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dynamical network model

Pauline Chassonnery1,2 Jenny Paupert1 Anne Lorsignol1 Childérick Séverac1

Marielle Ousset1 Pierre Degond3 Louis Casteilla1,∗ Diane Peurichard2,∗,†

Abstract

The Extra-Cellular-Matrix (ECM) is a complex interconnected 3D network that provides struc-
tural support for the cells and tissues and defines organ architecture key for their healthy functioning.
However, the intimate mechanisms by which ECM acquire their 3D architecture are still largely
unknown. In this paper, we address this question by means of a 3D individual based model of in-
teracting fibers able to spontaneously crosslink or unlink to each other and align at the crosslinks.
We show that such systems are able to spontaneously generate different types of architectures. We
provide a thorough analysis of the emerging structures by an exhaustive parametric analysis and the
use of appropriate visualization tools and quantifiers in 3D. The most striking result is that the emer-
gence of ordered structures can be fully explained by a single emerging variable : the number of links
per fiber in the network. This simple variable becomes an important putative target to control and
predict the structuring of biological tissues, to suggest possible new therapeutic strategies to restore
tissue functions after disruption, and to help in the development of collagen-based scaffolds for tissue
engineering. Moreover, the model reveals that the emergence of architecture is a spatially homoge-
neous process following a unique evolutionary path, and highlights the essential role of dynamical
crosslinking in tissue structuring.

AMS Subject Classification 92-10, 92C10, 82C22, 93A16.
Keywords Interaction networks, Three dimensional mathematical modelling, Self-organization, Extra-
cellular matrix, Dynamical crosslinking, Architecture emergence.
Subjects Biophysics, Biomechanics, Computational Biology.

1 Introduction

The adequate architecture of any organ is mandatory for their efficient physiological function and any
changes is associated with function impairment and putative developing dysfunctions and diseases [51,
33, 38]. The tissue architecture depends mainly on the mechanical forces exerted by the ExtraCellular
Matrix (ECM) [44]. Despite the great variability of proteins that make up the ECM (macromolecules
such as collagen, glycoproteins etc), it can be seen as a dynamic physical network of fibers interconnected
by molecular bonds, i.e. crosslinks, generating a connected and elastic environment for the surrounding
cells [33].

The network structure is in constant remodeling, which is crucial to maintain tissue integrity and
function. Crosslinks, however, can unbind spontaneously or under tension, which leads to viscoplastic
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material responses, such as softening and tension relaxation [32]. Fibrosis and aging are also character-
ized by an increase of enzymatic and non-enzymatic crosslinks [25, 15] and this increase in crosslinking
prevents ECM degradation by matrix metalloproteinases, both events leading to a decrease of ECM re-
modeling [28]. Altogether, these events induce greater stiffness and the arrangement of the collagen
fibers becomes less organized and more loose and fragmented, hence weakening tissue integrity and
strength [49, 4]. An understanding of the basic organizing principles of ECM structure in three di-
mensions also helps in apprehending the complex dynamics of pathological tissues from degenerative
diseases or tumor [28].

Because the global architecture of fiber networks seems to be fundamental for controlling tissue
functions, modeling the process of ECM structure emergence will greatly improve our understanding
of tissue biology and plasticity in physiological or pathological conditions. Numerous models of fiber
networks can be found in the literature. Due to their simplicity and flexibility, the most widely used
models are Individual Based Models (IBM), which describe the behavior of each agent (e.g. a fiber
element) and its interactions with the surrounding agents over time [16, 23]. However, IBM have a
high computational cost which can become intractable when studying systems composed of too many
agents, or systems at large scales, either spatial or temporal. In such cases, continuous or mean-field
kinetic models may be preferred [12, 14, 40, 45, 5] since they are less costly, but at the expense of a loss
of information at the individual level. Since it is well acknowledged that microstructure configurations
modulate the macroscopic properties of crosslinked fiber networks [29], preserving the microscopic level
description is of great importance to model tissue emergence.

Most of the computational models developed thus far for mimicking ECM networks are two-dimensional [20,
48, 14, 21, 3, 41, 17, 6, 2, 45, 34]. Few studies have been conducted on 3D models [43, 22, 42, 8, 19,
26, 30, 37], although these are expected to yield different, more realistic results than 2D ones since they
better mimic biological structures themselves immersed in 3D environments. One of the reasons for
fewer 3D models is the great increase in the number of agents needed to achieve a given spatial density
and thus in the associated computational cost. Another reason is the lack of high quality data on ECM
organization in 3D. However, the latter is becoming less and less of an issue with recent improvements
in high resolution 3D imaging and its availability. Among existing 3D models, few of them feature
dynamical crosslinking of ECM components. In [42, 19, 31], various models of 3D fibrous networks
composed of permanent or transient crosslinks (remodeling) are proposed. However, most of these mod-
els feature ECM remodeling in reaction to external factors (applied load [42, 10], migrating cells [19],
contractile cells [31]), and the literature so far provides little cues on the mechanisms underlying fiber
self-organization.

In the present paper, we test the hypothesis that fiber macrostructures could spontaneously emerge
without appealing to contact guidance or external mechanical challenges, as a result of simple mechan-
ical interactions between the fiber elements composing the ECM network. We assess this hypothesis
by means of a three dimensional model where ECM fibers are discretized into unit fiber elements, con-
sisting of non-stretching and nonflexible sphero-cylinders with the ability to spontaneously link to and
unlink from their close neighbors. This dynamical crosslinking mechanism allows us to model both the
overall temporal plasticity of the network and the complex physical properties of biological fibers such
as elongation, bending, branching and growth, thus compensating our minimalistic description of the
fiber units. The relevance of such discretization was previously validated in the frame of adipose tissue
morphogenesis and regeneration in 2D [34, 35].

Through computational simulations and exhaustive parametric analysis, we demonstrate that orga-
nized macrostructures can spontaneously emerge without external guidance. Overall, this study provides
a comprehensive view on the role of ECM connectivity on tissue architecture emergence:

• The model reveals that tissue architecture at equilibrium is simply controlled by the number of
crosslinks per fiber in the network, an emerging variable not directly linked to the model param-
eters. This simple emerging variable therefore becomes an important putative target to control
and predict the development of the architecture of biological tissues. Because of its simplicity,
this variable is amenable to experimental measurements and could represent a major target for
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the development of therapeutic drugs enabling to induce tissue recovery after injury, prevent tis-
sue degradation during ageing, or help in the design of engineering collagen scaffolds for tissue
regeneration.

• A deep exploration of the model parameters reveals that this emerging variable, and therefore the
global organization abilities of tissues, depend on a complex interplay between the model param-
eters related to the crosslinks, i.e their remodelling speed and their linked fiber fraction. These
results rationalize how even subtle changes in ECM dynamical crosslinking can drive tissue reor-
ganization and suggest that the development of biological crosslinkers to control ECM connectivity
as a target for tissue reconstruction must carefully account for different parameters such as tissue
remodelling activities.

• Finally, a temporal analysis of the model simulations reveals that the different tissue architectures
follow a simple and unique evolutionary path on timescales controlled by their remodelling char-
acteristics, providing new insights into the temporal evolution of tissue structures as function of
the ECM remodelling properties.

2 Models and methods

2.1 Description of the model

The 3D ECM is discretized into unit fiber elements consisting of line segments of fixed and uniform
length, represented by their centers and directional unit vectors. We consider the following biological
and mechanical features: (i) Fiber resistance to pressure: We suppose that fiber elements repel each other
at short distances, which models size-exclusion effects. This is achieved via a repulsive force between
close fibers based on Hertzian theory [1]. This amounts to model fibers as spherocylinders of a given
radius and length, that can interpenetrate each other. The intensity of the repulsion force αrep controls
the amount of overlapping between fibers. (ii) Fiber elongation and breakage: In addition to carrying
a unit of ECM fiber strength, fiber elements also carry a unit of fiber length. However, we provide a
way to create longer fibers by allowing two nearby fibers to form a link. A crosslink is modelled as
a linear spring with a given spring stiffness, connecting the two closest points of the fiber pair at the
time of its creation. There is no prescription of the location of the crosslinks along the body of the
fibers they connect. Several consecutively cross-linked fiber elements would model a long and flexible
fiber having the ability to adopt complex geometries. Therefore, the cross-linking process models fiber
elongation [9]. The stiffness constant of the springs αrest controls the possible extension of the long
fibers. Symmetrically, pairs of cross-linked fibers can spontaneously unlink, allowing for fiber breakage
describing ECM remodelling processes [11]. Linking and unlinking processes follow Poisson processes
with frequencies νlink and νunlink respectively. As a result, the linked fiber ratio χlink =

νlink

νlink + νunlink
represents the equilibrium fraction of linked fibers among the pairs of neighbouring fibers. (iii) Crosslink
fiber alignment: To model the ability of long fibers (those made of several cross-linked fiber units) to
offer a certain resistance to bending, linked fibers are subjected to a potential torque at their junction.
This torque vanishes when the fibers are aligned, and consequently acts as a linked-fiber alignment
mechanism. This torque is characterized by a stiffness parameter αalign playing the role of a flexural
modulus. (iv) Large friction regime As the Reynolds number in most of biological tissues is very small
[47], we suppose that inertial forces can be neglected and we consider an over-damped regime for fiber
motion and rotation.

