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Step Toward Deploying the Torque-Controlled Robot TALOS on
Industrial Operations

Côme Perrot1, Olivier Stasse1,2

Abstract— This paper tackles the use of torque controlled
humanoid robot TALOS in the context of industrial manu-
facturing. It demonstrates that it is possible to use Whole
Body Model Predictive Control (WBMPC) to reliably insert
a tool in the holes of an aircraft structure with an accuracy of
few millimeters. This result is based on the use of Crocoddyl,
an optimal control library that exploits differential dynamic
programming (DDP) to achieve high numerical efficiency. The
focus of this article is put on the procedure that was undertaken
to shape the cost function of the optimal controller. Our
approach has first been validate in a low performance setting
on the humanoid robot TALOS. Then, a strategy to improve
the performances by reinjecting information about the posture
of the robot from previous experiments is showed in simulation.

I. INTRODUCTION

A. Context presentation

Robots are nowadays a standard tool in large-scale manu-
facturing [1]. They excel at performing repetitive tasks in
very well-known environments. However, they are yet to
reach a huge part of the wide variety of industrial work that
exists in our society.

One of the major drawbacks most industrial robots suffer
from is lack of mobility. Their design does not allow them
to be a relevant solution for many low volume, high added
value productions such as the one found in aeronautic
manufacturing. According to [2], humanoids are a promising
direction to overcome this weakness. However, the resort to
humanoid robots induces a higher control complexity which
is further heightened when dealing with variability in the
environment.

In recent years, Reinforcement Learning (RL) has been
successfully used to generate highly dynamical motions
on quadruped robots, such as ANYMAL [3], as well as
bipedal torque controlled walking robots such as CASSIE
[4]. Still, in [5], a comparison with Model Predictive Control
(MPC) shows that the latter has a higher rate of success
in constrained environments. Despite both approaches being
different, the definition of the cost function remains a central
point for both RL and MPC. The increasing complexity of
the system makes it difficult to properly design such a cost-
function. The aim of this paper is, first, to experimentally
find an initial feasible solution for a real situation. Then,
design a simple strategy to modify the cost function in order
to improve performances.
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Fig. 1: Deburring task, high precision for a fine insertion into
a hole using whole-body MPC on a torque controlled robot.

A widely used motion generation framework for humanoid
robot is built upon a Model Predictive Controller for the
centroidal dynamics in conjunction with an instantaneous
QP-controller for the whole body [6]. A planner provides
the reference trajectories to follow for tasks such as gaze
direction, end-effectors placement and the overall direction
of the robot.

If position control has been quite successful in generating
a wide variety of robot behaviors, its capacity to react to
external forces is limited to the end-effector, where a force
sensor is typically incorporated for that purpose. In [2], [7]
torque controlled robots appear as a potential solution for
managing interactions with the environment as well as en-
suring safe and compliant behavior in unplanned situations.

These situations can arise because of unforeseen events
such as changes in the context, or human interaction. It
opens up the way for more flexible use of robots than
what was achieved with existing position control methods.
Recent robots such as Digit [8] are using torque control
and demonstrate impressive locomotion performances and
robustness. It comes however at the cost of a more complex
control architecture on robots with wave generators, and a
lack of precision for positioning tasks.

Precision is nonetheless of great importance when exe-
cuting industrial tasks such as deburring. A simple way to
handle this issue is, assuming you can measure it, to apply
a strong feedback on the error between the desired and
perceived position of the tool. But, on a torque controlled
robot, this might lead to a diverging command [9]. [10]



has developed a passivity framework which is taking into
account the energy of the system to maintain its stability. It
was successfully tested on the TORO humanoid robot [2].
This approach assumes that either the desired position or
trajectory of the end-effector is given. The passivity approach
avoids injecting unsafe amounts of energy in the system if the
environment differs too much from what was planned. The
whole body instantaneous controller is in charge of absorbing
model discrepancies and planner assumptions.

