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Predictive Runtime Verification of Skill-based Robotic Systems using
Petri Nets

Baptiste Pelletier and Charles Lesire and Christophe Grand and David Doose and Mathieu Rognant

Abstract— This work presents a novel approach for the online
supervision of robotic systems assembled from multiple complex
components with skillset-based architectures, using Petri nets
(PN). Predictive runtime verification is performed, which warns
the system user about actions that would lead to the violation
of safety specifications, using online model-checking tools on
the system PNs.

I. INTRODUCTION

The development of system composed of multiple complex
components comes with two difficulties: designing elements
which are modular and have independently safe behaviors,
and ensuring that their interaction once assembled will
respect safety specfications during operations. While the
former can be relatively easy to do, many problems can
arise in the latter that would normally not be considered
if components were to stay as single-working entities. For
instance, mounting a robotic arm on a mobile robot will yield
new challenges with regards to positionning or collision-
avoidance, so a safety specification would be to only allow
long distance movements of the mobile robot if the arm is in
a safe position. This issue of verification complexity becomes
even more important in the context of semi-autonomous
systems. Human operated phases require the operator to
focus on a lot of factors: individual robot health and system
status, coordination of movements/actions, monitoring of
safety properties, and so on. The use of a high-level of
abstraction for the components can make their development,
assembly and use more approachable. Their formal verifi-
cation also becomes more accessible, which helps inspect
reachability and/or deadlock properties of the system. For
instance, complex components can be modelled as discrete-
event systems such as finite state-machines (FSMs), but
this comes with scalability and controllability issues, which
have already been present in the early literature, as seen
in the work of Ramadge and Wonham [1]. Furthermore,
the state-space explosion leading to the assembly of these
complex components makes a-priori verification impossible,
or dangerous states are unavoidable by construction. This
means the verification needs to be made during operations,
by analyzing the state of the system to detect the satisfaction
or violation of properties, and reacting accordingly. This
method, called Runtime Verification (RV), can be made on-
board the system or on a remote platform [2], [3], [4]. On top
of RV, model-checking (MC) can be performed if a model of
the system has been established, to better predict and react
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to specifications violation [5], [6], [7], which can be seen in
Runtime Assurance techniques (RTA) [8], [9]. In this work,
we will perform on-the-fly MC for predictive RV, using Petri
net (PN) models of the components.

Prior to this work, we developed a high-level formalization
with a skill-based architecture, based on the work of Albore
et al. [10], to model the components of the system as a
set of finite-state machines (FSMs). Their respective exe-
cutions are modelled using PNs, as they are well suited for
modelling compositions of concurrent execution of FSMs.
Formal verification of each component was done a-priori,
offline, using MC on the PN model, which helped raise
initial design concern [11]. In this paper, we propose an
online monitoring system which observes the behavior of
each component, checks the satisfaction of specifications
set by the user, and predicts actions that would inevitably
violate them. The monitoring system performs MC on the PN
models to calculate the future possible paths of the system,
based on the combination of the PNs of each component in
their current states, and predict future specification violation,
on a possibly finite-horizon, depending on system scale.

The present work showcases the monitoring tool on a
semi-autonomous Spot® quadruped robot with a Kinova Jaco
manipulator arm, shown in Fig. 1, that deactivates traps
while being remotely operated by a human. Section II will
go over the related work on RV, supervision and control
of robotic systems using PN, before moving on to the
relevant definitions of skillsets and skillset PN in Section III.
Section IV will showcase the SkiNet Live tool and its internal
mechanisms, and Section V will present how our tool helped
the user while operating the system. Finally, Section VI will
conclude and open the discussion. Readers can try out a
simple version of the tool at: https://gitlab.com/onera-robot-
skills/skinet-release.

Fig. 1. Spot® quadruped robot equipped with a Kinova Jaco manipulator
arm and a mounted computer executing controller code. The system has to
deactivate traps, represented as wooden cubes with a panel that needs to be
pushed to neutralize the trap.