Each of the mechanical interactions due to fiber-fiber repulsion (i), fiber-fiber attachment due to
crosslinks (ii) and crosslinked fiber-fiber alignment (iii) generate elementary forces and torques between
fiber pairs. The total force (resp torque) acting on a fiber is then computed as the sum of all the elementary
forces (resp. torques) generated by the elements interacting with this fiber. The motion and rotation of
the fiber is then deduced from Newton’s equation of motion in an overdamped regime. More specifically,
the Nfib fiber elements are represented by straight lines of fixed length Lfib represented by their centers
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Name Value Units Description
Agents

Nfib [1500, 3000] N/A Number of fibers
Lfib 6 L Fiber length
Rfib 0.5 L Fiber radius

Mechanical interactions
αrep 12.5 M.L−1.T−2 Magnitude of the repulsion force
αrest 5.0 M.T−2 Magnitude of the elastic restoring force
αalign 2.0 M.L2.T−2 Magnitude of the alignment torque
dmax

link 1.0 L Perception distance for link creation
d

eq
link 1.0 L Link equilibrium length

Biological phenomena
νlink [0, 10] T−1 Network remodeling speed
χlink [0.1, 0.9] N/A Equilibrium linked fiber fraction

Numerical parameters
Lx = Ly = Lz 30 L Side length of the cubic domain

Tfinal 5.104 T Total time of simulation

Table 1: Model parameters.

Xk(t) ∈ Ω ⊂ R3 and their non-oriented directional unit vectors ωk(t) ∈ S+2 . Moreover, from the
fiber-fiber repulsion interaction, fibers may be seen as soft spherocylinders of radius Rfib. We denote by(
pk,m(t)

)
k,m

the fiber connectivity matrix, that is pk,m(t) is equal to 1 if fibers k and m are linked at
time t and to 0 otherwise.

The motion and rotation of fiber k are then given by:
µfibLfib

dXk

dt
(t) =

Nfib∑
m=1

(
F

rep
k,m(t) + pk,m(t)Frest

k,m(t)
)

µfibL
3
fib
dωk

dt
(t) =

Nfib∑
m=1

(
T

rep
k,m(t) + pk,m(t)

(
Trest

k,m(t) +T
align
k,m(t)

))
∧ ωk(t)

∀k ∈ J1,NfibK, (1)

where F
rep
k,m(t) and T

rep
k,m(t) are the force and torque associated with fiber k and fiber m repulsion,

Frest
k,m(t) andTrest

k,m(t) are the force and torque due to the presence of a spring (crosslink) connecting fiber

k and fiber m, and T
align
k,m(t) is the alignment torque generated by this crosslink. We refer to apendix A.1

for the detailed computations of these forces and torques.

2.2 Description of the experiments and biological relevance of the model parameters

The spatial domain Ω is a cuboid of side length Lx, Ly and Lz respectively in the x, y and z-dimension,
centered on the origin :

Ω =

[
−Lx

2
,
Lx

2

]
×
[
−Ly

2
,
Ly

2

]
×

[
−Lz

2
,
Lz

2

]
.

For the sake of simplicity, we assume periodic boundary conditions : an agent exiting the domain
by one side re-enters immediately from the opposite side, and interactions between agents are computed
using the periodicized euclidean distance. Fibers are initially randomly inseminated inside the domain
according to a uniform law for both position and orientation. The differential system (1) is then nu-
merically solved using a discrete upwind Euler scheme with adaptive time-step, which has a very low
computational cost. Details of the numerical implementation are given in annex A.2.

The physical scaling of all the parameters of the model, as well as the values used in the simulations,
are described in Table 1. A few points may be noted : (a) the perception distance for link creation dmax

link

4



and the link unloaded length d
eq
link are both equal to the diameter of a fiber 2Rfib. This means that the fiber

units (spherocylinders) connect with the fibers they are in contact with or closer, and that the link tries
to keep the bodies of the spherocylinders touching. In this regime, the presence of the links therefore
participate in a non overlapping configuration of the fibers. (b) The size of the domain is approximately
4 times the size of a fiber along its main axis (numerical checks were made by-hand to select a size of
domain which optimizes between computation time and boundary effects) and (c) the fiber aspect-ratio
Lfib
2Rfib

= 6 is quite small compared to the values used in other models of the ECM, which usually varies
between 250 and 104 [40, 26, 30]. This compensate the fact that these models directly account for fiber
bending and/or fiber elongation, while our long fibers correspond to a sequence of crosslinked fiber units.
On the same note, we stress the fact that our fiber units do not aim at modelling the individual collagen
fibrils making up collagen fibers in ECM, but rather correspond to an intermediate scale where one fiber
unit of our model is already a set of twined collagen fibrils that run in parallel to form a larger bundle
[46].

We denote by ϕfib the fiber density of the network, that is the ratio between the total volume of fibers
(without overlapping) and the volume of the spatial domain :

ϕfib =
NfibVfib

|Ω|
= Nfib

πR2
fibLfib + (4/3)πR3

fib
LxLyLz

. (2)

The quantity ϕfib can be compared to the packing density, that is the maximal fraction of the domain
that can be occupied by densely packed fibers. In the case of an ordered packing, the packing density
of spherocylinders is ϕorder = 0.89, while for random or amorphous packing of sphero-cylinders with
an aspect-ratio of 6, the maximal random packing density ϕrandom ≈ 0.4 [48]. Thus, we may say that
a system is “sparse” if its fiber density is below ϕrandom, “dense” if it is between ϕrandom and ϕorder, and
“hyperdense” if it is above ϕorder. In the following, we will study two types of systems : dense systems
containing Nfib = 3000 fibers (ϕfib = 0.58) and sparse systems with Nfib = 1500 fibers (ϕfib = 0.29,
[54, 13]).

For each of the three types of mechanical forces in the system, we define the “characteristic interac-
tion time” the time needed for two isolated fibers interacting only via this force and initially positioned
in the most unfavourable configuration to reach 99% of the equilibrium state. For repulsion, Trep is the
time needed for two fully overlapped fibers (X1 = X2 and ω1 = ω2) to move apart by 99% of their
equilibrium distance 2Rfib (i.e. ||X1 − X2|| = 0.99 × 2Rfib). Similarly, for the elastic spring Trest is
the time needed for two fibers that are initially fully overlapping and crosslinked at their center to move
apart by 99% of their equilibrium distance d

eq
link. On the other hand, for nematic alignment Talign is the

time needed for two perpendicularly intersecting fibers (X1 = X2 and ω1 ⊥ ω2) crosslinked at their
center to reach a relative angle arccos(ω1 · ω2) = 0.9◦.

Explicit computation leads to the following formula (numerical values are given for the parameters
presented in Table 1) : 

Trep =
9µfibLfib

Rfib αrep
= 8.64Ut,

Trest = ln(100)
µfibLfib

αrest
= 5.53Ut,

Talign = 4.8
µfibL

3
fib

αalign
= 523Ut.

(3)

It may be noted that the alignment interaction is much slower than the repulsive and elastic restor-
ing forces. In this regime, fiber elements are quite rigid and connected by strong springs (crosslinks),
enabling to prevent local accumulation of fibers and overstretching of long fibers (those made of several
crosslinked fiber units).
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Figure 1: Panels A-C: Illustration of the various structures that can be observed at equilibrium. Fibers
are represented by double-headed arrows and colored according to their local alignment with their neigh-
bours (from blue : Alk = 0 to red : Alk = 1). The structures range from systems with uniformly high
local alignment indicator (panel A) through systems with heterogeneous, intermediate local alignment
indicator (panel B) to disordered systems with uniformly low local alignment indicator (panel C). Panel
D: Value of Almean according to Nmean

linkperfib at equilibrium, with color depending on the remodelling speed
νlink and horizontal and vertical error-bars indicating the standard deviation NSTD

linkperfib and AlSTD respec-
tively. The gray dashed-line indicates the critical value of Nmean

linkperfib and the black dashed-lines the three
logarithmic fits obtained for Nmean

linkperfib < Ncritic.
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3 Results

3.1 Matrix crosslinking drives the local alignment of 3D dynamical fiber networks.

In Figure 1.(A-C), we show various structures that can be obtained with our model by playing on the
parameters in the ranges indicated in Table 1. The fibers are represented by double arrows, colored as
function of their local alignment with their neighbors. We refer the readers to annex B.1 for more details
on the computation of this quantifier, and just mention that the local alignment of fiber k, denoted Alk,
is equal to 1 (fiber colored in red) if all the neighbouring fibers display the exact same direction as fiber
k, and to 0 (fiber colored in blue) if the neighbouring fibers display uniformly distributed directional
vectors. Moreover in appendix B.1, we show that this quantifier is able to discriminate between fibers
located in randomly oriented environments (corresponding to Alk < 0.5), fibers located in nearly pla-
nar environments (leading to Alk around 0.7), and fibers located in nearly uni-directional environments
(leading to Alk above 0.8).