The success and the efficiency of the classical approach
lie in the capabilities of the motion planner to generate a
desired trajectory that is compatible with the whole body in-
stantaneous controller. It can be done for instance by using a
hybrid control approach and planning over a graph of motion
primitives for quadrupeds [11]. It can also be done using A*
through a discrete set of actions predefined according to the
targeted tasks, see [12] for a locomotion example. In order to
cope with the complexity of the problems most planners are
using heuristics [12], or reason on low dimensional necessary
conditions [13].

Still, no matter how advanced the planning heuristic is,
it cannot entirely address the fundamental limitation of
instantaneous whole body control. This limitation resides in
the inability of this technique to account for whole-body
related constraints within the MPC horizon. It means that
potential conflicts with the constraints can only be detected
by the whole-body controller when it is too late. For this
reason, [14] proposed a whole-body model predictive control
with state feedback at 100 Hz. It can perform trajectory
optimization and provides reference torques to a low-level
torque loop running at 2 KHz. An extension of this technique
was introduced in [15], where the feedback gains of the DDP
are directly sent to the low-level controller, improving mean-
ingfully the quality of the generated motion. This approach
has several advantages. A significant one is to include all the
dynamical effects of the limbs on the balance criteria. This
is particularly important with a robot having arms and legs
that way more than 10 kg and 15 kg respectively, such as
TALOS.

B. Contributions

WBMPC has successfully been applied to the humanoid
robot TALOS to carry out an industrial deburring task similar
to the one presented in [16]. As seen in Fig. 1, the objective
of the task is to insert a 3d printed tool inside the holes of
a mockup aircraft part. It simulates deburring, an operation
that needs to be undertaken after drilling holes to clean up
any material residues.

Experiments were conducted in a lab as well as on an
Airbus site. The results that were obtained validate the
relevance of using WBMPC for humanoid robots in an
industrial context.

This article also tackles the issue of cost shaping. It is a
challenging aspect for optimal control based approaches that
needs to be resolved in order to unlock the full performances
of the system. [17] uses a multi-objective optimization in
conjunction with Bayesian optimization to find a suitable set

of parameters. Because we expect optimal approaches to be
too computationally intensive in our case, we choose to use
a fixed cost function structure to experimentally explore the
environment.

The contributions presented in this paper are twofold:
• Demonstration of the experimental use of a humanoid

robot in an industrial setting;
• Use of advanced cost shaping solutions to enable better

performances in this context.
The adopted control architecture is first presented in section
II before going into more details about the structure of the
cost function that was considered in section III. To finish,
the most significant results are exposed in section IV.

II. WHOLE-BODY MODEL PREDICTIVE CONTROL

A. Robot Modelling

The robot configuration q ∈ R3 ×SO(3)×Rn defines the
global position, orientation and posture that a mobile robot
has at one given moment. Such configuration evolves under
the action of internal and external forces as described by the
rigid-body dynamics [18]:[

M JT

J 0

] [
q̈
-λ

]
=

[
S τ − b

-J̇ q̇

]
, (1)

where M is the inertia matrix, b stands for Coriolis, cen-
trifugal and gravity forces, joint-motor torques τ ∈ Rn affect
only the actuated joint as indicated by the selection matrix
S ∈ Rn+6×n, and all contact wrenches λi ∈ R6 are contained
in λ =

[
λ1 · · · λi · · ·

]
with the application points described

respectively by the Jacobians Ji ∈ R6×n+6 contained in
J =

[
J1 · · · Ji · · ·

]
. The second line of Eq.(1) constraints

the robot parts under contact to stay motion less during the
contact.

Based on this dynamics, the robot configuration q and
its time derivative q̇, which are the state x = (q, q̇), are
controlled by inputting desired torques τ on joint motors
during some discretization period dt to obtain the next state

x+ = f(x, τ), (2)

which is predicted from numerical integration of Eq.(1).

B. Optimal Control

For a given initial state x0, an optimal control sequence
U∗ ≜ {τ0, τ1, · · · , τN-1} is generated according to Eq.(2),
along a horizon of N time-steps in the future by minimizing
the cost function

V (x0) =

N−1∑
i=0

l(xi, τi) + lN (xN ), (3)

that is designed to encode the desired robot behavior with
a running cost l(·, ·) for each time-step, and a terminal
cost lN (·) guiding the robot to end into some safe set of
states. This desired behavior is discussed more precisely in
Section III.

