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Abstract—In order to make the most of SAR and its
different modalities (PolSAR, InSAR, PolInSAR) for ur-
ban area monitoring, a semantic segmentation of dual-
polarimetric TanDEM-X images into ground and above-
ground classes is carried out. To account for the layover,
a pixel may be assigned to both classes at once. Ground
truth labels are constructed by projecting 3D LiDAR point
clouds onto the azimuth/range reference frame of the SAR
image. The impact of PolSAR and InSAR is studied through
a comparison to models trained on a single polarization
SAR image. PolSAR data are found to be beneficial, except
when training and testing on different polarimetric couples.
InSAR data are highly beneficial if their ambiguity height is
small, and detrimental if it is much larger than the typical
building height.

Index Terms—SAR, polarimetry, interferometry, layover,
semantic segmentation, deep learning, urban areas

I. INTRODUCTION

The automatic monitoring of man-made structures on a
large scale in remote sensing imagery plays an important
role in several fields, including urbanization monitoring
and disaster response. Thanks to their all-weather ca-
pacity, Synthetic Aperture Radar (SAR) images are of
particular interest for temporal monitoring. SAR data are
difficult to interpret, especially because of their unusual
geometry. In order to facilitate the interpretation of
high resolution (HR) SAR images of an urban area, we
propose a semantic segmentation of ground and above-
ground classes. A pixel can contain both classes, which
is especially common in SAR images due to the layover.
This is particularly relevant for dense urban areas, as
buildings often appear overlaid on the ground.

The TanDEM-X data were provided by DLR under the scientific
proposal OTHER0103. This work would not have been possible without
the collaboration of Paola Rizzoli and Jose Luis Bueso Bello in DLR,
whom we thank very sincerely. This fruitful collaboration was initiated
in the framework of the ONERA-DLR virtual research center for
cooperation in "AI and applications in aerospace engineering".

SAR encompasses several modalities such as polarimetry
(PolSAR) and interferometry (InSAR), which are more
constraining and not necessarily available. Knowledge
of their impact on the quality of the predictions of deep
learning based semantic segmentation models can help in
the selection of appropriate data for a given application.
PolSAR and InSAR images have been previously used
to train deep learning based segmentation models. The
work [1] introduced a real length-six vector represen-
tation of the complex polarization coherency matrix. It
was then applied to train a convolution neural network
(CNN) for semantic segmentation of the low resolution
NASA/JPL AIRSAR San Fransisco dataset. In [2], the
same dataset was used to train a model taking as input
the Pauli decomposition of the scattering matrix, in the
form of RGB images. Two deep learning architectures
for semantic segmentation of HR airborne polarimetric
images were developed in [3]. Average Intersection over
Union (mIoU) scores of 44% for a U-Net and 50%
for a fully convolutional network were obtained. In [4],
the authors tested various encoders to perform semantic
segmentation of buildings and non-buildings on airborne
PolSAR images, and obtained an mIoU score of 67%.
In [5], a U-Net was trained to segment HR airborne
SAR images of urban areas into "building", "road" or
"other" classes. Mono-pass InSAR data were compared
to a single SAR image, and the authors also investigated
the information contents of the modulus and the phase
of an image. The phase was found to be detrimental,
and an mIoU of 74.67% was reached without it. The
layover was treated as an artefact of the image, and
the building footprints were used as labels. In a similar
spirit, [6] designed a complex-valued neural network for
semantic segmentation of buildings in InSAR images.
This architecture was compared to other state of the art
models on HR airborne images. In contrast to [5], the
layover was detected as its own semantic segmentation
class.



Image I1 I2 I3
date [dd/mm/yyyy] 10/08/2021 21/08/2021 27/06/2021

polarizations HH/HV HH/V V HH/HV

hamb 39.6m 41.5m 320m

Table I: Relevant metadata of the three TDM acquisitions
in the dataset

Following these findings, the choice was made to take
the layover into account using multi-label encoding, as
explained in section II. Section III presents the results of
experiments comparing models trained on PolSAR and
InSAR data to models trained on a single polarization
SAR image.

II. METHOD

A. Dataset Creation

The considered dataset comprises three ascending mono-
pass interferometric TanDEM-X (TDM) dual pol acqui-
sitions, over the city of Toulouse, France. Two are in
HH/HV polarization, and one in HH/V V polarization.
Table I presents the corresponding scenarios, where hamb

denotes the TDM interferometric ambiguity height.