As one can observe, the fiber structures obtained at equilibrium range from highly aligned systems
(mainly composed of red fibers, see Figure 1.A) to disordered systems with a low local alignment (mainly
composed of fibers colored in blue, see Figure 1.C). The model can also produce intermediate states
composed of fibers with a median local alignment (see Figure 1.B).

In order to assess the alignment states of our different fiber networks, we computed the mean of the
local alignment indicator Alk over all the fibers of the system, denoted by Alsim. To account for stochastic
variability (due to the random initial condition and the stochastic linking and unlinking processes), we
computed the mean and standard deviation of Alsim over 10 simulations conducted with the same set of
parameters, denoted by Almean and AlSTD. Similarly, we denote by Nlinkperfib = Nlinks/Nfib the number
of links per fibers in a network and by Nmean

linkperfib and NSTD
linkperfib its average and standard deviation over 10

simulations.
By plotting the alignment quantifier Almean as a function of the number of links per fiber N(mean)

linkperfib
(both computed on the systems at equilibrium), we discovered a striking and major correlation between
these two quantities. This correlation is shown in Figure 1.D, with horizontal and vertical error-bars
indicating the inter-simulation standard deviations NSTD

linkperfib and AlSTD respectively. The different mark-
ers indicate different fiber densities (dots for dense systems and triangles for sparse ones), the different
colors refer to different networks dynamics νlink, and inside each color series χlink is increasing with
Nlinkperfib.

Figure 1.D reveals that the values of Almean and Nmean
linkperfib at equilibrium are highly correlated. When

Nmean
linkperfib is inferior to a critical threshold Ncritic ≈ 0.7 (indicated with a grey dashed line on Figure 1.D),

there is a logarithmic correlation between the number of links per fiber in the network and its mean
alignment indicator (black dashed lines in Figure 1.D) :

Almean ≈ α log(Nmean
linkperfib) + β, (4)

with

• α = 0.037, β = 1.006 and coefficient of determination r2 = 0.87 for dynamical systems (non-
blue markers);

• α = 0.129, β = 0.651 and coefficient of determination r2 = 0.96 for sparse non-dynamical
networks (blue triangles);

• α = 0.042, β = 0.433 and coefficient of determination r2 = 0.985 for dense non-dynamical
networks (blue dots).

Then, when Nmean
linkperfib > Ncritic we observe an abrupt drop of the equilibrium value of Almean.

Surprisingly and very interestingly, for dynamical systems (νlink > 0) there is no difference in align-
ment induced by the fiber density or the link characteristics νlink and χlink : the correlation observed is
the same for all sets of points.
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The second major observation from Figure. 1.D is the difference between non-dynamical and dynam-
ical networks at equilibrium. Indeed non-dynamical networks, composed of a fixed number of links, are
systematically less aligned than dynamical ones (compare the values of Almean between the blue markers
and the other colors). Moreover, although we do recover the same type of correlation between the fiber
local alignment and the number of links per fiber in the network, for non-dynamical networks this cor-
relation significantly depends on the fiber density. However, the critical number of links Ncritic allowing
for larger alignment is the same for non-dynamical networks, either dense of sparse, and for dynamical
networks. Therefore, Ncritic seems to be a general critical network connectivity value controlling the local
alignment abilities of various networks.

Altogether, these results show that the emergence of organized networks (i) requires some remod-
elling abilities of the ECM matrix and (ii) is mainly controlled by the number of links per fiber.

3.2 ECM architecture emergence is driven by a complex interplay between remodelling
speed and linked fiber fraction

The previous section took a particular focus on the local arrangement of the fiber units composing our
3D fiber network, with little information on the global structures at the population scale. In this section,
we aimed to characterize quantitatively the macro structures that emerge in our networks. To this aim,
we used the stereographic projection of the fiber directional vectors. Disregarding the spatial position of
a fiber, we represented its directional vector as a point on the surface of the unit half-sphere in 3D and
then projected it onto the unit disk in 2D (see annex B.2 for a detailed explanation).

As shown in Figure. 2, this representation enabled us to characterize the different global organiza-
tions of our fiber networks. Indeed, we observed three different types of stereographic projections in our
simulations : fibers directional vectors very concentrated around the center of the disk, corresponding to
a global alignment of the system (Figure 1.A and Figure 2.A), fibers directional vectors homogeneously
distributed on the disk corresponding to a global disorder (Figure 1.C and Figure 2.E), and fibers direc-
tional vectors distributed along a preferential axis, with complete depletion in the direction perpendicular
to this axis, corresponding to global curved/plane structures (Figure 2.(B-D)).

Together with the local alignment quantifier Alsim, we were now able to quantitatively characterize
the different local and global fiber organizations inside our networks. We considered a system to be
locally aligned if Alsim was above 0.7 (see appendix B.1 for justification of this value). At the same time,
we considered that a system was globally aligned if its stereographic projection covariance ellipse had
a semi-major axis smaller than 0.45 (implying that the point cloud covers less than 20% of the whole
projection disk).

Amax

⩽ 0.45 > 0.45

Alsim

⩾ 0.7
Aligned state : alignment both
local and global.

Curved state : alignment local
but not global.

< 0.7 (alignment global but not local)
Unorganized state : no align-
ment, either local or global.

Table 2: Classification of the simulations outcomes into different states based on the local quantifier
Alsim and the global quantifier Amax. The case {Alsim < 0.7 & Amax ⩽ 0.45} never occurs in our
simulations and is thus unnamed.

We therefore classified the simulations outcomes into three different states (unorganized, curved
and aligned) using Table 2. We ran a total of 1080 numerical simulations, exploring various values of
the parameters νlink, χlink and Nfib in the broad ranges indicated in Table 1, and counted among their
outcomes :

• 180 unorganized states (all occurring in non dynamical systems, i.e. νlink = 0),

• 661 curved states,
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Figure 2: Panel A: Alignment indicator Alsim versus semi-major axis length of the covariance ellipse
of the stereographic projection Amax, for each simulation of dense systems (Nfib = 3000). Red crosses
correspond to systems in an aligned state, orange diamonds to curved states and blue dots to unorganized
states. The simulations previously displayed in Figure 1 are indicated with a black star and their stereo-
graphic projection given as inset. Panel B to E display the equilibrium state of a few other simulations,
whose position on the diagram are also indicated with a black star. Panel F: Heatmap of the percentage
of simulations ending in an aligned state (vs a curved state), for dynamical dense networks as function
of the values of the network remodeling speed νlink (in ordinate) and the equilibrium linked fiber fraction
χlink (in abscissa).

9



• 239 aligned states (among which only 12 occurred in sparse systems).

Figure 2 A shows the equilibrium values of quantifiers Alsim and Amax for dense systems (see an-
nex C.2 for the equivalent figure on sparse systems). The points are colored according to the states
defined previously (blue dots correspond to unorganized states, orange diamonds to curved states and
red crosses to aligned states). The simulations already displayed in Figure 1 are indicated with a black
star and their stereographic projection shown as inset. Four other simulation outcomes are singled out
with black stars on the phase diagram and illustrated with a 3D view and stereographic projection in the
panels B to E bellow.

From Fig. 2.A, we first observe that the unorganized states (blue dots) form a small, compact group
of points with large semi-major axis length while the aligned states (red crosses) make a long thin group
with very high alignment indicator. On the other hand, the curved states (orange diamonds) form a scat-
tered cloud of points with a broad range of values for both the semi-major axis length and the alignment
indicator. Moreover, we observe that the transition between unorganized and curved states is very sharp
(notice the gap between the blue dots and orange diamonds in panel A). Indeed, no simulation displays
an average alignment indicator at equilibrium between 0.65 and 0.77 (including sparse systems, see an-
nex C.2), and there is a marked difference between the least organized of the curved states (illustrated in
Figure 1.A) and the most organized of the unorganized states (illustrated in Figure 2.E). This confirms
our choice of 0.7 for the threshold value between unorganized and curved states.

On the contrary, the transition from curved to aligned states is not a clear switch but a continuum of
structures that can be illustrated by the two borderline cases in panels B and C of Figure 2. Thus, one
must be aware that the partition between curved and aligned states is partly arbitrary and depends on
the choice of the threshold. However, this classification into three states enabled to distinguish between
unorganized networks, globally aligned networks and networks locally aligned with twisting capacities
at the population level, enabling to go deeper into the model parameters controlling tissue architecture
emergence at different scales.