The resulting optimal pair of control sequence and robot
motion (U∗, X∗) is said feasible if it satisfies the dynamics



described in Eq.(1) [19]. Here, feasibility of the optimal
controller is ensured by implicitly imposing the discrete form
Eq.(2) in Eq.(3).

Following an MPC scheme, i.e.: at time j, the control
sequence U∗

j is generated considering the initial state xj
0,

then only the first control τ j0 of the sequence is executed
during the discretization time dt arriving to a new state xj

1,
which is used as initial state xj+1

0 = xj
1 to generate an entire

new sequence U∗
j+1 and this is repeated cyclically [20]. This

procedure guarantees that the generated robot motion is part
of a feasible path of at least N steps in the future. Feasibility
beyond the horizon can also be ensured by making the robot
reach some state where the robot can stay safely during
indefinite time at the end of the horizon [21]. This property
is enforced with the terminal cost lN (·).

In particular, the DDP algorithm is used to minimize
the cost function Eq.(3) at each iteration of the MPC.
The computational efficiency of DDP allows controlling 31
degrees of freedom of the robot TALOS along a horizon of
N = 100 time-steps with dt = 10 ms online (computed
during the movement of the robot). DDP has the drawback
of not accepting explicit constraints, though recent results
suggest a forthcoming solution to this issue [22]. Here,
however, the traditional solution is to consider Eq.(2) as an
implicit constraint.

DDP produces Riccati gains

K0 ≜
∂τ

∂x

∣∣∣∣
x0

(4)

evaluated at the initial state, as a partial result of the opti-
mization. Control values are interpolated using these gains,
as proposed in [15], to reach an updating period of 0.5 ms
on the resulting control law:

τ = τ0 +K0(x− x0), (5)

with a feedback term based on the measured state x which
is updated at every millisecond and a feedforward term
τ0 computed optimally from the measured initial state x0

at each MPC iteration (every 10 ms). In order to further
boost the DDP performance, the pair (U∗, X∗), obtained
in the previous MPC iteration, is the warm start at each
computation of the control sequence. For the first control
sequence, since there is no previous solution to reuse, DDP is
iterated starting from a constant trajectory until convergence.

III. DEBURRING CONTROLLER

Contrary to most solutions found in the litterature the
WBMPC implemented on the robot does not rely on a
reference trajectory. Instead, all the information about the
task is encoded through the cost function and the robot’s
trajectory is implicitly generated. This reduces the overall
complexity of the control structure because it does not
require a higher level planner to be used. It however makes
the design of the cost function for a single task much more
challenging.

Shaping the cost function is made even more complex
by the need to reconcile occasionally conflicting objectives

in a single scalar function. Furthermore, the solver does
not accept explicit constraints. So the cost function must
incorporate relaxed safety constraints and address multiple
objectives simultaneously. To simplify the process, a fixed
structure is chosen where the cost is composed of sub-costs
that incentivize or discourage specific robot behaviors.

A. Cost function structure

We reuse a general architecture that has already shown
interesting results in [14].

The cost function is split into four different sub-costs:
constraints, equilibrium, regularization, and goal

l(x, u) = wcons lcons + weq leq + wreg lreg + wgoal lgoal . (6)

Each of the sub-costs has an associated weight, which can
be adjusted to define the relative priority of each task.

1) Constraints cost: The first, and most highly weighted
cost, aims at preserving the integrity of the robot. It is
a barrier cost that greatly penalizes any configuration that
does not respect the kinematic constraints of the robot:
lcons(x) = ∥max(x − xu, 0) + min(x − xl, 0)∥2. With xu

and xl respectively being the upper and lower bounds of the
admissible states.

2) Equilibrium cost: Balance is also a major concern
when working with humanoid robots. The robot must stay
on its feet, throughout the whole operation. It is achieved
with an equilibrium cost: lcons(x) = ∥c(x)− cd∥2 with c(x)
and cd the current and desired center of mass of the robot.
For the deburring task, maintaining the center of mass of
the full robot over its supporting feet is enough to penalize
movements leading to losses of equilibrium. As this cost also
preserves the robot integrity, it is set with the second highest
relative weight.