The first two acquisitions have similar ambiguity heights
and different polarizations. The third acquisition contains
the same polarizations as the first but an ambiguity height
10 times larger. The images were roughly cropped to
their common footprint (around 3500×7000 pixels) and
partitioned into 1024× 1024 pixels tiles. The tiles from
the first date were then randomly assigned to a training or
an evaluation set, with the objective of obtaining identical
class representations between these two sets and a 70%−
30% split. This partition was then reused to create similar
sets with the two other acquisitions.

Ten real channels were created from the complex SAR
data: firstly, the logarithms of two polarimetric am-
plitudes HHm and XVm (X is H or V depend-
ing on the acquisition) for the main satellite, and the
phase difference between these polarizations ψm. Sec-
ondly, these same parameters for the secondary satel-
lite: HHs, XVs, ψs. Finally, four additional channels
for interferometry: two ϕkXY phases for each available
polarization XY , and the two coherences in absolute
value γkXY . The k index indicates the number of pixels
of the boxcar filter involved in the coherence calculation.
All channels were normalized to [0, 1].

The labels were created by projecting airborne LiDAR
data acquired in March and April 2019 by Toulouse
Métropole. The LiDAR points had been assigned by
Toulouse Métropole to the "ground" or the "above-
ground" class, with the "above-ground" class typically
containing vegetation or buildings. These points were
projected onto the reference frame of the SAR SLC

Figure 1: SAR image intensity patches (a, c) and cor-
responding ground truth labels (b, d). The bottom pair
shows the noisy and arbitrary nature of the labels in high
vegetation areas.

images, using their metadata. Two binary raster images
of "ground" and "above-ground" were then derived, de-
pending on whether the pixel contains a point of the
concerned class. Ground truth labels are shown in Fig. 1.
One can see that a pixel can belong to both binary ground
and above-ground labels. This either corresponds to a
mix of ground and above-ground points or a layover,
distinctly noticeable on buildings. In high vegetation
areas, noisy and arbitrary labels are introduced by the
volumetric nature of LiDAR point clouds and the extreme
nature of the ground truth computation: a pixel with one
point of ground and 80 points of over-ground is labeled
as belonging to both classes. These two-channel labels
were used to train a deep neural network for multi-label
semantic segmentation.

B. CNN-Based Semantic Segmentation Model

A U-Net with an efficientnet-b5 backbone and pre-
trained weights on Imagenet from [7] was selected, since
[8] showed that it is sufficient to obtain very accurate
results. Each label channel being binary, a sigmoid layer
and a binary cross-entropy loss were used. A stochastic
gradient descent optimizer with a learning rate scheduled
from 0.05 to 0.001 on 150 epochs was used. No data
augmentation or hyperparameter optimization was per-
formed. The training of each model took approximately
30 minutes on an NVIDIA RTX 2080Ti GPU.

III. RESULTS AND DISCUSSION

Multiple experiments were carried out in order to study
the impact of PolSAR and InSAR data on deep learning



T1E1 T1E2 T1E3 T2E1 T2E2

HHm 61.26 61.29 61.01 61.37 61.48
HHs 61.24 61.05 60.68 61.21 61.07
XVm 60.99 59.50 60.06 59.78 61.67

Table II: Average IoU [%] for mono-channel models.

T1E1 T1E2 T1E3 T2E1 T2E2

HHm XVm ψm 64.30 61.76 63.57 60.31 63.94
HHm ψm 60.24 53.96 59.80 56.32 61.18
HHm XVm 64.42 61.75 63.81 62.48 63.24

Table III: Average IoU [%] for PolSAR models.

based segmentation of urban areas. Models were trained
on the training set of one acquisition, and evaluated on
multiple evaluation sets. In the following tables, TjEk

corresponds to the evaluation on Ik’s evaluation set of a
model trained on Ij’s training set. The metric of choice
is an average IoU, defined as the unweighted average of
the IoU of the positive and negative classes of both the
ground and above-ground channels (four terms in total).

A. Mono-Channel Experiment

In a first experiment, models were trained on a single
channel in order to establish a baseline, as well as
compare different polarizations. The results presented
in Table II show that training on a single channel and
testing on the same image yields similar performance
across acquisitions, polarizations and main or secondary
images. Training on one polarization and testing on
another results in a performance loss, of slightly more
than one point (in bold in the table).

B. PolSAR Experiment

With a baseline established, a second experiment was
carried out to study the impact of additional polarimetric
data, and its results are displayed in Table III. When
training on the moduli and phase difference of two
polarizations, gains of about three points were observed
for both HH/HV and HH/V V combinations. Training
on one polarization couple and testing on another yields
results approximately three points worse than when test-
ing on an identical couple (in bold in the table). The
polarimetric phase is detrimental, but does not greatly
reduce performance when used alongside both moduli.