II. RELATED WORKS

To ensure a system complies with specifications during its
execution, two methods are usually employed: either creating
a safe controller which will limit the execution of the system
[1], [12], [13], called controller synthesis, or monitoring
its behavior during runtime and reacting to specification
violation [2], [3], [4], called runtime verification (RV). We
will focus on the latter, as model-checking on individual
components was already performed in a previous work [11],
and performing controller synthesis and a-priori verification
on complex systems has limitations with increasing scale [1].

A. Runtime Verification

The goal of RV is to check whether the current execution
of a system respects specifications, by only looking at the
current state and/or the sequence of actions that led to it. It
was first developped for software monitoring, such as with
the work of Havelund [2], where RV was used to control
complex systems by only looking at the current behavior
and implementing predictive algorithms to avoid violating
specifications in the future. In the context of robotics,
Lotz [3] performs RV by monitoring the components of a
robotic system, where each component is a black-box whose
behavior can only be deducted from partial observation
of its state, making the prediction of future events more
challenging. Blech [4] pushes this further by studying the use
of RV in safety critical systems, and how much a RV system
can be trusted, offering a way to certify RV monitors. In the
context of the middleware ROS (robot operating system),
Huang [14] proposes ROSRV, a tool that monitors exchanged
ROS messages to perform RV, with no intrusion in the
original system. The work of Foughali [12], [13] tackled
the issues of correctness and scalability of RV for concurrent
robots, using formal methods and a custom framework called
GenoM3. Finally, Colledanchise [15] showcases the use of
behavior trees (BT) for RV of deliberative policies, build-
ing runtime monitors using a formal property specification
language. These approaches can be combined with MC, so
that the monitored components are no longer black-boxes,
but well defined and formally verified models, such as the
skill-based architectures from Albore [10] we use in this
work. Desai [7], [8] combines offline a-priori MC for RV
and uses signal temporal logic (STL) for online monitoring
to construct safe motion plans with the SOTER framework.
The authors mention that this method can have scalability
issues during offline calculations, but can perform predictions
on infinite horizons. Our approach will perform MC online,
during runtime, but at the cost of a possibly finite horizon
for large systems. This allows the users more flexibility
with the system, as there is no need to perform offline
calculations everytime the safety specifications are changed.
As for scalability, because our approach deals with high-level
components that are already an abstraction of their respective
system, we believe the use cases for the tool would rarely
exceed a few components.

B. Predictive RV

Coupling RV with MC improves analysis, prediction and
reaction capabilities by using MC tools on a complete or
partial model of the system execution. This was proposed
by Leucker [5], using Linear Temporal Logic (LTL) speci-
fications, combining the verification of an abstract model of
the software program and the verification of its current run,
using LTL3, introduced by Bauer [16]. In the same manner,
Pinisetty [6] uses a-priori knowledge of the system model
to perform predictive RV of timed properties, using timed
automata.

The approaches combining MC and RV are the most
interesting for the challenge at hand: providing guidance to
a user that is potentially unfamiliar with the complex system
they are using, by interrogating models of the components to
avoid the violation of specifications in the future. Approaches
like Leucker and Pinisetty have not yet been applied to
robotic systems, to the best of the authors knowledge. The
goal of our tool is to fill this need for predictive RV for
robotics, where the need for a reactive system is important,
both for operator guidance and system autonomy. Because
we model the components execution as PNs, we will use
them as the interrogated models.