3) Regulation cost: To guarantee the numerical stability
of DDP, a regularization cost that ensures uniqueness of the
optimal control is added: lreg(x, u) = (x − xd)

TRx(x −
xd) + (u − ud)

TRu(u − ud). It prioritizes behaviors that
are close to the desired state xd built from the initial robot
posture, with zero velocities. It also penalizes controls that
are far from the torques ud required to counteract the force
of gravity in the desired position. Rx and Ru are positive
definite matrices used to tune the relative impact of each
joints on the regulation cost.

4) Goal related cost: While constraints, equilibrium and
regulation are general enough to be widely used in humanoid
robot applications, task-specific components are also required
for the cost to be applied in a concrete experiment. For
the deburring operation, the goal cost encourages the robot
to position correctly its left end-effector and maintain zero
velocity. It is designed as follows: lgoal = log(1+ ∥p−pd∥

α )+
∥R − Rd∥2 + ∥v∥2 with p and pd the actual and desired
Cartesian position of the end-effector, R and Rd the actual
and desired rotation (defined as elements of SO(3)), v its
Cartesian velocity and α = 0.02.
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Fig. 2: Simplified illustration of the cost conflict. Values are just for scale and do not represent the actual value of the cost
function for our application. Colored tick on the x-axis indicate the abscissa of the minimum of each functions. The distance
between the red and green ticks represents the error associated to the cost function.

B. Cost function shaping

From the structure presented in Section III-A naturally
arises a set of parameters that needs to be tuned in order to
achieve a specific task. A common approach is to proceed
via trial and error either in a simulator or directly on the
real robot. For simplicity purposes, a single tuning is often
chosen for the whole movement. However, even if it is
theoretically possible to shape a cost function that exploits
the full abilities of the robot in every situation, it is in practice
very challenging.

Despite trying to set a clear hierarchy between tasks by
choosing weights with different orders of magnitude, the
problem of conflict between tasks still arises during the
experiments. Indeed, the posture task reference is always
the same for all the cases while the desired goal can
vary in all of the robot workspace. It means that, most of
the time, those two costs tend to attract the robot toward
different equilibrium. This results in the optimal solution
being a trade-off between both costs which leads to poor
performances.

That is why we resort to have a cost function that varies
in time and along the horizon of the MPC:

V (x0, t) =

N−1∑
i=0

lti(xi, τi) + ltN (xN ), (7)

In order to guarantee the coherence of the problem be-
tween each iteration we update cyclically each node of
the cost function so that only the last one contains new
information:

∀i ∈ J0 : N − 2K, lt+1
i = lti+1, (8)

All of the experiments used the same receding horizon
approach where the first node of the horizon is discarded and
a new custom one is added at the end. This approach permits
to have a richer representation of the task while keeping a
simple structure for the cost function even if it requires either

to hard-code the time sequence or to resort to an external
planner.

We tried several approaches to generate this new node in
the trajectory as shown in Fig. 2.

1) Baseline: The baseline performances is computed us-
ing a mostly fixed cost function. The only parameter that
changes over time is the desired Cartesian position of the
end-effector. It allows the robot to reach several targets
during one experiments.

Even if a more advanced tuning could lead to better results,
any further improvement is made very challenging because
of the sensitivity of the performances to the cost function.

2) Variable goal-cost weight: A straightforward way to
solve the cost conflict is to increase the relative weight of the
goal cost with respect to the posture cost. A linear scheduling
of the weight is chosen so that the cost only increases at
the end of the movement when high precision needs to be
achieved:

wgoal(t) = at+ a0 (9)

This strategy was successfully used to conduct the first set
of validating experiments on the real robot.

3) Variable posture reference: Another solution to solve
the conflict is to update the reference posture at the same
time as the goal:

lreg = ∥x(t)− xreg(t)∥ (10)

where x(t) is the measured state and xreg(t) a variable
reference state.