C. InSAR Experiment

A similar experiment was then conducted for interfer-
ometric data, and its results can be found in Table IV.
The introduction of the TDM interferometric information
increases performance by approximately five points for
a small hamb, compared to a mono-channel model.
Training with the larger hamb is much less effective,
resulting in improvements of only one point. This is
in line with the fact that for a large hamb, the object

T1E1 T1E2 T1E3 T3E1 T3E3

HHm,s {ϕ, γ}25HH 66.11 66.01 49.23 59.94 62.46
XVm,s {ϕ, γ}25XV 66.46 61.23 49.68 59.85 62.38
HHm,s ϕ25HH 66.01 65.94 51.66 61.16 62.25
HHm,s γ25HH 64.34 64.04 51.33 59.54 61.45
HHm,s 63.13 63.03 54.66 61.17 61.22
HHm,s ϕ1HH 65.66 65.32 53.17 61.15 61.89

Table IV: Average IoU [%] for InSAR models.

T1E1 T1E2 T1E3 T2E1 T2E2

10 channels 68.28 65.91 53.02 66.16 67.47
10 channels \ψm,s 68.17 65.21 52.21

Table V: Average IoU [%] for PolInSAR models.

details in the interferometric phase are hidden in the
noise, which can be seen in Fig. 2. Additionally, training
and testing with different ambiguity heights yields worse
results than a mono-channel model (in bold in the table).
Removing the coherence slightly decreases performance,
while removing the phase leads to a drop in the IoU
score of almost two points, suggesting that the phase
contains almost all the information. Using the moduli
only further reduces the scores (underlined in Table IV),
and yields worse results than a model trained on the
moduli of two polarizations (third line in Table III). This
shows that the interferometric information is richer than
two correlated speckle realizations. In [5], the mono-pass
interferometric phase was found to worsen performance.
This is in line with our results, since their antennas were
mounted on one airplane, leading to a large hamb. Train-
ing and testing on TDM pairs in different polarizations
is worse than training and testing on pairs in the same
polarization, by about five points.

D. PolInSAR Experiment

In a fourth experiment, the combination of polarimetric
and interferometric data was compared to the previous
results. The corresponding data are presented in Table V.
When training and testing on the same image, using
all 10 input channels increases performance by one to
four points compared to the best results obtained on
TDM or polarimetric data only. The 10 channel model
performs well when tested on an acquisition with a
different polarimetric channel, with a one point drop in
mIoU relative to the best results (in bold in the table).
On the contrary, the 10 channel model performs very
poorly for acquisitions with different ambiguity heights,
as evidenced by worse results than a mono-channel
model (underlined in the table).

E. Qualitative Results

In Fig. 2, semantic segmentation results are shown for the
10 channel model trained on I1’s training set (first line of
Table V). For I1 and I2, the interferometric phase varies



Figure 2: Results for the 10 channel model trained on I1’s training set: HHm SAR patch intensity (a), ground truth
labels (b), HH interferograms (HSV representation of ϕ25HH , γ25HH , HHm) (c, e, g) and predicted labels (d, f, h)
for all three evaluation sets (from left to right, I1, I2, I3).

noticeably between the ground and the top of above-
ground objects, as a consequence of their small hamb.
The corresponding predictions are relatively accurate.
Conversely, due to its large hamb, the phase on I3 is
much more uniform, and the predictions are much poorer.

The worst results were mainly obtained on patches with
high vegetation, such as the second row of Fig. 1, for
which the ground truth labels are relatively noisy and
arbitrary.

IV. CONCLUSION

In this work, we present a solution for semantic seg-
mentation of SAR images that takes into account the
layover effect through a multi-label representation. We
explore the impact of the performance of the different
components of the PolSAR and InSAR modalities of
the TDM mission. We have observed that InSAR data
are beneficial for this task, but only for a small hamb.
Additionally, having a different hamb for the training
and the test interferometric data leads to a large domain
shift and worse performance than a mono-channel model.
Separately, performance gains were also achieved with
PolSAR data. Finally, the combination of both modalities
outperformed all previous results, demonstrating non
redundancy between them.

Acquiring polarimetric data comes at the expense of a
coarser spatial resolution. It will thus be interesting to
train a model on data from a nonpolarimetric acquisition
over the same area, and compare the results against the
PolSAR experiment results. Another point of investiga-
tion will be the use of multi-pass interferometric data.
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