We first found that the sharp transition between unorganized and curved states was fully controlled by
the remodelling speed of the network νlink. Indeed, unorganized states were only and systematically ob-
served for non-dynamical networks (νlink = 0), while dynamical networks (νlink > 0) never equilibrated
in unorganized states but self-organized into either curved or aligned states, and this independently on the
fiber density of the network (see Appendix C.2). In contrast, the transition between curved and aligned
states is not controlled by a unique model parameter but is the interplay between several parameters.

Indeed, Figure 2.F shows a heatmap of the percentage of simulations ending in an aligned state (vs a
curved state), for dynamical dense networks (see Appendix C.2 for results on sparse networks), depend-
ing on the values of the network remodeling speed νlink (in ordinate) and the equilibrium linked fiber
fraction χlink (in abscissa). As one can observe in Fig. 2.F, there is a nonlinear relationship between the
global alignment capacities of the networks and the parameters νlink and χlink. Indeed, analysis of the
heatmap reveals that (i) reduced linked fiber fraction χlink can increase global alignment outputs because,
for low-remodelling networks, the formation of crowded interconnected fiber structures inhibiting fiber
motion is relieved by reduced link density. Moreover, (ii) the global alignment of networks with modest
remodelling rates may undergo little change with reduced linked fiber-fraction and (iii) the global align-
ment ability of fast-remodelling networks will likely be impaired by reduced linked fiber-fraction. These
results show that the different types of tissue architectures (aligned, curved or unorganized) depend on
an interplay between parameters νlink and χlink. While ECM local alignment can be explained by the
simple emerging variable that is the number of links per fiber in the network (as shown in section 3.1),
its direct relation with model parameters Nfib, νlink and χlink is more complex. Indeed, Figure 2.G shows
a heatmap of the number of links per fiber in the network Nmean

fib as function of νlink and χlink for dense
dynamical networks (same simulations as panel F). It demonstrates that Nmean

fib is indeed an emerging
variable, in the sense that it is not directly linked to the parameters νlink and χlink but rather is the result
of a complex interplay between the two. Indeed, the number of links per fiber in the network increases
along the diagonals, as νlink decreases and χlink increases (from top left to bottom right corner of the
heatmap), crossing the critical threshold Ncritic doing so (the cells where Nlinkperfib ≈ Ncritic are framed
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in green in panel G). These results explain why the proportion of aligned structures are maximal along
the diagonal from the bottom left to the top right (i.e broadly perpendicular to the gradient of the emer-
gent parameter). These results extend to the case of sparse networks (see Fig. C.2 in Appendix C.2),
confirming the strong correlation between ECM alignment abilities and the number of links per fiber
they contain.

These results show that our networks can be seen as corresponding to different phases of physical
materials depending on their remodelling abilities. If non-dynamical networks can be seen as solid
structures unable to spontaneously reorganize, dynamical networks have properties reminiscent of fluid
materials, the global architecture of which being controlled by an interplay between their remodelling
speed and their linked fiber fraction. In the next section, we study the evolution in time of the structures,
enabling to give more insights into the role of these parameters in tissue structuring in time.

3.3 ECM architecture emergence follows a unique evolutionnary path on timescales con-
trolled by their remodelling characteristics

In this section, we study the temporal evolution of the spatial structures. Our very first observation is that,
for all sets of parameters, the evolution in time of the quantifier Almean follows an inverted exponential
growth (see annex C.4 for more details). We will use as a time reference the time-constant of this growth,
denoted τAl, which corresponds to the time needed for the quantifier to reach 63% of its asymptotic value
(Almean ≈ 0.7 in our case).

Movies displaying the full temporal evolution of a few simulations are available in supplementary
data (see annex C.1). In Figure 3.A-A”’ and B-B”’, we show the stereographic projection of a few well
chosen time frames (namely 0.5τAl, τAl, 3τAl and Tfinal) for two of these simulations (respectively from
Movie3.mp4 and Movie4.mp4). They correspond to dense systems with χlink = 0.8 and two different
crosslink dynamics : fast remodeling network νlink = 0.1 (A-A”’, Movie3.mp4) and slow remodeling
network νlink = 0.001 (B-B”’, Movie4.mp4). These screenshots enable us to answer the important ques-
tion of how the network global structure emerges. It is not by accretion around a few structured areas
that gradually merge together, but by an overall homogeneous structuring. Indeed, one can observe that
the directional vectors gradually concentrate around a main direction without creating clustered points
that merge together. This behavior can be observed both for very aligned networks (A-A”’) or curved
states (B-B”’), and in fact in all our simulations, independently on the network density. Therefore, our
model suggests that the emergence of tissue architecture occurs on a global scale.

We now turn towards the analysis of the time trajectories of the quantifiers of the structures. We
show in Figure 3.C the trajectory in the phase plane Amax vs Alsim of simulations for low-dynamical
dense networks νlink = 0.001 with various linked fiber fractions χlink (different colors, see Appendix C.4
for more dynamical networks). We observe that all the trajectories follow a common pattern. It begins
with a sharp increase of the alignment indicator (from 0.15 to between 0.4 and 0.5) while maintain-
ing a quasi-constant semi-major axis length : this corresponds to the partial depletion of one direction
(denoted d1) in the family of the fibers directional vector, thus shifting from the initial uniform distri-
bution to a mainly two-directional distribution (see annex B.2 for more details on this interpretation).
Non-dynamical networks do not go past that first stage (data not shown).

The trajectories then diversify : the alignment indicator keeps increasing while the semi-major axis
length either decreases, stays constant or slightly increases. The first case is the most common and
indicates that, while direction d1 keeps depleting until near extinction, one of the two remaining direc-
tions starts to deplete as well. This diversification happens on the scale of the time-constant τAl of the
alignment indicator (marked on the trajectories of Figure 3.C with a black circle).

Lastly, simulations ending in an aligned state and part of those ending in a curved state display a stage
of condensation of the fibers directional vectors around a main direction. This is marked by a shrinking
of the covariance ellipse and a slow increase of the alignment indicator, which has already nearly reached
its steady state (compare with the stabilisation of Almean in Figure 10). This last point comes from the
local quality of the quantifier Alsim (and by extension Almean) : a system can be very aligned locally,
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Figure 3: Temporal evolution of dense systems (Nfib = 3000) with various linking dynamics. Panels
A-A”’ : Stereographic projection of the system at times 0.5τAl (A), τAl (A’), 3τAl (A”) and Tfinal (A”’),
for one simulation with νlink = 0.1 and χlink = 0.8. Panels B-B”’ : Stereographic projection of the
system at times 0.5τAl (B), τAl (B’), 3τAl (B”) and Tfinal (B”’), for one simulation with νlink = 0.001 and
χlink = 0.8. Panel C : Trajectory in the phase plane Amax vs Alsim of individual simulations for slow-
remodelling dense networks νlink = 0.001 and various linked fiber fractions χlink. The initial position is
indicated with a black square, the final position with a black star and the time-constant τAl with a black
circle. The limits between each class of structures are drawn in dashed lines. Panel D : Evolution of
Nmean

linkperfib for slow-remodelling dense networks νlink = 0.001 and various linked fiber fractions χlink,
for 10 simulations with shading indicating the inter-simulation standard deviation NSTD

linkperfib. The critical
value Ncritic is indicated with a dashed line and the time-constant τAl with a black circle.
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but not globally, if the main direction of the local structures varies smoothly across space. Thus, the
transition between a curved and an aligned state is mostly characterized by a gradual shifting of multiple
local structures towards the same direction.

Finally, we observe that the number of links per fiber (displayed in Figure 3.D) undergoes a transient
increase followed by a two-stage exponential decay in time (appearing as a piece-wise linear decrease
on the semi-logarithmic scale). For low dynamical networks, the initial accumulation of crosslinks is
more pronounced, in the sense that the peak is higher and the subsequent decrease slower, when χlink is
high. For the extreme case of large linked fiber fraction χlink = 0.9 (Figure 3.D), the phenomenon is so
strong that only the first stage of exponential decay is observed during the time of the simulation. On the
other hand, for small equilibrium linked fiber fraction (χlink = 0.1, blue curves) we do not observe any
crosslinks accumulation or fast remodeling networks (see Appendix C.4 for more dynamical networks) .

This behaviour can be explained by comparing the linking dynamics to the characteristic time of
the repulsive interaction Trep = 10. Parameter χlink describes the proportion of linked fibers among
all linkable fibers at equilibrium, but this equilibrium takes time to establish (inversely proportional to
νlink). If the repulsion interaction operates faster than the links remodeling (i.e. Trep ≪ 1/νlink), then
the linkable configurations will change before the linking/unlinking processes could equilibrate on the
current configuration : new links will appear between newly overlapping fibers while former overlapping
fibers will still be linked even if not overlapping anymore, leading to an accumulation of links in the
system. This happens all the more if the disparity between the frequencies νlink and νunlink is more
favourable to linking than unlinking (νlink > νunlink, i.e. if χlink > 0.5).