This allows to improve performances without tempering
with the relative weight of each costs hence preserving the
safety of the robot.

To do so we do not use an external logic but reuse
solutions of previous experiments found using our control
structure. In practice, we explore the environment of the task
using a simple control structure and re-inject the reached
posture as a reference for subsequent realisations. This
approach is relevant when no expert data is available to guide
the resolution.



IV. APPLICATION OF THE CONTROL STRUCTURE

To validate the method presented in this paper, we study a
task which consists in reaching a series of points in sequence
while achieving a good accuracy (less than 5mm of error in
our case). The accuracy threshold is chosen to match the
radius of the hole in which the tool needs to be inserted.

We will explain the software architecture used during both
the experiment and the simulation in Section IV-A before
detailing the two phases of test that we carried out:

• First, an exploratory phase conducted on the robot. It
aimed at validating that the presented method could
reach a precision of 5mm.

• Then, a performance improvement phase focused on
exploiting the full capabilities of the physical system.

A. Control setup

The control architecture is split into two levels. The
computationally expensive optimal control resolution is done
at 100Hz. In the case of experiments on the real robot this
part is carried out by an external computer (fitted with an
AMD Ryzen 5950X, 16 cores with 64 GB of RAM). A
faster control, based on the gains computed by the MPC
can then be run directly on the robot at 2kHz as shown in
Eq.(5). The MPC implementation was based on Crocoddyl
(Contact RObot COntrol by Differential DYnamic Library).
The software architecture is summarized in Fig 3.

Fig. 3: Diagram of structure used to control the robot. l(x, u)
is the cost function optimized by the OCP, (x∗, u∗) are the
current optimal state and control trajectory produced by the
MPC, u∗

0 is the control sent to the robot and xm the state
measured by the proprioceptive sensors of the robot.

B. Concept validation in the real world

As mentioned in Section I-B experiments were conducted
both in our lab and directly on site at an Airbus plant. The
obtained movement can be seen in the companion video.

Speed was not the focus of this stage, that is why we
resorted to the gain scheduling technique to carry out the
task. Indeed it was a straightforward way to achieve the
desired result in a setting where stability was not a major
concern because of the low movement speed involved.

The robot successfully managed to reliably insert the tool
that was fitted on its end-effector in a sequence of 4 holes.
In a separate experiment we checked that the robot remained
compliant while it inserted the tool by having a human push
its arm.

A motion capture system was used to calibrate the position
of the aircraft piece with respect to the robot at the beginning
of the experiment. Other than that, no visual feedback was
required during the experiment and the proprioceptive based
movement was precise enough to carry out the task.

C. Performance improvements

After validating the relevance of the chosen approach,
work was done to improve the performances and the achieved
movement speed using the PyBullet simulator. This simula-
tor has been used in the past as a validation step before
deploying new movements on the robot.

1) Benchmark: First, a benchmark of the three approaches
presented in Section III-B is showed. The performances of
the controllers are evaluated according to two metrics :

• The distance between the center of the hole and the
tip of the end effector. The task is considered to be
successful if this distance is below 5mm;

• The time to successfully carry out the task. Which is
the time between the beginning of the movement and
the moment where the tip of the tool is less than 5mm
away from the hole and stays in this zone.

We setup the robot to reach a precise point in space starting
from its default position using all three approaches. The
results are compiled in the following table:

Method Baseline Variable
weights

Variable
posture

Accuracy
(mm)

8.27 0.85 0.24

Time (s) 1.06 1.24

As can be seen in Fig. 4, the baseline is not precise enough
to reach the desired threshold. This illustrates the limitation
that we mentioned in Section III-B. The other two solutions
can solve this issue if tuned properly.

However it is worth noting that this results comes from a
simulation and cannot be directly translated to the real world
because of unforecasted disturbances and discrepancies be-
tween the model and the real robot.

In particular, the variable weight approach suffers from
a major weakness. Changing the relative weight of costs
may reduce the significance of the safety related cost. This
can lead to more dangerous movements if done recklessly.
In addition to that, higher gains can hinder the stability of
the control. We can see oscillations in the movement which
indicates a less stable control.