C. Petri nets for Control and Runtime verification

PNs have been used for the monitoring, supervision and
control of DES, as well as RV. The early work of Giua [17]
illustrates how PN can be used for the control of discrete-
events system purely mathematically, with linear inequalities
to define the reachable markings of the net. The application
to manufacturing systems becomes clear with the work of
Der Jeng [18] by using control places and control transitions
on top of the original net of the system to restrict its behavior,
without the need for exhaustive state-space enumeration. PNs
are also used for controller synthesis [19], [20], [21], [22],
even if the model is only partially controllable or observable,
such as in the work of Luo et al. [23], [24], [25]. Offline
controller synthesis using model checking (MC) was studied
by Rezig [26], as well as Lacerda [27] who used tools
from the Tina toolbox [28], [29] and LTL specifications
for controller synthesis of multi-robot teams, without the
need for state-space enumeration. Finally, the approach of
Lee [30], [31] tackles the human-in-the-loop problem, where
a human operator can operate the system and make it go,
purposefully or not, into a faulty state. Ding [32] continues
on this work and uses place-invariant-control theory to design
a controller that will find not only dangerous markings, but
also markings that would inevitably lead to them after a
finite number of transitions, using Computation Tree Logic
(CTL). However, such approaches limit the controllability
of the system, whereas in our context, the human operator
should have full control of the system at all times, regardless
of specification violation. This is important in the context
of a dynamic, dangerous environment, where for instance
the walking robot needs to be quickly moved to avoid
a danger that would damage the whole system, without
having to wait for other components to be in a configuration



that would respect the specification. Ramirez-Trevino [33]
suggests the use of two PNs: a healthy one and a faulty
one, to design an online diagnoser, where both PNs are
compared during runtime to check for faulty behaviors in
the system. We inspire from this later on by using two PNs,
one for monitoring, and one for MC. Our approach performs
the MC of the PNs, using tools from Tina, as introduced
by Lacerda [27], for the state-space generation, but online,
during runtime. We also base our work on Ding [32] where
CTL is used to find dangerous markings, i.e. operations that
would inevitably lead to property violation if performed.

III. BACKGROUND

A. Skillset

This section summarizes the elements of a Skillset used
for the modelling and programming of autonomous systems,
as defined by Albore [10], with some elements omitted as
they are not used in this paper. A Skillset can represent both
hardware and software elements of the system, and their
interaction/execution. A skillset contains resources, resource
guards and resource effects. These elements are assembled to
create events and skills. The example system used in the ex-
perimental work of this paper contains two skillsets: a spot
skillset, used on the Boston Dynamics Spot® quadruped
robot, and a manipulator skillset, used on the Kinova
Jaco manipulator arm, which was mounted on Spot®. It is
important to note that the skillsets of both components were
made independantly for other applications, so their assembly
must be done without modifying these skillsets. Finally, a
computer is also mounted, used to execute the controller
code of both components. Figure 1 shows the assembled
system as used for experimental validation. Skillset files are
available in the GitLab repository: https://gitlab.com/onera-
robot-skills/skinet-release.

A tool called ”robot language” generates C++ code based
on the written skillset specifications that follows this execu-
tion [10], with part of the execution code to be filled by the
user, such as skills functions, exit conditions, events trigger-
ing, etc. A ROS2 [34] skillset manager node is then deployed
as the controller, and our tool monitors the messages of this
manager, as shown later in Fig. 2. More information on the
skillset execution semantic can be found in [10].

B. Skillset Petri net

This section will sum up the definitions and notions of
skillset Petri nets [11]. Skillset Petri nets are conventional
Petri nets, with the addition of a transition function to set
a priority order between transitions. Skillset Petri nets have
places representing resources and skills states, and transitions
that move tokens between places as the execution of the
skillset goes. A Skillset Petri net SkN = ⟨N,m0⟩ is a tuple
N = (P, T, F,≻) and an initial marking m0, where:

• P and T are two non-empty, disjoint and finite sets of
places and transitions, respectively.

• P is the set of places, with one place for each resource
state, and each skill s ∈ S is represented by an idle
place es, a running place is, and exit places xs,k,

representing the various termination modes (success,
failure...). At most one token is present in each place,
and one token is shared at all times between each place
for a given skill or resource.

