritical if M(J s ) = 0, see Definition 3.10. In particular, F is surjective on X := J \ J s . The natural extension ( X , F, M) of the system (J , F, M) can be defined as follows (see for instance [START_REF] Cornfeld | Ergodic theory[END_REF]Section 10.4]). An element γ ∈ X is a bi-infinite sequence γ := (. . . , γ -1 , γ 0 , γ 1 , . . .) of elements of X with the property that F(γ j ) = γ j+1 . For j ∈ Z, we denote by π j : X → X the projection γ → γ j . We also denote by F the shift map on X , i.e., for a γ as above we set

The map F is invertible and satisfies π j • F = F • π j for all j ∈ Z. There exists a probability measure M on X such that (π j ) * M = M for all j ∈ Z. This measure is ergodic if M is ergodic.

The graph of any element γ ∈ X does not intersect the (graph of the) critical orbit of the family (f λ ) λ∈M . It follows that, for every γ ∈ X , the inverse branches of the holomorphic map (λ, f λ ) are well-defined in a open neighbourhood of the graph of γ. Given γ ∈ X , we will denote by f -n γ the inverse branch of order n, defined on an open set as above, sending the graph of γ to the graph of γ -n . The following proposition, proved in [8, Propositions 4.2 and 4.3] in the case of the measure of maximal entropy, gives a uniform control on the size of the neighbourhoods where the inverse branches as above are defined, and an explicit control on their contraction. Given γ ∈ X , η > 0, and a subset Ω ⊂ M , we denote by T Ω (γ, η) the η-neighbourhood of the graph of γ over Ω, i.e., we set

Proposition A.1. Let M be a connected and simply connected complex manifold and (f λ ) λ∈M a holomorphic family of polynomial-like maps of large topological degree. Assume that there exists a constant A 1 > 0 and an ergodic acritical web M with the property that the Lyapunov exponents of (p λ ) * M are strictly larger than A 1 for all λ ∈ M . Then, for every open subset Ω ⋐ M and constant 0 < A < A 1 , there exists p ≥ 1, a Borel subset Ŷ ⊆ X with M( Ŷ) = 1, and two measurable functions ηp,A : Ŷ →]0, 1] and lp,A : Ŷ → [1, +∞[ which satisfy the following properties.

For every γ ∈ Y and every n ∈ pN * the iterated inverse branch f -n γ is defined on the tubular neighbourhood T Ω (γ 0 , ηp,A (γ)) of the graph Γ γ 0 ∩ (Ω × C k ) of γ 0 , and we have

). Observe that, without loss of generality, one can actually assume that p = 1 in the above statement.

CNRS, Univ. Lille, UMR 8524 -Laboratoire Paul Painleve, F-59000 Lille, France Email address: fabrizio.bianchi@univ-lille.fr CNRS, Univ. Lille, UMR 8524 -Laboratoire Paul Painleve, F-59000 Lille, France Current address: National University of Singapore, Lower Kent Ridge Road 10, Singapore 119076, Singapore Email address: rkarim@nus.edu.sg, karimjon1705@gmail.com