The system thus exhibits a global, macroscopic relaxation phenomenon which emerges from its
various local, microscopic properties. It can be seen that the characteristic time-scale of this relaxation
is comparable to the time-constant of the alignment indicator τAl (see position of the black circles on the
curves in Figure 3.D, which indicates the value of τAl for the corresponding set of parameters).

These results demonstrate a nonlinear dependence of the network properties on the type of links
and the number of crosslinks per fiber. A high number of long lasting crosslinks promotes crosslink
accumulation resulting in medium/low alignment, while fast remodeling reduces the mechanical action
of the individual links on the overall network, resulting in lowly connected networks being unable to
align. Together with the results of section 3.2, we showed that the network alignment abilities require a
number of links adapted to their remodeling speed : fast remodeling networks need a high equilibrium
linked fiber fraction to quickly reach a high alignment indicator, while slow remodeling networks need a
medium/low equilibrium linked fiber fraction to prevent crosslink accumulation and avoid the formation
of crowded interconnected fiber structures inhibiting fiber motion.

4 Discussion

In this work, we have implemented a 3D model for fiber networks composed of fiber elements capable
to dynamically crosslink or unlink each others, to align with each others at the crosslinks and to repel
their nearest neighbors to prevent fibers from cluttering. We showed that this model can spontaneously
generate various types of macrostructures whose emergence can be finely described. The model reveals
that the different macrostructures (i) can be easily explained by a single emerging intermediate variable,
namely the number of links per fiber in the ECM network, (ii) are controlled by a nonlinear relationship
between the linked fiber fraction and remodelling rate and (iii) follow the same unique evolutionary path
for all structures and not multiple paths.

To our knowledge, this work is the first exhaustive study questioning the mechanisms of tissue archi-
tecture emergence via a simple mechanical model of dynamical fiber networks in 3D. The equilibrium
structures obtained with our model can be classified into three types : (a) aligned states with a strong
organization around one main direction, (b) curved states with a median, locally heterogeneous align-
ment indicator and a wide range of directional vectors living in a plane, named curved patterns and (c)
unorganized states with very low alignment indicator and no preferential direction. These different types
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of macro architectures show that the model can cover a wide range of biological tissues (highly aligned
fiber structures reminiscent of muscular tissues [39] to disturbed alignment of collagen fibers observed in
the first phase of wound healing [52]). Unorganized states were exclusively obtained for non-dynamical
networks composed of permanent crosslinks (νlink = 0), whose plasticity was very low due to their
inability to rearrange their crosslinks. In contrast, dynamical networks exhibited a mixture of aligned
and curved states. These results point to the essential role of matrix remodeling in ECM structuring,
consistent with several results in the literature (see [7] and references therein).

This framework reveals that the different tissue architectures at equilibrium are directly controlled
by a simple intermediary variable, the number of links per fiber (see section 3.1). Our interpretation is
that, when the number of links per fiber is inferior to the critical threshold Ncritic, the network is weakly
constrained. In this configuration, an increase in the number of links per fiber improves the transmission
of information in the network and thus enhances the alignment process. The logarithmic scaling indicates
that the higher the number of links per fiber, the less prominent this feature becomes, until the gain (in
terms of the equilibrium alignment indicator) becomes null. The system then shifts into a constricted
regime where each new link adds to the constriction of the network and impedes its reorganization,
leading to a decrease of the local alignment.

The fact that we observe the same correlation for all dynamical networks means that, as long as a
network is slightly dynamical, its final alignment is mostly controlled by its number of links per fiber
rather than by its remodelling dynamics or its density. On the other hand, non-dynamical networks are
locked in mechanically constrained configurations, preventing the system from reorganizing efficiently
compared to dynamical ones and leading to a much lower level of alignment. However, we showed that
non-dynamical networks still contain some degrees of freedom allowing for spatial matrix reorganization,
and that this organization is controlled again by the number of links per fiber in the network but also by
the matrix density, which becomes an important factor. Our interpretation is that dense non dynamical
networks are more spatially constrained than sparse networks. Therefore, adding new links to a sparse
network can be more beneficial for the networks overall alignment than to a dense network which has
less degrees of freedom.

The existence of a simple emerging variable such as the number of links per fiber to control tissue
structuring could have major therapeutic implications in systems where the architecture of the ECM is
impacted (scarring, fibrosis, ageing), but could also prove very useful in the field of tissue engineering.
Indeed, because of its simplicity, this variable is amenable to experimental measurements and repre-
sents a new putative target for the development of therapeutic drugs one could develop to restore the
architecture of various biological tissues after external or internal alterations. It is noteworthy that this
variable is not prescribed by model parameters but emerges from the initial simple rules as a combina-
tion of ECM remodelling dynamics, linked fiber fraction and fiber spatial organization, independently of
supplementary complex interactions involving external factors such as migrating cells, contractile forces
etc.

The second major contribution lies in the analysis of the link between this emerging variable and the
model parameters related to the crosslinks. Our model reveals that the number of links per fiber in the
network, and therefore the global alignment abilities of dynamical fiber networks, result from a complex
interplay between their linked fiber fraction and their remodelling speed. From such results, it is apparent
that changes in linked fiber fraction will increase or decrease the global alignment abilities of the network,
depending on the network remodelling rate. Thus, biological contexts in which fiber crosslinking activity
undergoes changes may play an underappreciated role in driving tissue restructuring. Moreover, these
results suggest that the development of biological crosslinkers controling ECM crosslinking as a target
for tissue reconstruction must be carefully accounting for ECM remodelling dynamics.

Finally, the third major contribution of the paper lies in the fine time evolution of the spatial struc-
tures. This documents the different temporal evolution of the structures as function of the ECM re-
modeling speeds and reveals an unique trajectory all architecture combined with internal and transient
temporal windows during which they self-organize. The model revealed that dynamical networks com-
posed of long-lasting links exhibited a phase of crosslink accumulation followed by a long “relaxation”
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phase (reduction of the number of links per fiber in the network) associated with a spatial reorganization
of its fibers, while fast remodeling networks exhibited only the “relaxation” phase. The long relaxation
phase associated with slow realignment of the fiber units observed for slowly remodelling networks is
reminiscent of the realignment phase observed on long time scales in later stages of wound healing [52].
The crosslink accumulation phase has been observed in different ECM networks, for instance in ageing
tissues [49]. These new insights into the temporal evolution of the structures as function of the ECM
remodelling properties could prove useful in the field of tissue engineering, where there is a need to
design efficient biological crosslinkers [24, 53].

In emerging systems, the characteristics of the final outcome cannot be predicted from the initial rules
of the system and the paths from the initial interactions to the final equilibrium can be numerous and com-
plex corresponding to a stochastic evolution. This is not completely the case in our model because, if
indeed the emerging macrostructures cannot be predicted from the initial rules and the emergence must
be understood as a whole, the path is simple and unique and can be strongly predicted by an intermediate
emerging variable (the number of links per fiber in the ECM). Altogether, our study suggests that the very
aligned structures observed in fibrotic tissues could be mainly due to excess accumulation of crosslinks,
consistent with the alterations of ECM structure observed as a consequence of increased crosslinking in
lung fibrosis [36] or cancer [28], or again with previous studies on tissue-induced alignment of fibrous
ECM [38, 18]. Such deciphering of the emergence would open numerous perspectives for future investi-
gations. In vivo experiments must be conducted to definitively validate this hypothesis and are out of the
scope of this manuscript.

In this study, we demonstrated the ability of fiber networks to spontaneously self-organize as function
of the kinetics of their crosslinks. It is noteworthy that our model features networks composed of only
one type of crosslinks (permanent or transient with a given link-life). A natural perspective would be
to study the self-organization abilities of networks composed of heterogeneous crosslinks, following
the works of [31]. Moreover, our network features active crosslinks, i.e crosslinks that generate an
alignment of the fibers they are attached to. As a result, our fiber networks are not subject to any external
mechanical stimuli. Future works will be devoted to the study of the mechanical properties of these
dynamical networks under tensile/compressive stress, shear, etc. Another interesting perspective would
be to add cells having the ability to generate locally biophysical cues such as tension, stiffness and fiber
production/degradation [50] and study these effects on the structure and mechanical properties of the
ECM networks.

A Model

Here, we give details about the mathematical model presented in Section 2.1 of the main text. Let us
recall the main features and introduce some notations. The Nfib fiber elements are represented by their
centers Xk(t) ∈ R3 and their non-oriented directional unit vectors ωk(t) ∈ S+2 . The fibers repel their
close neighbors by means of a soft repulsion mechanism modeling steric repulsion between spherocylin-
ders of radius Rfib. Fiber elements have the ability to link to or unlink from each other to model fiber
elongation or rupture. The linking and unlinking of fibers follow random (Poisson) processes in time.
Fibers offer resistance to bending through an alignment torque acting between two linked fiber elements.
Fiber motion and rotation is given by Newton’s second law of motion, in an overdamped regime to model
a medium with low Reynolds number.