• T is the set of transitions, composed of three subsets
Tevents, Tskills and Treset. Tevents is the set of transi-
tions associated with events, firing when events occur
during execution and their resource guard is satisfied,
applying their resources effects as an exchange of tokens
between resources places. Tskills is the set of transitions
associated with skills. When a skill s successfully starts,
the transition ts,start is fired, and upon termination, the
associated exit transition ts,k is fired. Tokens are moved
depending on the various resources guards and effects
of the skill execution elements they are associated to.
Finally, Treset transfers the tokens from the exit places
xs,k to the idle place es, so that the skill can start again.

• F ⊆ (P × T ) ∪ (T × P ) a set of directed, unitary arcs
between places and transitions.

• ≻ is the priority relation, meaning that if two transitions
t1, t2 ∈ T are enabled, i.e. their input places have at
least one token, and t1 ≻ t2, then only t1 is firable.
Here, the transitions Tinvariants ∈ Tskills have more
priority than all the other transitions T − Tinvariants,
because invariant failures cause an immediate stop in
skill execution before anything else can happen.

• m0 ∈ M the initial distribution of tokens, called the
initial marking of the net, and M = {m0,m1, ...,mn}
the set of all possible markings of N .

For any transition t ∈ T , the sets of its input and output
nodes are •t and t• respectively. Let p ∈ P and t ∈ T
be a place and a transition. The marking of a place p is
noted m[p]. The firing of an enabled transition t ∈ T , with
∀p ∈• t, m[p] ≥ 1, leads to a new marking, or reachable
state, m′. All the input places of t loose a token, i.e. ∀p ∈•

t, m′[p] = m[p]−1, and all the output places gain one token,
i.e. ∀p ∈ t•, m′[p] = m[p] + 1.

IV. SKINET LIVE TOOL

A. Overview of the tool

In this paper, we present the SkiNet Live tool, Fig. 2,
which performs predictive runtime verification of user-
defined temporal logic specifications, using model-checking
tools from Tina [29], [28] and Petri net models of the
system components [11]. The controller code of the skillset
managers is generated from their written specifications [10],
with SkiNet Live monitoring the messages sent by each
manager using ROS2 [34], as well as communicating with
the human operator. The operator can observe the state of
each skillset nets and transition firing history through ROS2
topics, as well as the state-space exploration results. The tool
runs two processes: a fast process that runs direct RV, and a
slow process that performs MC for predictive RV.

We will go over the two methods used to discover
dangerous markings, i.e states that violate safety properties
or would inevitably lead to their violation. We will use



the terms explicit and implicit constraints, introduced by
Ding [32], which are, respectively, markings that violate a
safety property, and markings that don’t violate the property
but inevitably lead to the violation of the property. Unsafe
transitions are transitions that lead to dangerous markings.

Skillset Model SkN

Skillset
Manager

nodes

code
genera-

tion [10]

translation [11]

SkiNet Live

Explicit
constraints

Implicit
constraints

state

User

state-space
unsafe transitions

Fig. 2. SkiNet Live is a tool for predictive runtime verification of
concurrent skill-based components in a robotic system. Dashed arrows
represent operations on the model, while bold arrows represent ROS2
messages [34].

B. Explicit constraints
The tool runs two skillset PNs. Both PNs have their

exit places xskill,k and transitions Treset removed, as their
existence is only useful for offline MC and analysis to
represent intermediate states. However, they do not reflect
the online execution of the skills, which can only be in an
idle or running state. Moreover, they greatly increase the size
of the state-space when performing MC.