On the other hand, updating the reference posture can
solve the cost conflict without altering the relative weight
of the tasks. Since the weights of the placement and posture
task are relatively low with respect to the limits and stability
cost in this setting, this approach is less dangerous for the
robot.
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Fig. 4: Evolution of the cartesian position of the end effector
with respect to time.

2) Performances of the variable posture approach: Be-
cause it is less dangerous for the robot while still being effi-
cient, the variable posture approach is tested on a sequence of
two holes. Fig 5 indicates the robot can precisely reach both
holes with a transition time of 0.5 seconds. While we don’t
have precise data regarding the performances of a human
operator for this specific experiment, it has been reported
to us by Airbus employees that a worker would take around
one second to transition between two holes. It means that the
attained performances are in the same order of magnitude of
what a human could achieve, which was not the case with
the baseline solution.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.25

0.50 Measured x
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.4

0.5
Measured y

Desired y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

0.75

1.00 Measured z

Desired z

Fig. 5: Simulated evolution of the cartesian position (in
meters) of the end effector with respect to time. The distances
are given with respect to the center of mass of the robot. The
x axis is oriented toward the front of the robot, the y axis
to the left and the z axis is going up. Regions highlighted
in green are when the end-effector is less than 5mm away
from the target position.

V. DISCUSSION

A. Difficulties to deploy an efficient motion

Even if the control scheme was successfully deployed on
the robot, increasing the performances still represents a major
challenge. Indeed, in [9] a similar performance improvement
as the one described in paragraph IV-C was applied to the
TALOS robot without any particular precaution. It caused the
controller to inject a high quantity of energy in the system
which, despite the safeties that are implemented, damaged
the robot. This is not desirable and may imply to expand the
solver and include a passivity constraint as proposed in [10],
or a similar approach to prevent this type of behavior. Such
an extension is beyond the scope of this paper.

To reduce the occurrence of such accident, the manufac-
turer of the robot, PAL-Robotics, provides a high fidelity
simulator which includes a model of the actuators. It also
warns the user of possible collision using an energy based
criteria for each actuator separately. This is unfortunately not
sufficient to guarantee the safety of the robot.

This means that the only tractable way to proceed is to
gradually increase performances on the real robot. However,
in the case of a complex system like a humanoid robot,
this requires extensive manpower (at least three people are
needed to operate the robot safely). It also subjects the
hardware to high wear and tear.

B. Need for planning to achieve human-like performances

The proposition made in this paper to improve perfor-
mances revolves around injecting relevant information inside
of the system through the cost function. It differs from
traditional motion planning approaches because it does not
rely on an external heuristic to provide the necessary infor-
mation. Instead it leverages data from previous experiments
to achieve the desired performances.

This drives the intuition that work should be done to build
a form of memory for the system. This memory would be
queried in every situation to select the appropriate parameters
of the cost function. It could be populated by exploring the
environment using our control approach.

An hybrid MPC/RL approach could be used to achieve this
goal. The RL Agent would be trained to maximize a higher
level reward function that depends upon the performances
(accuracy and speed). It would control the robot through the
choice of the parameters of the cost function. This means
that the MPC, with the structure presented in this article,
would still be used on the robot. The reference posture
would however be reactively picked by the RL algorithm. [3]
successfully deploys Proximal Policy Optimization to control
a quadruped robot. However, the approach we present would
be much more computationally intensive because of the more
advanced control strcuture that would need to be simulated.
That is why off-policy algorithms, such as Soft Actor-Critic,
that are knwown to be more sample efficient would be more
appropriate.



VI. CONCLUSION

This paper demonstrates the use of high frequency MPC to
carry out a position task with an accuracy of few millimeters
with the humanoid robot TALOS, controlled in torque.
Strategies regarding the shaping of the cost function are the
main focus of this article. Simulations show that changing
the reference posture during the movement can improve the
speed of completion of the task to human like levels.

In the short term, we plan to demonstrate the shown
results on the robot. We also plan to continue this work
by leveraging machine learning as a planification tool to
reactively choose the appropriate reference configuration for
a wide range of situations.
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