The outline of this appendix is the following: in Appendix A.1 we give the details of the mechanical
interaction forces and torques acting on the fibers. In Appendix A.2, we give details on the numerical
implementation and appendix A.3 details the computation of the closest points of two finite segments
used to compute the interactions and the crosslinks.
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A.1 Model components

In this section, we give details of the computation of the forces and torques generated by the mechanical
interactions described in section 2.1 of the main text.

Computation of the fiber-fiber repulsion forces (i) The force between two spherocylinders k and m
is approximated by the force between two spheres of radius Rfib, placed along the major axis of the fiber
elements at such positions Xk,m and Xm,k that their distance is minimal (see annex A.3 for the actual
computation of this point). Denoting by F

rep
k,m the pairwise interaction force between the spherocylinders

f and m and using Hertzian theory [1] :

F
rep
k,m = αrep (2Rfib − ||Xk,m −Xm,k||)3/2

√
2Rfib ×

Xk,m −Xm,k

||Xk,m −Xm,k||
, (5)

where αrep the maximal intensity of fiber-fiber repulsion and Rfib the threshold beyond which the force
field vanishes (this can be regarded as the “width” of the fiber). This force is applied at point Xk,m, thus
inducing a rotational torque :

T
rep
k,m = (Xk,m −Xk) ∧ F

rep
k,m, (6)

on fiber k.
Computation of the fiber attachment forces due to crosslinks (ii) Fibers closer than the threshold

dmax
link can create a crosslink, modeled as a linear spring of stiffness αrest and unloaded length d

eq
link fixed

to the two points of the crosslinked fibers that were closest at the time of its creation. Using Hooke’s law,
the elastic restoring force sustained by fiber k due to its link with fiber m reads

Frest
k,m = αrest

(
d

eq
link − ||Xl

k,m −Xl
m,k||

) Xl
k,m −Xl

m,k

||Xl
k,m −Xl

m,k||
, (7)

where Xl
k,m denotes the point of fiber k that was closest to fiber m at the time of the link creation. This

force induces a rotational torque on fiber k :

Trest
k,m =

(
Xl

k,m −Xk

)
∧ Frest

k,m. (8)

To ensure coherence between the different features of the model, we require that 2Rfib ≤ d
eq
link ≤ dmax

link .
Computation of the linked fiber alignment forces (iii). It is characterized by a stiffness parameter

αalign > 0 playing the role of a flexural modulus : the larger αalign, the more rigid the fiber network.
Given two linked fibers k and m, the torque sustained by the fiber k is such that, ∀u ∈ R3,

T
align
k,m ∧ u = αalign

(
(ωk ∧ ω̃m) ∧ u+

1− |ωk · ωm|
||ωk ∧ ωm||2

(ωk ∧ ω̃m) ∧ ((ωk ∧ ω̃m) ∧ u)

)
, (9)

where ω̃m = sign(ωk · ωm) · ωm so that there is no preferential orientation.
Computation of fiber friction (iv) We assume that the friction sustained by an infinitesimal element

of a fiber follows a Stokes law with friction coefficient µfib [27]. The total friction force sustained by a
fiber k, computed by integrating this law on the whole length of the fiber, is equal to :

Ffric
k = −µfibLfib

dXk

dt
(10)

and the associated rotational torque is equal to :

Tfric
k = −µfibL

3
fibωk ∧

dωk

dt
. (11)
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A.2 Numerical implementation

The differential system 1 is numerically solved using a discrete upwind Euler scheme, with adaptive
time-step. The linking and unlinking Poisson processes are updated between each time-step. We assume
that a pair of fibers cannot change its linking state more than once in a single time-step : this is reasonable
if the length of the time-step dt is small enough compared to the mean occurrence time 1/ν of the Poisson
process, so we prescribe dt ≤ dtlink with

dtlink = min

(
0.5

νlink
,

0.5

νunlink

)
. (12)

The probability for two fibers k and m to develop a crosslink between time tn and time tn+1 =
tn + dtn is then given by :

P
(
pk,m(tn+1) = 1

∣∣ pk,m(tn) = 0 and ||Xk,m(tn)−Xm,k(tn)|| ≤ dmax
link

)
= 1− e−νlinkdtn (13)

while the probability for a crosslink to break is given by :

P
(
pk,m(tn+1) = 0

∣∣ pk,m(tn) = 1
)
= 1− e−νunlinkdtn (14)

To ensure that agents do not swap position without even seeing each other, we also restrict the instan-
taneous translation of each fiber to half its radius Rfib and its rotation to arctan(0.1) ≈ 6◦. This implies
the following upper limits for the time-step :

dttrans(tn) = min
1≤k≤Nfib

0.5
Rfib∣∣∣∣∣∣dXk

dt (tn)
∣∣∣∣∣∣
 ,

dtrot(tn) = min
1≤k≤Nfib

 0.1∣∣∣∣∣∣dωk
dt (tn)

∣∣∣∣∣∣
 .

(15)

Reduction of the computational cost is achieved by dividing the domain of simulation into cubes
whose side-length is higher than the maximal range of the interactions : thus, interactions need only be
computed for pairs of agents located in neighbouring cubes. The loops calculating the interactions are
parallelized for further speeding up of the simulations.

One iteration of the Euler scheme proceeds as follow :

• Parallel computation of all forces and torques sustained by the agents at time tn (right-hand part
of equation (1)).

• Computation of the adaptive time-step (equations (12) and (15))

dtn = min(dttrans(tn), dtrot(tn), dtlink).

• Motion of the agents to their new position :

Xk(tn+1) = Xk(tn) + dtn
dXk

dt
(tn)

ωk(tn+1) = ωk(tn) + dtn
dωk

dt
(tn)

• Account for periodic boundary conditions.

• Attribution of each agent to a simulation box.

• Parallel update of linking configuration (equations (13) and (14)).
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Figure 4: Scheme of two sphero-cylindrical fibers k and m indicating the position of the closest points
Xk,m and Xm,k of their central segment (in a 3D perspective) relative to their respective center.

A.3 Closest points of two finite segments

Given two fibers k and m, we denote by Xk,m = Xk + lk,mωk the point of fiber k closest to fiber m
(see Figure 4). The couple (lk,m, lm,k) is the minimizer of the distance ||Xk + uωk − (Xm + vωm)|| for

(u, v) ∈
[
−Lfib

2 , Lfib
2

]
. If ωk = ωm, there is an infinity of solutions of the form v = u+(Xk −Xm) ·ωk;

in this case we arbitrarily chose the solution with the smallest |u| value. Otherwise, there exists a unique
solution whose analytical expression is :

lk,m = CLfib
2

(
((ωk · ωm)ωm · (Xk −Xm)− ωk · (Xk −Xm))

/ (
1− (ωk · ωm)2

) )
,

lm,k = CLfib
2

(
((ωk · ωm)ωk · (Xm −Xk)− ωm · (Xm −Xk))

/ (
1− (ωk · ωm)2

) )
,

(16)

where Ca denotes the cut-off function between −a and a.

B Quantifiers and visualization tools for the fiber structures

The goal of this section is to define quantifiers allowing to quantitatively describe the local and global
organization of the fiber structures obtained with our computational model. Figure 5.A shows a typical
simulation (almost) at equilibrium, in which fibers are represented as gray double arrows. As one can
observe, this simulation shows two levels of organization : a high local alignment and globally twisting,
curving patterns located near the center of the domain. In order to quantitatively describe these states,
we now define appropriate numerical quantifiers.

B.1 Local alignment indicator

Let Ralign denotes the sensing distance up to which a fiber may interact with its neighbours : in our
model, it is equal to Lfib + 2Rfib. For any fiber k, we define its neighbourhood Bk as the set of all fibers
located at a distance less than Ralign and its local alignment indicator Alk as the fractional anisotropy of
the fibers directional vectors within Bk.