During runtime, as the skillset managers of each compo-
nent are executed, the respective skillset nets are updated.
We note SkNi the skillset net of component i, and I the set
of all components. SkNi is the skillset net whose transitions
are fired. All transitions are considered observable, i.e. every
action occurring in the skillset managers has a corresponding
transition in the skillset PNs. The running marking of SkNi

is noted mi.
To know if the current marking mi violates any safety

property ϕ, a simple function safe is used, which evalu-
ates the logical expression of ϕ in the combined marking∑

i∈I mi, returning True if the safety property is satisfied,
False otherwise

To find out if the markings reachable from mi are explicit
constraints, we propose algorithm 1, which looks for unsafe
transitions that lead to immediate safety violation. For each
safety property ϕ, it checks if the marking m′

i, reached upon
firing one of the firable transitions at marking mi of each
skillset net SkNi, would not violate the safety property.
The safe function is used with the new combined marking
m′

i +
∑

j∈I−i mj , putting the unsafe transition t in the list
unsafe tr of ϕ if safe returns false. This algorithm is fast
and inexpensive but can only discover immediate explicit
constraints.

Data: I , safety properties
Result: Get the unsafe transitions unsafe tr that lead to

explicit constraints.
1 unsafe tr = dict();
2 for SkNi, i ∈ I do
3 mI−i =

∑
j∈(I−i) SkNj .marking;

4 for t ∈ SkNi.firable() do
5 SkNi.fire(t);
6 for ϕ ∈ safety properties do
7 if ¬safe(SkNi.marking +mI−i, ϕ) then
8 unsafe tr[ϕ]←− unsafe tr[ϕ] + t;
9 end

10 end
11 SkNi.undo();
12 end
13 end
14 return unsafe tr ;

Algorithm 1: Unsafe transitions search algorithm

C. Implicit constraints

To find implicit constraints, the eventless skillset net SkNe

is used, a version stripped of its event transitions Tevents.
The reason behind the existence of this modified net is that
events are supposed uncontrollable: they only represent the
functional layer activity of the component. For instance, in
our example, the motor power state for the spot skillset
can be controlled by the user using the init power and
safe poweroff skills, but also by the battery depletion
or emergency stop from a security operator, which would
trigger the event transition t power switchoff. When
performing predictive RV to guide the user during online
operations, it would seem inappropriate to warn the user
about events, as they are uncontrollable and only reflect
hardware status. Therefore, an eventless net is made to focus
the RV and MC on transition paths that only rely on skills.

In order to get the unsafe transitions leading to implicit
constraints, we first explore the possible futures with the Sift
tool, from the Tina toolbox [28], [29]. This tool allows for a
breadth-first exploration of PN markings, where transitions
are fired one by one in each layer before moving on to the
next. The input net is the union of all SkNe

i of the system
components. We note M =

∏
i∈I M

e
i the set of all possible

markings reachable by the union of all SkNe
i .

This calculation becomes exponentially expensive as the
amount of components in the system increases, so a timeout
can be set to stop the exploration prematurely. We note
µ ⊆ M the potentially partial set of markings obtained,
returned as a Kripke structure by Sift. In our context of
semi-autonomous systems, we consider that, if timeout is
reached, verification can be performed sufficiently so that
a few operations can be made without worrying about
specification violation. To know how many operations the
user can perform, the maximum depth of µ, i.e. the largest
number of transitions fired before timeout, is given, so that
the user can judge how much actions they can perform safely.

µ is recalculated everytime a transition is fired in the
system, until Sift finishes its exploration or the timeout is
reached. That is why the initial marking of SkNe

i , me
i,0, is



replaced by the current marking mi of SkNi at every transi-
tion firing, so that the initial state of µ is mi. If transitions are
fired before timeout, they are ignored until the previous ex-
ploration is finished. Nonetheless, the user can always change
the timeout value depending on the execution speed of the
system. A ROS2 topic called \skinet\state space also
sends a message, stating how long Sift took to calculate µ,
if the timeout was reached or not (and if so, the depth of
exploration), and the size of µ in terms of markings and
transitions. These elements could be added to a user interface
for the operator to evaluate the trust level of the exploration,
but the interaction between the user and the tool through a
user interface is left for future work.

To find the dangerous markings µ! ⊆ µ and the paths
that could inevitably lead to them, the Kripke structure
representing µ is loaded in Muse, a mu-calculus and CTL
tool from the Tina toolbox. For each property ϕ, the formula
AF¬ϕ, literally ”for all paths finally, property ϕ is violated”
is sent to Muse. This returns the markings µ! of ϕ, which
contains markings that violate ϕ, i.e. explicit constraints, as
well as the markings which would inevitably lead to the
violation of ϕ, i.e. implicit constraints.

With the implicit constraints now known, we can add µ!

as input of algorithm 1, and the condition on line 7 becomes:

¬safe or SkNi.marking ∈ µ! (1)

With this list of unsafe transitions, and with the knowledge of
the current state of each skillset, it could be possible to block
the execution as to forbid actions that would trigger unsafe
transitions. This is left for future work with fully autonomous
systems, but our context focuses on simply informing a
human operator, who needs full control of the system.

V. EXPERIMENTAL RESULTS

The Spot® + Kinova Jaco manipulator system was de-
ployed for a long duration mission where a human operator
would remotely control its movements and actions, based
on the available skills in the spot and manipulator
skillsets. The objective was to neutralize traps, represented
as cubes, with a falling panels that needed to be pushed. If
the panel falls, the trap is successfully deactivated.

A. Mission protocol

The mission starts with the system idle and the human
operator waiting for orders to activate the system and send
it at approximate locations where traps have been spotted.
Upon receiving the first trap, the operator starts the Spot®

robot, makes it stand up and sends coordinates for navigation
with the go to waypoint skill. Once the operator has a
visual on the trap thanks to the cameras mounted on Spot®,
teleoperation starts to reach the trap, using the teleop
skill. When sufficiently close to the trap to deactivate it,
the operator deploys the robotic arm with arm ready and
teleoperates it with arm joystick to push the panel and
deactivate the cube. Upon success, the arm must be folded
again with arm moving to RD (RD=ready position) and
then arm RD to HP (HP=home position). When receiving a

new trap location, the user teleoperates Spot® away from the
cube, before letting the autonomous navigation reach the next
location with go to waypoint. A total of four traps had
to be deactivated for the full mission to be successful. The
mission will be done twice: once with the operator unassisted
by the tool, and a second time with knowledge of the unsafe
transitions.

B. Safety Properties

The safety properties chosen for this mission are two
logical expressions on the state of resources and skills
of the skillsets. They are written with a simple notation
skillset name:state for these states (state names are
unique and two resources cannot have similar state names,
so specifying which resource or skill is monitored is not
necessary). The basic operators and, or and not are used,
so that the safety properties are intuitive to write for users.

action guard = not (spot : Busy

and manipulator : Busy) (2)

safety guard = not (spot : i go to waypoint

and not manipulator : HP ) (3)

Property (2) monitors the state of the resources
control mode of spot and mutex of manipulator.
These resources, when equal to Busy, mean that a movement
skill is running, so the property ensures that Spot® and the
arm are not moving at the same time.

Property (3) is to guarantee the safety of the robotic
arm during the go to waypoint skill. If the arm is un-
folded, i.e. it is not in its home position HP , then the
go to waypoint skill is forbidden. The goal is to avoid
collisions with the environment, as well as making Spot®

more stable during long distances walk between waypoints
on potentially uneven terrains.

C. State-space calculation

Because our system is only composed of two components,
the state-space exploration was complete in 0.014 seconds,
with µ = M at every calculation, for a total of 440
possible states. This means that all possible implicit and
explicit constraints could be predicted at all times. A total
of 192 dangerous markings for action guard and 36
for safety guard were found. The size of µ! was thus
228, which means that around half of all possible states
violate safety properties. This shows how easily the user can
unintentionally break the safety properties.