It is computed as follows. We denote by pm = ωm ⊗ ωm the projection matrix on the directional
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Figure 5: Illustration of the various way to visualize the state of a system, using as example the final
state of a simulation. Panel A : 3D representation of each fiber as a gray double-headed arrow, with
edges of the spatial domain Ω drawn in black. Panel B : Same representation, with fibers colored
according to their local alignment indicator (blue : Alk = 0, red : Alk = 1). See annex B for the actual
computation. Panel C : Stereographic projection of the fibers directional vectors. See annex B.2 for
the actual computation. Panel D : Stereographic projection of the fibers directional vectors, with the
covariance ellipse drawn in red dashed line and its semi-major axis drawn in blue solid line.
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Figure 6: Calibration of the alignment indicator quantifier Al on random sets of orientation vectors, for
various distribution laws and sample sizes. The displayed values correspond to the average and standard
deviation over 10 random draws with the same characteristic.

vector of fiber m. The mean of the projection matrices of the fibers inside Bk is given by

Pk =
1

|Bk|
∑

m s.t. Xm∈Bk

pm, (17)

where |Bk| denotes the number of fibers in Bk.
The matrix Pk is symmetric positive-definite, so its three eigenvalues λ1(Pk), λ2(Pk) and λ3(Pk)

are real positive. The alignment indicator or fractional anisotropy in the neighbourhood Bk is then equal
to :

Alk =

√
3

2

(λ1(Pk)− λ̄)2 + (λ2(Pk)− λ̄)2 + (λ3(Pk)− λ̄)2

λ1(Pk)2 + λ2(Pk)2 + λ3(Pk)2
(18)

with λ̄ = (λ1(Pk) + λ2(Pk) + λ3(Pk))/3 the mean of the eigenvalues.
Figure 5.B shows the same simulation as Figure 5.A, but here the fibers have been colored as a func-

tion of their local alignment indicator, from blue (Alk = 0) to red (Alk = 1). As one can see, the curved
patterns are much easier to distinguish. Thus, the local alignment quantifier also serves as a visualization
tool by supporting the qualitative, visual observation of locally organized states.

Note that Alk = 1 if all the fibers in Bk have the same directional vector. If the directional vectors
are uniformly distributed then theoretically Alk = 0, but this is not always the case. Indeed, the actual
sampling of a random distribution may not be fully isotropic, especially if the number of elements in the
sample is small. Figure 6 displays the value of the alignment indicator obtained for various distribution of
fibers and various sample sizes : it can be seen that a uniform distribution produces alignment indicator
ranging from 0.1 (when the sample size is large) to as much as 0.55 (when the sample size is small), and
that there is a large discrepancy between different samples.

In our simulations, the number of neighbours of a fiber is very stable : between 20 and 25 for dense
systems and between 10 and 15 for sparse systems. Non-dynamical networks display mean alignment
indicators between 0.3 and 0.45 for dense systems and between 0.4 and 0.65 for sparse systems : these
values are comparable to those observed in our calibration tests for a uniform distribution with similar
sample size.

It can be seen from Figure 6 that these biases are much smaller for non-isotropic distributions : for
mainly two- or one-directional distributions, the values computed are nearly the same regardless of the
sample size and the discrepancy between different samples is small. For a two-directional distribution
(i.e. when the fiber directional vectors describe a disk), the eigenvalues on the mean projection matrix

20



Figure 7: Illustration of the stereographic projection. The orientation axis are shown for reference.
Panel A : Natural distribution of the fibers directional vectors on the unit sphere S2, with main direction
indicated by a red line. Panel B : Rotation of the vectors set so that its main direction (in red) now lies
along the z-axis. The definition-space of the vectors have been reduced to the “north hemisphere”, that
is to the subset S+2 in the new rotated coordinates system. The equatorial plane is shown in dark-grey.
Panel C : Projection of the vectors onto the equatorial plane, shown in 3D perspective.

are theoretically λ1(Pk) = λ2(Pk) = 1/2 and λ3(Pk) = 0, leading to a theoretical alignment indicator
of 1/

√
2 ≈ 0.707. This is very close to the value observed in our calibration tests (see yellow curve on

Figure 6). Nearly two-directional distributions, where the fiber directional vectors describe a “band” or
thick disk, give lower and lower alignment indicator as the prominence of the third direction (i.e. the
band width) increases (see green curves on Figure 6). Likewise, conical distributions, which are mainly
one-directional, give an alignment indicator close to 1 which becomes lower and lower as the aperture
angle of the cone increase (see red curves on Figure 6).

B.2 Stereographic projection

The directional vectors of the fibers belong to the half unit sphere S+2 . This subset of R3 can be projected
onto the unit disk in 2D using a stereographic projection, as explained below.

We define the main direction of a system as the eigenvector associated to the largest eigenvalue of its
total projection matrix

Ptot =
1

Nfib

∑
1≤k≤Nfib

ωk ⊗ ωk. (19)

If the system contains two or three equally represented directions (associated to equal eigenvalues),
one of them is randomly selected.

We rotate the set of directional vectors so that this main direction lies on the z-axis or “north-south
axis”. Since the fibers orientation is not relevant in our model, the set of directional vectors can be
restricted to the “north hemisphere” of the sphere. A point ω = (x, y, z) on this hemisphere can then be
projected onto the equatorial plane via the following transformation :

p(ω) =

(
x

1 + z
,

y

1 + z

)
. (20)

The whole process is illustrated in Figure 7.

Figure 5.C shows the stereographic projection of the simulation displayed in Figure 5.A and B. As
one can observe, the dots are not uniformly distributed but densely packed at the center of the figure,
indicating the existence of a main preferential direction in the system. However, not all fibers have a
directional vector close to this main direction : a non negligible number of dots are distributed all around
the circle, meaning that all possible directions are represented in the system. Furthermore, the presence of
a “circular branch” in the top-right part of the point cloud allows to identify the locally twisting structure
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that can be observed in Figure 5.B : in this part of the system, nearby fibers have similar but gradually
shifting directional vectors such that, on the scale of the whole structure, the fibers directional vectors
describe a circle (in the domain S+2 ).

Thus, this representation enables us to quickly grasp the distribution of the fibers directional vectors
around one or more poles. It must be noted that proximity on the stereographic projection indicates
similar directional vectors, but not necessarily spatial proximity. Nonetheless, we can gain insights into
the overall architecture of the network by drawing the covariance ellipse of the point-cloud (in red dashed
line on Figure 5.C) and computing its semi-major axis length Amax. As shown in the section 3.2, this
enables us to identify many type of “states” or structures that can also hint on the spatial organization of
the network.

C Supplementary data

C.1 Temporal evolution of the spatial structures : Movies

We describe here the movies showing the results of some of our simulations, available online at this
address.

Each video is divided in three panels. On the left is a 3D representation of the system with fibers
colored according to their alignment indicator (see colorbar on the right) and edges of the spatial domain
drawn in black, in the middle the stereographic projection of the fibers directional vectors and on the
right the trajectory of the simulation in the plane Amax–Alsim. The current time (in Ut) is displayed at
the top.

(Movie1) Simulation of a dense system (Lfib = 3000) with fast remodeling dynamics (νlink = 0.1)
and low equilibrium linked fiber fraction (χlink = 0.2).

This video shows a system quickly organizing : at t = 1000Ut, the system has already transitioned
from its initial unorganized state to a curved state. At t = 3000Ut, the main direction can be seen
emerging in the form of a large cluster of points in the stereographic projection. At t = 10 000Ut, the
stereographic projection displays a planar distribution of the directional vectors, with extra accretion of
points in the main direction and total depletion in the perpendicular direction. The system has already
nearly reached its maximal alignment indicator and, from that point onward, it will mainly undergo small
local adjustments of the fibers position and orientation (see the 3D representation on the left panel). The
alignment indicators of individual fibers harmonise, the mean alignment indicator increases slightly and
the point cloud of the stereographic projection condensates in a clear straight band. During the entire
simulation, the semi-major axis length Amax of the stereographic projection covariance ellipse stays
nearly constant.

(Movie2) Simulation of a dense system (Lfib = 3000) with slow remodeling dynamics (νlink = 0.001)
and low equilibrium linked fiber fraction (χlink = 0.2).

This video shows a system organizing more slowly than the previous one (approximately twice
slower) but achieving a more aligned final state. The system reaches a curved state at t = 1900Ut.
The main direction can be seen emerging on the stereographic projection around time t ≈ 5000Ut.
The point cloud of the stereographic projection then begins to condensate around this main direction in
a nearly symmetric manner while the various local structures rotate to align together (see left panel),
reaching an aligned state at t = 23 000Ut and continuing to align.

(Movie3) Simulation of a dense system (Lfib = 3000) with fast remodeling dynamics (νlink = 0.1)
and high equilibrium linked fiber fraction (χlink = 0.8).

This video shows a system organizing very quickly, with a stereographic projection adopting as early
as t = 4000Ut a band-like pattern which quickly gets thinner. At t = 6000Ut, the 3D representation
shows a clear wavy pattern with very uniform local alignment indicators. At that time the mean align-
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ment indicator is already high (> 0.9). The stereographic projection then begins to contract while the
wavy pattern flatten, and the simulation ends in an aligned state.

(Movie4) Simulation of a dense system (Lfib = 3000) with slow remodeling dynamics (νlink = 0.001)
and high equilibrium linked fiber fraction (χlink = 0.8).

This video shows a system evolving very slowly. The mean alignment indicator reaches the 0.5
threshold around t = 11 000Ut. At that time, the local alignment indicator of individual fibers displays
wide discrepancies and the stereographic projection point cloud has not visibly changed. A main di-
rection can be seen emerging at approximately t = 20 000Ut, but the central cluster of points is very
large and does not contract over time, as can be seen by the fact that the quantifier Amax does nearly not
decrease. The system ends in a curved state with heterogeneous local structures.