D. Mission results with no guidance

In this first mission, the operator has to manage the system
alone and respect the protocol and the safety specifications,
without the help of SkiNet Live. An extract of the mission
timeline is shown in Fig. 3. Upper half of the figure shows
the resources and skills in their current states, while bottom
half shows the safety properties status and total number of
transitions in the skillset PNs that would lead to dangerous
markings, i.e the size of the list retrieved with algorithm 1. As



we can see from the timeline, safety properties were violated
several times during the 20 minutes mission.

Fig. 3. Experimental results with the human operator with no help from
the tool. First graph is an extract of the spot skillset state, and second
is an extract of the manipulator skillset state. Skills are represented
with grey (Idle) and red (Running) colors, while resources have various
colors depending on their states. When violated, safety specifications appear
red. The bottom graph shows the number of transitions that would lead to
dangerous markings at a given time. Safety properties were violated several
times, intentionally or not.

Upon mission start, the user received the first trap location
and sent the robot close to it before starting teleoperation
for the final approach, at 15:36. This first trap deactivation
went smoothly as the operator was focused and protocol was
respected. The user made sure no safety specifications were
violated, successfully deactivating the trap. Upon arriving
and attempting to deactivate the next trap at 15:40, the
user realized the robot was too far from the trap for the
arm to deactivate it. The user decided to use the teleop
skill, but without terminating the arm joystick skill first,
leading to both the resources control mode at state Busy
and mutex at state Busy, violating the safety property
action guard (2). This safety property is important as
the user could inadvertedly move both components simulta-
neously, or move the wrong one, and endanger the system.

Later on, at 15:42, the user did not put the arm in its
home position before sending the robot to the next trap.
The resouce arm status was not in the state HP while
the skill go to waypoint was running, leading to the
violation of safety property safety guard (3). Since the
area of the experiment had trees and ledges, the arm could
have collided with them. Moreover, the surface of the ground
was uneven at times, so the robot could have become
unbalanced and would have fallen down.

The third trap deactivation at 15:45 again led to the
violation of action guard, as the user did not terminate
the teleop skill before manipulating the arm. Finally, the
fourth and last trap deactivation at 15:49 went smoothly and
protocol was respected.

E. Mission results with SkiNet Live

The same mission was repeated, but this time with the
user receiving assistance from SkiNet Live. The user could
observe at all times the unsafe transitions that would lead

to safety property violation. Figure 4 shows the timeline
of this second mission, with a respected protocol and no
safety violation throughout the mission duration. The second
mission took around 25 minutes to complete, and at the end,
the user has been operating the system for almost an hour.

Fig. 4. Experimental results with the human operator being assisted with
SkiNet Live during the second half of the mission. Safety properties were
respected throughout the mission.

During the mission, the user noted that SkiNet helped him
remember to perform some steps of the protocol, such as
terminating teleoperation skills on one robot before switching
to the other, or putting the arm in the correct position before
starting one of its skills. After the second trap, at 16:20,
the user was reminded by the tool to put the arm in a
safe position before performing the skill go to waypoint,
as the start transition of the skill was flagged as an un-
safe transition for the safety guard property by SkiNet
Live. At the third trap, at 16:24, the user was warned that
starting the arm to ready was an unsafe transition of
action guard, because the teleop skill was still runing.

Thanks to the tool, the user was able to follow more
easily the mission protocol. The predictive RV performed by
SkiNet Live was constantly giving the user guidance to avoid
triggering unsafe transitions and reach dangerous markings.

VI. CONCLUSIONS
In this work, we presented a tool which performs RV

and online MC on a semi-autonomous complex system to
guide a human operator in performing a repetitive task.
Experimental results showed that without the tool, safety
specifications on the system behavior could be violated by
the user, unintentionally or not, after a few task completions.
The tool allowed to find and predict faulty states. A second
run was made with the user being assisted by the tool,
which helped to better follow the mission protocol and avoid
safety risks. The next step for this work will be to develop a
framework for the human operator to send high-level goals to
a robotic system that will autonomously decide the steps to
reach the goals, based on its components status and feedback
data, while respecting safety specifications.
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