(Movie5) Comparison of two simulations with different fiber densities, both ending in an aligned
state. The top row shows a dense system (Lfib = 3000) with intermediate remodeling dynamic (νlink =
0.01) and moderate equilibrium linked fiber fraction (χlink = 0.3). The bottom row displays a sparse
system (Lfib = 1500) with intermediate remodeling dynamic (νlink = 0.01) and very high equilibrium
linked fiber fraction (χlink = 0.9).

It is noteworthy that the two systems display a very similar temporal evolution. This comes from the
fact that they have the same remodeling speed νlink and a comparable number of links per fiber Nlinkperfib.
The latter is achieved by giving the sparse system a higher equilibrium linked fiber fraction χlink, which
compensate for its lesser number of linkable configurations (i.e. overlapping fiber pairs).

C.2 Snapshots of sparse systems

In this section, we take a closer look at the spatial organization of sparse systems. Figure 8.A compares
the values of quantifiers Alsim and Amax when the simulation has reached equilibrium, with color de-
pending on the type of state reached (blue dots correspond to unorganized states, orange diamonds to
curved states and red crosses to aligned states). A few of simulations corresponding to either typical
or borderline cases are singled out with black stars and illustrated with a 3D view and stereographic
projection in the panels B to I.

We first observe that the group of unorganized states (blue dots) is less compact than it was for dense
systems and reaches greater values of Alsim. The groups of curved states (orange diamonds) and aligned
states (red crosses) have the same characteristics in term of Alsim and Amax than before, but the first one
is much more populated and the second much less (it only contains 10 simulations).

The most aligned state observed in sparse systems (panel B) is less straight than the typical aligned
state for dense systems. Typical curved states (panels E and F) and unorganized states (panel I) however
are very comparable to what was observed in dense systems. The transition between aligned and curved
states is still continuous (compare panels C and D) and the transition between curved and unorganized
states sharp (compare panels G and H), though the gap (in term of Alsim) and the visual difference are
lesser.

C.3 Correlation between the links life-expectancy and the ECM architecture

Here, we explore whether the network organization abilities could be controlled by the life expectancy
of a link, which depends of both νlink and χlink via the following relation :

Tlink-life =
1

νunlink
=

χlink

(1− χlink)νlink
. (21)

Figure 9 displays the value of Almean at equilibrium as a function of Tlink-life, with a vertical error-
bar indicating the inter-simulation standard deviation AlSTD. The value of νlink is indicated in color
and, inside each color series, χlink is increasing with Tlink-life. The characteristic time of the alignment
interaction Talign (see section 2.2) is indicated for the sake of comparison.
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Figure 8: Panel A: Alignment indicator Alsim versus semi-major axis length of the covariance ellipse of
the stereographic projection Amax, for each simulation of a sparse system. Red crosses correspond to
systems in an aligned state, orange diamonds to curved states and blue dots to unorganized states. Panels
B to I display the equilibrium state of a few simulations (with 3D view and stereographic projection) to
illustrate typical or borderline cases. Their position on the diagram are indicated with a black star.

Figure 9: Value of Almean at equilibrium according to the value of Tlink-life, with color depending on the
remodeling speed νlink and vertical error-bars indicating the inter-simulation standard deviation AlSTD.
The characteristic time of the alignment interaction Talign is indicated with gray dashed-lines for the sake
of comparison.
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Figure 10: Temporal evolution the quantifier Almean for dense systems (Nfib = 3000) with various linking
dynamics. Shading indicate the inter-simulation standard deviation AlSTD. The time-constant of this
growth is indicated with a black circle and the limit between unorganized and curved or aligned states is
drawn with a dashed line.

We observe that, in the case of dense systems (left panel), the Almean a flat maximum for Tlink-life ∈
[10, 500] Ut, while for sparse system (right panel) it reaches its highest value at Tlink-life ≈ 500 Ut.

This can be explained by the fact that, when the average life expectancy of a link Tlink-life is very
small compared to the characteristic time of the alignment force Talign = 523 Ut, the links do not persist
long enough to fully exert their aligning influence and the equilibrium alignment indicator is lesser. This
is especially true for sparse systems, which display a clear drop for Tlink-life < 500 Ut. For dense systems
the drop is slower and less pronounced.

On the other hand, when Tlink-life is large compared to Talign, on average the links last longer than
necessary to wield their full effect and lock the system in non-optimal configurations by obstructing the
action of other links. Though these locally locked structures will disappear over time, others will appear
- or, to put it another way, the transmission of information (i.e. the fiber direction) in the network is
too slow for all the agents to synchronize and the system will not be able to reach an extremely aligned
equilibrium state.

C.4 Temporal evolution of the quantifiers

Figure 10 displays the temporal evolution of the quantifier Almean for dense systems with various values
of νlink and χlink.

Our main observation is that, for all parameters, the Almean follows an inverted exponential growth,
that is a quick initial growth followed by a slow convergence towards an asymptotic value. We computed
the time-constant τAl of this growth, that is the time needed to reach 63% of the asymptotic value, and
plotted it on the corresponding curve with a black circle. It can be seen that, for a given value of νlink, the
shorter the time-constant, the higher the equilibrium value of the alignment indicator (compare the curves
inside each panel). By comparing the panels from left to right, we see that the faster the remodeling of the
network, the faster the convergence of the system towards its equilibrium value. Moreover, by comparing
the extreme cases χlink = 0.1 (blue curve) with χlink = 0.9 (pink curves) of panels A and C, we see that
the dependence of the reorganization time τAl on the equilibrium linked fiber fraction is not trivial.
Indeed, fast remodeling networks (panel C) seem to reorganize faster when the equilibrium linked fiber
fraction is large (pink curve) than low (blue curve), while the reverse is observed for slow remodeling
networks (panel A). Altogether, these results suggest that for each network dynamics, there exists a most
efficient range of equilibrium linked fiber fraction allowing for quicker convergence to equilibrium.

To explore in more details the dependence between the convergence speed and the parameters of
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Figure 11: Time-constant τAl of the average alignment indicator (Almean) according to the equilibrium
linked fiber fraction χlink, with color depending on the remodeling speed νlink and marker depending
on the fiber density. Left : Results for all tested sets of parameters, whatever the outcomes of the
simulations. Right : Results for all tested sets of parameters which lead, on average, to an aligned state.

the networks, in Figure 11 we plot τAl as a function of χlink, for different values of νlink. The left panel
contains all the simulations while the right panel only shows the results for the sets of parameters leading,
on average over 10 simulations, to an aligned equilibrium state (i.e. Almean > 0.95).

We can first see on the left panel of Figure 11 that τAl decreases when νlink increases according to a
non-linear relationship which saturates for νlink ≥ 0.1 (compare the different color points). These results
show that fast remodeling networks relax faster to their steady-states than slow-dynamical networks.
Moreover, sparse systems organize quicker than dense systems at low linking dynamics (νlink ≤ 0.01,
compare the dot and triangle markers for the green and yellow populations), while there is no difference
between dense and sparse systems for fast remodeling networks (νlink ≥ 0.1 where dot and triangle
markers are superimposed).

For each value of νlink, there is a most efficient range of equilibrium linked fiber fraction χlink allow-
ing for a lower value of τAl and so a quicker convergence to equilibrium. For slow remodeling networks
(νlink = 0.001, green markers) this range lays between χlink = 0.2 and χlink = 0.3, because systems with
too much crosslinks will undergo stiffening and take longer to relax, but systems with too few crosslinks
will have difficulty to align themselves. As one can observe, the range of χlink allowing the fastest con-
vergence to equilibrium shifts towards 1 as the network remodeling speed νlink increases. As the network
remodeling increases, a greater number of crosslinks will then promote a quicker alignment.

When looking only at parameter sets which, on average, lead to aligned equilibrium states (right
panel of Figure 11), we can see that these parameter sets cover all remodeling dynamics and correspond
to the range of equilibrium linked fiber fraction leading to fastest convergence for each remodeling speed.
We conclude that the most efficient systems (which organize the fastest) are also those that align most.
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Figure 12: Temporal evolution of dense systems (Nfib = 3000) with medium or high linking dynam-
ics. Panels C-C’ : Trajectory in the phase plane Amax vs Alsim of individual simulations for medium-
remodelling (νlink = 0.01) or quick-remodelling (νlink = 0.1) dense networks and various linked fiber
fractions χlink. The initial position is indicated with a black square, the final position with a black star and
the time-constant τAl with a black circle. The limits between each class of structures are drawn in dashed
lines. Panels D-D’ : Evolution of Nmean

linkperfib for slow-remodelling dense networks νlink = 0.001 and var-
ious linked fiber fractions χlink, for 10 simulations with shading indicating the inter-simulation standard
deviation NSTD

linkperfib. The critical value Ncritic is indicated with a dashed line and the time-constant τAl
with a black circle.
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